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Abstract

We represent the ensemble of extremal copositive matrices A ∈ COPn of the copositive cone as a
disjoint union of a finite number of algebraic manifolds. These manifolds are strata of algebraic sets,
each of which is characterized by a finite collection E of pairs of index sets. We give necessary conditions
on E to correspond to an algebraic set containing exceptional extremal matrices of COPn. A manifold of
extremal matrices is essential if it is not contained in the closure of another such manifold. We compute
the essential manifolds of extremal matrices of the cone COP6.
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1 Introduction

An element A of the space Sn of real symmetric n×n matrices is called copositive if xTAx ≥ 0 for all vectors
x ∈ Rn+. The set of such matrices forms the copositive cone COPn. This cone plays an important role in
non-convex optimization, as many difficult optimization problems can be reformulated as conic programs
over COPn. For a detailed survey of the applications of this cone see, e.g., [6, 2, 3, 9].

An important characteristic of the copositive cone in relation to optimization over COPn are its extreme
rays. Knowledge of the extreme rays allows, e.g., to check the exactness of tractable inner relaxations of the
cone [5]. In this contribution we investigate the structure of the ensemble of extreme rays of COPn. The
main tool will be the decomposition of COPn into a finite union of subsets SE of algebraic sets ZE , where
SE is the set of copositive matrices having extended minimal zero support set E [8]. Here the extended
minimal zero support set esuppVAmin of a copositive matrix A is a finer characteristic than the minimal zero
support set suppVAmin, which was used in [1] to classify the extreme rays of COP6.

On each irreducible component of ZE , the set SE either does not contain extremal elements of COPn at
all, or it consists entirely of extremal elements with the possible exception of an algebraic subset of lower
dimension. In addition to the necessary conditions derived in [7] on the minimal zero support set of an
exceptional extreme copositive matrix, in Section 2 we shall present necessary conditions on E for SE to
contain exceptional extremal matrices.

Often it is sufficient to consider a dense subset of the set of extremal elements. For instance, if a closed
convex inner relaxation of the copositive cone contains such a subset, then it is exact. In this context it is
helpful to introduce the concept of essential and non-essential manifolds of extremal elements. Here such a
manifold is called essential if it is not contained in the closure of another manifold of extremal elements [1].
In Section 3 we compute the essential manifolds of extremal elements of the cone COP6.

1.1 Notations and preliminaries

The space of real symmetric matrices of size n × n will be denoted by Sn, the cone of element-wise
nonnegative matrices by Nn.

For an index set I ⊂ {1, . . . , n}, denote by I its complement {1, . . . , n} \ I.
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We shall denote vectors with lower-case letters and matrices with upper-case letters. Individual entries
of a vector u and a matrix A will be denoted by ui and Aij respectively. For a matrix A and a vector
u of compatible dimension, the i-th element of the matrix-vector product Au will be denoted by (Au)i.
Inequalities u ≥ 0 on vectors will be meant element-wise, where we denote by 0 = (0, . . . , 0)T the all-zeros
vector. Similarly we denote by 1 = (1, . . . , 1)T the all-ones vector. We further let ei be the unit vector with
i-th entry equal to one and all other entries equal to zero. For a subset I ⊂ {1, . . . , n} we denote by AI the
principal submatrix of A whose elements have row and column indices in I, i.e. AI = (Aij)i,j∈I ∈ S |I|. For
subsets I, J ⊂ {1, . . . , n} we denote by AI×J the submatrix of A whose elements have row indices in I and
column indices in J . Similarly for a vector u ∈ Rn we define the subvector uI = (ui)i∈I ∈ R|I|. By Eij we
denote a matrix which has all entries equal to zero except (i, j) and (j, i), which equal 1.

Let ∆ = {u ∈ Rn+ | 1Tu = 1} be the standard simplex.
For a nonnegative vector u ∈ Rn+ we define its support as suppu = {i ∈ {1, . . . , n} | ui > 0}.
A zero u of a copositive matrix A is called minimal if there exists no zero v of A such that the inclusion

supp v ⊂ suppu holds strictly. We shall denote the set of minimal zeros of a copositive matrix A by VAmin

and the ensemble of supports of the minimal zeros of A by suppVAmin. To each index set I there exists at
most one minimal zero u ∈ ∆ of A with suppu = I [7, Lemma 3.5], hence the minimal zero support set
suppVAmin is in bijective correspondence to the minimal zeros of A which are contained in ∆.

For a zero u of a copositive matrix A, the matrix-vector product Au is nonnegative. We call the set
compu := supp(Au) the complementary index set of the zero, and the pair esuppu = (suppu, compu) of
index sets the extended support. The ensemble of extended supports of the minimal zeros of A will be called
the extended minimal zero support set and denoted by esuppVAmin.

