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Abstract

The sensitivity of laminar premixed methane / air flames responses to acous-

tic forcing is investigated using Direct Numerical Simulation to determine

which parameters control their flame transfer function. Five parameters are

varied: (1) the flame speed sL, (2) the expansion angle of the burnt gases α,

(3) the inlet air temperature Ta, (4) the inlet duct temperature Td and (5)

the combustor wall temperature Tw. The delay of the flame transfer function

is computed for the axisymetric flames of Boudy et al. [1] and the slot flames

of Kornilov et al. [2]. Stationary flames are first computed and compared to

experimental data in terms of flame shape and velocity fields. The flames are

then forced at different frequencies. Direct Numerical Simulations reproduce

the flame transfer functions correctly. The sensitivity analysis of the flame

transfer function is done by changing parameters one by one and measuring

their effect on the delay. This analysis reveals that the flame speed sL and
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the inlet duct temperature Td are the two parameters controlling the flame

delay and that any precise computation of the flame transfer function delay

must first have proper models for these two quantities.

Key words: Flame Transfer Function, Sensitivity Analysis, Direct

Numerical Simulation, Laminar Flames

1. Introduction

The prediction of acoustically coupled instabilities has become a major

issue in combustion [3, 4]. Numerous authors have proposed approaches to

predict the resonant modes between acoustics and combustion [5, 6, 7, 8, 9,

10]. In all theories, a crucial ingredient is the flame transfer function (FTF)

first introduced by Crocco [11, 12] and Tsien [13]. In its simplest form, the

FTF F (ω) measures the response of the global unsteady reaction rate in

the flame (q′/q) to an inlet velocity perturbation (u′/u) measured at a fixed

reference point:

F (ω) =
q′/q

u′/u
(1)

Altough many of these studies were performed for complex geometry turbu-

lent burners [14, 10, 15, 16], they are usually limited and difficult to extrapo-

late to other regimes or other geometries because turbulent systems combine

the difficulties of acoustic / flame coupling and turbulent flows. To isolate the

mechanisms controlling FTF results, some groups have started investigating

simpler laminar flames where the validity of acoustic / combustion theories

can be tested in the absence of complex turbulent effects [17, 18, 19, 20].

Studies dedicated to the FTF of laminar flames in multiple configurations

[21, 2, 22, 23, 1] are now available, providing both experimental and numer-
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ical methods to obtain FTFs. In these cases, only acoustic perturbations

imposed on perfectly premixed flames are investigated. Equivalence ratio

fluctuations are out of the scope of the present study.

In all these configurations, the values obtained for the FTFs parameters

are a gain n and a phase φ (or delay τ = φ/ω), which depend on the forcing

frequency ω and in certain cases on the forcing amplitude (see for example the

recent developments on the flame describing function [21]). These parameters

are critical to predict stability in acoustic solvers [11, 24, 25, 26]. Small

errors on the phase φ can lead to drastic changes in stability so that the

question of uncertainties in measurement and simulation of FTF becomes

an interesting issue. When computing the FTF of a flame, being able to

evaluate the sensitivity of the results to modeling parameters is a critical

question. For example, Kaess et al. [27] computed the FTF of a laminar

flame and concluded that an accurate computation was impossible without

the knowledge of the temperature of the stabilizing plate. More generally,

many other input parameters of a FTF simulation may affect results and it

is important to identify their relative importance. Experimentally, the same

question arises: if FTF measurements depend critically on parameters which

are not measured with accuracy, results will be useless. For example, the

temperature of the plate on which flame are stabilized is rarely measured

with precision but it could have a strong effect on the FTF.

A good solution to guess which parameters can modify FTFs is to start

from theoretical models for the delay τ [17, 19, 14]. The global heat release

rate q(t) of a flame is written as [7, 17]:

q(t) =

∫

s

ρu sL ∆q dA (2)

3



where the integral is performed over the flame surface, ρu is the unburnt gas

density, sL the flame speed and ∆q is the heat release per unit mass of mix-

ture. From Eq. 2, fluctuations in the density ρu, the flame speed sL, the heat

of reaction ∆q and in the flame surface A contribute to heat release oscilla-

tions q′/q. Considering a perfectly premixed flow with a constant density and

neglecting the effect of the stretch due to flame wrinkling on flame speed [28],

the FTF can be expressed in terms of two dimensionless parameters ω∗ and

s∗L [7, 17, 19, 14]:

F (ω) =
q′/q

u′/u
= F (ω∗, s∗L) = F

(

ωHf

Ve

,
sL
Ve

)

(3)

where Ve is the convective velocity at the burner inlet and Hf is the flame

height. It is generally complex to express directly the fluctuation of the

heat release as a function of the fluctuating velocity. Nevertheless, since

it is observed that the phase φ increases regularly with ω∗, it is possible

to describe φ as a time lag τ = φ/ω. The simplest way to evaluate τ is

to express it as the mean time necessary for a velocity perturbation to be

convected from the exit plane to the effective position of concentrated heat

release [17, 14]:

τ =
Hf

βVe

(4)

where β is a coefficient depending on the configuration. Values of β ranging

from 1 to 3 are typically measured. Since the flame height depends on the

flame speed sL and on the convective velocity Ve, Eq. 4 suggests that τ

changes only with sL and Ve, hence that kinetic parameters (controlling sL)

but also temperatures of gas and walls (controlling Ve) must be important

input data for τ .
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In this paper, FTFs of laminar premixed flames were computed using

direct numerical simulation (DNS) to evaluate the influence of five critical

input parameters (Fig. 1): (1) the flame speed sL, (2) the shape of the domain

characterized by its expansion angle α, (3) the inlet air temperature Ta, (4)

the inlet duct temperature Td and (5) the combustor wall temperature Tw.

