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FAMILIES OF ALGEBRAIC STRUCTURES

LOÏC FOISSY, DOMINIQUE MANCHON, AND YUANYUAN ZHANG

Abstract. We give a general account of family algebras over a finitely presented linear operad,
this operad together with its presentation naturally defining an algebraic structure on the set of
parameters.
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1. Introduction

The first family algebra structures appeared in the literature in 2007: a natural example of
Rota-Baxter family algebras of weight −1 was given by J. Gracia-Bondı́a, K. Ebrahimi-Fard and
F. Patras in a paper on Lie-theoretic aspects of renormalization [8, Proposition 9.1] (see also [14]).
The notion of Rota-Baxter family itself was suggested to the authors by Li Guo (see Footnote after
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Proposition 9.2 therein), who started a systematic study of these Rota-Baxter family algebras in
[12], including the more general case of weight λ. They are associative algebras P over some
field k together with a collection (Pω)ω∈Ω of linear endomorphisms indexed by a semigroup Ω

such that the Rota-Baxter family relation

Pα(a)Pβ(b) = Pαβ

(
Pα(a)b + aPβ(b) + λab

)
holds for any a, b ∈ R and α, β ∈ Ω. The example in [8] is given by the momentum renormal-
ization scheme: here Ω is the additive semigroup of non-negative integers, and the operator Pω

associates to a Feynman diagram integral its Taylor expansion of order ω at vanishing exterior
momenta. The simplest example we can provide, derived from the minimal subtraction scheme,
is the algebra of Laurent series R = k[z−1, z]], where, for any ω ∈ Ω = Z, the operator Pω is the
projection onto the subspace R<ω generated by {zk, k < ω} parallel to the supplementary subspace
R≥ω generated by {zk, k ≥ ω}.

Other families of algebraic structures appeared more recently: dendriform and tridendriform
family algebras [22, 23, 9], pre-Lie family algebras [16],... The principle consists in replacing
each product of the structure by a family of products, so that the operadic relations (Rota-Baxter,
dendriform, pre-Lie,...) still hold in a “family” version taking the semigroup structure of the pa-
rameter set into account. An important step in understanding family structures in general has
been recently done by M. Aguiar, who defined family P-algebras for any linear operad P [2]. The
semigroup Ω of parameters must be commutative unless the operad is non-sigma. An important
point is that any n-ary operation gives rise to a family of operations parametrized by Ωn. In par-
ticular, the natural way to “familize” a binary operation requires two parameters.

The first author recently described a variant of one-parameter dendriform family algebras for
which the set Ω of parameters in endowed with the very rich structure of extended diassociative
semigroup [9]. We follow here the same path for two-parameter dendriform family algebras,
where Ω is a now a (non-extended) diassociative semigroup. This suggests that the natural al-
gebraic structure of Ω is determined in some way by the operad one starts with. This appears
to be the case: we define family P-algebras for any finitely presented linear operad P, in a way
which depends on the presentation chosen. The definition makes sense when the parameter set Ω

is endowed with a Pj-algebra structure, where Pjis a set operad determined by P and its presen-
tation. Following the lines of M. Aguiar, we define family P-algebras indexed by Ω as uniform
Ω-graded P-algebras. The notion of Ω-graded P-algebra, when Ω is a Pj-algebra, is defined via
color-mixing operads, which are generalizations of the current-preserving operads of [18].

The paper is organized as follows: we investigate one-parameter and two-parameter dendri-
form family algebras over a fixed base field k in some detail in Section 2, as well as their duplicial
counterparts. We give the definition of a two-parameter dendriform family algebra A indexed by a
diassociative semigroup Ω. This structure on the index set naturally appears when one asks A⊗kΩ

to be a graded dendriform algebra, in the sense that the homogeneous components (A ⊗ kω)ω∈Ω
are respected. The further structure of extended diassociative semigroup (EDS) appears for one-
parameter dendriform family algebras [9]. The situation for duplicial family is similar but simpler,
due to the fact that the duplicial operad is a set operad. The structure which appears on Ω is that of
duplicial semigroup. Again, a further structure of extended duplicial semigroup (EDuS) appears
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in the one-parameter version.

We also give an example of two-parameter duplicial family algebra in terms of planar binary
trees with Ω × Ω-typed edges, and we prove that planar binary trees with Ω-typed edges provide
free one-parameter Ω-duplicial algebras for any EDuS Ω. To conclude this section, we give the
generating series of the dimensions of the free two-parameter duplicial (or dendriform) family
algebra with one generator, when the parameter set Ω is finite.

We give a reminder of colored operads in Joyal’s species formalism [13] in Section 3, and give
a brief account of graded objects. Following a crucial idea in [2], we describe the uniformization
functor U from ordinary (monochromatic) operads to colored operads (resp., with the same nota-
tions, from a suitable monoidal category to its graded version), and its left-adjoint, the completed
forgetful functor F.

In Section 4, we study the pre-Lie case in some detail. The pre-Lie operad P gives rise to
four different set operads, namely the associative operad, the twist-associative operad govern-
ing Thedy’s rings with x(yz) = (yx)z [20], an operad built from corollas governing rings with
x(yz) = y(xz) and (xy)z = (yx)z, and finally the Perm operad governing rings with x(yz) = y(xz) =

(xy)z = (yx)z, i.e. set-theoretical Perm algebras. This last operad is a quotient of the three others
and gives rise to family pre-Lie algebras. Finally, color-mixing operads and the general definition
of Ω-family algebras are given in Section 5.

Notation: In this paper, we fix a field k and assume that an algebra is a k-algebra. The letter Ω

will denote a set of indices, which will be endowed with various structures throughout the article.

2. Dendriform and duplicial family algebras

2.1. Two-parameter Ω-dendriform algebras. First, we borrow some concepts from the first
author’s recent article [9].

Definition 2.1. A diassociative semigroup is a triple (Ω,←,→), where Ω is a set and ←,→:
Ω ×Ω→ Ω are maps such that, for any α, β, γ ∈ Ω :

(α← β)← γ = α← (β← γ) = α← (β→ γ),(1)
(α→ β)← γ = α→ (β← γ),(2)
(α→ β)→ γ = (α← β)→ γ = α→ (β→ γ).(3)

Example 2.2. [9]

(a) If (Ω,~) is an associative semigroup, then (Ω,~,~) is a diassociative semigroup.
(b) Let Ω be a set. For α, β ∈ Ω, let

α← β = α, α→ β = β.

Then (Ω,←,→) is a diassociative semigroup denoted by DS(Ω).

Definition 2.3. Let Ω be a diassociative semigroup with two products← and→. A two-parameter
Ω-dendriform algebra is a family (A, (≺α,β,�α,β)α,β∈Ω) where A is a vector space and

≺α,β,�α,β: A ⊗ A→ A
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are bilinear binary products such that for any x, y, z ∈ A, for any α, β ∈ Ω,

(x ≺α,β y) ≺α←β,γ z = x ≺α,β←γ (y ≺β,γ z) + x ≺α,β→γ (y �β,γ z),(4)
(x �α,β y) ≺α→β,γ z = x �α,β←γ (y ≺β,γ z),(5)
x �α,β→γ (y �β,γ z) = (x �α,β y �α→β,γ z + (x ≺α,β y) �α←β,γ z.(6)

Remark 2.4. (a) If Ω is a set, we recover the definition of a two-parameter version of match-
ing dendriform algebras [10] when we consider (Ω,←,→) as a diassociative semigroup,
that is, for any α, β ∈ Ω,

α← β = α, α→ β = β.

(b) If (Ω,~) is a semigroup, we recover the definition of two-parameter dendriform family
algebras given in [2] when we consider

α← β = α→ β = α ~ β.

Two-parameter Ω-dendriform algebras are related to dendriform algebras and diassociative
semigroups by the following proposition:

Proposition 2.5. Let Ω be a set with two binary operations← and→.
(a) Let A be a k-vector space and let

≺α,β,�α,β: A ⊗ A→ A

be two families of bilinear binary products indexed by Ω×Ω. We define products ≺ and �
on the space A ⊗ kω by:

(x ⊗ α) ≺ (y ⊗ β) = (x ≺α,β y) ⊗ (α← β),(7)
(x ⊗ α) � (y ⊗ β) = (x �α,β y) ⊗ (α→ β).(8)

If (A ⊗ kω,≺,�) is a dendriform algebra, then (4), (5) and (6) hold.
(b) The following conditions are equivalent:

(i) For any
(
A, (≺α,β,�α,β)α,β∈Ω

)
where A is a k-vector space and where (4), (5) and (6)

hold, the vector space A ⊗ kΩ endowed with the binary operations ≺ and � defined
by (7) and (8) is a dendriform algebra,

(ii) (Ω,←,→) is a diassociative semigroup,
(iii) Any

(
A, (≺α,β,�α,β)α,β∈Ω

)
where A is a k-vector space and where (4), (5) and (6) hold

is a two-parameter Ω-dendriform algebra.

Proof. (a). Let us consider the three dendriform axioms:(
(x ⊗ α) ≺ (y ⊗ β)

)
≺ (z ⊗ γ) = (x ⊗ α) ≺

(
(y ⊗ β) ≺ (z ⊗ γ) + (y ⊗ β) � (z ⊗ γ)

)
(
(x ⊗ α) � (y ⊗ β)

)
≺ (z ⊗ γ) = (x ⊗ α) �

(
(y ⊗ β) ≺ (z ⊗ γ)

)
(x ⊗ α) �

(
(y ⊗ β) � (z ⊗ γ)

)
=

(
(x ⊗ α) � (y ⊗ β) + (x ⊗ α) ≺ (y ⊗ β)

)
� (z ⊗ γ).

The first one gives:

(x ≺α,β y) ≺α←β,γ z ⊗ (α← β)← γ = x ≺α,β←γ (y ≺β,γ z) ⊗ α← (β← γ)(9)
+ x ≺α,β→γ (y �β,γ z) ⊗ α→ (β← γ).

