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ABSTRACT

Micro-electrode recording (MER) is a powerful way of localizing target structures during neurosur-
gical procedures such as the implantation of deep brain stimulation electrodes, which is a common
treatment for Parkinson’s disease and other neurological disorders. While Micro-electrode Recording
(MER) provides adjunctive information to guidance assisted by pre-operative imaging, it is not
unanimously used in the operating room. The lack of standard use of MER may be in part due to its
long duration, which can lead to complications during the operation, or due to high degree of expertise
required for their interpretation. Over the past decade, various approaches addressing automating
MER analysis for target localization have been proposed, which have mainly focused on feature
engineering. While the accuracies obtained are acceptable in certain configurations, one issue with
handcrafted MER features is that they do not necessarily capture more subtle differences in MER that
could be detected auditorily by an expert neurophysiologist. In this paper, we propose and validate
a deep learning-based pipeline for subthalamic nucleus (STN) localization with micro-electrode
recordings motivated by the human auditory system. Our proposed Convolutional Neural Network
(CNN), referred as SepaConvNet, shows improved accuracy over two comparative networks for
locating the STN from one second MER samples.

1 Introduction

Deep brain stimulation (DBS) is a common neurosurgical procedure in which electrodes are introduced into particular
regions of the brain in order to correct for abnormal neural behaviour. The most common disorder treated using DBS
is Parkinson’s Disease (PD), a quickly evolving neuro-degenerative disease that results in the loss of motor control.
Although DBS is not technically a cure for PD, it can greatly enhance the quality of life of the patient by limiting the



42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY
SOCIETY IN CONJUNCTION WITH THE 43RD, ANNUAL CONFERENCE OF THE CANADIAN MEDICAL AND

BIOLOGICAL ENGINEERING SOCIETY - MAY 18, 2020

motor symptoms. There are three common targets for DBS in PD patients, the bilateral Ventral Intermediate nucleus of
the thalamus (VIM), medial Globus Pallidus (mGP) and Subthalamic Nucleus (STN) [1].

Besides the adequate choice of structure, the most determinant factor of the surgery’s success is the accurate positioning
of the stimulating electrodes relative to the structures of interest. This positioning is currently performed in multiple
phases. As pre-operative MR imaging is a routine part of clinical care for this procedure, a surgical planning phase
is performed involving the identification of the target and the appropriate craniotomy site on the patient’s skull, and
the corresponding electrode trajectory. The second phase involves mounting a stereotactic frame onto the patient’s
skull, re-imaging them and using image registration to find the target co-ordinates in the space of the frame, allowing
for the electrode to be implanted guided by the stereotactic frame in the operating room. However, preoperative
imaging does not guarantee correct positioning of the electrode during the operation for various reasons including
the limited resolution of the images and the potential registration error between the patient space and the stereotactic
frame space. Additional deformations during surgery due to brain shift resulting from the craniotomy imply that the
selected stimulation target coordinates determined in the surgical planning phase may no longer correspond exactly
with the selected stimulation target location [2]. Lozano et al. [3] estimated the frequency of sub-optimal electrode
implementation to be 20% for DBS performed solely with the preoperative imaging. Thus, an additional "fine-tuning"
phase is required to ensure a correct implantation.

This "fine-tuning" stage is performed via "trial-and-error" when a small amount of stimulation is applied to the electrodes
and the effects of said stimulation are used to infer whether or not the electrodes are in the correct position. This process
is necessary as the ideal target for stimulation is defined functionally rather than purely anatomically, that is, the ideal
target is one in which the stimulation has the desired effect. This process however can be made complicated by the
use of different anesthesia regimens during the procedure. Local anesthesia maintains the wakefulness of the patient
and thus allows the clinical team to test the clinical effects of various electrode positions more easily, incorporating
additional behavioral and guided motor activities. However, performing the procedure with the patient awake can
be a source of discomfort for the patient and additional patient movement can be a source of risk. Global or general
anesthesia implies that the patient is not awake during the surgery, making the surgery more comfortable and controlled.
However, this limits the amount of clinically useful information accessible to the surgical team during the procedure.
Regardless of the type of anesthesia used, a second source of information that informs the position of the electrode
relative to the targeted structure is considered mandatory either to limit the number of "trial-and-error" in the case of
local anesthesia or to ensure a higher success rate in the case of global anesthesia.