All these parameters have a direct effect on the FTF delay τ (or phase

φ). The flame speed sL obviously controls the flame length and therefore the

delay of the flame to react to velocity changes. The shape of the domain

determines the expansion of the burnt gases and the flow velocity, thereby

also changing the FTF delay: here it is supposed to have a conical shape

of angle α. Many experiments (and computations) are designed to perfectly

match periodic arrays of flame [21, 2] where α should be zero. Note that the

confinement of the flames comes from the proximity of neighboring flames

and not from a closed burner. In practice however, these flames are only

partially confined: the gases produced by each individual flame can expand

both in the axial and transverse directions. This can be accounted for in the

DNS by using an expanding computation and values of α up to ten degrees

are commonly observed experimentally. The inlet air temperature Ta affects

both the gas velocity and the flame speed whereas the inlet duct temperature

Td changes the temperature and velocity profiles at the burner inlet. The

combustor walls temperature Tw determines the lift-off of the flame and can

also control the FTF delay. Obviously, other uncertainties and phenomena

can affect the FTF as radiation heat losses, geometric imperfections, inlet

velocity profiles (steady and forcing parts), flame to flame interactions, three-

dimensional effects or position of the reference point for the velocity u′/u
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measurement. Nevertheless, the study is restricted to these five parameters

which are difficult to determine precisely, have an important impact on FTF,

and are easily manageable with a CFD solver.

The objective of this work is to determine the sensitivity of the FTF to

these five parameters. This identification will be done using simple differen-

tiation methods (i.e. changing only one parameter and measuring its effect

on the FTF delay). The exercise will be performed on two recent laminar

flame experiments (Fig. 2) for which extensive sets of experimental results

are available: the experiment of Boudy et al. [1] corresponds to 49 conical

flames stabilized on a perforated plate while the configuration of Kornilov et

al. [2] corresponds to an array of 12 slot flames.

The paper is organized as follows. First the Boudy et al. and Kornilov et

al. experimental facilities are presented. The numerical methodology used

to predict the FTFs is then described. Uncertainty sources in FTF phase

determination are identified and the methodology for the sensitivity analysis

is exposed. Finally, results on steady and forced flames are analyzed.

2. Experimental facilities

One method to study FTF is to take the flame out of its combustion

chamber and pulsate it. This has two advantages: (1) optical diagnostics

(usually radical emission) are easier and (2) the absence of the combustion

chamber limits the occurrence of self-excited modes. It is generally assumed

that the FTF does not change when the chamber is removed even though the

confinement of the flame obviously changes. In this paper, two recent uncon-

fined laminar experiments are used: the first one is referred in the following of
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the paper as the Boudy case [1] and the second one as the Kornilov case [2].

Both experiments use methane as fuel and operate at atmospheric condi-

tions (p = 1 atm and T = 293 K) and the combustion zones are unconfined.

For the cases used here, the equivalence ratio for the Boudy experiment is

1.03 while it is 0.8 for the Kornilov case. The range of frequencies for FTF

measures is up to 1600 Hz for the Boudy case and 600 Hz for the Kornilov

one. This section provides descriptions of these two experiments. Details

concerning measurement techniques and experimental determination of FTF

can be found in [1, 2].

2.1. Boudy experiment setup

The experimental setup of Boudy et al. [1] is sketched in Fig. 2. The two

main components of the burner are the feeding manifold and a perforated

plate which delivers the premixed streams and anchors the flames. The

perforated plate located at the top of the feeding manifold, anchors 49 small

laminar conical flames. It has a thickness of 3 mm and a diameter of 30 mm.

The plate is made of stainless steel, and comprises 49 holes of diameter 2rp =

2 mm placed on a 3 mm square mesh. An inlet velocity of va = 1.09 ms−1

in the feeding manifold is used to stabilize the flames, leading to a bulk

velocity in the holes of about V = 3.11 ms−1. The temperature of the plate

is evaluated experimentally as 450± 20 K for steady combustion.

2.2. Kornilov experiment setup

The Kornilov et al. [2] experiment consists of a vessel with a flat per-

forated disk of 1 mm thickness inserted on top of it (Fig. 2). The disk

contains 8 rectangular 12× 2 mm slits separated by 3 mm. An inlet velocity
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of va = 0.4 ms−1 below the plate is used to stabilize the flames, leading to a

bulk velocity in the slits of about V = 1 ms−1. The burner plate temperature

is measured by a K-type thermocouple embedded in the center of the burner

plate. This temperature is not known precisely and varies between 373 and

423 K during steady combustion.

3. Numerical approach

3.1. Fluid solver

The fluid solver simulates the fully compressible multi-species Navier-

Stokes equations on unstructured grids. Convective terms are discretized us-

ing a third-order accurate two-step Taylor-Galerkin scheme [29]. It provides

high spectral resolution and both low numerical diffusion and dispersion,

which is particularly adequate for requirements of DNS applications [30].