Let f : kΩ −→ k be the linear map sending any δ ∈ Ω to 1. Applying IdA ⊗ f to both sides of
(9), we obtain (4). Similarly, the second dendriform axiom gives (5) and the last one gives (6).
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(b). (i) =⇒ (ii). Let us consider the free 2-parameter Ω-dendriform algebra A on three gen-
erators x, y and z (from the operad theory, such an object exists). Let us fix α, β and γ in Ω.
According to the relations defining 2-parameter Ω-dendriform algebras, x ≺α,β←γ (y ≺β,γ z) and
x ≺α,β→γ (y �β,γ z) are linearly independent in A. Let g : A −→ k be a linear map such that

g
(
x ≺α,β←γ (y ≺β,γ z)

)
= 1,

g
(
x ≺α,β→γ (y �β,γ z)

)
= 0.

Applying g ⊗ IdkΩ on both sides of (9), we obtain that there exists a scalar λ such that λ(α ←
β) ← γ = α ← (β ← γ). As (α ← β) ← γ and α ← (β ← γ) are both elements of Ω, necessarily
λ = 1. Using a linear map h : A −→ k such that

h
(
x ≺α,β←γ (y ≺β,γ z)

)
= 0,

h
(
x ≺α,β→γ (y �β,γ z)

)
= 1,

we obtain that (α ← β) ← γ = α → (β ← γ). The other axioms of diassociative semigroups are
obtained in the same way from the second and third dendriform axioms.

(ii) =⇒ (i). If (ii) holds, (9) immediately implies that the first dendriform axiom is satisfied for
any A. The second and third dendriform axioms are proved in the same way. Finally, (ii)⇐⇒ (iii)
is obvious. �

Remark 2.6. We recover the ordinary (i.e. one-parameter) definitions of matching dendriform
algebras in [10] (resp. dendriform family algebras in [23]) from Definition 2.3 if Ω is a set with
diassociative semigroup structure given by α ← β = α and α → β = β for any α, β ∈ Ω (resp. if
(Ω,~) is a semigroup with diassociative semigroup structure given by α ← β = α → β = α ~ β
for any α, β ∈ Ω), if we suppose that ≺α,β depends only on β and �α,β depends only on α:

≺α,β=≺β, �α,β=�α for α, β ∈ Ω.

A general definition of one-parameter dendriform family algebras encompassing both [10] and
[23] has been recently proposed by the first author. This requires an extra structure of extended
diassociative semigroup (in short, EDS) on the index set Ω, namely two extra binary products
C,B subject to a bunch of compatibility axioms between themselves and with the diassociative
structure (←,→) [9]. More precisely, if (Ω,←,→,C,B) is an extended diassociative semigroup
and

(
A, (≺α,�α)α∈Ω

)
is a one-parameter Ω-dendriform algebra in the sense of [9], then it is a

2-parameter Ω-dendriform algebra with the products

≺α,β =≺αCβ, �α,β =�αBβ .

This is an immediate consequence of Proposition 18 of [9] and Proposition 2.5-(a).

2.2. Two-parameter Ω-duplicial algebras. We can mimick step by step the construction of
Paragraph 2.1:

Definition 2.7. A duplicial semigroup is a triple (Ω,←,→), where Ω is a set and←,→: Ω×Ω→

Ω are maps such that, for any α, β, γ ∈ Ω :

(α← β)← γ = α← (β← γ),
(α→ β)← γ = α→ (β← γ),
(α→ β)→ γ = α→ (β→ γ).(10)



6 LOÏC FOISSY, DOMINIQUE MANCHON, AND YUANYUAN ZHANG

Remark 2.8. Any diassociative semigroup is a duplicial semigroup, but the converse is not true:
the two properties

α← (β← γ) = α← (β→ γ) and (α← β)→ γ = (α→ β)→ γ

are always verified in a diassociative semigroup, but are not required in a duplicial semigroup.

Definition 2.9. Let Ω be a duplicial semigroup with two products← and→. A two-parameter
Ω-duplicial algebra is a family (A, (≺α,β,�α,β)α,β∈Ω) where A is a vector space and

≺α,β,�α,β: A ⊗ A→ A

are bilinear binary products such that for any x, y, z ∈ A, for any α, β ∈ Ω,

(x ≺α,β y) ≺α←β,γ z = x ≺α,β←γ (y ≺β,γ z),(11)
(x �α,β y) ≺α→β,γ z = x �α,β←γ (y ≺β,γ z),(12)
x �α,β→γ (y �β,γ z) = (x �α,β y �α→β,γ z.(13)

Two-parameter Ω-duplicial algebras are related to duplicial algebras and duplicial semigroups
by the following proposition:

Proposition 2.10. Let Ω be a set with two binary operations← and→.
(a) Let A be a k-vector space and let

≺α,β,�α,β: A ⊗ A→ A

be two families of bilinear binary products indexed by Ω×Ω. We define products ≺ and �
on the space A ⊗ kω by:

(x ⊗ α) ≺ (y ⊗ β) = (x ≺α,β y) ⊗ (α← β),(14)
(x ⊗ α) � (y ⊗ β) = (x �α,β y) ⊗ (α→ β).(15)

If (A ⊗ kω,≺,�) is a duplicial algebra, then (11), (12) and (13) hold.
(b) The following conditions are equivalent:

(i) For any
(
A, (≺α,β,�α,β)α,β∈Ω

)
where A is a k-vector space and where (11), (12) and

(13) hold, the vector space A ⊗ kΩ endowed with the binary operations ≺ and �
defined by (14) and (15) is a duplicial algebra,

(ii) (Ω,←,→) is a duplicial semigroup,
(iii) Any

(
A, (≺α,β,�α,β)α,β∈Ω

)
where A is a k-vector space and where (4), (5) and (6) hold

is a two-parameter Ω-duplicial algebra.

The proof is similar to the proof of Proposition 2.5 and left to the reader.

Remark 2.11. A duplicial semigroup is nothing but a duplicial algebra in the monoidal category
of sets. Hence the duplicial algebra structure on A ⊗ kΩ together with the Ω-grading yields a
duplicial algebra structure on Ω. This property has no equivalent in the dendriform case. It owes
to the fact that the duplicial operad is a set operad, whereas the dendriform operad is a linear
operad which is not reducible to a set operad. Another occurrence of this phenomenon will be
described in greater detail in Section 4 devoted to two-parameter family pre-Lie algebras.

Now we give a concrete example of two-parameter Ω-duplicial algebra, which uses typed deco-
rated planar binary trees [4, 23].

Definition 2.12. Let X and Ω be two sets. An X-decorated Ω × Ω-typed (abbreviated two-
parameter typed decorated) planar binary tree is a triple T = (T, dec, type), where
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(a) T is a planar binary tree.
(b) dec : V(T )→ X is a map, where V(T ) stands for the set of internal vertices of T ,
(c) type : IE(T )→ Ω ×Ω is a map, where IE(T ) stands for the set of internal edges of T .

Example 2.13. Let X and Ω be two sets. The typed decorated planar binary trees with three
internal vertices are

(α, β)
(γ, δ) x

y
z

, (α, β)
(γ, δ)x

y
z

, (γ, δ) (α, β)x

yz

, (α, β)
(γ, δ)

x
y

z

, (α, β)
(γ, δ)

x
y

z

with x, y, z ∈ X and (α, β), (γ, δ) ∈ Ω ×Ω.

Denote by D(X, Ω) the set of two-parameter typed decorated planar binary trees. For any
s ∈ D(X, Ω) we denote by s̄ the subjacent decorated tree, forgetting the types.

Definition 2.14. Let Ω be a set. For α, β ∈ Ω, first define

(16) s ≺α,β t := s̄ ≺ t̄ + following types

which means grafting t on s at the rightmost leaf, and the types follow the rules below:
• the new edge is typed by the pair (α, β);
• any internal edge of t has its type moved as follows:

(ω, τ) 7→ (ω, τ← β);

• any internal edge of s has its type moved as follows:

(ω, τ) 7→ (α← ω, τ);

• other edges keep their types unchanged.
Similarly, we second define

(17) s �α,β t := s̄ � t̄ + following types

which means grafting s on t at the leftmost leaf, and the types follow the following rules:
• the new edge is typed by the pair (α, β);
• any internal edge of t has its type moved as follows:

(ω, τ) 7→ (α→ ω, τ);

• any internal edge of s has its type moved as follows:

(ω, τ) 7→ (ω, τ→ β);

• other edges keep their types unchanged.

Example 2.15. Let X and Ω be two sets. Let

s = (α1, α2) (β1, β2)x

zy

, and t = (β1, β2)m

n

.

Then

s �α,β t = (α1, α2) (β1, β2)x

zy

�α,β (β1, β2)m

n

= (α, β)
(α1, α2 → β)

(α→ β1, β2)

(α3, α4 → β)

m
x

zy
n

,
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s ≺α,β t = (α1, α2) (β1, β2)x

zy

≺α,β (β1, β2)m

n

=
(α1, α2 ← β)

(α3, α4 ← β)

(α← β1, β2)
(α, β)x

z
m

y n

Proposition 2.16. Let X and Ω be two sets. The pair
(
D(X, Ω), (≺α,β,�α,β)α,β∈Ω

)
is a two-parameter

Ω-duplicial algebra.

Proof. For s, t, u ∈ D(X, Ω) and α, β, γ ∈ Ω, we first prove Eq. (11). Let us look at the right hand
side of Eq. (11), that is, s ≺α,β←γ (t ≺β,γ u). We divide the procedure into two steps.

• First step: we deal with t ≺β,γ u, we have the new edge typed by (β, γ); the edges of u have
their types (ω, τ) changed into (β ← ω, τ); the edges of t have their types (ω, τ) changed
into (ω, τ← ω).
• Second step: we deal with s ≺α,β←γ (t ≺β,γ u), which means grafting t ≺β,γ u on the

rightmost leaf of s. The new edge has its type (α, β ← γ); the new edge of t ≺β,γ u
produced in the first step has its type (β, γ) changed into (α ← β, γ); the edges of u have
their types (β ← ω, τ) changed into

(
α ← (β ← ω), τ

)
; the edges of t have their types

(ω, τ ← γ) changed into (α ← ω, τ ← γ); the edges of s have their types (ω, τ) changed
into

(
ω, τ← (β← γ)

)
.

Let us now look at the left hand side of Eq. (11), that is, (s ≺α,β t) ≺α←β,γ u. We also divide into
the procedure two steps.

