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Optimal inequalities between distances

in convex projective domains

Roland Hildebrand ∗

April 16, 2021

Abstract

On any proper convex domain in real projective space there exists a natural Riemannian metric, the
Blaschke metric. On the other hand, distances between points can be measured in the Hilbert metric.
Using techniques of optimal control, we provide inequalities lower bounding the Riemannian length of
the line segment joining two points of the domain by the Hilbert distance between these points, thus
strengthening a result of Tholozan. Our estimates are valid for a whole class of Riemannian metrics on
convex projective domains, namely those induced by convex non-degenerate centro-affine hypersurface
immersions. If the immersions are asymptotic to the boundary of the convex cone over the domain, then
we can also upper bound the Riemmanian length. On these classes, and in particular for the Blaschke
metric, our inequalities are optimal.

Keywords: Hilbert distance, Blaschke metric, centro-affine hypersurface immersion, affine hypersphere
MSC 2020: 53A15, 52A38, 58E10

1 Introduction

Proper convex domains Ω ⊂ RPn allow to define several projectively invariant distances. On of them is the
Hilbert distance. For two distinct points a, b ∈ Ω, it is defined by

dH(a, b) =
1

2
log
||ya|| · ||xb||
||yb|| · ||xa||

=
1

2
log(a, b; y, x),

where x, y ∈ ∂Ω are the boundary points lying on the projective line l through a, b, such that the order of
points on l is x, a, b, y, and the quantities ||ya||, . . . are the corresponding coordinate differences in any affine
chart on l. The quantity (a, b;x, y) is the projective cross-ratio of the quadruple of points.

Another possibility to define distances in the domain Ω is by a Riemannian metric. Let KΩ ⊂ Rn+1 be
the proper convex cone over the closure of the domain Ω. Lift Ω into the interior of KΩ. Such a hypersurface
immersion f : Ω → Ko

Ω, smooth enough and equipped with the position vector as transversal vector field,
gives rise to a centro-affine fundamental form h on Ω. If the immersion is locally strongly convex, then
this form defines a Riemannian metric on Ω. We suppose throughout the paper that the immersion is of
hyperbolic type, i.e., the hypersurface is bent away from the origin.

As a special case, we obtain the Blaschke metric (or Cheng-Yau metric) if the immersion is a proper
affine hypersphere with mean curvature −1 which is asymptotic to the boundary ∂KΩ. The Blaschke metric
gives rise to the Blaschke distance dB on Ω (see [9],[2],[7],[8]).

Along with the fundamental form, a centro-affine hypersurface immersion f defines a symmetric 3-rd
order tensor field on Ω, the cubic form C. On affine hyperspheres the cubic form is bounded by an explicit
function of the dimension n [6],

C(X,X,X) ≤ 2
n− 1√
n

(h(X,X))3/2 (1)

for all tangent vector fields X on Ω.
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In [2], Benoist and Hulin proved by a general compactness argument [4] that both distances dB , dH are
strongly equivalent, i.e., one can be bounded by a multiple of the other, where the constants depend only on
the dimension n. In [13], Tholozan used this result to prove the remarkable inequality

dB(a, b) < dH(a, b) + 1

for all pairs of points a, b ∈ Ω. This inequality actually holds also for Riemannian distances dR generated by
general convex non-degenerate centro-affine hypersurface immersions of Ω.

In this paper we improve this result to optimality as follows.

Theorem 1.1. Let Ω ⊂ RPn be a proper convex domain, and let f : Ω→ Ko
Ω ⊂ Rn+1 be a non-degenerate

convex lift of class C2 into the interior of the convex cone over Ω. Let h be the centro-affine metric induced
on Ω by f , and let dR be the corresponding geodesic distance. Let further dH be the Hilbert distance on Ω.
Then for every pair of points a, b ∈ Ω the inequalities

dR(a, b) ≤ lR(a, b) < log

(
exp(dH(a, b)) +

√
exp(2dH(a, b))− 1

)
< dH(a, b) + log 2

hold, where lR(a, b) is the Riemannian length of the projective line segment joining the points a, b. The
inequalities cannot be improved.

In the case when Ω is an ellipsoid both the Hilbert and the Blaschke metric coincide, and Ω is isometric
to hyperbolic space [13]. Note that in this case the cubic form of the affine sphere over Ω vanishes. This
suggests that the deviation of the Hilbert distance from the centro-affine Riemannian distance can somehow
be controlled by a bound on the cubic form of the centro-affine hypersurface immersion f . We investigate
this dependence and provide optimal inequalities between lR(a, b) and dH(a, b) with the bound on the cubic
form appearing as a parameter.

Theorem 1.2. Let Ω ⊂ RPn be a proper convex domain, and let f : Ω→ Ko
Ω ⊂ Rn+1 be a non-degenerate

convex lift of class C3 into the interior of the convex cone over Ω. Let C be the cubic form and h the
centro-affine metric induced on Ω by f , and let dR be the corresponding geodesic distance. Suppose that the
cubic form satisfies the bound

C(X,X,X) ≤ 2γ(h(X,X))3/2 (2)

for all tangent vector fields X on Ω, where γ > 0 is some constant. Let further dH be the Hilbert distance
on Ω. Then for every pair of points a, b ∈ Ω the inequalities

dR(a, b) ≤ lR(a, b) <

{
2µ
µ2+1 log (µ2+1)(E−1)+2

2 , dH(a, b) ≤ log µ2+1
µ2−1 ,

log (µ−1)(
√
E+1+

√
E−1)

(µ+1)(
√
E+1−

√
E−1)

+ 2µ
µ2+1 log 2µ2

µ2−1 , dH(a, b) ≥ log µ2+1
µ2−1 ,

< dH(a, b) + log 2− log
µ+ 1

µ− 1
+

2µ

µ2 + 1
log

2µ2

µ2 − 1

hold, where lR(a, b) is the Riemannian length of the projective line segment joining the points a, b, E =

exp(dH(a, b)), and µ = γ
2 +

√
1 + γ2

4 . The inequalities cannot be improved.

Under the additional assumption that the centro-affine immersion is asymptotic to the boundary of the
convex cone KΩ over the domain we can derive also a lower bound on the Riemannian length.

Theorem 1.3. Assume the notations and conditions of Theorem 1.2, and suppose in addition that the
immersion f is asymptotic to the boundary ∂KΩ. Then the inequalities

lR(a, b) >
2µ

µ2 + 1
log

exp(dH(a, b))(µ2 + 1) + µ2 − 1

2µ2
>

2µ

µ2 + 1

(
dH(a, b)− log

2µ2

µ2 + 1

)
hold for every a, b ∈ Ω. The inequalities cannot be improved.

The upper and lower bounds on lR(a, b) are depicted in Fig. 1. It is also possible to obtain bounds on
the geodesic distance dR.
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Figure 1: Upper and lower bounds on the Riemannian length of line segments as a function of the Hilbert
distance between the end-points for different values of γ. Linear plot (top two rows) and log-log plot (bottom
two rows).

Theorem 1.4. Assume the notations and conditions of Theorem 1.3. Then the inequalities

µ−1dH(a, b) ≤ dR(a, b) ≤ µdH(a, b)

hold for every a, b ∈ Ω.

In the case of affine spheres which are asymptotic to ∂KΩ we get µ =
√
n by virtue of (1). Applying

Theorems 1.2, 1.3, 1.4 yields the following result.

Corollary 1.5. Let Ω ⊂ RPn be a proper convex domain. Let dH(a, b) be the Hilbert distance, dB(a, b) the
geodesic distance in the Blaschke metric, and lB(a, b) the Riemannian length of the straight line segment in
the Blaschke metric between points a, b ∈ Ω. Then

dB(a, b) ≤ lB(a, b) <

{
2
√
n

n+1 log (n+1)(E−1)+2
2 , dH(a, b) ≤ log n+1

n−1 ,

log (
√
n−1)(

√
E+1+

√
E−1)

(
√
n+1)(

√
E+1−

√
E−1)

+ 2
√
n

n+1 log 2n
n−1 , dH(a, b) ≥ log n+1

n−1 ,

< dH(a, b) + log 2− log

√
n+ 1√
n− 1

+
2
√
n

n+ 1
log

2n

n− 1
,

lB(a, b) >
2
√
n

n+ 1
log

E(n+ 1) + n− 1

2n
>

2
√
n

n+ 1

(
dH(a, b)− log

2n

n+ 1

)
,

1√
n
dH(a, b) ≤ dB(a, b) ≤

√
ndH(a, b),

where E = exp(dH(a, b)).
This yields an explicit estimate of the constants realizing the equivalence of the two metrics.