Diffusive terms are treated with the classical Galerkin method [29].

For both configurations, a single steady laminar flame is first computed

using DNS and a two-step chemical scheme (2S-CM2) for methane / air

combustion [10]. Present state-of-the-art DNS codes [31, 32, 33] would allow

flame computations with full chemistry schemes such as GRI-Mech but it was

considered as not necessary for the present work because 2S-CM2 provides

essentially the same results in these simple flames. Moreover, most DNS

codes able to handle full chemical scheme cannot handle complex geometries

as needed for the Boudy or Kornilov cases. The two-step scheme 2S-CM2

takes into account six species (CH4, O2, CO2, CO, H2O and N2) and two

reactions:

CH4 +
3

2
O2 −→ CO + 2H2O (5)
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CO +
1

2
O2 ←→ CO2 (6)

The first reaction (5) is irreversible whereas the second one (6) is reversible

and leads to an equilibrium between CO and CO2 in the burnt gases. The

rates of reaction (5) and (6) are respectively given by:

q1 = A1

(

ρYCH4

WCH4

)n
CH4

1
(

ρYO2

WO2

)n
O2

1

exp

(

−
Ea1

RT

)

(7)

q2 = A2

[

(

ρYCO

WCO

)nCO
2

(

ρYO2

WO2

)n
O2

2

−

(

ρYCO2

WCO2

)n
CO2

2

]

exp

(

−
Ea2

RT

)

(8)

where the parameters are provided in Table 1. This scheme is fitted on the

GRI-Mech V3 [34] to ensure that the two-step and GRI mechanisms produce

the same flame speeds and maximum temperatures for laminar premixed one-

dimensional flames for equivalence ratio ranging between φ = 0.4 and 1.2.

Note that the Lewis numbers of methane and oxygen remain close to unity

so that differential diffusion effects, which are accounted for in the DNS,

remain limited. The transport coefficients used for 2S-CM2 are obtained

from a CHEMKIN computation in the fresh gases (Table 2). The Prandtl

number is set to 0.68.

3.2. Configurations

When multiple flames are used (49 for the Boudy case and 12 for the Ko-

rnilov one), the usual approach is to compute only one flame using periodic

boundary conditions [27]. The Boudy case is a three-dimensional problem

while the Kornilov can be seen as a two-dimensional one. As a consequence,

the three-dimensional domain for the Boudy configuration includes one hole

of the perforated plate and periodic conditions are applied on lateral sides
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both in the plenum and in the combustion zone. On Figure 3, model (a) rep-

resents an ideal case where the flame is surrounded by an infinity of identical

flames. In order to reduce the computational time requested by the sensi-

tivity analysis, a second model for the Boudy case was investigated: model

(b) (Fig. 3) is a two dimensional axi-symetric configuration. The lateral side

in the combustion zone is an adiabatic slip wall. The radius rc of the cylin-

drical combustion zone is fixed to match the surface of the flow passage s:

rc =
√

s2/π. Inlet velocity and temperature profiles of fresh methane / air

mixture are extracted from the 3D simulation and imposed at the hole en-

trance. As numerical results obtained with models (a) and (b) are the same,

only results obtained with the axi-symetric geometries are presented in this

paper. The Kornilov model (Fig. 3) is a two-dimensional domain containing

only one half flame. Symmetry is enforced on the symmetry plane of the

flame, and adiabatic slip walls on other sides. For both the Boudy and Ko-

rnilov cases, it has been checked for a zero confinement angle that symmetry

and adiabatic slip wall on lateral boundaries give the same results.

The meshes are refined near the flame front as well as in the feeding

ducts in order to resolve the flames, capture the aerodynamics as well as

heat transfer at the walls. Convergence in terms of mesh resolution has

been reached with more than 10 cells in the flame fronts, leading to meshes

containing about 81 100 nodes and 80 400 cells for the Boudy case and 34 300

nodes and 64 900 cells for the Kornilov configuration.

3.3. Boundary conditions and Flame Transfer Function determination

For both configurations, the inlet and outlet boundary conditions are

non-reflecting boundary conditions imposed with the Navier-Stokes Charac-
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teristic Boundary Condition (NSCBC) formalism [35]. The NSCBC method

is used to control the reflection coefficient at the boundaries and to avoid the

propagation of nonphysical modes. The plate walls are treated as isothermal

walls. The reference wall temperatures are 430 K for the Boudy configuration

and 373 K for the Kornilov case.

FTF are determined through pure tone excitations by measuring the flame

response at different frequencies. A steady flame is first obtained as an

initial condition. Harmonic forcing is then applied at the inlet using the inlet

wave modulation method [36]. This technique consists in modulating the

acoustic wave entering the domain while letting the wave leaving the domain

propagate without reflection. For both cases, a perturbation amplitude v′a/va

smaller than 10% was chosen to avoid non linear flame responses.