• First step: we deal with s ≺α,β t: we graft t on s, and the new edge typed by (α, β); the
edges of t have their types (ω, τ) changed into (α ← ω, τ); the edges of s have their types
(ω, τ) changed into (ω, τ← β).
• Second step: we deal with (s ≺α,β t) ≺α←β,γ u. The new edge typed by (α ← β, γ); the

new edge of s ≺α,β t has its type (α, β) changed into (α, β ← γ); the edges of s have
their types (ω, τ ← β) changed into (ω, (τ ← β) ← γ); the edges of t have their type
(α ← ω, τ) changed into (α ← ω, τ ← γ); the edges of u have their types (ω, τ) changed
into ((α← β)← ω, τ).

Comparing both sides and using the duplicial semigroup axioms proves Equation (11).
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Second, we prove Equation (12). We use a table for comparison.

s �α,β←γ (t ≺β,γ u) (s �α,β t) ≺α→β,γ u
the first step: t ≺β,γ u the first step: s �α,β t

new edge typed by (β, γ) new edge typed by (α, β)
the edges of u the edges of s

(ω, τ) 7→ (β← ω, τ) (ω, τ) 7→ (ω, τ→ β)
the edges of t the edges of t

(ω, τ) 7→ (ω, τ← γ) (ω, τ) 7→ (α→ ω, τ)
the second step: s �α,β←γ (t ≺β,γ u) the second step: (s �α,β t) ≺α→β,γ u
the new edge typed by (α, β← γ) the new edge typed by (α→ β, γ)

the new edge of t ≺β,γ u the new edge of s �α,β t
(ω, γ) 7→ (α→ β, γ) (α, β) 7→ (α, γ ← γ)

the edges of t the edges of t
(ω, τ← γ) 7→ (α→ ω, τ← γ) (α→ ω, τ) 7→ (α→ ω, τ← γ)

the edges of u the edges of u
(β← ω, τ) 7→

(
α→ (β← ω), τ

)
(ω, τ) 7→

(
(α← β)← ω, τ

)
the edges of s the edges of s

(ω, τ) 7→ (ω, τ→ (β← γ)) (ω, τ→ β) 7→ (ω, (τ→ β)← γ)

So both the left hand side and right hand side coincide.

Last, Eq. (13) can be proved similarly to Eq. (11). Details are left to the reader. �

2.3. Free one-parameter Ω-duplicial algebras. We give a general definition of one-parameter
Ω-duplicial algebras in the spirit of [9].

Definition 2.17. An extended duplicial semigroup (briefly, EDuS) is a family (Ω,←,→,C,B),
where Ω is a set and←,→,C,B : Ω ×Ω→ Ω are maps such that:

(a) (Ω,←,→) is a duplicial semigroup.
(b) For any α, β, γ ∈ Ω,

α B (β← γ) = α B β,(18)
(α→ β) C γ = β C γ,(19)

(α C β)←
(
(α← β) C γ

)
= α C (β← γ),(20)

(α C β) C
(
(α← β) C γ

)
= β C γ,(21) (

α B (β→ γ)
)
B (β B γ) = α B β,(22) (

α B (β→ γ)
)
→ (β B γ) = (α→ β) B γ.(23)

Remark 2.18. Any extended diassociative semigroup is an extended duplicial semigroup, but
among the 10 axioms describing the compatibility between the arrows and the triangles in an
extended diassociative semigroup (numbers 4 to 13 in [9]), only six of them survive in an EDuS
(numbers 4, 5, 6, 7, 12 and 13).

Definition 2.19. Let (Ω,←,→,C,B) be an EDuS. A one-parameter Ω-duplicial algebra is a fam-
ily

(
A, (≺α)α∈Ω, (�α)α∈Ω

)
, where A is a vector space and ≺α,�α: A ⊗ A → A such that for any
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x, y, z ∈ A and α, β ∈ Ω,

(x ≺α y) ≺β z = x ≺α←β (y ≺αCβ z),(24)
x �α (y ≺β z) = (x �α y) ≺β z,(25)
x �α (y �β z) = (x �αBβ y) �α→β z.(26)

Now we describe free one-parameter Ω-duplicial algebras in terms of planar binary trees typed
by Ω, that is, for which each internal edge is typed by single element of Ω. The set of Ω-typed
X-decorated planar binary trees is denoted by T(X,Ω). We denote by T+(X,Ω) the set of Ω-typed
X-decorated planar binary trees different from the trivial tree |. For any n ≥ 0, the set of Ω-typed
X-decorated planar binary trees with n internal vertices (and n + 1 leaves) is denoted by Tn(X,Ω).
So we have

T(X,Ω) =
⊔
n>0

Tn(X,Ω), T+(X,Ω) =
⊔
n>1

Tn(X,Ω).

For example,

T0(X,Ω) = {|}, T1(X,Ω) =

{
x

∣∣∣∣ x ∈ X
}
, T2(X,Ω) =

{
α

x
y

, α
x

y ∣∣∣∣ x, y ∈ X, α ∈ Ω

}
,

T3(X,Ω) =

 α
β x

y
z

, α
βx

y
z

, β αx

yz

, α
βx

y
z

, α
βx

y
z

, . . .

∣∣∣∣∣∣ x, y, z ∈ X, α, β ∈ Ω

 .
The depth dep(T ) of a rooted tree T is the maximal length of linear chains of vertices from the

root to the leaves of the tree. For example,

dep
(

x
)

= 1 and dep
(

α
x

y )
= 2.

Definition 2.20. Let T1,T2 ∈ T(X,Ω), and α, β ∈ Ω. We denote by T1 ∨x, (α, β) T2 the tree T ∈
T(X,Ω) obtained by grafting T1 and T2 on a common root. If T1 , |, the type of the internal edge
between the root of T and the root of T1 is α. If T2 , |, the type of internal edge between the root
of T and the root of T2 is β. We also decorate the new vertex by x, x ∈ X.

Remark 2.21. Note that any element T ∈ Tn(X,Ω), with n ≥ 1, can be written under the form

T = T1 ∨x, (α, β) T2,

with T1,T2 ∈ T(X,Ω), x ∈ X and α, β ∈ Ω. This writing is unique except if T1 =| or T2 =|: in
this case, one can change arbitrarily α or β. In order to solve this notational problem, we add an
element denoted by 1 to Ω and we shall always assume that if T1 =|, then α = 1; if T2 =|, then
β = 1.

Definition 2.22. Let Ω be a set with four products ←,→,C,B. We define binary operations
(≺α,�α)α∈Ω on kT+(X,Ω) recursively on dep(T ) + dep(U) by

(a) | ≺ω T := T �ω | := T for ω ∈ Ω and T ∈ T+(X,Ω).
(b) For T = T1 ∨x, (α1, α2) T2 and U = U1 ∨y, (β1, β2) U2, define

T ≺ω U := T1 ∨x, (α1, α2←ω) (T2 ≺α2Cω U),(27)
T �ω U := (T �ωBβ1 U1) ∨y, (ω→β1, β2) U2, where ω ∈ Ω.(28)
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In the following, we employ the convention that

(29) ω B 1 = 1 C ω = ω and ω→ 1 = 1← ω = ω for ω ∈ Ω.

Example 2.23. Let T =
x and U =

y
with x, y ∈ X. For ω ∈ Ω, we have

T ≺ω U =
x
≺ω

y
=

(
| ∨x, (1, 1) |

)
≺ω

y

= | ∨x, (1, 1←ω)

(
| ≺1Cω

y )
= | ∨x, (1, ω)

y
= ω

x
y
,

T �ω U =
x
�ω

y
=

x
�ω

(
| ∨y, (1, 1) |

)
=

(
x
�ωB1 |

)
∨y, (ω→1, 1) |

=
x
∨y, (ω, 1) | = ω

yx
.

Proposition 2.24. Let X be a set and let (Ω,←,→,C,B) be an EDuS. Then
(
kT+(X,Ω), (≺ω,�ω

)ω∈Ω
)

is an Ω-duplicial algebra.

Proof. Let

T = T1 ∨x, (α1, α2) T2,U = U1 ∨y, (β1, β2) U2,W = W1 ∨z, (γ1, γ2) W2 ∈ kT+(X,Ω).

Then we apply induction on dep(T )+dep(U)+dep(W) ≥ 3. For the initial step dep(T )+dep(U)+

dep(W) = 3, we have

T =
x ,U =

y
and W =

z

and so

(T ≺α U) ≺β W =
(

x
≺α

y )
≺β

z

= α
x

y
≺β

z ( by Example 2.23 )

=
(
| ∨x, (1, α)

y )
≺β

z

= | ∨x, (1, α←β)

( y
≺αCβ

z )
(by Eq. (27))

= | ∨x, (1, α←β) α C β
y

z
( by Example 2.23 )

=
x
≺α←β α C β

y
z

(by Eq. (27))

=
x
≺α←β

( y
≺αCβ

z )
= T ≺α←β (U ≺αCβ W),

verifying Eq. (24). Next,

T �α (U ≺β W) =
x
�α

( y
≺β

z )
=

x
�α β

y
z

( by Example 2.23 )
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=
x
�α

(
| ∨y, (1, β)

z )
=

(
x
�αB1 |

)
∨y, (α→1, β)

z (by Eq. (28))

=
x
∨y, (α, β)

z (by Eq. (29))

=
x
∨y, (α, 1←β)

(
| ≺1Cβ

z )
(by Item (a) of Definition 2.22 and Eq. (29))

=
(

x
∨y, (α, 1) |

)
≺β

z (by Eq. (27))

= α
yx
≺β

z
=

(
x
�α

y )
≺β

z

= (T �α U) ≺β W,

verifying Eq. (25). Finally,

T �α (U �β W) =
x
�α

( y
�β

z )
=

x
�α β

z
y

( by Example 2.23 )

=
x
�α

( y
∨z, (β, 1) |

)
=

(
x
�αBβ

y )
∨z, (α→β, 1) | (by Eq. (28))

= α B β
yx
∨z, (α→β, 1) | ( by Example 2.23 )

=
(
α B β

yx
�(α→β)B1 |

)
∨z, ((α→β)→1, 1) | (by Eq. (29))

= α B β
yx
�α→β

(
| ∨z, (1, 1) |

)
(by Item (a) of Definition 2.22 and Eq. (29))

= α B β
yx
�α→β

z

=
(

x
�αBβ

y )
�α→β

z (by Example 2.23 )

= (T �αBβ U) �α→β W.