Connections between the affine metric of a complete hyperbolic affine sphere and the Hilbert metric have
also been investigated in [3]. It has been established that one metric is Gromov hyperbolic if and only if the
other is. Asymptotic properties of the Hilbert distance have been studied in [12].

The remainder of the paper is structured as follows. In Section 2 we outline the proof strategy for the
presented results. It is based on presenting an explicit solution of the Bellman equation. In Section 3 we
prove Theorem 1.1, in Section 4 we prove Theorem 1.2, while in Section 5 we prove Theorems 1.3 and 1.4.
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2 Proof strategy: Bellman function

The bounds in Theorems 1.1, 1.2 (Theorem 1.3) result from maximizing (minimizing) a Riemannian length
integral under some constraints, which can be cast in the form of an optimal control problem. In this section
we describe a generic method to show the optimality of a solution to such a problem.

Suppose a controlled dynamical system ẋ(t) = g(x(t), u(t)) is given, where x(t) is the sought scalar or
vector-valued solution, and u(t) is the control taking values in some set U , which may depend on x. Suppose
further that x is constrained to some closed convex set X. We seek to maximize an integral functional

I(x(·)) =

∫ tf

ti

L(x(t), u(t)) dt

over the trajectories of the system, with initial and final conditions (ti, x(ti)) ∈Mi, (tf , x(tf )) ∈Mf , where
Mi,Mf are some subsets of R×X.

Such a problem may be solved by optimal control techniques, notably the Pontryagin Maximum Principle
(PMP) [11] or in the simple case of unconstrained dynamics by the Euler-Lagrange equation [5]. These tools
provide necessary optimality conditions on the solution. They are thus efficient in finding potential solutions,
but in order to actually prove optimality we have to use sufficient conditions. The simplest way to provably
demonstrate the optimal value of the problem is to present the Bellman function B(t, x) [1].

The value of the Bellman function at a point (t0, x0) ∈ R×X is defined by the maximal value which can be
achieved by the functional I over trajectories in X with initial point (t0, x0) and end-point (tf , x(tf )) ∈Mf .
In particular, the Bellman function is continuous and we have

B(t, x) = 0 ∀ (t, x) ∈Mf . (3)

For every x ∈ X, let Ux ⊂ U be the set of control values u such that g(x, u) is tangent to X at x, i.e.,
application of a control satisfying u ∈ Ux a.e. does not lead out of X. Then the Bellman function satisfies
the Bellman equation

−∂B
∂t

= max
u∈Ux

(
∂B

∂x
g(x, u) + L(x, u)

)
. (4)

Conditions (3),(4) together with the continuity of B are sufficient to certify optimality of the value
B(t0, x0) for trajectories starting at (t0, x0). Indeed, let x(t), t ∈ [t0, tf ], (tf , x(tf )) ∈Mf , x(t0) = x0 be an
admissible trajectory with control u(t). Then u(t) ∈ Ux(t) for almost all t ∈ [t0, tf ], because x(t) ∈ X, and
the value of the objective functional on this trajectory is given by

I(x(·)) =

∫ tf

t0

L(x(t), u(t)) dt ≤ −
∫ tf

t0

∂B

∂t
+
∂B

∂x
g(x(t), u(t)) dt

=−
∫ tf

t0

dB(t, x(t))

dt
dt = −(B(tf , x(tf ))−B(t0, x(t0))) = B(t0, x0).

Here the inequality holds by virtue of (4), and the last equality by virtue of (3). Thus the value of the
objective on any admissible trajectory cannot exceed B(t0, x0). On the other hand, this value can be
achieved if a control u is chosen a.e. which realizes the maximum in (4), because in this case the inequality
turns into an equality.

The Bellman function provides the maximal value of the objective functional for a fixed initial point
(t0, x0). In order to find the maximal value under the constraint (ti, x(ti)) ∈Mi one has to maximize B(t, x)
over Mi. If the objective has to be minimized, then the maximum in (4) has to be a minimum and we have
to minimize B over Mi.

In the following sections we prove the theorems by converting them into optimization problems as above,
then providing explicit expressions for the corresponding Bellman functions and maximizing (minimizing)
them over the manifold of initial points. The proof hence consists in showing continuity, relations (3) and
(4), and maximizing (minimizing) over the set of initial points. We shall also sketch how one can arrive at
the solution of the problem by solving the Euler-Lagrange equation or applying the PMP without going into
much detail.
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3 Proof of Theorem 1.1

As in [13], is it sufficient to consider the case n = 1. Let Ω ⊂ RP 1 be a proper open line segment, i.e., such
that its complement is also a line segment. Without loss of generality we assume that the cone KΩ ⊂ R2

over the closure of Ω is the positive orthant R2
+. Following [13], we parameterize Ω by a variable t ∈ R, in a

way such that the point (et, e−t) ∈ R2
+ projects to the corresponding point in Ω. Then the Hilbert distance

between ti, tf is given by dH(ti, tf ) = |ti − tf |.
A centro-affine lift of Ω into the interior of R2

+ is given by a curve f : t 7→ eα(t) · (et, e−t). We suppose the
function α(t) to be of class C2(R). By virtue of [13, Lemma 2.1] the centro-affine fundamental form of the
immersion f is given by h = α̈− α̇2 + 1. Hence locally strong convexity of f is equivalent to the differential
inequality α̈ > α̇2 − 1. The first derivative is bounded by |α̇| < 1 ([13, Prop. 2.2] with C = +∞).

We now maximize the Riemannian distance between two given points ti < tf . This distance is given by
the integral

lR(ti, tf ) =

∫ tf

ti

√
α̈− α̇2 + 1 dt. (5)

We shall prove the following estimate.

Lemma 3.1. Set d = tf − ti. Then lR(ti, tf ) < log
(
ed +

√
e2d − 1

)
, and this estimate is sharp.

The proof is by presenting an explicit Bellman function for the variational problem under consideration.
Before proceeding to the proof, we shall give some clues how to arrive at this expression.

Let us cast the problem as an optimal control problem as in Section 2. Set x = α̇. The extremals for the
functional

∫
L(x, ẋ) dt are given by the solutions of the Euler-Lagrange equation d

dt
∂L
∂ẋ = ∂L

∂x [5]. Inserting

L(x, ẋ) =
√
ẋ− x2 + 1, we obtain the second order ODE ẍ = 2x(3ẋ− 2x2 + 2). This ODE has in particular

the solutions

x = − e4tc2 + 2(e4t − 2)c+ e4t

(e2t + (e2t − 2)c)(e2tc+ e2t − 2)
, (6)

where c ∈ (−1, 1) is an integration constant. The Bellman function is then constructed by computing the
value of the cost function on these trajectories.

Proof. By invariance with respect to translations of the variable t we may set tf = 0, ti = −d. The set of
final points (t, x) is hence given by Mf = {0} × [−1, 1], the set of initial points by Mi = {−d} × [−1, 1], the
admissible set by X = [−1, 1]. The dynamics is given by ẋ = g(x, u) = u ≥ x2− 1, and the cost to maximize
by the integral of L(x, u) =

√
u− x2 + 1. Consider the function

B(t, x) =
1

2
log
(√

(1− e2t)(1− x)(1 + e2t − x(1− e2t))− x(1− e2t) + 1
)
− t

on R− × [−1, 1]. We have B(0, x) ≡ 0, and B satisfies (3). By the inequality between arithmetic and
geometric mean we have

∂B

∂x
u+

∂B

∂t
= − (1− x)(1 + e2t − x(1− e2t)) + (u− x2 + 1)(1− e2t)

2
√

(1− e2t)(1− x)(1 + e2t − x(1− e2t))

≤−
√

(1− x)(1 + e2t − x(1− e2t))(u− x2 + 1)(1− e2t)√
(1− e2t)(1− x)(1 + e2t − x(1− e2t))

= −
√
u− x2 + 1 = −L(x, u)

for every u ≥ x2 − 1. Here equality is achieved at (1 − x)(1 + e2t − x(1 − e2t)) = (u − x2 + 1)(1 − e2t), or
equivalently

u =
(1− x)(1 + e2t − x(1− e2t))

1− e2t
− (1− x2) =

2(1− x)(e2t − x(1− e2t))

1− e2t
.