One possibility is to use interventional MRI (iMRI) to refine the anatomical localization of the electrode during the
surgery, but this can be prohibitively expensive and requires a specially designed operating theatre. An alternative
approch is MER, which uses the electrical components of the stimulation electrode to record electrophysiological
signals along the trajectory selected prior to the surgery. Using a segment of these signals, the clinical team listens
to and/or visualizes the raw MER signal to determine if the micro-electrode is within the surgical target nuclei at the
time of recording. Performing this assessment at several depths along the implant trajectory provides the surgical team
enough evidence to delineate the borders of the surgical target nuclei. Whether to use intraoperative imaging or MER
remains under debate. Lee et al. [4] and Liu et al. [5] compared the usage of iMRI versus MER, showing equivalent
clinical outcomes.

We identified two limits of MER that can be leveraged by our approach. Firstly, the MER procedure is time consuming as
many depths along the electrode trajectory are to be tested (each depth is an average of 10 seconds in duration). Secondly,
this procedure is subjective as whether or not the signal originated from within the desired anatomy is determined by
the neuro-physiologist based on their qualitative visual and auditory assessment of the signal. Quantitative criteria used
to identify the surgical target are specific neuronal firing patterns and an increase of background noise. However, these
criteria are not always obvious and dependant one the interpretation by the clinical team, which requires significant
training and expertise in this domain.

Contributions

In this paper, we propose a deep learning framework named SepaConvNet (Separable Convolution-based neural
Network) for the detection of MER signals arising from the STN, differentiating them from nearby structures, using 1
second MER recordings. This state-of-the-art method shows high accuracy using class balanced accuracy metrics and
outperforms ResNeXt, a state-of-the-art Convolutional Neural Network (CNN) architecture. This framework can work
in real-time augmenting the clinical teams capability in terms of DBS electrode implantation for Parkinson’s Disease
(PD).
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2 Theory and Previous Work

Automating STN localization with MER is an active field of research. Originally, these strategies were based on
developing descriptive features characterizing the MER data and applying a classifier to these features. (A detailed
review of such methods has been performed by Wan et al. [6].) These characteristics fall into two large classes: spike
independent features [7, 8, 9] (e.g. power spectral density) many of which can be computed or approximated with an
appropriate filter-bank, and spike dependent features [10, 11, 12, 13, 14, 15, 16] (e.g. standard deviation of interspike
intervals). While adding spike dependant features can provide additional information about the signal, it also adds
several constraints about signal acquisition [6].

The large amount of work that has been performed on MER feature engineering for the past decade is indicative that
optimal features are likely tedious to develop. However, the fact that trained neurophysiologists can audibly distinguish
different MER signals (as it can be in the current clinical workflow) hints that learned features arising from the raw
signal itself may provide better outcomes. However, the extent and variety of features investigated demonstrates the
hidden complexity of MER signal analysis. To this extent, using a CNN to automatically learn non-linear combinations
of convolution filters to address this problem may be considerable easier than using hand-designed ones given the large
span of linear and non-linear features that have been prevously been considered.

Spectrogram representation of MER

In current clinical practice, MER signals can be interpreted by a trained neurophysiologist by listening to them,
indicating that the patterns of interest within these signals are detectable using the human ear. It is well-known in many
fields such as perceptual psychology that the ear performs a frequency decomposition of incoming auditory signals
and that this decomposition is the data provided to the central nervous system. Spectrograms have previously been
used for this application; Karthick et al. [17] successfully classified STN MER signals by designing features in a
time-frequency domain. Thus, we chose a spectrogram representation of these signals as an initial stream of input
features. This representation allows us to provide a more complex and predictive input data representation without the
complex feature engineering and can be applied in real-time facilitating its integration into clinical workflow.