A non-zero copositive matrix A ∈ COPn is called extremal if whenever A = A1+A2 with A1, A2 ∈ COPn,
the summands A1, A2 must be nonnegative multiples of A.

A copositive matrix A is called irreducible with respect to another copositive matrix C if for every δ > 0,
we have A− δC 6∈ COPn, and it is called irreducible with respect to a subsetM⊂ COPn if it is irreducible
with respect to all nonzero elements C ∈M.

By [4, Lemma 2.5] we have that suppu ⊂ compu for every zero u of a copositive matrix A.
We now briefly recollect the necessary results from [8]. Let E = {(Iα, Jα)}α=1,...,m be a collection of

pairs of index sets. Define the sets

SE = {A ∈ COPn | esuppVAmin = E}, ZE = {A ∈ Sn | AIα,Jα is rank deficient ∀ α = 1, . . . ,m}.

The set ZE is algebraic, given by the zero locus of a finite number of determinantal polynomials. The set
SE is a relatively open subset of ZE [8, Corollary 1].

The set SE is a disjoint union of interiors of faces of COPn [8, Corollary 2]. Moreover, if C is an
irreducible component of ZE , then the dimension of the faces over S = C ∩ SE is generically constant. On
an algebraic subset the faces may have a higher dimension [8, Lemma 7].

2 Structure of the set of extremal matrices

In this section we establish some properties of the extended minimal zero support set and the corresponding
sets SE in relation to the extremality of matrices in COPn.

Lemma 2.1. Let E = {(Iα, Jα)}α=1,...,m be an arbitrary collection of pairs of index sets, and let C be an
irreducible component of the algebraic set ZE . Then either S = C ∩ SE contains no extremal matrix, or all
matrices in S are extremal with the possible exception of an algebraic subset of lower dimension.

Proof. An extremal matrix is characterized by the condition that the dimension of its minimal face in COPn
equals 1. The assertion then follows directly from [8, Lemma 7].

Since C is an algebraic variety and hence a stratified algebraic manifold [11, 10], we have that the set
of extremal matrices in S is a finite union of algebraic manifolds. We shall call these manifolds components
of the set of extremal matrices of COPn. We may then introduce the following notion [1].

Definition 2.2. A component of extremal matrices of COPn is called essential if it is not contained in the
closure of another such component.

From [8, Lemma 4] we have the following result.
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Lemma 2.3. Let a component C ′ of extremal matrices be contained in the closure of another component
C. Suppose further C ⊂ SE , C ′ ⊂ SE′ , where E = {(Iα, Jα)}α=1,...,m, E ′ = {(I ′α, J ′α)}α=1,...,m′ . Then for
every α = 1, . . . ,m there exists α′ ∈ {1, . . . ,m′} such that I ′α′ ⊂ Iα, Jα ⊂ J ′α′ .

An even stronger relation than that in Lemma 2.1 can be established for the condition of irreducibility
with respect to the matrix Eij and the cone Nn. Indeed, [7, Lemma 4.1] and [7, Corollary 4.2] can be
equivalently rewritten in terms of the extended minimal zero support set.

Lemma 2.4. Let A ∈ COPn and let E = {(Iα, Jα)}α=1,...,m be the extended minimal zero support set of A.
Then A is irreducible with respect to Eij if and only if there exists α such that (i, j) ∈ (Iα×Jα)∪ (Jα× Iα).
The matrix A is irreducible with respect to Nn if and only if

⋃m
α=1(Iα × Jα)∪ (Jα × Iα) = {1, . . . , n}2.

This yields the following corollary.

Corollary 2.5. Let (i, j) be an index pair, and E a collection of pairs of index sets. Then either all matrices
or no matrix in the subset SE is irreducible with respect to Eij (respectively with respect to the cone Nn).

Proof. By Lemma 2.4 the irreducibility of a matrix A with respect to Eij or Nn depends on the extended
minimal zero support set E of A only.

We have also the following consequence.

Corollary 2.6. Let a collection E = {(Iα, Jα)}α=1,...,m of pairs of index sets be such SE contains exceptional
extremal matrices. Then E satisfies the condition

⋃m
α=1(Iα × Jα) ∪ (Jα × Iα) = {1, . . . , n}2.

Proof. The corollary follows from Lemma 2.4 and the necessity for an exceptional extremal matrix to be
irreducible with respect to Nn.

There are also other necessary conditions on the collection E .