This proves (4), and B is indeed the Bellman function.
We now have to maximize the Bellman function over the initial set Mi. In view of

∂B

∂x
= −

e2t(1−e2t)√
(1−e2t)(1−x)(1+e2t−x(1−e2t))

+ 1− e2t

2
(√

(1− e2t)(1− x)(1 + e2t − x(1− e2t))− x(1− e2t) + 1
) < 0

5



for t < 0 we obtain that the maximum is achieved at (t, x) = (−d,−1) and given by log(1+
√

1− e−2d)+d =
log(ed +

√
e2d − 1).

The trajectory maximizing the objective function is hence obtained by integrating with initial value
x(−d) = −1 and with ẋ equal to the value of u given above. It is easily verified that this yields the solution
(6) with e−2d = 4c

(1+c)2 and the solution satisfies x(0) = 1.

We have proven that no centro-affine immersion f can yield a length lR(ti, tf ) exceeding the bound in
the lemma. Moreover, the bound cannot be attained, because on the optimal trajectory yielding this value
we have x(ti) = −1, x(tf ) = 1, but a valid immersion satisfies |x| < 1. Extend the optimal trajectory by
setting x = −1 for t < ti and x = 1 for t > tf . Although the resulting function α(t) is not C2, because its
second derivatives are discontinuous at t = ti and t = tf , it can be approximated by C2 functions which
satisfy |α̇| < 1 and α̈ > α̇2 − 1 everywhere and yield objective values arbitrarily close to the bound in the
lemma.

Let us now return to Theorem 1.1. Let l be the projective line passing through the points a, b ∈ Ω, and
L ⊂ Rn+1 the two-dimensional linear subspace over l. Then the centro-affine metric hl of the immersion
f |Ω∩l into L is given by the restriction of the centro-affine metric h to Ω∩ l, because the position vector field
on Ω ∩ l is contained in L. Therefore the Riemannian length lR(a, b) of the line segment between a and b is
equal in both metrics h and hl. Moreover, by definition the Hilbert distance dH(a, b) is equal in Ω and in
Ω ∩ l. The assertion of Lemma 3.1 is an inequality between these quantities as defined by the immersion of
Ω ∩ l into L ∼ R2. But then the lemma proves also the second inequality in Theorem 1.1, which is between
the same quantities defined by the immersion f of Ω into Rn+1, and shows that it cannot be improved.

The first inequality follows from the fact that the geodesic distance between two points in a Riemannian
manifold is never exceeding the length of any curve between these two points. For n = 1 it turns into an
equality, because the straight line segment is the only path linking the two points.

The third inequality in Theorem 1.1 follows from the relation
√
e2d − 1 < ed. Moreover, it is sharp,

because
lim
d→∞

(
log
(
ed +

√
e2d − 1

)
− d
)

= log 2.

This proves Theorem 1.1.

4 Proof of Theorem 1.2

Let us again set n = 1 and assume the notations at the beginning of Section 3. However, this time we
consider immersions f : Ω→ R2

+ defined by functions α(t) of class C3.
Let us compute the cubic form C of the immersion f . It is given by the derivative ∇h, where h is the

affine metric and ∇ is the induced affine connection. The latter is defined by the decomposition of the
canonical flat affine connection D of the ambient space R2 into a tangential part ∇ and a transversal part
h · f [10, p. 28]. Let X = ḟ = α̇f + Jf , where J = diag(1,−1), be the basis tangent vector field. Then we
have the decomposition

DXX = f̈ = α̈f + α̇ḟ + Jḟ = α̈f + α̇2f + 2α̇Jf + f = (α̈− α̇2 + 1)f + 2α̇(α̇f + Jf) = h(X,X) · f + 2α̇ ·X.

Therefore ∇XX = 2α̇ ·X. Hence we obtain

C(X,X,X) = Xh(X,X)− 2h(∇XX,X) =
d

dt
(α̈− α̇2 + 1)− 4α̇(α̈− α̇2 + 1) =

...
α − 6α̇α̈+ 4α̇3 − 4α̇.

Condition (2) can then be written as

|...α − 6α̇α̈+ 4α̇3 − 4α̇| ≤ 2γ(α̈− α̇2 + 1)3/2. (7)

We shall now show that functions α : R→ R satisfying this differential inequality must satisfy certain bounds
on the values of their derivatives α̈, α̇.

Lemma 4.1. Let α : R→ R be a C2 function satisfying (7) a.e. for some γ ≥ 0. Then for every t ∈ R we
have √

α̈− α̇2 + 1 ≤ µ(1− |α̇|),

where µ ≥ 1 depends on γ by the relations µ = γ
2 +

√
1 + γ2

4 , γ = µ2−1
µ .
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Proof. Set h = α̈ − α̇2 + 1. Since h ≥ 0, we have α̈ ≥ α̇2 − 1. Therefore, if for some t0 we have α̇(t0) > 1,
then α̇(t) blows up before t reaches +∞. Likewise, if α̇(t0) < −1, then α̇(t) blows up before t reaches −∞.
Thus |α̇| ≤ 1.

Relation (7) can be written as

−2γh3/2 + 4α̇h ≤ ḣ ≤ 2γh3/2 + 4α̇h. (8)

Thus either h ≡ 0, in which case the assertion of the lemma is obvious, or h > 0 everywhere. In the latter
case, define functions ξ± = α̇± µ−1

√
h. By (8) we have

ξ̇± = α̈± µ−1 ḣ

2
√
h
≥ α̈+ µ−1−2γh3/2 ± 4α̇h

2
√
h

= h+ α̇2 − 1 + µ−1(−γh± 2α̇
√
h) = ξ2

± − 1.

Here we used that 1− µ−1γ = µ−2.
As above we have |ξ±| ≤ 1 and hence α̇+µ−1

√
h ≤ 1, −1 ≤ α̇−µ−1

√
h. It follows that

√
h ≤ µ(1±α̇).

Lemma 4.2. Suppose in addition to the conditions in Lemma 4.1 that the function α defines a non-
degenerate centro-affine immersion f : t 7→ eα(t) · (et, e−t) which is asymptotic to the boundary of the
orthant R2

+. Then for every t ∈ R we have that

µ−1(1 + |α̇|) ≤
√
α̈− α̇2 + 1.

Proof. Let h = α̈− α̇2 + 1 > 0 be the affine metric. Define functions ψ± = α̇± µ
√
h. By (8) we then have

ψ̇± = α̈± µ ḣ

2
√
h
≤ α̈+ µ

2γh3/2 ± 4α̇h

2
√
h

= h+ α̇2 − 1 + µ(γh± 2α̇
√
h) = ψ2

± − 1.

Here we used that 1 + µγ = µ2.
Now suppose for the sake of contradiction that for some t0 we have ψ+(t0) < 1. Choose η0 such that

ψ+(t0) < − tanh(t0 + η0). Then we have κ(t) = ψ+(t) + tanh(t+ η0) < 0 for all t > t0. Indeed, let t1 > t0 be
the smallest point such that κ(t1) = 0. For all t < t1 close enough to t1 we have κ(t) < 0, ψ+(t) ∈ (−1, 1)
and

dκ

dt
≤ ψ+(t)2 − 1 +

1

cosh(t+ η0)2
= (ψ+(t)− tanh(t+ η0)) · κ(t) < −2κ(t).

But then κ cannot reach zero in finite time, a contradiction. Hence such a point t1 cannot exist. We obtain
α̇(t) + µ

√
h(t) < − tanh(t+ η0) for all t ≥ t0 and by integration

0 < µ

∫ t

t0

√
h(s) ds < [−α(s)− log cosh(s+ η0)]

t
t0

=

[
−(s+ α(s))− log

eη0 + e−(2s+η0)

2

]t
t0

.

But t + α(t) → +∞ for t → +∞, because et+α is the first coordinate of the immersion f , which by
assumption is asymptotic to the boundary of R2

+. Therefore the right-most expression tends to −∞ as

t→ +∞, a contradiction. As a consequence, we have ψ+ ≥ 1 and µ
√
h ≥ 1− α̇.

The inequality µ
√
h ≥ 1+α̇ is proven similarly by deducing a contradiction from the assumption ψ−(t0) >

−1 for some t0.