According to the definition of thermo-acoustic transfer function (Eq. 1),

the phase of the FTF can be reconstructed from the measured time series

of the relative flow velocity perturbation u′/u at a reference point and the

relative heat release rate perturbation q′/q. The phase difference between

both signals is determined using cross-correlation analysis. As far as the

Boudy case is considered, the reference point for the velocity measurement

is located in the combustion zone 0.7 mm over the plate. Concerning the

Kornilov setup, the reference probe is placed in the feeding manifold, at the

inlet of the CFD configuration. These reference points are those used in the

experiments. The perturbed heat release q′/q time evolution is obtained by

spatially averaging the combustion source term.
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3.4. Identification of uncertainty sources for phase determination

The first parameter which can affect the FTF is the flame speed sL. Flame

speeds are difficult to determine experimentally or numerically with high

precision [37, 38, 39] particularly when increasing the temperature of the fresh

mixture [40]: being able to obtain the laminar flame speeds of hydrocarbon /

air flames within a 2 or 3 cm/s error margin remains a challenge. Determining

the effect of such an uncertainty on the FTF result is needed: the flame speed

sL obviously controls the flame length and can modify the FTF delay. In the

present work, the variation of sL is obtained by changing the pre-exponential

constant A1 in Eq. 7.

The second source of uncertainty is the confinement. The Boudy and Ko-

rnilov experiments are designed to match perfectly periodic arrays of flame.

However, Fig. 4 shows that expansion takes place. In practice, these flames

are only partially confined: the gases produced by each individual flame can

expand both in the axial and lateral directions. Flame confinement acts on

the velocity distribution and thus on the flame length and on the propagation

speed of velocity perturbations, thereby changing also the FTF delay. The

shape of the DNS domain determines the expansion of the burnt gases and

the flow velocity. Flame confinement effects are accounted for in the DNS by

using an expanding computation domain with a non-zero expansion angle α

(Fig. 3).

Although it is usually well controlled in experiments, the third uncertain

input of the computation is the inlet methane / air mixture temperature Ta.

The inlet temperature Ta affects both the gas velocity and the flame speed

sL.
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The last two parameters are linked to the temperature of the anchoring

plate. The temperature of the combustor walls is difficult to measure or to

estimate numerically. As underlined on Fig. 1, the combustor wall temper-

ature can be divided into two contributions: (1) the inlet duct temperature

Td controls the gas temperature in the hole (or in the slit) by convection and

thus velocity profiles at the burner inlet as well as the local flame speed sL

along the flame front. (2) the combustor walls temperature Tw determines

the lift-off of the flame and thus can also affect the FTF delay. Note that the

temperatures Td and Tw are correlated but are analyzed here separately to

understand their respective roles. It is worth mentioning that DNS solvers

allow to control efficiently and independently the inlet temperature Ta, the

inlet duct temperature Td and the combustor walls temperature Tw, some-

thing which is almost impossible experimentally.

3.5. Methodology of the sensitivity analysis

The sensitivity analysis is done using simple linear differentiation meth-

ods by changing one parameter only and measuring its effect on the FTF

delay. Tables 3 and 4 summarize the DNS used to estimate the sensitivity of

FTF phase φ. The extreme values retained for the parameters match their

estimated uncertainty. For each set of parameters, a steady state is first com-

puted leading to cases called B1 to B10 for the Boudy case and K1 to K10

for the Kornilov configuration. Then, all Bi and Ki are pulsated at several

frequencies [36]. Finally, for each frequency, sensitivities are obtained from

differentiations formula given in Tab. 5.
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4. Results

4.1. Validation of steady flames

Figure 5 displays the reaction rate fields obtained by DNS for the steady

flames of Boudy (case B1) and Kornilov (case K1) and compares them to ex-

perimental direct visualization without filter of the Boudy flame and chemi-

luminescence of OH∗ for the Kornilov flame. For these cases, both flames are

slightly lifted and their height matches experimental data reasonably well.

The axial velocity field as well as the temperature field of the B1 and K1

steady flames are presented on Fig. 6. The contraction of the flow in the

plenum creates a transverse velocity in the holes. As evidenced in the ex-

periments [2], a recirculation zone is observed in the flame holding region of

both flames (isoline of null axial velocity on Fig. 6). The heating of the gas

inside the hole (case B1) and the slit (case K1) leads to a non homogeneous

temperature profile of the gases at the flame base (Fig. 6): gases close to

the inlet duct walls are heated and enter in the combustion zone at higher

temperature. Furthermore the mean temperature of the injected gases in the

combustion zone is higher than the temperature of the methane / air mixture

in the plenum (typically 50 K).

Figure 7 presents the axial velocity profile on the flame axis for the B1

and K1 steady cases compared to experiments. The flow contraction beneath

the perforation leads to a gradual increase of the vertical velocity as well as

a tangential velocity. Inside the flame, the axial velocity remains almost

constant, weakly decreasing in both experimental configurations toward the

flame front. Then, a rapid acceleration of the flow due to gas expansion

occurs at the flame tip. In both configurations, the profile in the vicinity
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of the plate is well reproduced. Concerning the Kornilov case, the agree-

ment between the DNS and the measurement is very good in a large region.

Kornilov et al. explain the differences observed upstream of the plate and

downstream of the flame by three-dimensional effects: flow contraction in

the plenum and expansion in the combustion zone occur in the direction per-

pendicular to the measured section plane. As a result, the velocity profile

is not flat in the experimental plenum while a flat profile in imposed in the

DNS. The agreement for the Boudy case is less convincing. Nevertheless,

Fig. 10-(b) shows that confinement effects control the shape of the velocity

profile in this flame. For both cases, Fig. 7 shows that the velocity on the

center line of the flow passage is not fully developed: the plate thicknesses

of the two configurations are not sufficient to establish a parabolic laminar

profile in the pipes. As a consequence, reproducing the correct geometry in

the DNS is important to capture the velocity and temperature profiles at the

combustor inlet. The radial profile of axial velocity at the burner inlet for

case B1 plotted on Fig. 8 shows a good agreement between DNS and experi-

ments. No experimental information concerning this profile for the Kornilov

configuration is available.