Convolutional Neural Networks

Originally developed by LeCun et al. [18], CNNs are a type of deep neural network based on convolution layers. These
layers consist of several tunable kernels operating on the input space by a linear convolution operation usually followed
by a point-wise non-linear activation. Stacking these convolution layers allows the neural network to learn to construct
higher level features from the original input space which are more readily used for classification tasks. Following the
convolutions layers, typically one or two fully connected layers are added, which use the high level features to perform
the classification. During the training process, these kernels and the weights in the fully connected layers are iteratively
updated through a process of optimizing a loss function which acts as a surrogate for optimizing accuracy.

ResNeXt

ResNeXt [19] is an extension of ResNet [20], which are both well known architectures in the computer vision community.
Aside from its good performance, the structure of ResNeXt is highly scalable. Indeed, one of the motivations of the
original study [19] was to be able to control the shape of the structure of the network with only three parameters,
where former well performing CNN models needed almost each layer to be tuned manually. Therefore, it is common
to reuse pretrained models and finetune them, but there is no major publicly available CNN model pretrained on
MER spectrograms. The ability of ResNeXt to be scalable motivated us to use it as a CNN baseline, to compare the
performances of our proposed model.

3 Material and Methods

3.1 Data acquisition

The MER signals in this study were recorded from 57 PD patients having undergone DBS surgery at London Health
Sciences Centre at Western University hospital. The Bens gun was used to advance 3-5 microelectrodes as a unit.
Signals were recorded from 10.0 mm above the pre-operatively determined target zero point to 4.0/5.0 mm below
the zero-point, the end-point being detectable activity from the Substantia Nigra. The drive was advanced in 1.0 mm
increments and 0.5 mm increments within the target nucleus. At each depth, a 10-second recording was obtained once a
clean recording was observed (i.e. free from drive noise). The signals were sampled (24kHz, 8 bit), amplified (gain:

3
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10,000) and digitally filtered (bandpass: 500-5000 Hz, notch: 60Hz) using the Leadpoint recording station (Leadpoint 5,
Medtronic). The ground truths were determined by the electrophysiologist and neurosurgeon at the time of the recording
in the operating room. The database was approved by the local ethics board at Western University (REB 1090485).

3.2 Database construction

By observing the signals individually, we noticed that the signals were highly temporally redundant. Usually, the
neurophysiologist can be certain of the location of the electrode by listening to several seconds of signal. We
hypothesised that a deep learning algorithm can exhibit good performance with far less signal (i.e only one second)
which could improve clinical workflow by reducing procedure time. Reducing the duration of the signal has three
positive effects for the training. Firstly, a reduced input dimensionality makes the deep neural network less prone
to overfitting, thus allowing better generalisation performance with a limited number of training samples. Secondly,
a smaller input limits the memory amount required to store the input, the gradient, the inference tensors, etc. This
smaller memory consumption allows to train the neural network with a larger batch size, and thus train the network
more quickly. Lastly, not using the whole 10 second signal allows us to take several shorter windows of each signal,
thus increasing the database size.

We took advantage of the third property to balance our databases. Indeed, in our database, there are approximately three
times more signals labeled as outside of the STN (’0’) than signals labeled as inside of the STN (’1’). To overcome
this class imbalance, for each signal labeled as ’0’ one 1 second window was extracted, were three different 1 second
windows were used for each signal labeled as ’1’, thus balancing the dataset.

To split the data into training, validation/test sets, we used a stratified 5-fold cross-validation (CV). This data splitting
technique consists in splitting the data in 5 different folds, with approximately the same number of signals in each
fold, with the constraint that all signals coming from a single patient are assigned to the same fold. This constraint is
mandatory to ensure that the estimation of network performance is representative of new patients as no patient appeared
in both the testing and training sets for either class.

Once the stratified fold splitting is done, 4 folds were used as training data, and the last one as testing/validation data.
This process was repeated 5 times in total in order to have every fold used as testing/validation once.

We obtained a database with 9055 one second signals labelled as ‘0’ (outside the STN) and 8255 labelled as ‘1’ (inside
the STN), each signal having a length of 24000 samples.