Corollary 4.3. Assume the conditions of Lemmas 4.1, 4.2, and let ti < tf be points in Ω = R. Then the
Riemannian length lR(ti, tf ) is bounded by µ−1dH(ti, tf ) ≤ lR(ti, tf ) ≤ µdH(ti, tf ).

Proof. By Lemmas 4.1, 4.2 we have
√
α̈− α̇2 + 1 ∈ [µ−1, µ]. The claim now follows from (5).

Corollary 4.4. Assume the conditions of Lemmas 4.1, 4.2. If γ = 0, or equivalently µ = 1, then α ≡ const,
and the image of f is a hyperbola. In this case the Riemannian length lR(ti, tf ) coincides with the Hilbert
distance dH(ti, tf ).
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Figure 2: Trajectories of system (9) for different constant values of u. The parameter γ equals 0.5. The
dash-dotted lines delimit the feasible region X given by state constraints (11).

Proof. From µ = 1 we have 1 + |α̇| ≤ 1 − |α̇| by virtue of Lemmas 4.1, 4.2. We get α ≡ const, h ≡ 1, and
lR(ti, tf ) = |ti − tf | = dH(ti, tf ).

We may write the problem of maximizing the Riemannian length lR(ti, tf ) under constraint (8) as an

optimal control problem. Introduce variables x = α̇, y =
√
h. Then the dynamics of the system can be

written as
ẋ = y2 + x2 − 1, ẏ = 2xy + uγy2, u ∈ [−1, 1]. (9)

Here the first equation comes from the definition of y, and the second equation is equivalent to (8). The
variable u is a scalar control. The objective is to maximize

lR(ti, tf ) =

∫ tf

ti

y(t) dt→ sup . (10)

In addition we have the state constraints

µ−1(1 + |x|) ≤ y ≤ µ(1− |x|) (11)

from Lemmas 4.1, 4.2. Relations (11) define the feasible set X ⊂ R2.
It is easily checked that for a constant control u the trajectories of system (9) are given by the level

curves of the first integral

Iu =
(µ2
u + 1)y

µu(y2 − x2 + 1)− (µ2
u − 1)xy

,

where µu = uγ
2 +

√
1 + u2γ2

4 .

Theorem 1.2 will be proven by means of Lemmas 4.5, 4.6 below. The proofs of the lemmas give no clue
how the Bellman functions in these lemmas have been obtained, however. Before we state the lemmas, we
shall therefore sketch how one can arrive at these functions by optimal control techniques.

The boundary segments of X are trajectories of the system with constant control u = ±1 (see Fig. 2).
Moreover, no feasible trajectory of the system can leave the upper right and the lower left boundary segment
after hitting it. Likewise, no feasible trajectory can leave the upper left and the lower right boundary
segment after hitting it in backward time. If a trajectory of (9) leaves X, then it cannot return to X
anymore. Therefore, if the initial point (x(ti), y(ti)) and the terminal point (x(tf ), y(tf )) of a trajectory of
(9) satisfy (11), then all intermediate points do so too. Thus we do not need to take the state constraints
into account when considering the first order optimality conditions for a trajectory with fixed initial and
terminal point.

Let us apply the PMP to control problem (9),(10) with fixed initial and terminal point [11]. According to
this principle, if (x(t), y(t)), t ∈ [ti, tf ], is a maximizer of (10) under the additional constraints (x(ti), y(ti)) =
(xi, yi), (x(tf ), y(tf )) = (xf , yf ), then there exist a nonnegative constant λ and differentiable functions
ψ(t), φ(t) (the so-called adjoint variables), not all equal to zero, such that at every t ∈ [ti, tf ] the control u
maximizes the Pontryagin function

H = 2λy + ψ · (y2 + x2 − 1) + φ · (2xy + uγy2),
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and the adjoint variables are solutions of the differential equations

ψ̇ = −∂H
∂x

= −2(xψ + yφ), φ̇ = −∂H
∂y

= −2(λ+ yψ + xφ+ uγyφ). (12)

It follows that the control u is given by the sign of φ whenever this variable does not vanish.
If the partial derivative ∂H

∂u vanishes identically on some interval, then the corresponding trajectory is

called a singular arc. Let us compute the corresponding control u. If φ ≡ 0, then also φ̇ ≡ 0, which entails
λ+yψ ≡ 0. If λ = 0, then also ψ = 0, and by (12) the adjoint variables vanish identically. Thus the presence
of a singular arc entails λ > 0. Differentiating further, we obtain ẏψ + yψ̇ = uγy2ψ = −λuγy ≡ 0, entailing
u ≡ 0.

On optimal trajectories the control u is hence piece-wise constant and taking values in {−1, 0,+1}. Any
optimal trajectory can therefore be assembled from the trajectories depicted in Fig. 2. If some trajectory
is optimal in the larger class of trajectories with free end-points, then the necessary optimality conditions
obtained for trajectories with fixed end-points still apply. After some calculations one obtains the following
solution.

Lemma 4.5. Let ti < tf , T = tf − ti, γ > 0, µ = γ
2 +

√
1 + γ2

4 ,

a± = µy ± (1− x), b± = µy ± (1 + x), c± = µ(1− x)± y, d± = µ(1 + x)± y, (13)

and consider control problem (9)–(11) with fixed initial point (x(ti), y(ti)) = (xi, yi) and free terminal point
(x(tf ), y(tf )) ∈ X. Then the optimal value of the problem is given by B(−T, xi, yi), where the function
B : R− ×X → R+ is defined as follows.

Let (x, y) ∈ X and t ∈ R−. If

−t ≤ t+1(x, y) =

{
1
2 log

(
1 + 2c−

a−c+

)
, a− > 0,

+∞, a− = 0,

then

B(t, x, y) =
µ

µ2 + 1
log

c+e
−2t + d−

µ(−a−e−2t + b+)
.

If

t+1(x, y) < −t ≤ t̂(x, y) =

{
1
2 log b+

a−
, a− > 0,

+∞, a− = 0,

then

B(t, x, y) =
µ

µ2 + 1
log

(
e−2t(µ2 + 1)c2+

8µy
+

+
c+(µ4xy − µ4y + µ3x2 − µ3y2 − µ3 + 6µ2y + µx2 − µy2 − µ− xy − y)

8µya−

)
.

If

t̂(x, y) < −t ≤ t∗(x, y) =

{
1
2 log 1−x2+y2

(y+1−x)(x+y−1) , x+ y > 1,

+∞, x+ y ≤ 1,

then

B(t, x, y) =
1

2
log

W + a−c+e
−2t + µ2xy + µx2 − µy2 − µ− xy

(µ+ 1)2y
+

+
µ

µ2 + 1
log

2µ2
[
W (1 + µ2)− 2µ(a−c+e

−2t + µ2xy + µx2 − µy2 − µ− xy)
]

(µ2 − 1)2a−(a−e−2t − b+)

with
W =

√
(c+a−e−2t + µ2xy + µx2 − µy2 − µ− xy)2 − (µ2y − y)2.
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If t∗(x, y) < −t, then

B(t, x, y) =
1

2
log

W + c−a+e
−2t + µ2xy − µx2 + µy2 + µ− xy

(µ+ 1)2y
+

+
µ

µ2 + 1
log

2µ2
[
(µ2 + 1)W − 2µ(c−a+e

−2t + µ2xy − µx2 + µy2 + µ− xy)
]

(µ2 − 1)2(c−e−2t + d+)c−

with
W =

√
(c−a+e−2t + µ2xy − µx2 + µy2 + µ− xy)2 − (µ2y − y)2.

Proof. As in the proof of Lemma 3.1 we may set tf = 0, and hence Mf = {0} × X. The dynamics of
the system is given by g(x, y, u) = (g1, g2) = (y2 + x2 − 1, 2xy + uγy2), the objective by the integral of
L(x, y, u) = y.

The proof mainly consists of showing a series of inequalities. Transforming the corresponding expressions
involves many calculations, which cannot all be included, but are rather straightforward. We shall concentrate
on certifying the inequalities by presenting the corresponding expressions in a form suitable for immediately
recognizing their nonnegativity or non-positivity.

Let us show that B(t, x, y) is the Bellman function of the problem. This involves showing that B is
well-defined, continuous, satisfies (3),(4), and the optimal control û yielding the maximum in (4) defines a
feasible trajectory. Denote the four expressions defining B in the lemma by BI , BII , BIII , BIV . Denote the
expressions for W in the lemma by WIII ,WIV . Recall that y > 0, 1± x > 0, µ > 1. By (11) the quantities
a±, b±, c±, d± are positive in the interior of X.