4.2. Baseline Flame Transfer Functions

Experimental and numerical phases φ and gains of FTF for the Boudy B1

and Kornilov K1 configurations are compared on Fig. 9. The phase evolves

with frequency in a quasi-linear fashion below 600 Hz indicating that the

process includes a constant time delay. After 600 Hz, the simulation indicates

that the phase of the Kornilov flame saturates. The correspondence for

the Kornilov flame is very good while the delay obtained numerically for
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the Boudy flame is slightly shorter than observed in the experiments. Note

however that results can be much better for other sets of parameters as

shown in section 4.4 by the high sensitivity of delays to input parameters.

Our objective was not to fit experimental data by tuning the parameters

but to determine which of these parameters was important as done in the

next sections. The analytical estimation given by Eq. 4 is also plotted on

Fig. 9. The convective velocity Ve and the flame height Hf are deduced from

the computations B1 and K1: they are taken as the bulk velocity at the

perforation exit V e and the distance between the plate and the flame tip,

respectively. The parameter β is then chosen to fit the data. Due to the

geometrical differences of the flames, Fig. 9 shows that each configuration

requires a distinct value of β: β = 2 for the Boudy case and β = 1 for the

Kornilov one.

Concerning the gain, the simulations of both cases reproduce the low-

pass behavior of the flame seen experimentally. Moreover, the overshoot of

the FTF gain above 1 at 400 Hz for the Boudy case and at 100 Hz for the

Kornilov case is also recovered by the DNS.

4.3. Effect of uncertain inputs on steady flames

The effect of the five input parameters (1) flame speed sL, (2) confine-

ment α, (3) inlet mixture temperature Ta, (4) duct temperature Td and (5)

combustor wall temperature Tw on the Boudy and Kornilov steady flames is

investigated through integral values presented in Tab. 6 (Boudy case) and 7

(Kornilov case) as well as with velocity profiles on the flame axis (Fig. 10).

As the qualitative effects of inputs are almost the same for both Boudy and

Kornilov flames, Fig. 10 displays only results for the Boudy configuration.
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The quantities of interest in Tab. 6 and 7 are:

• the bulk velocity at the perforation exit V e,

• the maximum of the exit perforation velocity profile V M
e ,

• the flame surface SF , taken as the surface of the iso-temperature T =

1700 K,

• the flame lift-off LF , estimated by the axial distance between combustor

wall and the closest part of the iso-temperature T = 1700 K,

• the mean flame speed sL, approximated by:

sL =
ρeV eSH

ρe SF

(9)

where ρe and ρeV e are the mean density and mean mass flux at the

perforation exit, respectively. SH is the perforation surface.

• the mean temperature at the hole exit T e.

Modifying the flame speed sL affects only the combustion zone. Velocity

and temperature profiles in the hole as well as in the flame axis are not

affected. As expected, a modification of sL impacts directly the mean flame

speed sL. Moreover, increasing the flame speed leads to a shorter flame

(decrease of SF ) located closer to the flame holder (decrease of LF ).

The main effect of flame confinement is to modify the axial velocity profile

on the flame axis. Increasing the confinement angle α reduces the axial

velocity by allowing a transverse flow rate leading to a flame which is slightly

more compact and closer to the plate. Figure 10-(b) shows that a confinement
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with α = 10◦ leads to a very good prediction of the experimental velocity

profile for the Boudy case, confirming that flow expansion takes place in this

configuration.

Modifying the inlet methane / air mixture temperature Ta leads to a

change of the mean consumption speed sL: as Ta increases, sL increases,

thus leading to a shorter flame located nearer the plate (flame lift-off LF

decreases, Tab. 6 and 7).

The inlet duct temperature Td controls the intensity of the convective

heat transfer, thus controlling the temperature elevation in the pipe ∆Tc. As

a result, increasing Td leads to a greater mean temperature at the perforation

outlet, thus to an increase of the flame speed. An increase of the temperature

elevation ∆Tc causes an acceleration of the flow in the perforation (illustrated

on Fig. 10-d). As a consequence, convective heat transfer in the duct has two

competitive effects on the flame length: the elevation of temperature induces

(1) an higher flame speed, shortening the flame and (2) an acceleration of

the fresh stream inducing a longer flame.

The more intuitive effect of the combustor wall temperature Tw is to

control the flame lift-off LF . As expected, Tab. 6 and 7 shows that the flame

lift-off is reduced by increasing the combustor wall temperature. Due to the

recirculation of hot gases at the flame base, the mean inlet temperature T e is

slightly higher when Tw increases. Therefore, higher Tw implies higher mean

flame speed sL leading to shorter flames.

The five parameters (the flame speed sL, the expansion angle of the burnt

gases α, the inlet air temperature Ta, the inlet duct temperature Td and

the combustor wall temperature Tw) have an important impact on both the
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mean flame consumption speed sl as well as on the fresh stream velocity

entering in the combustion zone, thus the flame length. Equation 4 shows

that models developed in the field of FTF always include these quantities so

that uncertainties on the parameters lead to error in the estimation of FTF.