3.3 Signal preprocessing

The first step of signal preprocessing was to threshold the signal, in order to limit the effects of non-informative
acquisition artifacts. That being done, the temporal input signal is converted into a spectrogram representation. To
compute the spectrogram, a Short Term Fourier Transform (STFT) was used, which applies a sliding window to the
signal and computes the Fourier transformation for each window. From this Fourier transform, only the magnitudes of
the vector were retained. Using STFT leads to a fundamental tradeoff: if the sliding window is wide, the spectrogram
will have a higher accuracy in the frequency dimension, but will lose resolution in the time dimension. The STFT was
performed with a Hann window of 512 samples width and a hop length of 10 samples, giving us input spectograms with
257 frequency bands and 2400 time points. An example MER spectrogram is shown in Fig. 1.

3.4 Proposed Convolutional Neural Network

In the literature, convolution kernels are often 2D as most CNNs are used to address computer vision problems, in which
the input space is composed of two spatial dimensions. Spectrogram classification with 2D CNNs has already been
successfully performed on music [21, 22] and doppler radar [23] which present at least some informative frequency
shift-invariant properties. However, for MER signals, the two axes of our spectrograms are fundamentally different and
there is no practical reason that a pattern detected in the low frequency bands would be equivalent to one in the high
frequency bands. Thus we claim that in our use-case, 1D kernels are theoretically more adequate and our input signals
are not treated as 2D images, but as 1D vector-valued signal with each element being the intensity in a frequency band.

Furthermore, in MER analysis, the amount of data available is limited. Thus, we replaced traditional convolutions
with separable ones in our proposed CNN structure. Separable convolutions have fewer trainable weights and are
therefore faster to train for a similar theoretical computational power, allowing to achieve similar results with a lighter
network [24]. For small datasets with high dimensionality, a lighter model can limit the impact of overfitting, thus
leading to better classification results and training stability. Separable convolution works in two steps. First, a timewise
convolution is performed, using K kernels per feature. Second, a pointwise convolution is used in order to mix channels

4
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Figure 1: Raw spectrogram of 0.2 seconds of MER signal inside the STN after normalization.

Step 1: timewise

convolution

Step 2: pointwise

convolution

features

features

time

time

Figure 2: Example of a separable convolution. On the first step, 5 kernels (one for each feature band) of size 3 are
convolving along the time axis. The resulting matrix is passed as input of the second step, which performs a convolution
along the time axis with N kernel of size 1, mixing all the features together at each timestep. The dimensions of the
output matrix are the number of timesteps times N.

to produce N new features. Given an appropriate choice of K and sufficiently large kernels, this can largely reduce the
number of parameters in the total convolution operator. Figure 2 shows these two stages of a separable convolution
operation with K = 1 and N = 1 and would output a 1D-vector. In our paper, the hyperparameters K and N have
been optimized through a Bayesian process, described in Section 3.6.

Our proposed CNN structure, called SepaConvNet (Separable Convolution-based neural Network) is presented in
Figure 3. It consists of D successive computational blocks followed by a global average pooling layer (along the
time-axis) and a fully-connected neuron with sigmoid activation, in order to perform the binary classification. Each
computational block is composed of a spatial dropout with a drop rate of 0.1, followed by a 1D separable convolution
with kernel size of 15 with ReLU activation, a concatenation layer and a 1D max pooling layer of size 2 and stride 2 on
the time axis. All computational blocks are identical in parameterization, except the last one, which doesn’t have a max
pooling layer.

5
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Spatial Dropout

Separable convolution 1D

ReLU

Max Pooling 1D

input

output

(a) Computational block

Computational Block

Input (2400x257)

1200x32

Computational Block

600x32

Computational Block

300x32

Computational Block

300x32

Classification Block

Output

(b) Complete network

Figure 3: SepaConvNet structure. Figure (a) presents the composition of a computational block. Figure (b) presents the
global network, the classification block being an average time-pooling layer followed by a fully-connected neuron with
sigmoid activation.

3.5 Accuracy and loss metrics

As classes remain slightly unbalanced, we used balanced accuracy (Eq. 1) to measure the classification performance
and to compare methods. Each classifier was trained with class weighting, giving a weight to training sample inversely
proportional to the representation of the belonging class in the training set, thus assigning the same total weight to both
classes regardless of the number of samples in each.