Consistency: For fixed (x, y) ∈ X the values 0, t+1(x, y), t̂(x, y), t∗(x, y) form an increasing sequence.
Indeed, clearly t+1(x, y) ≥ 0. Straightforward calculation yields

t̂(x, y)− t+1(x, y) = −1

2
log

(
1− 4y

b+c+

)
> 0,

and for x+ y > 1 we get

t∗(x, y)− t̂(x, y) =
1

2
log

(
1 +

2yc−
b+(y + 1− x)(x+ y − 1)

)
≥ 0.

According to the decomposition α2 − β2 = (α− β)(α+ β) the expression WIII is the square root of the
product of two functions which are both linear in e−2t with nonnegative leading coefficient c+a−. Inserting
t = −t̂ into these linear factors, one easily calculates that these evaluate to 2y and 2µ2y, respectively. For
general −t ≥ t̂ these factors are hence nonnegative, and WIII is well-defined. Likewise, the linear factors
involved in the definition of WIV have leading coefficient a+c− ≥ 0. Inserting t = −t∗ yields the positive

values 2y(1−x)2(µ2−1)
(y+1−x)(x+y−1) , 2y3(µ2−1)

(y+1−x)(x+y−1) . Therefore WIV is well-defined for −t ≥ t∗.

Continuity: Inserting t = −t+1(x, y) into BI and BII , we obtain the same expression

µ

µ2 + 1
log

(µ2 − 1)c+
2µa−

.

Inserting t = −t̂(x, y) into BII and BIII , we obtain the same expression

µ

µ2 + 1
log

µc+
a−

.

Inserting t = −t∗(x, y) into BIII and BIV , we obtain for x+ y > 1 the same expression

1

2
log

(µ− 1)(y − x+ 1)

(µ+ 1)(y + x− 1)
+

µ

µ2 + 1
log

2µ2

µ2 − 1
.

Hence B is continuous.
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Initial value: Inserting t = 0 into BI , we obtain B(0, x, y) ≡ 0, which proves (3).

Bellman inequality: Let us show (4), i.e., that for all u ∈ [−1, 1] we have

d

dt
B(t, x(t), y(t)) + y =

∂B

∂t
+
∂B

∂x
· g1 +

∂B

∂y
· g2 + y ≤ 0, (14)

with equality if

u = û(t, x, y) =

 +1, −t < t∗(x, y) and c− > 0,
0, −t = t∗(x, y) and c− > 0,
−1, −t > t∗(x, y) or c− = 0.

For 0 ≤ −t < t+1 we have

dBI
dt

+ y = −y
2(µ2 − 1)(e−2t − 1)(1− u)(e−2t(1− x) + 1 + x)c+

(a−c+(e2t+1 − e−2t) + 4y)(c+e−2t + d−)
≤ 0

with equality if u = 1. Note that if c− = 0, then t+1 = 0, and hence the inequality −t < t+1 cannot hold.
For t+1 ≤ −t ≤ t̂ we have

dBII
dt

+ y = −
y(µ2 − 1)(1− u)c−(c+a

2
−(e2t̂ − e−2t) + 2µyc−)

a−c+ [(µ2 + 1)a−c+(e−2t − e2t+1) + 4y(µ2 − 1)]
≤ 0,

with equality if u = 1 or c− = 0.
For t̂ < −t ≤ t∗ we have

dBIII
dt

+ y = − y(µ2 − 1)(1− u)A

2a−(e−2t − e2t̂)c+(c+a−(e−2t − e2t̂) + 2y(µ2 + 1))
,

where A =
(

(y2 + (1− x)2)(e−2t − e2t̂) + 2yc+
a−

)
WIII +A′ and(

(y2 + (1− x)2)(e−2t − e2t̂) +
2yc+
a−

)2

W 2
III − (A′)2 =

=
(
(x− y − 1)(x+ y − 1)e−2t + y2 + 1− x2

)2
c+a−(c+e

−2t + d−)a−(e−2t − e2t̂) ≥ 0.

Since the coefficient at WIII in A is nonnegative, we obtain A ≥ 0 and hence dBIII
dt + y ≤ 0, with equality if

u = 1. Note that if c− = 0, then t̂ = t∗, and the condition t̂ < −t ≤ t∗ cannot hold.
For −t > t∗ we have

dBIV
dt

+ y = − y(µ2 − 1)(1 + u)a−A

2c−(c−e−2t + d+)a+(a+a−(e−2t − e2t̂) + 4µy)
,

where A =
(

(y2 + (1− x)2)(e−2t − e2t∗) + 4y2(1−x)
(x+y−1)(y+1−x)

)
WIV +A′ and(

(y2 + (1− x)2)(e−2t − e2t∗) +
4y2(1− x)

(x+ y − 1)(y + 1− x)

)2

W 2
IV − (A′)2 =

=(x− y − 1)2(x+ y − 1)2(e−2t − e2t∗)2c−a+(c−e
−2t + d+)(a+(e−2t − 1) + 2) ≥ 0.

Since the coefficient at WIV in A is nonnegative, we obtain A ≥ 0 and hence dBIV
dt + y ≤ 0, with equality if

u = −1.

Feasibility: Let us show that application of the optimal control û guarantees that the trajectory does not
leave the feasible region X, and indeed arrives at the terminal manifold Mf . The only boundary segments
through which a trajectory can escape X are the upper right and the lower left one. On the upper right
segment we have c− = 0 and hence the optimal control is û = −1. The trajectory then moves along the
boundary segment. On the lower left segment we have t∗ = +∞ and c− > 0. Therefore the optimal control
is û = +1 and the trajectory again moves along the boundary segment.

Thus B is indeed the Bellman function, and the optimal value is achieved by applying the control
u = û.
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Figure 3: Optimal trajectories of system (9) with initial point (x, y) = (0, 1.1) for different time horizons
T = tf − ti. The initial and terminal points are marked with stars. The parameter γ equals 0.5. The
dash-dotted lines delimit the feasible region X.

The corresponding optimal solutions are structured as follows.
If T ≤ t+1(xi, yi), where t+1 is the time needed to reach the upper right boundary segment of the feasible

set with control u ≡ +1, then the optimal control is given by û ≡ +1 on the whole trajectory (see Fig. 3,
upper left).

If t+1(xi, yi) < T ≤ t̂(xi, yi), then on the optimal trajectory the control u ≡ +1 is optimal for t ∈
[ti, ti + t+1(xi, yi)), that is up to the point when the trajectory reaches the boundary of the feasible set. For
t ∈ (ti + t+1(xi, yi), tf ] the control u ≡ −1 is optimal and the trajectory moves along the boundary of the
feasible set (see Fig. 3, upper right).

If t̂(xi, yi) < T ≤ t∗(xi, yi), then between the arcs with controls u = ±1 there appears a singular arc with
control u ≡ 0 (see Fig. 3, lower left).

Finally, for T > t∗(xi, yi) the optimal trajectory consists of three arcs, on which the control equals
−1, 0,−1, respectively, with the third arc located on the upper right boundary segment (see Fig. 3, lower
right).

In order to find the optimal value of problem (9)–(11) with free initial and terminal points, we have to
maximize the Bellman function B(−T, x, y) over (x, y) ∈ X for fixed T .

Lemma 4.6. The maximum max(x,y)∈X B(−T, x, y) is attained at

(x, y) =


(
− (µ2−1)(eT−1)
µ2(eT−1)+eT+1

, 2µeT

µ2(eT−1)+eT+1

)
, T ≤ log µ2+1

µ2−1 ,(
−1 + eT

µ
√
e2T−1

, eT√
e2T−1

)
, T ≥ log µ2+1

µ2−1 .

The corresponding value of the maximum is given by
2µ
µ2+1 log (µ2+1)(eT−1)+2

2 , T ≤ log µ2+1
µ2−1 ,

log
(µ−1)(

√
eT+1+

√
eT−1)

(µ+1)(
√
eT+1−

√
eT−1)

+ 2µ
µ2+1 log 2µ2

µ2−1 , T ≥ log µ2+1
µ2−1 .

(15)

Proof. We shall parameterize X by the variables w = y
1−x , z = y

1+x , which both run through the interval

[µ−1, µ]. Set t = −T . We shall determine the maximum of B(t, x, y) by examining the signs of the derivatives
with respect to these variables.