Lemma 2.7. Let E = {(Iα, Jα)}α=1,...,m be a collection of pairs of index sets such that SE contains excep-
tional extremal matrices. Then for every α, β we have Iα ⊂ Jβ if and only if Iβ ⊂ Jα.

Proof. The assertion follows directly from [8, Lemma 3].

In [7] another collection of necessary conditions on the minimal zero supports Iα alone has been estab-
lished.

Similar to the minimal zero support set, the extended minimal zero support set can hence be used for
the classification of the extreme rays of the cone COPn.

3 Essential components of extremal matrices in COP6

In this section we compute the essential components of exceptional extremal matrices of the cone COP6.
To this end we first collect all components of exceptional extremal matrices of COP6 from [1] in Table
1. Some of them are contained in the closure of other components already by construction, as shown in
the last column of Table 1. We then use the criterion provided by Lemma 2.3 to establish which further
components could possibly be in the closure of which other components. For each component, we then
either establish or refute its being non-essential by direct verification.

The minimal zero support sets of exceptional extremal matrices in COP6 are taken from [1, Table
1]. However, matrices having the same minimal zero support set can belong to different sets SE , i.e.,
have different extended minimal zero support sets. For each such sub-case we provide in Table 1 the
complementary index set Jα for each of the minimal zeros uα, but for brevity we present only the differences
Jα \ Iα, where Iα is the support of uα.

Note that some of the cases from [1] are split into several cases in Table 1, according to whether one or
more non-strict inequalities on the angle parameters are equalities. An inequality becoming an equality is
accompanied by the appearance of additional indices in the complementary support of one or more minimal
zeros. As a consequence, the corresponding boundary piece belongs to a different set SE and is listed as a
separate component in Table 1.
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Note that in Case 15 the two non-strict inequalities on the angle parameters are equivalent under the
permutation (124365) of the indices {1, . . . , 6}, and cannot both be equalities. Hence this case gives rise to
two non-equivalent components only.

In Table 1 we provide also the dimension of each component, taken from [1, Table 2].
It turns out that in the cone COP6 different components of exceptional extremal copositive matrices

correspond to different extended minimal zero support sets E , i.e., each SE consists only of one component.
From Table 1 it is apparent that only 22 of the components may possibly be essential. For every ordered

pair in this list we check whether the necessary criterion in Lemma 2.3 for the first component being in the
closure of the second is satisfied. Another necessary criterion is that the dimension of the first component
is strictly smaller than the dimension of the second one.

Note that Table 1 lists the extended minimal zero support sets only up to a permutation of the index
set {1, . . . , 6}. We hence have to allow for this freedom when checking the criterion in Lemma 2.3 on pairs
of extended minimal zero supports.

The results of this test are collected in Table 2.
From Table 2 it follows that the components 13.1,13.2,16.1,17,19.1 are essential.
For the remaining 17 components we now show that they lie on the boundary of other components and

are hence non-essential, by providing an appropriate permutation of the indices {1, . . . , 6} and an explicit
limit.

• Case O5.2 is in the closure of Case 18 when the last row and column tend to zero.

• Case 14 is in the closure of Case 1 after the substitution φ1 → 0, φ2 → 0.

• Case 1 is in the closure of Case 2 after the substitution φ1 → φ2, φ2 → 0, φ3 → π − φ1 − φ2.

• Case 2 is in the closure of Case 3 after the permutation (124356) and the substitution φ1 → φ1,
φ2 → π − φ1,φ3 → φ3, φ4 → φ2.

• Case 3 is in the closure of Case 5 after the permutation (152346) and the substitution φ1 → φ1,φ2 →
(π − φ1 − φ2),φ3 → φ4, φ4 → φ3,φ5 → 0.

• Case 10 is in the closure of Case 17 after the permutation (241536) and the substitution φ1 → φ3,
φ2 → φ2, φ3 → 0, φ4 → π − φ1 − φ2, φ5 → φ6, φ6 → φ5, φ7 → φ4.

• Case 11 is in the closure of Case 19.1 after the permutation (514263) and the substitution φ1 → φ4,
φ2 → φ1, φ3 → φ2, φ4 → φ3, φ5 → φ5, φ6 → π − φ2 − φ6, φ7 → π − φ6 + φ3, a24 → cos(φ4 + φ5),
a36 → b3.

• Case 12 is in the closure of Case 19.1 after the permutation (152463) and the substitution φ1 → φ6,
φ2 → φ3, φ3 → φ2, φ4 → φ1, φ5 → φ5, φ6 → φ4, φ7 → π − φ5 − φ7, a24 → b1, a36 → − cosφ7.