This completes the proof of the initial step. For the induction step of dep(T )+dep(U)+dep(W) =

k + 1 ≥ 4. First, we have

(T ≺α U) ≺β W =
(
(T1 ∨x, (α1, α2) T2) ≺α U

)
≺β W

=
(
T1 ∨x, (α1, α2←α)) (T2 ≺α2Cα U)

)
≺β W (by Eq. (27))

= T1 ∨x, (α1, (α2←α)←β)

(
(T2 ≺α2Cα U) ≺(α2←α)Cβ W

)
(by Eq. (27))

= T1 ∨x, (α1, (α2←α)←β)

(
T2 ≺(α2Cα)←

(
(α2←α)Cβ

) (U ≺
(α2Cα)C

(
(α2←α)Cβ

) W)

(by the induction hypothesis)

= T1 ∨x, (α1, α2←(α←β))

(
T2 ≺α2C(α←β) (U ≺αCβ W)

)
(by Eqs. (20-21) and definition (2.7))

= (T1 ∨x, (α1, α2) T2) ≺α←β (U ≺αCβ W) (by Eq. (27))
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= T ≺α←β (U ≺αCβ W).

Second, we have

T �α (U ≺β W) = T �α
(
(U1 ∨y, (β1, β2) U2) ≺β W

)
= T �α

(
U1 ∨y, (β1, β2←β) (U2 ≺β2Cβ W)

)
(by Eq. (28))

= (T �αBβ1 U1) ∨y, (α→β1, β2←β) (U2 ≺β2Cβ W)

=
(
(T �αBβ1 U1) ∨y, (α→β1, β2) U2

)
≺β W (by Eq. (27))

=
(
T �α (U1 ∨y, (β1, β2) U2)

)
≺β W

= (T �α U) ≺β W.

Last, we have

T �α (U �β W) = T �α
(
U �β (W1 ∨z, (γ1, γ2) W2)

)
= T �α

(
(U �βBγ1 W1) ∨z, (β→γ1, γ2) W2

)
(by Eq. (28))

=
(
T �αB(β→γ1) (U �βBγ1 W1)

)
∨z, (α→(β→γ1), γ2) W2 (by Eq. (28))

=
(
T �(αB(β→γ1))B(βBγ1) U

)
�(αB(β→γ1))→(βBγ1) W1 ∨z, (α→(β→γ1), γ2) W2

(by the induction hypothesis)

=
(
(T �αBβ U) �(α→β)→γ1 W1

)
∨z, ((α→β)→γ1, γ2) W2

(by Eqs. (22-23) and Definition (2.7))
= (T �αBβ U) �α→β (W1 ∨z, (γ1, γ2) W2)
= (T �αBβ U) �α→β W.

This completes the proof. �

Definition 2.25. Let X be a set and let (Ω,←,→,C,B) be an EDuS. A free Ω-duplicial algebra
on X is an Ω-duplicial algebra

(
D, (≺ω,�ω)ω∈Ω

)
together with a map j : X → D that satisfies the

following universal property: for any Ω-duplicial algebra
(
D′, (≺′ω,�

′
ω)ω∈Ω

)
and map f : X → D′,

there is a unique Ω-duplicial algebra morphism f̄ : D → D′ such that f = f̄ ◦ j. The free
Ω-duplicial algebra on X is unique up to isomorphism.

Let j : X → kT+(X,Ω) be the map defined by j(x) =
x for x ∈ X.

Theorem 2.26. Let X be a set and let (Ω,←,→,C,B) be an EDuS. Then
(
kT+(X,Ω), (≺ω,�ω

)ω∈Ω
)
, together with the map j, is the free Ω-duplicial algebra on X.

Proof. By Proposition 2.16, we are left to show that
(
kT+(X,Ω), (≺ω,�ω)ω∈Ω

)
satisfies the univer-

sal property. For this, let
(
D, (≺′ω,�

′
ω)ω∈Ω

)
be an Ω-duplicial algebra.

Now let us define a linear map

f̄ :
{

kT+(X,Ω) → D
T 7→ f̄ (T )

by induction on dep(T ) ≥ 1. Let us write T = T1 ∨x, (α1, α2) T2 with x ∈ X and α1, α2 ∈ Ω. For the

initial step dep(T ) = 1, we have T =
x for some x ∈ X and define

(30) f̄ (T ) := f (x).
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We define f̄ (T ) by the induction on dep(T ) = k + 1 ≥ 2. Note that T1 and T2 can not be |
simultaneously and define

f̄ (T ) := f̄ (T1 ∨x, (α1, α2) T2)

:=


f (x) ≺′α2

f̄ (T2), if T1 = | , T2;
f̄ (T1) �′α1

f (x), if T1 , | = T2;(
f̄ (T1) �′α1

f (x)
)
≺′α2

f̄ (T2), if T1 , | , T2.
(31)

We are left to prove that f̄ is a morphism of Ω-duplicial algebras:

f̄ (T ≺ω U) = f̄ (T ) ≺′ω f̄ (U) and f̄ (T �ω U) = f̄ (T ) �′ω f̄ (U),

in which we only prove the first equation by induction on dep(T ) + dep(U) ≥ 2, as the proof of
the second one is similar. Write

T =1 ∨x, (α1, α2)T2 and U = U1 ∨y, (β1, β2) U2.

For the initial step dep(T ) + dep(U) = 2, we have T =
x and U =

y
for some x, y ∈ X.

So we have

f̄ (T ≺ω U) = f̄
(

x
≺ω

y )
= f̄

(
ω

x
y )

( by Example 2.23 )

= f̄
(
| ∨x, (1, ω)

y )
= f (x) ≺′ω f̄

( y )
(by Eq. (31))

= f̄
(

x
)
≺′ω f̄

( y )
(by Eq. (30))

= f̄ (T ) ≺′ω f̄ (U).

For the induction step of dep(T ) + dep(U) ≥ 3, we have four cases to consider.
Case 1: T1 = | and T2 = |. Then

f̄ (T ≺ω U) = f̄
(
(| ∨x, (1, 1) |) ≺ω U

)
= f̄

(
| ∨x, (1, 1←ω) (| ≺1Cω U)

)
(by Eq. (27))

= f̄ (| ∨x, (1, ω) U) = f (x) ≺′ω f̄ (U) (by Eq. (31))

= f̄ (T ) ≺′ω f̄ (U).

Case 2: T1 = | and T2 , |. Then

f̄ (T ≺ω U) = f̄
(
(| ∨x, (1, α2) T2) ≺ω U

)
= f̄

(
| ∨x, (1, α2←ω) (T2 ≺αCω U

)
(by Eq. (27))

= f (x) ≺′α←ω f̄ (T2 ≺α2Cω U) (by Eq. (31))

= f (x) ≺′α←ω
(

f̄ (T2) ≺′α2Cω
f̄ (U)

)
(by the induction hypothesis)

=
(

f (x) ≺′α2
f̄ (T2)

)
≺′ω f̄ (U) (by Eq. (24))

= f̄ (T ) ≺′ω f̄ (U) (by Eq. (31)).

Case 3: T1 , | and T2 = |. This case is similar to Case 2.
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Case 4: T1 , | and T2 , |. Then

f̄ (T ≺ω U) = f̄
(
(T1 ∨x, (α1, α2) T2) ≺ω U

)
= f̄

(
T1 ∨x, (α1, α2←ω) (T2 ≺α2Cω U)

)
(by Eq. (27))

=
(

f̄ (T1) �′α1
f (x)

)
≺′α2←ω

f̄ (T2 ≺α2Cω U) (by Eq. (31))

=
(

f̄ (T1) �′α1
f (x)

)
≺′α2←ω

(
f̄ (T1) ≺′α2Cω

f̄ (U)
)

(by the induction hypothesis)

= f̄ (T1) �′α1

(
f (x) ≺′α2←ω

( f̄ (T2) ≺′α2Cω
f̄ (U))

)
(by Eq. (25))

= f̄ (T1) �′α1

(
( f (x) ≺′α2

f̄ (T2)) ≺′ω f̄ (U)
)

(by Eq. (24))

=
(

f̄ (T1) �′α1
( f (x) ≺′α2

f̄ (T2)
)
≺′ω f̄ (U) (by Eq. (25))

=
((

f̄ (T1) �′α1
f (x)

)
≺′α2

f̄ (T2)
)
≺′ω f̄ (U) (by Eq. (25))

= f̄ (T ) ≺′ω f̄ (U) (by Eq. (31)).

Let us prove the uniqueness of f̄ . Let ḡ be another morphism from kT+(X,Ω) to D such that
ḡ
(

x
)

= f (x). First, for any a ∈ D and ω ∈ Ω, we define

a �ω 1 = 1 ≺ω a = 0, 1 �ω a = a ≺ω 1 = a.

For any T , |, let T = T1 ∨x, (α1, α2) T2. In fact, the form T = T1 �α1
x
≺α2 T2 include all the

above four cases. We define
ḡ(|) = 1

and
ḡ(T ) = ḡ

(
T1 �α1

x
≺α2 T2

)
= ḡ(T1) �′α1

f (x) ≺′α2
ḡ(T2).

So f̄ = ḡ. This completes the proof. �

Proposition 2.27. Let Ω be an EDuS. Then
(
kT+(X,Ω)⊗ kΩ,≺,�

)
is a duplicial algebra, if and

only if,
(
kT+(X,Ω), (≺ω,�ω)ω∈Ω

)
is an Ω-duplicial algebra, where

(x ⊗ α) ≺ (y ⊗ β) :=(x ≺αCβ y) ⊗ (α← β)

(x ⊗ α) � (y ⊗ β) :=(x �αBβ y) ⊗ (α→ β), for x, y ∈ T+(X,Ω) and α, β ∈ Ω.