Let us show that ∂B
∂z = − (1−x)(1+x)2

2y
∂B
∂x + (1+x)2

2
∂B
∂y ≥ 0. For −t ≤ t+1(x, y) we have

∂BI
∂z

=
µ(x+ 1)2(e−2t − 1)

a−(e2t̂ − e−2t)(c+e−2t + d−)
≥ 0.

For t+1(x, y) ≤ −t ≤ t̂(x, y) we have

∂BII
∂z

=
µ(e−2t − 1)(x+ 1)2a−c+

2y [(µ2 + 1)a−c+(e−2t − e2t+1) + 4y(µ2 − 1)]
≥ 0.
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For t̂(x, y) ≤ −t ≤ t∗(x, y) we have

∂BIII
∂z

= − (x+ 1)2(e−2t − 1)(WIII − 2µy)

4ya−(e2t̂ − e−2t)(c+e−2t + d−)
≥ 0.

For −t ≥ t∗(x, y) we have

∂BIV
∂z

=
(x+ 1)2(e−2t − 1)a−(WIV + 2µy)

4y(c−e−2t + d+)(a+a−(e−2t − e2t̂) + 4µy)
≥ 0.

Hence the maximum of B is achieved at z = µ. This corresponds to the upper left boundary segment of X.

We now compute the derivative ∂B
∂w = (1−x)2(1+x)

2y
∂B
∂x + (1−x)2

2
∂B
∂y on this segment. Note that on this

segment x ∈ [−µ
2−1
µ2+1 , 0], and e2t+1 = (µ2−1)(1+x)

(µ2+1)x+µ2−1 , e2t̂ = (µ2+1)(1+x)
(µ2+1)x+µ2−1 , e2t∗ = µ2(1+x)2+1−x2

((µ+1)x+µ−1)(µ(1+x)+1−x) for

x > −µ−1
µ+1 .

For −t ≤ t+1(x, y) we have

∂BI
∂w

=
µe−2t(e−2t − 1)(e2t+1 − 1)(1− x)2

2(c+e−2t + d−)((1 + x)(e−2t − 1) + e2t+1 − e−2t)
≥ 0.

For t+1(x, y) ≤ −t ≤ t̂(x, y) we have

∂BII
∂w

=−
µ2(1− x)2(e2t̂ − e2t+1)

[
((µ2 + 1)x+ µ2 − 1)e−t + (µ2 − 1)(1 + x)

]
2y(1 + x)a−c+

[
2µ2(e−2t − e2t+1) + (µ2 − 1)(e2t̂ − e−2t)

] ·

·
[
((µ2 + 1)(e−t − 1) + 2)x+ (µ2 − 1)(e−t − 1)

]
.

Hence ∂BII
∂w ≥ 0 if x ≤ − (µ2−1)(e−t−1)

(µ2+1)(e−t−1)+2 and ∂BII
∂w ≤ 0 if x ≥ − (µ2−1)(e−t−1)

(µ2+1)(e−t−1)+2 .

For t̂(x, y) ≤ −t ≤ t∗(x, y) we have

∂BIII
∂w

=
2µ2(1− x)2e−2tβ2(e−2t − µ2(1 + x)2(e−2t − 1))

ya2
−c+(c+e−2t + d−)

·

· 1√
(βe−2t − x− 1)(βe−2t − µ2(1 + x)) + µ(1 + x)(β(e−2t − e2t̂) + 1)

,

where we wrote β for (µ2 + 1)x+ µ2 − 1 for brevity. Hence ∂BIII
∂w ≥ 0 for x ≤ e−t

µ
√
e−2t−1

− 1 and ∂BIII
∂w ≤ 0

for x ≥ e−t

µ
√
e−2t−1

− 1.

For −t ≥ t∗(x, y) we have

∂BIV
∂w

= − µ2(1− x)2A

yc−(c−e−2t + d+)a+(a+(e−2t − 1) + 2)
,

where

A =
[
((µ2 − 1)(x+ 1)2 + 2)(e−2t − 1) + 2

]
·

·
√

[((µ2 + 1)x+ µ2 − 1)e−2t − 1− x] [((µ2 + 1)x+ µ2 − 1)e−2t − µ2(1 + x)]

+ µ(x+ 1)
[
2x((µ2 − 1)x+ µ2 + 1)e−4t − (3(µ2 − 1)x2 + µ2(4x+ 1) + 1)e−2t + (µ2 − 1)(x+ 1)2

]
.

Let us show that A is nonnegative. First we consider the second summand. This is a concave quadratic
polynomial in e−2t. If we replace e−2t by 0, we obtain the positive value µ(µ2 − 1)(x + 1)3. If we replace
e−2t by 1, we obtain the negative value −2µ(x+ 1). Therefore for e−2t ≥ 1 the value of the second term is
negative. Since the first summand of A is positive, the difference of the two summands will also be positive.
Multiplying A by the difference of the two terms we get rid of the square root, and the resulting expression
equals

−xβ(1 + x− e−2tx)(β(e−2t − 1) + 2)
(
(µ2 − 1)2(e−2t − 1)2(x+ 1)4 + 4(x+ 1)2e−2t − 4xe−4t(2 + x)

)
,
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Figure 4: Optimal trajectories of system (9) with free end-points for different time horizons T = tf − ti. The
optimal initial and terminal points are marked with stars. The parameter γ equals 0.5. The dash-dotted
lines delimit the feasible region X.

which consists of nonnegative factors. Here we denoted (µ2 − 1)x + µ2 + 1 by β. Thus A ≥ 0 and hence
∂BIV
∂w ≤ 0.

It follows that for every fixed t < 0 the function B is unimodal on the upper left boundary segment of

X. The maximum is attained at x = − (µ2−1)(e−t−1)
(µ2+1)(e−t−1)+2 if this value of x satisfies t+1(x, µ(1 + x)) ≤ −t ≤

t̂(x, µ(1 + x)), and at x = e−t

µ
√
e−2t−1

− 1 if this value of x satisfies t̂(x, µ(1 + x)) ≤ −t ≤ t∗(x, µ(1 + x)).

Straightforward calculation yields the maximizer claimed in the lemma.
The value of the maximum is obtained by evaluating the expression BII in the first case and the expression

BIII in the second case. Again straightforward calculation yields the value claimed in the lemma.

The optimal trajectory realizing the maximal value in Lemma 4.6 is depicted in Fig. 4. For tf − ti ≤
log µ2+1

µ2−1 it consists of two arcs with control u = ±1, respectively, and lies entirely on the boundary of

the feasible set X (top). For tf − ti > log µ2+1
µ2−1 the optimal trajectory consists of three arcs with controls

+1, 0,−1, respectively. The first and third arc lie on the boundary of X, while the central arc is singular
and crosses the interior of X (bottom). The whole trajectory is symmetric about the vertical axis.

Corollary 4.7. Let Ω be a proper open segment of the projective line, and let f be a convex non-degenerate
centro-affine C2 immersion of Ω into the interior of the cone KΩ ⊂ R2 over Ω which satisfies (2) a.e. for
some γ > 0 and is asymptotic to ∂KΩ. Then for every two points a, b ∈ Ω the Riemannian length lR(a, b) of
the segment between a, b in the centro-affine metric induced by f is bounded above by (15), where T = dH(a, b)
is the Hilbert distance between a, b in Ω.

Proof. Choosing a coordinate system in R2 such that KΩ = R2
+ and representing f = eα(t)(et, e−t) by a

C2 function α(t) satisfying (8) a.e. reduces the problem of maximization of lR(a, b) to the optimal control
problem (9)–(11). Application of Lemmas 4.1–4.6 concludes the proof.

In Corollary 4.7 we assumed that the immersion f is asymptotic to the boundary of KΩ, while in Theorem
1.2 this assumption is missing. In order to circumvent this difficulty we need the following lemmas.

Lemma 4.8. The difference δ = max(x,y)∈X B(−T, x, y)− T between (15) and T is an increasing function
of T for T > 0.

Proof. The derivative of the difference with respect to T is given by

dδ

dT
=


(µ−1)(µ+1−(µ−1)eT )
µ2(eT−1)+eT+1

, eT ≤ µ2+1
µ2−1 ,

1−
√

1−e−2T√
1−e−2T

, eT ≥ µ2+1
µ2−1 .