• Part 0 ≤ φ6 < φ2 of case 18 is in the closure of case 16.1 after the permutation (631254) and the
substitution φ1 → φ5, φ2 → φ1, φ3 → φ2 − φ6, φ4 → φ2, φ5 → φ4, φ6 → φ3 + φ6, φ7 → φ3. Using
the permutation (213654) instead we obtain the part −φ3 < φ6 ≤ 0 of case 18, because this part is
obtained from the former part by the permutation (432156). As a result, Case 18 is in the closure
of Case 16.1.

• Case 15.1 is in the closure of Case 16.1 after the permutation (654321) and the substitution
φ1 → φ4, φ2 → φ5, φ3 → φ3, φ4 → π − φ5 − φ6, φ5 → φ1, φ6 → φ2, φ7 → 0.

• Case 9.1 is in the closure of Case 16.1 after the permutation (241356) and the substitution φ1 → φ1,
φ2 → φ2, φ3 → 0, φ4 → π − φ2 − φ3, φ5 → φ4, φ6 → φ5, φ7 → φ6.

• Case 9.2 is in the closure of Case 16.1 after the permutation (643152) and the substitution φ1 → φ1,
φ2 → φ4, φ3 → φ5, φ4 → φ6, φ5 → φ2, φ6 → 0, φ7 → π − φ2 − φ3.

• Case 8.1 is in the closure of Case 16.1 after the permutation (316452) and the substitution φ1 → 0,
φ2 → φ5, φ3 → φ4, φ4 → φ6, φ5 → φ2, φ6 → φ1, φ7 → φ3.
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• Case 5 is in the closure of Case 16.1 after the permutation (654132) and the substitution φ1 → φ2,
φ2 → φ1, φ3 → φ3, φ4 → φ4, φ5 → φ5, φ6 → 0, φ7 → 0.

• Case 7.1 is in the closure of Case 16.1 after the permutation (463125) and the substitution φ1 → φ3,
φ2 → φ4, φ3 → 0, φ4 → φ5, φ5 → φ2, φ6 → φ1, φ7 → 0.

• Case 6 is in the closure of Case 16.1 after the permutation (426135) and the substitution φ1 → φ3,
φ2 → φ2, φ3 → 0, φ4 → π − φ2 − φ4, φ5 → φ1, φ6 → 0, φ7 → φ5.

• Case 4 is in the closure of Case 16.1 after the permutation (645213) and the substitution φ1 → φ3,
φ2 → φ2, φ3 → 0, φ4 → φ1, φ5 → φ4, φ6 → 0, φ7 → 0.

We obtain the following result.

Theorem 3.1. Out of the 36 mutually non-equivalent components of exceptional extremal matrices in
COP6 exactly the 5 components 13.1,13.2,16.1,17,19.1 in Table 1 are essential.

Recall that in the case of the cone COP5, there are two mutually non-equivalent components of excep-
tional extremal matrices, of which one is essential.
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No. sets extended minimal zero support set dim in closure of

O5.1 I {1,2},{2,3},{3,4},{4,5},{1,5},{6} 5 O5.2
J \ I {3,5},{1,4},{2,5},{1,3},{2,4},{1,2,3,4,5}

O5.2 I {1,2,3},{2,3,4},{3,4,5},{1,4,5},{1,2,5},{6} 10
J \ I ∅,∅,∅,∅,∅,{1,2,3,4,5}

1 I {1,2},{1,3},{1,4},{2,5},{3,6},{4,5,6} 8
J \ I {3,4,5},{2,4,6},{2,3},{1,6},{1,5},∅

2 I {1,2},{1,3},{1,4},{2,5},{3,5,6},{4,5,6} 9
J \ I {3,4,5},{2,4,6},{2,3},{1,6},∅,∅

3 I {1,2},{1,3},{1,4},{2,5,6},{3,5,6},{4,5,6} 10
J \ I {3,4,5},{2,4},{2,3,6},∅,∅,∅

4 I {1,2},{1,3},{2,4},{3,4,5},{1,5,6},{4,5,6} 10
J \ I {3,4,6},{2,6},{1,5},∅,∅,∅

5 I {1,2},{1,3},{1,4,5},{2,4,6},{3,4,6},{4,5,6} 11
J \ I {3,5},{2,5,6},∅,∅,∅,∅

6 I {1,2},{1,3},{2,4,5},{3,4,5},{2,4,6},{3,5,6} 11
J \ I {3,4},{2,5,6},∅,∅,∅,{1}

7 I {1,5},{2,6},{1,2,3},{2,3,4},{3,4,5},{4,5,6}
7.1 J \ I {2,4},{1,3},{6},∅,∅,∅ 11
7.2 J \ I {2,4,6},{1,3,5},{6},∅,∅,{1} 10 7.1