Proof. For x, y, z in the Ω-duplicial algebra T+(X,Ω) and for α, β, γ ∈ Ω, first, we prove(
(x ⊗ α) ≺ (y ⊗ β)

)
≺ (z ⊗ γ)

=
(
x ≺αCβ y ⊗ (α← β)

)
≺ (z ⊗ γ)

= (x ≺αCβ y) ≺(α←β)Cγ z ⊗
(
(α← β)← γ

)
= x ≺

(αCβ)←
(

(α←β)Cγ
) (y ≺

(αCβ)C
(

(α←β)Cγ
) z) ⊗

(
(α← β)← γ

)
(by Eq. (24))

= x ≺αC(β←γ) (y ≺βCγ z) ⊗
(
α← (β← γ)

)
(by Eqs. (20-21) and Definition (2.7))

= x ⊗ α ≺
(
y ≺βCγ z ⊗ (β← γ)

)
= (x ⊗ α) ≺

(
(y ⊗ β) ≺ (z ⊗ γ)

)
.



16 LOÏC FOISSY, DOMINIQUE MANCHON, AND YUANYUAN ZHANG

Second, we have

(x ⊗ α) �
(
(y ⊗ β) ≺ (z ⊗ γ)

)
= (x ⊗ α) �

(
y ≺βCγ z ⊗ (β← γ)

)
= x �αB(β←γ) (y ≺βCγ z) ⊗

(
α→ (β← γ)

)
(by Eq. (25))

= x �αBβ (y ≺(α→β)Cγ z) ⊗
(
(α→ β)← γ

)
(by Eqs. (18-19) and Definition (2.7))

=
(
(x �αBβ y) ≺(α→β)Cγ z

)
⊗

(
(α→ β)← γ

)
(by Eq. (25))

=
(
(x �αBβ y) ⊗ (α→ β)

)
≺ (z ⊗ γ)

=
(
(x ⊗ α) � (y ⊗ β)

)
≺ (z ⊗ γ).

Finally, we have

(x ⊗ α) �
(
(y ⊗ β) � (z ⊗ γ)

)
= x ⊗ α �

(
y �βBγ z ⊗ (β→ γ)

)
= x �αB(β→γ) (y �βBγ z) ⊗

(
α→ (β→ γ)

)
=

(
x �(

αB(β→γ)
)
B(βBγ)

y
)
�(

α→(β→γ)
)
→(βBγ)

z ⊗
(
α→ (β→ γ)

)
(by Eq. (26))

= (x �αBβ y) �(α→β)Bγ z ⊗
(
(α→ β)→ γ

)
(by Eqs. (22-23) and Definition (2.7))

=
(
x �αBβ y ⊗ (α→ β)

)
� (z ⊗ γ)

=
(
(x ⊗ α) � (y ⊗ β)

)
� (z ⊗ γ).

The converse comes from the fact that all axioms of an EDuS have been used in the proof. �

2.4. On the operads of two-parameter duplical or dendriform algebras. Let us assume that
the parameter set Ω is finite, and let us denote its cardinality by w. We denote by Dend2

Ω, respec-
tively Dup2

Ω, the non-sigma operad of two-parameter dendriform, respectively duplicial, algebras.

Proposition 2.28. For all n > 1, we put

rn = dimk
(
Dend2

Ω(n)
)

= dimk
(
Dup2

Ω(n)
)
,

and we consider

R(X) =

∞∑
n=1

rnXn ∈ Q[[X]].

Then

w2(w − 1)R3 + w(wX + 2w − 2)R2 + (2wX − 1)R + X = 0.(32)

Proof. With a presentation by generators and relations of Dend2
Ω and Dup2

Ω, it turns out that these
operads own a basis of planar binary trees the vertices of which are decorated by elements ≺α,β or
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�α,β, with α, β ∈ Ω, avoiding the trees of the form:

≺α,β

≺α←β,γ

�α,β

≺α→β,γ

�α,β

�α→β,γ

with α, β, γ ∈ Ω. We denote by R≺ the formal series of such trees with root decorated by an
element ≺α,β and by R� the formal series of such trees with root decorated by an element �α,β,
counted according to their number of leaves. Then:

R� = w2(R≺ + X)R + w(w − 1)R�R = w2R2 − wR�R,

R≺ = w2XR + w(w − 1)(R� + R≺)R = w2R2 − w(R − X)R,
R = X + R≺ + R�.

We obtain that:

R� =
w2R2

1 + wR
, R≺ = w(w − 1)R2 + wXR.

Replacing in R = R≺ + R� + X, we obtain (32). �

For example:

r1 = 1,

r2 = 2w2,

r3 = w3(8w − 3),

r4 = 2w4(20w2 − 15w + 2),

r5 = w5(224w3 − 252w2 + 75w − 5),

r6 = 2w6(672w4 − 1008w3 + 476w2 − 77w + 3),

r7 = w7(8448w5 − 15840w4 + 10320w3 − 2772w2 + 280w − 7),

r8 = 2w8(27456w6 − 61776w5 + 51480w4 − 19635w3 + 3420w2 − 234w + 4).
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Remark 2.29. If w = 1, one recovers duplicial and dendriform algebras, and rn(1) is the n + 1
Catalan number Catn+1, sequence A000108 of the OEIS [19]. The sequences rn(w) for w = 2, 3
or 4 are not referenced (yet) in the OEIS.

Proposition 2.30. Let n > 1.
(a) rn is a polynomial in Z[w], of degree 2n − 2, and its leading coefficient is 2n−1Catn.
(b) If n > 2, there exists a polynomial tn ∈ Z[w], such that rn = wntn. Moreover, tn(0) = (−1)nn.

Proof. By (32), if n > 2,

(33) rn = w2(w − 1)
∑

i+ j+k=n

rir jrk + w2
∑

i+ j=n−1

rir j + w(2w − 2)
∑
i+ j=n

rir j + 2wrn−1.

Let us proceed by induction on n. The results are obvious if n 6 3. Let us assume that n > 4 and
the results at all ranks < n. By (33), obviously rn ∈ Z[w]. Moreover, by the induction hypothesis:

• The first term of (33) is of degree 6 3 + 2n − 6 = 2n − 3.
• The second term of (33) is of degree 6 2 + 2n − 6 = 2n − 4.
• The third term of (33) is of degree 6 2 + 2n− 4 = 2n− 2; its coefficient of degree 2n− 2 is

2
∑
i+ j=n

2i−1Cati2 j−1Cat j = 2n−1
∑
i+ j=n

Cati = 2n−1Catn.

• The fourth term of (33) is of degree 6 1 + 2n − 4 = 2n − 3.
Hence, rn is of degree 2n− 2 and its leading coefficient is 2n−1Catn. Still by the induction hypoth-
esis:

• For the first term of (33):
– If i, j, k > 2, then w2(w − 1)rir jrk is a multiple of wn+2.
– If only one of i, j, k is equal to 1, then w2(w − 1)rir jrk is a multiple of wn+1.
– If two of i, j, k are equal to 1, then the other one is equal to n − 2 > 2 and w2(w −

1)rir jrk is a multiple of wn.
Hence, this first term is a multiple of wn and its contribution to the coefficent of wn is

−3(−1)n−2(n − 2).

• For the second term of (33):
– If i, j > 2, then w2rir j is a multiple of wn+1.
– If one of i or j is equal to 1, then the second one is n− 2 > 2 and w2rir j is a multiple

of wn.
Hence, this second term is a multiple of wn and its contribution to the coefficent of wn is

2(−1)n−2(n − 2).

• For the third term of (33):
– If i, j > 2, then w2rir j is a multiple of wn+1.
– If one of i or j is equal to 1, then the second one is n − 1 > 2 and w(2w − 2)rir j is a

multiple of wn.
– If n is even, then any coefficent of rn is even.

Hence, this third term is a multiple of wn and its contribution to the coefficent of wn is

−2 × 2(−1)n−1(n − 1).

• The last term of (33) is a multiple of wn and its contribution to the coefficent of wn is

2(−1)n−1(n − 1).
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Finally, rn is a multiple of wn and the coefficient of wn in rn is

−3(−1)n(n − 2) + 2(−1)n(n − 2) + 4(−1)n(n − 1) − 2(−1)n(n − 1) = (−1)nn.

Let us assume that n is even. Then, in Z/2Z[w]:

rn ≡ w2(w − 1)
∑

i+ j+k=n

rir jrk + w2
∑

i+ j=n−1

rir j + 0[2].

As n is even, in the first term, one or three of i, j, k are even, so rir jrk ≡ 0[2]; in the second term,
one of i, j is even, so rir j ≡ 0[2]. Finally, rn ≡ 0[2]. �

3. Reminders on operads and colored operads in the species formalism

Colored operads are natural tools to be used in the description of algebraic structures on graded
objects. We give a description of those in the colored species formalism, mainly following the pre-
sentation of [7]. We also give a reminder of the more familiar monochromatic case, i.e. ordinary
operads, and we decribe a pair (F,U) of adjoint functors from colored operads to monochromatic
operads and vice-versa, along the lines of [2].

3.1. Colored species. Let C be a bicomplete symmetric monoidal category, i.e. with small limits
and colimits, which in particular implies the existence of products and coproducts indexed by an
arbitrary set. For example the category of sets (the product given by cartesian product and the
coproduct given by disjoint union), or the category of vector spaces over a field k (the product
given by cartesian product and the coproduct being given by direct sum) [15, 1]. The unit for the
monoidal product will be denoted by 1, or 1C if the mention of the category must be precised.

Monoidal categories of Ω-graded objects, where Ω is a semigroup, have been considered in
[2]. The symmetric monoidal structure is given by the Cauchy product, which uses the semigroup
structure of Ω in an essential way. In absence of such a structure on our set Ω, we must go further
and consider multiple gradings. Let FΩ be the category of Ω-colored finite sets defined as follows:

• objects are triples (A, α, ω) where A is a finite set, ω ∈ Ω (the output color) and α : A→ Ω

is a list of elements of Ω indexed by A (the input colors).
• morphisms are given by bijective maps from A onto B together with re-indexing of colors:

a morphism

ϕ : (A, α, ω) −→ (B, β, ζ)

is given by an underlying bijective map ϕ : A → B under the two conditions that ω = ζ
and α = β ◦ ϕ, otherwise there is no morphism from (A, α, ω) to (B, β, ζ).