BACC =
1

2

(
TP

P
+

TN

N

)
(1)

3.6 Hyperparameters Optimization (HPO)

An HPO has been done using Bayesian optimization, with Gaussian processes as a surrogate model, and expected
improvement as a criteria, with a 5-fold cross validation. The number of points tested was the square of the number of
hyper-parameters to optimize plus one.

3.7 Software environment

All neural networks have been developed in Python with Keras (version 2.2.4), with Tensorflow (version 1.12) as a
backend. STFT has been performed with Librosa (version 0.7.0).

4 Experiment

Our network was compared against two baselines: ResNeXt 2D, which is the standard version of ResNeXt, and
ResNeXt 1D, with every 2D operation replaced by its 1D equivalent. Each CNN has been trained and tested with the
same 5-fold CV partitions. We used a learning rate of 0.001 for both ResNeXt versions, 0.005 for SepaConvNet, with
Adam optimizer and a batch size of 32.

For SepaConvNet, we performed HPO on the parameters D, K and N as presented in Section 3.4. For both versions of
ResNeXt, we optimized the number of filters in each convolution layer and the depth of the network, and fixed the
cardinality to 16. It is to note that the time resolution of input spectrograms had to be decreased for ResNeXt 2D due to
an excessive memory consumption.

6
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Figure 4: Quantitative results showing the distribution of 5-fold CV balanced accuracies for the three methods
investigated.

Network BACC Sens. Spec. f1
SepaConvNet 80.9% 75.6% 86.1% 79.2%
ResNeXt 2D 77.3% 70.1% 84.5% 74.9%
ResNeXt 1D 76.8% 66.0% 87.6% 73.4%

Table 1: Mean classification performances for the three methods investigated. ’Inside the STN’ is considered the
positive class.

Results of the 5-fold CV are reported in Figure 4 and Table 1. Classification results between SepaConvNet and both
ResNeXt versions were statistically significant with a paired sample t-test (p < 0.05).

5 Discussion

The results presented in Section 4 confirm our hypothesis that for this particular problem, the spectrograms should
be treated as 1D vector signals. Despite the increased capability for parameter re-use, the ResNeXt 2D version did
not significantly outperform its 1D counterpart, suggesting that MER signals do not have any significant non-trivial
frequency invariant features (i.e. those in which the shift invariance in the frequency domain would provide a benefit in
detecting).

Secondarily, SepaConvNet significantly outperformed both baselines. After HPO, our proposed CNN used fewer
trainable parameters than both 2D and 1D ResNeXt (resp. 16.752, 373.953 and 240.449). This decrease in parameters
however is not a sign that the ResNeXt networks were overfit as HPO did cover configurations with lower parameteriza-
tion. However, it does indicate that generic but lighter weight models (largely using separable convolutions) can detect
important features in neurological MER signals.

Future work

For future work, we would like to test SepaConvNet on other MER databases to determine if these networks can transfer
well to different institutions with different MER hardware.

We would like to investigate on the impact of input signal length on the performance of the system. We would also like
our system to allow arbitrary signal lengths to be used, in order to enhance the system ability to work in real time.

Finally, we would further define the classification block of SepaConvNet. Currently, we are using time average pooling
followed by a fully-connected neuron. We hypothesize that replacing it with a recurrent layer could enhance the
classification performances, as the network could learn the optimal time-pooling strategy.

7
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6 Conclusions

We proposed a custom CNN architecture, referred as SepaConvNet, based on 1D separable convolution to analyze
STFT spectrograms of MER signals. We experimentally showed that, for MER spectrogram analysis, the SepaConvNet
structure outperformed one state-of-the-art structure for image analysis. Our results suggest that deep learnt spectrogram-
based features allow the achievement of comparable, or more optimal classification results, than commonly used time
domain features. Our system can accurately detect the STN with one second of MER signal. An automatic analysis of
MER signal with our system could thus greatly enhance the DBS procedure by significantly reducing its duration.
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