8 I {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{2,5,6}
8.1 J \ I {3,6},{5},{4},∅,∅,∅ 12
8.2 J \ I {3,6},{5},{4},{5},∅,{4} 11 8.1
8.3 J \ I {3,5,6},{5},{2,4},∅,∅,{1} 11 8.1
8.4 J \ I {3,5,6},{5},{2,4},{5},∅,{1,4} 10 8.2,8.3

9 I {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{4,5,6}
9.1 J \ I {3,6},∅,∅,{5},∅,{2} 12
9.2 J \ I {3,5,6},∅,{2},∅,∅,∅ 12

10 I {1,2},{1,3,4},{1,3,5},{2,4,6},{3,5,6},{4,5,6} 12
J \ I {3,6},∅,∅,{5},∅,{2}

11 I {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,6} 12
J \ I {5},{5},{3,4},∅,∅,{5}

12 I {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6} 13
J \ I ∅,{5},{4},∅,∅,{4}

13 I {1,2,3},{2,3,4},{3,4,5},{4,5,6},{1,5,6},{1,2,6}
13.1 J \ I {4},{1,5},{2,6},{3},∅,∅ 12
13.2 J \ I {4},{1},{6},{3},{2},{5} 12
13.3 J \ I {4,6},{1,5},{2,6},{3},∅,{3} 11 13.1
13.4 J \ I {4},{1,5},{2,6},{3},{2},{5} 11 13.1,13.2
13.5 J \ I {4,6},{1,5},{2,6},{3},{2},{3,5} 10 13.3,13.4
13.6 J \ I {4,6},{1,5},{2,6},{1,3},{2,4},{3,5} 9 13.5

14 I {1,2},{1,3},{1,4},{2,5},{4,5},{3,6},{5,6} 6
J \ I {3,4,5},{2,4,6},{2,3,5},{1,4,6},{1,2,6},{1,5},{2,3,4}

15 I {1,2},{1,3,4},{1,3,5},{1,4,6},{2,5,6},{3,5,6},{4,5,6}
15.1 J \ I {3,4},{2},∅,∅,∅,∅,∅ 12
15.2 J \ I {3,4,6},{2},∅,{2},{4},∅,{2} 11 15.1

16 I {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,6},{3,5,6}
16.1 J \ I ∅,∅,∅,∅,∅,{5},{4} 13
16.2 J \ I {5},∅,{3},{5},∅,{5},{1,4} 12 16.1
16.3 J \ I ∅,{5},{4},∅,∅,{5},{4} 12 16.1
16.4 J \ I {5},{5},{3,4},{5},∅,{5},{1,4} 11 16.2,16.3

17 I {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6},{4,5,6} 13
J \ I ∅,∅,∅,∅,∅,{4},{3}

18 I {1,2,3},{2,3,4},{3,4,5},{1,4,5},{1,2,5},{3,4,6},{1,4,6},{1,2,6} 12
J \ I ∅,∅,{6},{6},{6},{5},{5},{5}

19 I {3,4,5},{1,4,5},{1,2,5},{1,2,3},{1,5,6},{2,3,4,6}
19.1 J \ I ∅,{6},∅,∅,{4},∅ 14
19.2 J \ I ∅,{6},{6},∅,{2,4},∅ 13 19.1

Table 1: Extended minimal support sets E = {(Iα, Jα)}α=1,...,m and dimensions of components of excep-
tional extreme matrices in COP6. Since Iα ⊂ Jα, for brevity only I and J \ I are given for each minimal
zero. The last column lists which components lie in the closure of other components by their construction
in [1].
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No. may possibly be in the closure of

O5.2 8.1,16.1,17
1 2,3,4,5,6,7.1,8.1,9.1,9.2,10,15.1,16.1,17
2 3,4,5,6,7.1,8.1,9.1,9.2,10,15.1,16.1,17
3 5,9.2,15.1,16.1,17
4 5,6,7.1,8.1,9.1,9.2,10,15.1,16.1,17
5 9.2,15.1,16.1,17
6 8.1,9.1,9.2,10,16.1,17

7.1 8.1,9.1,10,15.1,16.1,17
8.1 16.1
9.1 16.1
9.2 16.1,17
10 17
11 19.1
12 19.1

13.1
13.2
14 1,2,3,4,5,6,7.1,8.1,9.1,9.2,10,11,12,13.1,13.2,15.1,16.1,17,18

15.1 16.1,17
16.1
17
18 12,16.1,19.1

19.1

Table 2: Pairs of components of exceptional extremal matrices in COP6 satisfying both the criterion in
Lemma 2.3 and a strict inequality on the dimensions.

7