Definition 3.1. An Ω-colored species P in the bicomplete monoidal category C is a contravariant
functor (A, α, ω) 7→ PA,α,ω from FΩ to C. The Ω-colored species is positive if moreover Pø,−,ω = 0C

for any ω ∈ Ω, where 0C is the initial object.

This definition is borrowed from [7, Definition 2.2] which provides a slightly more general frame-
work: Ω-colored species correspond to (Ω,Ω)-collections therein. This can be straightforwardly
extended to Ω-colored bi-species, where several output colors are also allowed, to treat the case
of colored ProPs and properads, but we shall not pursue this line of thought here.
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3.2. A brief summary of the monochromatic case. The category FΩ boils down to the category
F of finite sets with bijections when the set Ω of colors is reduced to one element. We recover
then the usual notion of (contravariant) species [13, 3, 17]. A C-species is a contravariant functor
from F into C, where F is the category of finite sets with bijections as morphisms. We stick to
positive species, i.e. species P such that Pø = 0C, where 0C is the initial object of the monoidal
category C [17]. We adopt M. Mendez’ definition of an operad in the species formalism:

Definition 3.2. [17, Definition 3.1] An operad is a monoid in the category of positive species.

Hence the operads considered here have no nullary operations. To be concrete, it is a positive
species P together with partial compositions

◦b : PB ⊗ PC −→ PBtbC

for any b ∈ B, where B tb C stands for (B \ {b}) t C, subject to both sequential and parallel
associativity axioms, which are stated as follows: for any finite sets B,C,D, for any α ∈ PB,
β ∈ PC and β′, γ ∈ PD we have{

α ◦b (β ◦c γ) = (α ◦b β) ◦c γ,
(α ◦b β) ◦b′ β

′ = (α ◦b′ β
′) ◦b β.

3.3. Colored operads. In a colored operad, a partial composition is possible if and only if the
output color of the second argument matches the color of the chosen input of the first. This is
formalized as follows:

Definition 3.3. The substitution product of two positive Ω-colored species is defined by

(34) (P � Q)A,α,ω :=
∐

π set partition of A

∐
γ:π→Ω

Pπ,γ,ω ⊗
⊗
B∈π

QB,α|B,γ(B).

The substitution product � is also defined on morphisms and is associative, making the cate-
gory of positive Ω-colored species a (non-symmetric) monoidal category. The unit is the colored
species 1 defined by 1A,α,ω = 1C if |A| = 1 and α = ω, and 1A,α,ω = 0 otherwise. It can be written
as

(35) 1 =
∏
ω∈Ω

1ω

where 1ω is the colored species defined by 1ωA,α,ζ = 1C if |A| = 1 and α = ζ = ω, and 1ωA,α,ζ = 0
otherwise. The colored species 1ω is sometimes slightly abusively called unit of color ω.

Definition 3.4. A colored operad is a monoid in the monoidal category of positive Ω-colored
species endowed with the substitution product.

Concretely, the global multiplication γ : P � P → P is declined into functorial partial composi-
tions

(36) ◦a : PA,α,ω ⊗ PB,β,ζ −→

{
PAtaB, αtaβ, ω if ζ = α(a),

0 otherwise.

subject to parallel and sequential associativity axioms, and there is a unit e : 1 → P. Informally,
the partial composition ◦a is nontrivial if and only if the output color of the second term matches
the input color of the first term corresponding to a ∈ A, otherwise ◦a takes values in the terminal
object 0C.
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For any set map κ : Ω → Ω′, the color change functor from Ω′-colored species to Ω-colored
species is defined by

(37) (κ∗P)A,α,ω := PA, κ◦α, κ(ω)

for any (A, α, ω) ∈ FΩ. It respects both monoidal products �, hence restricts from Ω′-colored
operads to Ω-colored operads. In particular, the case when Ω′ = {∗} contains a unique element
shows that any ordinary (monochromatic) operad Q can be promoted to an Ω-colored operad
QΩ := κ∗Q, with κ : Ω → {∗}. The colored operad QΩ is said to be uniform. This functor
U : Q → QΩ is right-adjoint to the completed forgetful functor F from Ω-colored operads to
ordinary operads, defined by

(38) (FP)A :=
∏

(α,ω)∈ΩA×Ω

PA,α,ω.

3.4. Categories of graded objects. We keep the notations of the previous paragraph. The cate-
gory CΩ of Ω-graded objects [2, Paragraph 2.2] is the category of collections (Vω)ω∈Ω of objects
of C. A CΩ-morphism

ϕ : (Vω) −→ (Wω)

is a collection (ϕω)ω∈Ω of C-morphisms ϕω : Vω → Wω. This is not a monoidal category: indeed,
the tensor product of two Ω-graded objects is a collection indexed by Ω ×Ω.

Remark 3.5. In the case when Ω is a semigroup, categories of Ω-graded objects can be given a
monoidal structure by means of the Cauchy product [2, Paragraph 2.2]. We do not have this tool
at our disposal here.

A well-known example of Ω-colored operad (in a bicomplete category C with internal Hom,
i.e. such that Hom(V,W) is an object of C for any pair (V,W) of objects) is given by End(V) where
V = (Vω)ω∈Ω is an Ω-graded object:

(39) End(V)A,α,ω := HomC

⊗
a∈A

Vα(a), Vω

 .
Details are standard and left to the reader. An algebra over an Ω-colored operad P is an Ω-graded
object V together with a morphism of colored operads Φ : P→ End(V).

Definition 3.6. [2, Paragraph 2.2] An Ω-graded object V = (Vω)ω is uniform if all homogeneous
components are identical, i.e. if there is an object V of C such that Vω = V for any ω ∈ Ω. We
write V = U(V) in this case. This defines a functor U : C → CΩ, which has a right adjoint, the
forgetful functor F : CΩ → C defined by

F(V) :=
∐
ω∈Ω

Vω,

which consists in forgetting the Ω-grading [2, Paragraph 2.4]. It has also a left adjoint, the
completed forgetful functor F : CΩ → C defined by

F(V) :=
∏
ω∈Ω

Vω,

which consists taking the completion with respect to the Ω-grading and then forgetting it.
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4. Two-parameter Ω-pre-Lie algebras

The pre-Lie operad is no longer a set operad, hence new phenomena arise when seeking a
compatible structure on the parameter set Ω. Indeed, four different associated set operads are
involved. The first one is the well-known associative operad. The second one is the operad
governing rings with the twist-associativity condition x(yz) = (yx)z, also known as Thedy rings
[20]. The third one is the operad governing rings with both NAP relation x(yz) = y(xz) and NAP’
relation (xy)z = (yx)z. The fourth one is the operad governing rings with all previous relations
at once, this is the well-known Perm operad [5, 6]. After explaining this phenomenon in some
detail, we give an explicit description of the twist-associative operad in terms of ordered pairs of
distinct elements, and an explicit description of the NAPNAP’ operad in terms of corollas, in the
same spirit F. Chapoton and M. Livernet proved that the pre-Lie operad is given by labeled rooted
trees [6].

4.1. Four possibilities. Let A be a vector space and let Ω be a set with a binary operation I.
Suppose that A ⊗ kΩ is endowed with an Ω-graded pre-Lie product:

(40) (x ⊗ α) B (y ⊗ β) := x Bα,β y ⊗ (α I β).

The pre-Lie axiom

(x⊗α)B
(
(y⊗β)B(z⊗γ)

)
−
(
(x⊗α)B(y⊗β)

)
⊗(z⊗γ) = (y⊗β)B

(
(x⊗α)B(z⊗γ)

)
−
(
(y⊗β)B(x⊗α)

)
B(z⊗γ)

together with the Ω-grading are equivalent to

x Bα,βIγ (y Bβ,γ z) ⊗
(
α I (β I γ)

)
− (x Bα,β y) BαIβ,γ z ⊗

(
(α I β) I γ

)
= y Bβ,αIγ (x Bα,γ z) ⊗

(
β I (α I γ)

)
− (y Bβ,α x) BβIα,γ z ⊗

(
(β I α) I γ

)
.(41)

Eq. (41) induces four possible different cases.

Case 1: let α I (β I γ) = (α I β) I γ for α, β, γ ∈ Ω. Thus Ω is a semigroup. Then

x Bα,βIγ (y Bβ,γ z) = (x Bα,β y) BαIβ,γ z, for α, β, γ ∈ Ω

and we recover the notion of family associative algebra.

Case 2: let

(42) α I (β I γ) = (β I α) I γ

for α, β, γ ∈ Ω. Then Ω is a kind of “twisted associative semigroup”, a notion which has received
little attention in the literature (see however [20] and [21]). We have then

(43) x Bα,βIγ (y Bβ,γ z) = −(y Bβ,α x) BβIα,γ z

and we recover a notion of “family twisted associative algebra” modulo a minus sign.

We now give examples of twisted semigroups, i.e. sets endowed with a binary product I
verifying Eq. (42): for any set D we consider the set ND of maps form D into the set N =

{0, 1, 2, 3, . . .} of nonnegative integers. Such a map will be denoted by α = (αd)d∈D. For any
d ∈ D, we denote by δd the map such that δd(d) = 1 and δd(e) = 0 for any e ∈ D \ {d}. Any
element α ∈ ND will be represented by the monomial Xα in d variables defined by

Xα :=
∏
d∈D

Xαd
d .
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Now consider the set

TD := D × D × ND.

A generic element of TD will be denoted by dd′Xα with d, d′ ∈ D and α ∈ ND. Let us now define
the product by

dd′Xα I ee′Xβ := d′e′Xα+δd+β+δe .

The product verifies Equation (42). Indeed, an easy computation yields

dd′Xα I (ee′Xβ I f f ′Xγ) = (ee′Xβ I dd′Xα) I f f ′Xγ = d′ f ′Xα+β+γ+δd+δe+δe′+δ f .

we prove in Paragraph 4.2 that TD is the free twisted semigroup generated by D, and we give an
explicit description of the twist-associative set operad.

Case 3: let

(44)
{
α I (β I γ) = β I (α I γ),
(α I β) I γ = (β I α) I γ.

The first relation is the NAP condition. We call NAP’ the second condition, and we call Ω a
NAPNAP’ set. Then {

x Bα,βIγ (y Bβ,γ z) = y Bβ,αIγ (x Bα,γ z),
(x Bα,β y) BαIβ,γ z = (y Bβ,α x) BβIα,γ z.