For eT ≤ µ2+1
µ2−1 we have µ + 1 − (µ − 1)eT ≥ µ + 1 − (µ − 1)µ

2+1
µ2−1 = 2µ

µ2+1 > 0, and for T > 0 we have

0 <
√

1− e−2T < 1. Hence the derivative is positive.

Lemma 4.9. Let α(t) be a function satisfying the conditions of Lemma 4.1 and such that α̈ > α̇2− 1. Then
the centro-affine immersion f defined by α is extendable to a convex non-degenerate centro-affine immersion
f̃ of class C2 which satisfies (2) a.e. and is asymptotic to the boundary of some cone K̃ which contains R2

+.
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Proof. Let us consider the behaviour of f(t) = eα(t)(et, e−t) as t → +∞. If eα(t)+t is unbounded, then
f is asymptotic to the boundary ray ρ of R2

+ generated by the vector (1, 0). Let us hence assume that
limt→+∞(α(t) + t) < +∞. Then lim inft→∞ α̇ = −1. However, by Lemma 4.1 we have α̈ ≤ (µ2 + 1)(α̇ +

1)2 − 2(α̇+ 1) and hence α̈ ≤ 0 whenever α̇ ≤ −µ
2−1
µ2+1 . It follows that limt→∞ α̇ = −1.

Let us show that the immersion f is transversal to the boundary ray ρ, i.e., ḟ1
ḟ2

= e2t α̇+1
α̇−1 has a finite

limit as t→ +∞. It suffices to show that β = e2t(α̇+ 1) remains finite. Again by Lemma 4.1 we have

β̇ ≤ 2β + e2t((µ2 + 1)(α̇+ 1)2 − 2(α̇+ 1)) = (µ2 + 1)e−2tβ2.

It follows that with η = β−1 − µ2+1
2 e−2t we have η̇ = − β̇

β2 + (µ2 + 1)e−2t ≥ 0, and η is increasing. However,

e2tη(t) = 1
α̇+1 −

µ2+1
2 grows unbounded, and hence η(t) eventually becomes positive. Thus β = 1

η+µ2+1
2 e−2t

and consequently ḟ1
ḟ2

remain bounded. Then by convexity of the immersion the ratio ḟ1
ḟ2

must have a limit

as t→ +∞.
Let us show that the affine metric of f has a limit. The coordinate t becomes singular as the image f(t)

approaches the ray ρ. Let us therefore consider the non-singular coordinate f2 = eα(t)−t. In this coordinate

the affine metric is given by (α̈− α̇2 + 1)
(
dt
df2

)2

≤ µ2(1+α̇)2

((α̇−1)eα(t)−t)2
= µ2β2

((α̇−1)f1)2 . The upper bound has a limit

as t→ +∞, and hence the metric remains bounded. By (2) it is Lipschitz and has a well-defined limit.
On the other hand, this limit cannot be zero by condition (2). This can be seen from the equivalent form

(8) (written down in a coordinate which is non-singular at the limit point), which ensures that h cannot
reach zero in finite time.

We may then extend f continuously by a hyperbola branch which matches the limit values of the first
two derivatives of f at the intersection point with the ray ρ. This hyperbola will be asymptotic to a ray
which defines the boundary of the cone K̃. The cubic form of an immersion defined by a quadric vanishes,
and beyond ρ the extension satisfies (2) with γ = 0.

In the same way the extension of f beyond the boundary ray of R2
+ generated by the vector (0, 1) is

constructed, if f is not already asymptotic to this ray.

Corollary 4.10. Let Ω ⊂ RP 1 be a proper open segment of the projective line, and let f : Ω → Ko
Ω be a

convex non-degenerate centro-affine lift of class C3 into the interior of the cone over Ω which satisfies (2).
For points a, b ∈ Ω, let T = dH(a, b) be their Hilbert distance. Then the length lR(a, b) of the line segment
between a, b in the centro-affine metric defined by f is strictly smaller than (15), and this bound cannot be
improved.

Proof. By Lemma 4.9 there exists a proper open segment Ω̃ ⊃ Ω of the projective line such that the immersion
f can be extended to a convex non-degenerate centro-affine lift f̃ of class C2 of Ω̃ into the interior of the
cone K̃ over Ω̃ which satisfies (2) a.e. and is asymptotic to ∂K̃.

Let d̃H(a, b) be the Hilbert distance between the points a, b with respect to Ω̃. Then by Corollary
4.7 the Riemannian length lR(a, b) is upper bounded by (15) with T = d̃H(a, b). However, Ω ⊂ Ω̃ implies
d̃H(a, b) ≤ dH(a, b). Since by Lemma 4.8 expression (15) is increasing with T , the length lR(a, b) is also upper
bounded by (15) with T = dH(a, b). Moreover, the upper bound cannot be attained, because the optimal
trajectory constructed in the proof of Lemma 4.6 corresponds to an immersion which is only piece-wise C3.

On the other hand, this optimal trajectory can be extended from the interval [ti, tf ] to R by applying
control u = 1 for all t < ti and control u = −1 for all t > tf . The extension then tends to the left-most

point (x, y) =
(
−µ

2−1
µ2+1 ,

2µ
µ2+1

)
of X for t→ −∞ and to the right-most point (x, y) =

(
µ2−1
µ2+1 ,

2µ
µ2+1

)
of X for

t→ +∞. The corresponding centro-affine immersion into R2
+ is of class C2 and piece-wise analytic, but can

be approximated with arbitrary precision in the C2 norm by C3 immersions satisfying (2). Hence bound
(15) cannot be improved.

We may now return to Theorem 1.2. The first two inequalities are proven in a similar manner as for
Theorem 1.1. Namely, the first one is just the inequality between the geodesic distance and the Riemannian
length of a path linking a, b, while the second inequality is the upper bound on lR(a, b) obtained in Corollary
4.10 for the case n = 1 and which carries over to general dimension because the metric is centro-affine.
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Let us prove the last inequality in Theorem 1.2. By Lemma 4.8 the difference δ mentioned in this lemma
obeys

δ(T ) < lim
s→+∞

δ(s) = lim
s→+∞

(
log

(µ− 1)(
√
es + 1 +

√
es − 1)

(µ+ 1)(
√
es + 1−

√
es − 1)

+
2µ

µ2 + 1
log

2µ2

µ2 − 1
− s
)

= log 2− log
µ+ 1

µ− 1
+

2µ

µ2 + 1
log

2µ2

µ2 − 1

for every T ≥ 0. Here in the second equality we used that
√
κ+1+

√
κ−1

κ(
√
κ+1−

√
κ−1)

= 1 +
√

1− 1
κ2 → 2 as κ → +∞.

Inserting T = dH(a, b) completes the proof of Theorem 1.2.

5 Proof of Theorems 1.3 and 1.4

In order to obtain a lower bound on the Riemannian length lR(a, b) we have to consider the optimal control
problem

ẋ = y2 + x2 − 1, ẏ = 2xy + uγy2, u ∈ [−1, 1],

lR(ti, tf ) =

∫ tf

ti

y(t) dt→ inf,

µ−1(1 + |x|) ≤ y ≤ µ(1− |x|),

(16)

which is similar to (9)–(11) with the difference that we now minimize (10). The proof is conducted along
the same lines as that of Theorem 1.2, but the calculations turn out to be simpler because the optimal
trajectories do not contain the singular arc and the optimal control is purely bang-bang (i.e., assuming only
its extreme values). Assume the notations of the previous section.

Lemma 5.1. Assume notations (13). Consider control problem (16) with fixed initial point (x(ti), y(ti)) =
(xi, yi) and free terminal point (x(tf ), y(tf )) ∈ X. Let T = tf − ti be the time horizon. Then the optimal
value of the problem is given by B(−T, xi, yi), where the function B : R− ×X → R+ is defined as follows.

Let (x, y) ∈ X and t ∈ R−. If

−t ≤ t−1(x, y) =

{
1
2 log

(
1 + 2µa−

c−a+

)
, c− > 0,

+∞, c− = 0,

then

B(t, x, y) =
µ

µ2 + 1
log

µ(a+e
−2t − b−)

c−e−2t + d+
.

If −t > t−1(x, y), then

B(t, x, y) =
µ

µ2 + 1
log

(
a+

8µ3yc−
·
[
(µ2 + 1)c−a+e

−2t+

+ µ4y(1 + x) + µ(1 + µ2)(y2 − x2 + 1)− 6µ2y + y(1− x)
])

.