The next section focuses on the quantification of these errors.

4.4. Sensitivity of Flame Transfer Functions

The computations of FTF were done for the B1 to B10 set of parameters

for the Boudy flame and K1 to K10 for the Kornilov flame to obtain values

of the sensitivity of the phase φ versus each parameter for different forcing

frequencies. The sensitivity of the phase to a parameter P at a pulsation ω

is defined by (Tab. 5):

S(ω, P ) =
∂φ(ω)

∂P
, P ∈ [sL, α, Ta, Td, Tw] (10)

Sensitivity results are given in Tab. 8 at a fixed forcing frequency of 500

Hz. Input parameters induce the same variation signs for both the Boudy

and the Kornilov cases: on one hand, increasing the flame speed sL, the

inlet methane / air mixture temperature Ta, the duct temperature Td or

the combustor wall temperature Tw leads to a decrease of the FTF phase φ.

On the other hand, allowing hot gases expansion by increasing the angle α

induces a longer delay.

If typical error margins are known for each parameter, Tab. 8 allows to

identify critical parameters to compute FTF delays. For flame speeds (sL),

typical errors are of the order of ∆sL = 2 cm s−1 even with the best present

chemical schemes. The expansion angles (α) can be approximately measured

from experiments and are of the order of ∆α = 4 degrees. The gas inlet
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temperature Ta is generally controlled accurately, typically within ∆Ta = 2

K. The duct temperature Td is very difficult to evaluate and errors of the

order of ∆Td = 50 K must be expected. Similarly the wall temperatures Tw

are usually not known within a ∆Tw = 50 K margin.

Gathering these uncertainties with the sensitivities of Tab. 8 leads to

Tab. 9 which gives the error induced on the phase φ by the uncertainty

existing on each of the five parameters. Absolute error is defined by:

EA(ω, P ) = S(ω, P )∆P, P ∈ [sL, α, Ta, Td, Tw] (11)

and relative error by:

ER(ω, P ) =
S(ω, P )∆P

φ1
, P ∈ [sL, α, Ta, Td, Tw] (12)

where φ1 is the phase of the reference cases B1 or K1. First, absolute errors

are all larger for the Kornilov experiment than for the Boudy case. Never-

theless, as the values of the delay are smaller for the Boudy case (Fig. 9), the

relative errors are of the same order for the two cases. In other words, both

experiments are almost equally sensitive to input parameters. Moreover, cer-

tain parameters such as the combustor wall temperature Tw (which control

the flame lift-off) have no influence at all in both cases and it is not worth

spending time trying to determine them with precision. Flow expansion (α)

also has a limited effect. The phase has a rather high sensitivity to inlet

temperature (Tab. 8) but it is usually well known, leading to small errors on

the FTF phase.

Figure 11 shows that the dominant role of the flame speed sL and of the

duct temperature Td is obtained on the whole range of frequency 100 Hz to
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500 Hz. Beyond 600 Hz, the effect of the input parameters is largely reduced

because of phase saturation observed on Fig. 9.

To sum up, two parameters play a significant role:

• the flame speed sL has a direct effect on the delay. Unfortunately, this

is typically a quantity that is not well known and difficult to specify

with precision. In the present computation, sL is not specified directly

because finite rate chemistry is used but it is a direct function of the

preexponential constants used in the chemistry description. The main

problem here is that experiments do not allow flame speed measure-

ments within a 2 cm s−1 range for hydrocarbon flames so that it is

difficult to adjust kinetic models for DNS.

• the duct wall temperature Td induces significant errors on the FTF

phase φ because it is difficult to evaluate precisely. For both cases, it is

essential to know the wall temperature of the inlet duct to predict the

phase correctly. Moreover for the present cases, the duct temperature

was assumed to be the same everywhere: in practice, it could also vary

with spatial position.

The importance of the duct wall temperature comes from multiple facts.

The premixed gas passing through the inlet duct is heated significantly by

the hot walls: the gas velocity increases (because of the reduced density) and

the local flame velocity also increases. These two factors modify the velocity

field and the flame response to pulsations.

From the previous analysis, the mean flame speed sL appears to be the

critical parameter controlling the response of the flame. Indeed, four of
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the five input parameters of the sensitivity analysis also act indirectly on

this quantity. Considering that HfsL ≈ rpVe [14], the reduced pulsation ω∗

introduced in Eq. 3 becomes:

ω∗
≈

ωrp
sL

(13)

where 2rp is the diameter of the holes in the Boudy case and the width of

the slit for the Kornilov case. With the same approximation, Eq. 4 can be

rewritten as:

φ ≈
ωrp
βsL
≈

ω∗

β
(14)

Figure 12-a displays the phase φ of the K1 to K10 Kornilov flames forced at

200 Hz as a function of ω∗ for all runs of Tab. 4. It confirms that the phase is

proportional to the reduced pulsation, which is only controlled by sL as the

frequency is fixed. A linear increase of the phase with the reduced pulsation

is observed, except for the flames K9 and K10. These flames correspond

to a variation in the confinement angle α which does not affect the mean

flame speed sL. Figure 12-b shows that a similar behavior is observed for

all frequencies investigated in this work. Hence, the phase of the FTF is

controlled by the reduced frequency [7, 17, 19, 14] which is affected by the

uncertainties on sL, Ta, Td and Tw. As a consequence, the knowledge of the

steady flame height Hf , mean consumption speed sL and mean velocity Ve

allows a good estimation of the FTF phase of this type of laminar flames.