We obtain what we shall call family NAPNAP’ algebras.
We give an example of set endowed with a binary product I verifying Eq. (44), namely the

set N of multisets of positive integers (including the empty multiset ø). Let n := {n1, . . . , nk}, p =

{p1, . . . , p`} and q = {q1, . . . , qm} be three elements of N. Define the product I by

n I p := {n1 + · · · + nk + 1, p1, . . . , p`}.

Then,

n I (p I q) = p I (n I q) = {n1 + · · · + nk + 1, p1 + · · · + P` + 1, q1, . . . , qm}

(n I p) I q = (p I n) I q = {n1 + · · · + nk + p1 + · · · + p` + 2, q1, . . . , qm}.

We’ll prove in Paragraph 4.3 that this is the free NAPNAP’ set generated by the element ø, by
giving an explicit description of the NAPNAP’ operad.

Case 4: for any α, β, γ ∈ Ω,

α I (β I γ) = (α I β) I γ = β I (α I γ) = (β I α) I γ,

i.e. Ω is a set-theoretical Perm algebra. Then for any x, y, z ∈ A,

x Bα,βIγ (y Bβ,γ z) − (x Bα,β y) BαIβ,γ z = y Bβ,αIγ (x Bα,γ z) − (y Bβ,α x) BβIα,γ z.

This relation is very similar to the pre-Lie one, and deserves the name ”pre-Lie family”. We
address this last case in Paragraph 4.4
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4.2. The twist-associative operad TAs.

Definition 4.1. Let P be the set species of non-diagonal ordered pairs, defined by

P{∗} = 1,
PA = {(a′, a′′) ∈ A × A, a′ , a′′}.

for any finite set A of cardinal ≥ 2. For any bijection φ : A → B where B is a finite set of the
same cardinality than A, the relabeling isomorphism Pφ : PB → PA is defined by

Pφ(b′, b′′) =
(
φ−1(b′), φ−1(b′′)

)
.

Definition 4.2. Let A and B be two finite sets. Define partial compositions

◦a : PA ⊗ PB → PAtB\{a}, for a ∈ A.

as follows: for any ordered pair (a′, a′′) ∈ PA and (b′, b′′) ∈ PB, we set

(45) (a′, a′′) ◦a (b′, b′′) =


(b′′, a′′), if a = a′;
(a′, b′′), if a = a′′;
(a′, a′′), if a < {a′, a′′}.

Partial compositions are extended to singletons by setting 1 as the unit.

Proposition 4.3. The species P together with the partial compositions ◦a defined by Eq. (45) is
an operad.

Proof. Let A, B,C be three sets of cardinal ≥ 2, and let x = (a′, a′′) ∈ A × A, y = (b′, b′′) ∈
B × B, z = (c′, c′′) ∈ C × C. When we prove sequential associativity, there are nine cases to
consider.

1 a = a′, b = b′ 2 a = a′, b = b′′

3 a = a′, b < {b′, b′′} 4 a = a′′, b = b′

5 a = a′′, b = b′′ 6 a = a′′, b < {b′, b′′}
7 a < {a′, a′′}, b = b′ 8 a < {a′, a′′}, b = b′′

9 a < {a′, a′′}, b < {b′, b′′}

Table: the nine cases for sequential associativity

The case-by-case proof is displayed on the following table:

(x ◦a y) ◦b z =
(
(a′, a′′) ◦a (b′, b′′)

)
◦b (c′, c′′) x ◦a (y ◦b z) = (a′, a′′) ◦a

(
(b′, b′′) ◦b (c′, c′′)

)
1 (b′′, a′′) ◦b (c′, c′′) = (b′′, a′′) (a′, a′′) ◦a (c′′, b′′) = (b′′, a′′)
2 (b′′, a′′) ◦b (c′, c′′) = (c′′, a′′) (a′, a′′) ◦a (b′, c′′) = (c′′, a′′)
3 (b′′, a′′) ◦b (c′, c′′) = (b′′, a′′) (a′, a′′) ◦a (b′, b′′) = (b′′, a′′)
4 (a′, b′′) ◦b (c′, c′′) = (a′, b′′) (a′, a′′) ◦a (c′′, b′′) = (a′, b′′)
5 (a′, b′′) ◦b (c′, c′′) = (a′, c′′) (a′, a′′) ◦a (b′, c′′) = (a′, c′′)
6 (a′, b′′) ◦b (c′, c′′) = (a′, b′′) (a′, a′′) ◦a (b′, b′′) = (a′, b′′)
7 (a′, a′′) ◦b (c′, c′′) = (a′, a′′) (a′, a′′) ◦a (c′′, b′′) = (a′, a′′)
8 (a′, a′′) ◦b (c′, c′′) = (a′, a′′) (a′, a′′) ◦a (b′, c′′) = (a′, a′′)
9 (a′, a′′) ◦b (c′, c′′) = (a′, a′′) (a′, a′′) ◦a (b′, b′′) = (a′, a′′)
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Let us now turn to parallel associativity. There are seven cases to consider. Here a and a stand
for two different elements in A.

1 a = a′, a = a′′ 2 a = a′, a < {a′, a′′}
3 a = a′′, a = a′ 4 a = a′′, a < {a′, a′′}
5 a < {a′, a′′}, a = a′ 6 a < {a′, a′′}, a = a′′

7 a < {a′, a′′}, a < {a′, a′′}

Table: the seven cases for parallel associativity

The case-by-case proof is displayed on the following table:

(x ◦a y) ◦a z =
(
(a′, a′′) ◦a (b′, b′′)

)
◦a (c′, c′′) (x ◦a z) ◦a y =

(
(a′, a′′) ◦a (c′, c′′)

)
◦a (c′, c′′)

1 (b′′, a′′) ◦a (c′, c′′) = (b′′, c′′) (a′, c′′) ◦a (b′, b′′) = (b′′, c′′)
2 (b′′, a′′) ◦a (c′, c′′) = (b′′, a′′) (a′, a′′) ◦a (b′, b′′) = (b′′, a′′)
3 (a′, b′′) ◦a (c′, c′′) = (c′′, b′′) (c′′, a′′) ◦a (b′, b′′) = (c′′, b′′)
4 (a′, b′′) ◦a (c′, c′′) = (a′, b′′) (a′, a′′) ◦a (b′, b′′) = (a′, b′′)
5 (a′, a′′) ◦a (c′, c′′) = (c′′, a′′) (c′′, a′′) ◦a (b′, b′′) = (c′′, a′′)
6 (a′, a′′) ◦a (c′, c′′) = (a′, c′′) (a′, c′′) ◦a (b′, b′′) = (a′, c′′)
7 (a′, a′′) ◦a (c′, c′′) = (a′, a′′) (a′, a′′) ◦a (b′′, b′′) = (a′, a′′)

Extending to the case where A, B or C has only one element is straightforward and left to the
reader. �

Proposition 4.4. Let A = {1, 2}, let µ = (1, 2) ∈ PA, and let µ = (2, 1) be the other element of PA

obtained by permutation. The twist-associativity relation

(46) r = µ ◦2 µ − µ ◦1 µ̄ = 0

holds in the operad P.

Proof. Denoting by {a, b} another copy of A (identifiying a with 1 and b with 2), both three-
element sets A t2 A and A t1 A must be identified by means of the bijection

1
a
b

a
b
2

in order to make Equation (46) consistent. We get then

µ ◦2 µ = (1, 2) ◦2 (a, b) = (1, b) ∈ P{1,a,b},
µ ◦1 µ̄ = (1, 2) ◦1 (b, a) = (a, 2) ∈ P{a,b,2},

hence µ ◦2 µ = µ ◦1 µ̄ modulo the identification above. �

For later use, for any A, B finite sets we define the product I: PA ⊗ PB → PAtB by

α I β := (µ ◦1 α) ◦2 β.

An easy computation yields:

1 I 1 = µ,(47)
1 I (x, y) = (∗, y),(48)
(x, y) I 1 = (y, ∗),(49)

(x, y) I (z, t) = (y, t)(50)
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for any x, y ∈ A and z, t ∈ B with x , y and z , t. It is easily checked that the product verifies the
twist-associative identity

(51) α I (β I γ) = (β I α) I γ

for any finite sets A, B,C and for any α ∈ PA, β ∈ PB and γ ∈ PC.

Theorem 4.5. The operad P of non-diagonal ordered pairs is isomorphic to the twist-associative
operad T := M

/
〈r〉.

Proof. We still adopt the notations in the proof of Proposition 4.4. The twist-associative operad
is defined as the quotient of the magmatic operad M (the free operad generated by a single binary
operation ν) by the ideal 〈r〉 generated by the twist-associative relation r = ν ◦2 ν − ν ◦1 ν̄. Let
A, B,C be three finite sets. Defining ν̃ as the image of ν in the quotient, we have

(52) α B (β B γ) = (β B α) B γ

for any α ∈ TA, β ∈ TB and γ ∈ TC, where B is defined by

α B β := (̃ν ◦1 α) ◦2 β.

As the ordered pair µ = (1, 2) verifies the twist-associative relation (46), there is a unique surjec-
tive operad morphism Φ : T → P such that Φ(̃ν) = µ. It obviously verifies

(53) Φ(α B β) = Φ(α) I Φ(β)

for any α ∈ TA and β ∈ TB. Let us prove that Φ is bijective. Define ΨA : PA → TA by induction
on the arity n = |A| ≥ 2. For n = 1 we set Ψ(1) = 1, and for n = 2 it amounts to Ψ(µ) = ν̃.
Suppose that the inverse Ψ of Φ is well-defined (and hence bijective) up to arity n, and let A be
of cardinality n + 1. From (48), any (x, y) ∈ PA can be written (x, y) = 1 I (x′, y), where 1 ∈ P{x}
and (x′, y) ∈ PA\{x}. Hence we necessarily have

Ψ(x, y) = 1 B Ψ(x′, y).