Proof. Let us show that B(t, x, y) is the Bellman function of the problem. Denote the two expressions
defining B in the lemma by BI , BII .

Consistency: For (x, y) ∈ X we clearly have t−1(x, y) ≥ 0.

Continuity: Inserting t = −t−1(x, y) into BI and BII , we obtain the same expression

µ

µ2 + 1
log

(µ2 − 1)a+

2µc−
.

Initial value: Inserting t = 0 into BI , we obtain B(0, x, y) ≡ 0, which proves (3).
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Figure 5: Optimal trajectories of system (16) with initial point (x, y) = (0, 1.1) for different time horizons
T = tf − ti. The initial and terminal points are marked with stars. The parameter γ equals 0.5. The
dash-dotted lines delimit the feasible region given by the state constraints in (16).

Bellman inequality: Let us show (4), i.e., that for every u ∈ [−1, 1] we have

d

dt
B(t, x, y) + y =

∂B

∂x
· (y2 + x2 − 1) +

∂B

∂y
· (2xy + uγy2) +

∂B

∂t
+ y ≥ 0,

with equality if u = û(t, x, y), where

û(t, x, y) =

{
−1, a− > 0,
+1, a− = 0.

For 0 ≤ −t < t−1 we have

dBI(t, x, y)

dt
+ y =

y2(µ2 − 1)(e−2t − 1)(u+ 1)((1− x)e−2t + 1 + x)

(c−e−2t + d+)(a+(e−2t − 1) + 2)
≥ 0,

with equality if u = −1. Note that if a− = 0, then t−1 = 0, and hence the inequality −t < t−1 cannot hold.
For −t ≥ t−1 we have

dBII(t, x, y)

dt
+ y =

y(µ2 − 1)(u+ 1)a−
[
a+c

2
−(e−2t − e2t−1) + 2µy((µ2 − 1)(1− x) + µc−)

]
c−a+ ((µ2 + 1)c−a+(e−2t − e2t−1) + 4µ2y(µ2 − 1))

≥ 0,

with equality if u = −1 or a− = 0.

Feasibility: The only boundary segments through which a trajectory can escape X are the upper right
and the lower left one. On the lower left segment we have a− = 0 and hence the optimal control is û = +1.
The trajectory then moves along the boundary segment. On the upper right segment we have t−1 = +∞
and a− > 0. Therefore the optimal control is û = −1 and the trajectory again moves along the boundary
segment.

Thus B is indeed the Bellman function, and the optimal value is achieved by applying the control
u = û.

The optimal solutions obtained by application of control û are structured as follows.
If T ≤ t−1(xi, yi), where t−1 is the time needed to reach the lower left boundary segment of the feasible

set with control u ≡ −1, then the optimal control is given by û ≡ −1 on the whole trajectory (see Fig. 5,
left).

If T > t−1(xi, yi), then on the optimal trajectory the control u ≡ −1 is optimal for t ∈ [ti, ti+t−1(xi, yi)),
that is up to the point when the trajectory reaches the boundary of the feasible set. For t ∈ (ti+t−1(xi, yi), tf ]
the control u ≡ +1 is optimal and the trajectory moves along the boundary of the feasible set (see Fig. 5,
right).

In order to find the optimal value of problem (16) with free initial and terminal points, we have to
minimize the Bellman function B(−T, x, y) over (x, y) ∈ X for fixed T .
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Lemma 5.2. The minimum min(x,y)∈X B(−T, x, y) is attained at

(x, y) =

(
(eT − 1)(µ2 − 1)

eT (µ2 + 1) + µ2 − 1
,

2µeT

eT (µ2 + 1) + µ2 − 1

)
.

The corresponding value of the minimum is given by

min
(x,y)∈X

B(−T, x, y) =
2µ

µ2 + 1
log

eT (µ2 + 1) + µ2 − 1

2µ2
. (17)

Proof. We shall again parameterize X by the variables w = y
1−x , z = y

1+x . Set t = −T .

Let us show that ∂B
∂z ≥ 0. For −t ≤ t−1(x, y) we have

∂BI
∂z

=
µ(x+ 1)2(e−2t − 1)

(c−e−2t + d+)(a+(e−2t − 1) + 2)
≥ 0.

For −t ≥ t−1(x, y) we have

∂BII
∂z

=
µ(e−2t − 1)(x+ 1)2c−a+

2y ((µ2 + 1)c−a+(e−2t − e2t−1) + 4µ2y(µ2 − 1))
≥ 0.

Hence the minimum of B is achieved at z = µ−1. This corresponds to the lower right boundary segment of
X.

We now compute the derivative ∂B
∂w on this segment. On this segment x ∈

(
0, µ

2−1
µ2+1

)
and e2t−1 =

(µ2−1)(x+1)
β , where β = µ2 − 1− x(µ2 + 1) > 0.

For −t < t−1(x, y) we have
∂BI
∂w

=
µ(e−2t − 1)

βe−2t + (µ2 + 1)(x+ 1)
≥ 0.

At x = 0 we have t−1 = 0, and hence the minimum cannot be attained for −t < t−1(x, y).
For −t ≥ t−1(x, y) we have

∂BII
∂w

=
µ
[
(µ2 − 1)2(x+ 1)2 − β2e−2t

]
(x+ 1)β [(µ2 + 1)β(e−2t − e2t−1) + 2µ2(µ2 − 1)(x+ 1)]

.

Hence ∂BII
∂w ≥ 0 if x ≥ (e−t−1)(µ2−1)

e−t(µ2+1)+µ2−1 and ∂BII
∂w ≤ 0 if x ≤ (e−t−1)(µ2−1)

e−t(µ2+1)+µ2−1 .

It follows that the minimum is attained at

(x, y) =

(
(e−t − 1)(µ2 − 1)

e−t(µ2 + 1) + µ2 − 1
, µ−1(1 + x)

)
.

The value of the minimum is obtained by evaluating the expression BII at this point.

The optimal trajectory realizing the minimal value in Lemma 5.2 is depicted in Fig. 6. It consists of
two arcs with control u = ∓1, respectively, and lies entirely on the boundary of the feasible set X. It is
symmetric about the vertical axis.

The solutions can be extended from the time interval [ti, tf ] to R by applying control u = −1 for all
t < ti and control u = +1 for all t > tf . The corresponding trajectory then tends to the right-most point

(x, y) =
(
µ2−1
µ2+1 ,

2µ
µ2+1

)
of X for t → −∞ and to the left-most point (x, y) =

(
−µ

2−1
µ2+1 ,

2µ
µ2+1

)
of X for

t→ +∞. The corresponding centro-affine immersion into R2
+ is of class C2 and piece-wise analytic, but can

be approximated with arbitrary precision in the C2 norm by C3 immersions satisfying (2). Hence the lower
bound (17) on lR(−T, 0) cannot be attained by C3 immersions, but is nevertheless sharp.

Let us now prove Theorem 1.3. The first inequality is just the bound (17), which carries over to the case
of general dimension as in the proof of Theorem 1.1. The second inequality comes from the relation

log
eκ(µ2 + 1) + µ2 − 1

2µ2
−
(
κ− log

2µ2

µ2 + 1

)
= log

(
1 + e−κ

µ2 − 1

µ2 + 1

)
> 0,
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Figure 6: Optimal trajectories of system (16) with free end-points for different time horizons T = tf − ti.
The optimal initial and terminal points are marked with stars. The parameter γ equals 0.5. The dash-dotted
lines delimit the feasible region given by the state constraints in (16).

which also becomes sharp as κ→ +∞.

Let us now prove Theorem 1.4. Let a, b ∈ Ω be arbitrary points, and let σ be the Riemannian geodesic
linking these points. The Riemannian length of σ is by definition equal to dR(a, b). Let l be the length of the
curve σ in the Hilbert metric. Then dH(a, b) ≤ l, because straight lines are the shortest paths in the Hilbert
metric. Summing the first inequality in Corollary 4.3 over increasingly finer partitions of the curve σ we
obtain µ−1l ≤ dR(a, b) in the limit. Hence µ−1dH(a, b) ≤ dR(a, b), yielding the first inequality in Theorem
1.4.

On the other hand, combining the second inequality in Corollary 4.3 with the relation dR(a, b) ≤ lR(a, b)
we obtain dR(a, b) ≤ µdH(a, b), which is the second inequality in Theorem 1.4. This completes the proof of
Theorem 1.4.
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