5. Conclusions

Flame Transfer Functions (FTFs) measure the response of flames submit-

ted to acoustic forcing. Their determination is critical to predict the stability
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of combustors. The present work has focused on the determination of the

sensitivity of FTF to five important sources of uncertainty on two laminar

premixed flames: (1) the flame speed sL, (2) the shape of the domain charac-

terized by its expansion angle α, (3) the inlet air temperature Ta, (4) the inlet

duct temperature Td and (5) the combustor wall temperature Tw. Results

show that these five modeling parameters directly impact velocity profiles

and laminar flame speeds of steady configurations and thus the FTF phases.

Nevertheless, due to associated typical error margins, two parameters play a

dominant role in the FTF phase error calculation:

• the flame speed sL has a direct effect on the delay: increasing sL leads

to decrease the FTF phase. Unfortunately, this is typically a quantity

which is not well known and difficult to specify with precision even

when using the most advanced flame solvers. In this field, research on

flame dynamics is conditioned by progress in chemical kinetics.

• the duct wall temperature Td induces significant errors on the FTF

phase: an increase in the duct wall temperature induces an acceleration

of the fresh mixture at the burner inlet as well as an increase of the local

flame speed leading to a decrease of the FTF delay. Knowing the wall

temperature of the inlet duct is needed to predict the phase correctly.

A direct implication of this result is that coupled computations of flame

and heat transfer through the stabilization plate are needed to obtain

Td and be able to predict FTFs in such configurations.
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A1 nCH4

1 nO2

1 Ea1 A2 nCO
2 nO2

2 nCO2

2 Ea2

2 1015 0.9 1.1 34500 2 109 1 0.5 1 12000

Table 1: Rate constants for the 2S-CM2 scheme used in the DNS code: the activation

energies are in cal/moles and the preexponential constants in cgs units.

CH4 CO2 CO O2 H2O N2

0.68 0.98 0.76 0.76 0.6 0.75

Table 2: Schmidt numbers used in the DNS code.

Tables
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Case sL(300K) (cm/s) α (degrees) Ta (K) Td (K) Tw (K)

B1 35.8 0 293 430 430

B2 32.9 0 293 430 430

B3 38.1 0 293 430 430

B4 35.8 0 283 430 430

B5 35.8 0 303 430 430

B6 35.8 0 293 293 380

B7 35.8 0 293 293 430

B8 35.8 0 293 293 480

B9 35.8 5 293 430 430

B10 35.8 10 293 430 430

Table 3: Computational parameters for sensitivity analysis of FTF for the Boudy config-

uration. Bold characters indicate changes with respect to B1 case.
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Case sL(300K) (cm/s) α (degrees) Ta (K) Td (K) Tw (K)

K1 27.4 0 293 373 373

K2 24.9 0 293 373 373

K3 29.5 0 293 373 373

K4 27.4 0 283 373 373

K5 27.4 0 303 373 373

K6 27.4 0 293 293 323

K7 27.4 0 293 293 373

K8 27.4 0 293 293 423

K9 27.4 5 293 373 373

K10 27.4 10 293 373 373

Table 4: Computational parameters for sensitivity analysis of FTF for the Kornilov con-

figuration. Bold characters indicate changes with respect to K1 case.

Sensitivity Units Boudy Kornilov

∂φ

∂sL
(rad/m/s) φ(B3)−φ(B2)

sL(B3)−sL(B2)
φ(K3)−φ(K2)

sL(K3)−sL(K2)

∂φ

∂α
(rad/degrees) 1

2

(

φ(B9)−φ(B1)
α(B9)−α(B1)

+ φ(B10)−φ(B1)
α(B10)−α(B1)

)

1
2

(

φ(K9)−φ(K1)
α(K9)−α(K1)

+ φ(K10)−φ(K1)
α(K10)−α(K1)

)

∂φ

∂Ta
(rad/K) φ(B5)−φ(B4)

Ta(B5)−Ta(B4)
φ(K5)−φ(K4)

Ta(K5)−Ta(K4)

∂φ

∂Td

(rad/K) φ(B7)−φ(B1)
Td(B7)−Td(B1)

φ(K7)−φ(K1)
Td(K7)−Td(K1)

∂φ

∂Tw
(rad/K) φ(B8)−φ(B6)

Tw(B8)−Tw(B6)
φ(K8)−φ(K6)

Tw(K8)−Tw(K6)

Table 5: Sensitivity of the phase φ of the FTF versus computations parameters.
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V e (m/s) V M
e (m/s) SF (mm2) LF (mm) sL (m/s) T e (K)

B1 3.48 4.95 0.85 0.62 0.38 350

B2 3.48 4.95 0.91 0.64 0.35 350

B3 3.48 4.95 0.80 0.61 0.40 350

B4 3.51 4.96 0.88 0.62 0.37 343

B5 3.46 4.95 0.81 0.62 0.39 357

B6 3.28 4.60 0.91 0.67 0.32 299

B7 3.29 4.58 0.91 0.64 0.32 301

B8 3.30 4.56 0.90 0.61 0.32 304

B9 3.48 4.95 0.86 0.59 0.37 350

B10 3.48 4.95 0.86 0.60 0.37 350

Table 6: Effect on uncertain parameters on bulk velocity at the perforation exit V e,

maximum velocity of the exit perforation profile V M
e , flame surface SF , flame lift off LF ,

mean flame speed sL and mean temperature at the hole exit T e for the different steady

Boudy cases Bi.
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V e (m/s) V M
e (m/s) SF (mm) LF (mm) sL (m/s) T e (K)

K1 1.04 1.36 4.12 0.62 0.26 317

K2 1.04 1.36 4.67 0.65 0.23 317

K3 1.04 1.35 3.73 0.61 0.29 317

K4 1.05 1.36 4.37 0.63 0.25 309

K5 1.04 1.35 3.89 0.62 0.27 324

K6 1.00 1.31 4.26 0.68 0.24 295

K7 1.01 1.31 4.20 0.63 0.24 298

K8 1.01 1.31 4.15 0.59 0.25 301

K9 1.05 1.36 4.06 0.60 0.27 316

K10 1.04 1.35 4.05 0.56 0.27 317

Table 7: Effect on uncertain parameters on bulk velocity at the perforation exit V e,

maximum velocity of the exit perforation profile V M
e , flame surface SF , flame lift off LF ,

mean flame speed sL and mean temperature at the hole exit T e for the different steady

Kornilov cases Ki.

Sensitivity Units Boudy Kornilov

∂φ

∂sL
(rad/m/s) −7.1 −68.2

∂φ

∂α
(rad/degrees) 0.03 0.09

∂φ

∂Ta
(rad/K) −0.01 −0.05

∂φ

∂Td

(rad/K) −0.004 −0.02

∂φ

∂Tw
(rad/K) −0.0003 −0.0014

Table 8: Sensitivity of the phase φ of the FTF versus computations parameters for a

forcing frequency of 500 Hz.
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Absolute error (rad) Boudy Kornilov

Due to errors on sL −0.14 −1.36

Due to errors on α 0.12 0.36

Due to errors on Ta −0.03 −0.10

Due to errors on Td −0.18 −0.96

Due to errors on Tw −0.02 −0.07

Relative error (%) Boudy Kornilov

Due to errors on sL −4.9 −9.0

Due to errors on α 4.2 2.4

Due to errors on Ta −0.9 −0.7

Due to errors on Td −6.3 −6.4

Due to errors on Tw −0.6 −0.5

Table 9: Absolute and relative errors on the phase φ of the FTF versus computations

parameters for a forcing frequency of 500 Hz. Relative errors are based on the phases of

B1 and K1 cases.
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Figure 1: Parameters controlling the FTF of a laminar premixed flame.

Figure 2: The two laminar flame experiments computed in this work. Left: the experiment

of Boudy et al. [1]. Right: the experiment of Kornilov et al. [2].
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Figure 3: CFD models used for the simulation of the Boudy and Kornilov cases.

Figure 4: Experimental visualization of the stationary flames obtained with the Boudy

configuration [1].
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Figure 5: Comparison of experimental flame visualizations and DNS reaction rate for the

steady flames. Left: direct visualization of the Boudy flame [1] and DNS B1. Right:

chemiluminescence of OH∗ of Kornilov flame [2] and DNS K1.

38



Figure 6: Axial velocity and temperature fields in Boudy DNS B1 (Left - obtained with

model (a)) and Kornilov DNS K1 (Right). Isoline of null axial velocity.

Figure 7: Comparison of experimental (symbols) and DNS (solid line) axial velocity on

the flames axis. Left: experiment of Boudy [1] with DNS case B1. Right: experiment of

Kornilov [2] with DNS case K1.
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Figure 8: Comparison of experimental (symbols) and DNS (solid line) axial velocity at

0.7 mm above the plate: experiment of Boudy [1] with DNS case B1.

Figure 9: Comparison of experimental and DNS Flame Transfer Functions: phase φ (left)

and gain (right). Dashed line: Boudy experiment [1], filled circles: Boudy DNS case B1,

open circles: analytical expression (Eq. 4 with Ve = 3.48 m/s, Hf = 7.5 mm and β = 2).

Solid line: Kornilov experiment [2], filled squares: Kornilov DNS case K1, open squares:

analytical expression (Eq. 4 with Ve = 1.04 m/s, Hf = 5 mm and β = 1).
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(a) (b)

(c) (d)

(e)

Figure 10: Effect of the uncertain parameters on the axial velocity along the flame axis

for the Boudy case [1]: (a) effect of flame speed sL, (b) effect of confinement angle α, (c)

effect of inlet mixture temperature Ta, (d) effect of inlet duct temperature Td, (e) effect

of wall combustor temperature Tw.
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Figure 11: Relative errors on the phase φ of the Kornilov FTF versus computations

parameters for several frequencies (left). Mean of relative errors on the phase φ of the

Kornilov FTF over the frequency range [100, 500] Hz (right).

(a) (b)

Figure 12: Phase φ of theK1 toK10 Kornilov flames versus reduced pulsation ω∗ = ωrp/sL

pulsated at 200 Hz (a) and for all frequencies in the range [100 - 600] Hz (b).
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