It is well defined because it does not depend on the choice of x′. Indeed, if another choice x′′ is
possible, then

(x, y) = 1 I (x′′, y) = 1 I
(
1 I (x′, y)

)
,

hence

1 B Ψ(x′′, y) = 1 B
(
1 B Ψ(x′, y)

)
, (x′, y) ∈ A \ {x, x′′}

= 1 B
(
1 B Ψ(x′′, y)

)
, (x′′, y) ∈ A \ {x, x′} (by induction hypothesis),

= 1 B Ψ(x′, y) (again by induction hypothesis).

We have
ΦΨ(x, y) = 1 B ΦΨ(x′, y) = 1 B (x′, y) = (x, y)

by induction hypothesis, hence ΦAΨA = IdPA . Furthermore, for any partition A = B t C and for
any β ∈ PB, γ ∈ PC we have

Ψ(β I γ) = Ψ(β) B ψ(γ).
This is easily proven by induction on the cardinality of B, the case |B| = 1 being equivalent to the
definition of Ψ: if |B| ≥ 2 we write β = 1 I β′ and then

Ψ(β I γ) = Ψ
(
(1 I β′) I γ

)
= Ψ

(
β′ I (1 I γ)

)
(by (51))

= Ψ(β′) B Ψ(1 I γ) (by induction on |B|)
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= Ψ(β′) B
(
1 B Ψ(γ)

)
=

(
1 B Ψ(β′)

)
B Ψ(γ) (by (52))

= Ψ(β) B Ψ(γ).

Now any α ∈ TA can be written β B γ with β ∈ TB, γ ∈ TC, where B and C are two finite sets of
cardinality ≤ n such that A = B tC. We have then

ΨΦ(α) = ΨΦ(β B γ) = ΨΦ(β) B ΨΦ(γ) = β B γ = α

again by induction hypothesis, hence ΨAΦA = IdTA . This ends up the proof of Theorem 4.5. �

Let us remark that, forgetting the labels and putting instead a decoration by a given set D,
we recover the description of the free twisted associative semigroup generated by D given in
Paragraph 4.1.

4.3. The operad NAPNAP′ of corollas.

Definition 4.6. A corolla structure β on a finite set B is a quasi-order admitting one unique
minimum r, such that any element different from r is a maximum.

The unique minimum r is the root of the corolla. Any b , r verifies r ≤ b but never b ≤ r.
The non-root elements are partitioned into branches B1, . . . , Bp, which are the equivalence classes
(excluding the one of the root) under the relation ∼ defined by b ∼ b′ if and only if b ≤ b′ and
b′ ≤ b. We shall write

β = [B1, . . . , Bp]r.

For example, on the finite set B : {a, b, c, d, e, f , g}, the notation β = [{b, c}, {d}, {e, f , g}]a stands
for the corolla

β =
a

bc d e f g

Let KB be the set of corolla structures on B. This forms a set species: any bijection ϕ : B → C
induces a bijection Kϕ : KC → KB by relabeling.

Now let us define the operad structure. Let B,C be two finite sets, let b ∈ B, let β ∈ KB and
γ ∈ KC. Let r be the root of the corolla γ. The partial composition β ◦b γ : KB × KC → KBtbC is
defined as follows:

• if b is the root of β, then β ◦b γ is the corolla on Btb C obtained by choosing r as the root,
and by keeping all branches in Btb C \ {r}. In particular, elements in B \ {b} and elements
in C \ {r} belong to different branches, and thus are uncomparable.
• if b is not the root of β, then β ◦b γ is the corolla on B tb C obtained by replacing b by the

whole C in the branch of b.
Let us give an example for better understanding.

a

bc d e f g
◦a

1

23 456
=

1

bc d e f g 45623

a

bc d e f g
◦e

1

23 456
=

a

bc d f g123456



28 LOÏC FOISSY, DOMINIQUE MANCHON, AND YUANYUAN ZHANG

We leave it to the reader to show that K endowed with the partial compositions defined above is
an operad, i.e. prove both sequential and parallel associativity axioms. Now define the product I
on K by

β I γ := (
2

1
◦1 β) ◦2 γ.

Proposition 4.7. The product I verifies for any α, β, γ ∈ K:
(a) α I (β I γ) = β I (α I γ),
(b) (α I β) I γ = (β I α) I γ.

Proof. Both sides of Equation (a) are equal to
(

3

1 2
◦1 α

)
◦2 β

 ◦3 γ, and both sides of

Equation (b) are equal to
(

3

12
◦1 α

)
◦2 β

 ◦3 γ. Details are left to the reader. �

Theorem 4.8. The operad K of corollas is the NAPNAP’ operad.

Proof. The NAPNAP’ operad is defined as the quotient of the magmatic operad M by the NAP
and NAP’ relations, namely

NAPNAP’ := M
/〈
µ ◦2 µ − τ12(µ ◦2 µ), µ ◦1 µ − τ12(µ ◦1 µ)

〉
.

Defining µ as the image of µ in the quotient, we further introduce the product B on the NAPNAP’
operad itself, defined by

α B β := (µ ◦1 α) ◦2 β.

The NAP and NAP’ relations for µ yield analogous relations for B, namely
(a) α B (β B γ) = β B (α B γ),
(b) (α B β) B γ = (β B α) B γ.

The corolla
2

1
respects both NAP and NAP’ relations, namely

r

1
◦r

s

2
= τ12

(
r

1
◦r

s

2 )
=

s

1 2
.

and

r

a
◦a

2

1
= τ12

(
r

a
◦a

2

1 )
=

r

12
.

Hence the operad morphism Φ̃ from M onto K uniquely defined by Φ̃(µ) =
2

1
vanishes on

the ideal generated by the NAP and NAP’ relations, giving rise to the unique surjective operad
morphism

Φ : NAPNAP’ −→ K

such that Φ(µ) =
2

1
. It is obvious that Φ changes product B into product I. It remains to prove

that Φ is an isomorphism. We will prove the existence of an inverse Ψ : KB → NAPNAP’B of
Φ : NAPNAP’B → KB for any finite set B by induction on the cardinal of B. The cases where B
has one or two elements are trivial. Suppose the result to be true up to n elements, and let B be of
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cardinal n+1. For any corolla structure β on B, there is r ∈ B and a partition B\{r} = B1t· · ·tBp

such that
β = [B1, . . . , Bp]r.

We now proceed by a secondary induction on p. If p = 1, we have β = [B1]r = β′ I {r}, where
β′ is any corolla structure on B \ {r}, and where we identify the one-element set {r} with the only
corolla structure which exists on it. We set:

Ψ(β′) B 1,

ΦΨ(β) = ΦΨ(β′) I ΦΨ({r}) = β by induction hypothesis. For p ≥ 2 we have

β = [B1, . . . , Bp]r = β1 I [B2, . . . , Bp]r,

where β1 is any corolla structure on B1. We can define by induction hypothesis:

Ψ(β) := Ψ(β1) B Ψ([B2, . . . , Bp]r).

We have again ΦΨ(β) = β for the same reasons. To make sure that Ψ(β) is well-defined, one
has to prove that the result is invariant under permutation of the p branches. Invariance under
permutation of the p−1 last ones is obvious by secondary induction hypothesis. To get invariance
under permutation of B1 and B2, define

Ψ′(β) := Ψ(β2) B Ψ([B1, B3 . . . , Bp]r)

where β2 is any corolla structure on B2. We have then

Ψ(β) = Ψ(β1) B Ψ([B2, . . . , Bp]r)

= Ψ(β1) B
(
Ψ(β2) B Ψ([B3, . . . , Bp]r)

)
=

(
Ψ(β1) B Ψ(β2)

)
B Ψ([B3, . . . , Bp]r)

=
(
Ψ(β2) B Ψ(β1)

)
B Ψ([B3, . . . , Bp]r)

= Ψ(β2) B
(
Ψ(β1) B Ψ([B3, . . . , Bp]r)

)
= Ψ(β2) B Ψ([B1, B3 . . . , Bp]r)
= Ψ′(β).

Finally we also have ΨΦ = IdNAPNAP’. It is easily proven by induction on arity, using Ψ(α I β) =

Ψ(α) B Ψ(β). This ends up the proof of Theorem 4.8. �

4.4. Two-parameter Ω-pre-Lie algebras and the Perm operad. Now we give the definition of
two-parameter Ω-pre-Lie algebras. This requires that the product I on Ω fulfils the requirements
of the fourth case of Paragraph 4.1:

Definition 4.9. Let Ω be a set-theoretical perm algebra [6, 5], i.e. a set with a product I such that

(54) α I (β I γ) = (α I β) I γ = β I (α I γ) = (β I α) I γ

for any α, β, γ ∈ Ω, i.e. we ask that the product I is both associative and NAP. A two-parameter
Ω-pre-Lie algebra is a family (A, (Bα,β)α,β∈Ω) where A is a vector space and Bα,β : A ⊗ A → A,
such that for any x, y, z ∈ A and α, β ∈ Ω, satisfying

(55) x Bα,βIγ (y Bβ,γ z) − (x Bα,β y) BαIβ,γ z = y Bβ,αIγ (x Bα,γ z) − (y Bβ,α x) BβIα,γ z.
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The Perm operad governing relations (54) has been described in [5]. In the species formalism,
PermA := A for any finite set A, and the partial compositions are defined as follows: for any finite
sets A, B, for any a, a′ ∈ A and b′ ∈ B,

a′ ◦a b′ =

{
b′ if a = a′;
a′ if a , a′.

Note that if (Ω,I) is a set-theoretical Perm algebra, then it is also a semigroup, a twisted as-
sociative semigroup, and a set-theoretical NAPNAP’ algebra. Hence, we can consider the operad
AsΩ of family associative algebras on Ω as in Case 1, TAsΩ of family twisted associative algebras
on Ω defined by (43) as in Case 2, NAPNAP′Ω of family NAPNAP’ algebras on Ω as in Case 3,
and PreLieΩ of family pre-Lie algebras on Ω as in Case 4. Then, in an immediate way:

Proposition 4.10. For any set-theoretical Perm algebra Ω, we have the two following diagrams.

As

&& &&
TAs // // Perm

NAPNAP′

88 88

AsΩ

PreLieΩ
// //

77 77

'' ''

TAsΩ

NAPNAP′Ω

The four operads in the first diagram are set operads, and all arrows are surjective.

5. Color-mixing operads and family algebraic structures

We follow the lines of [2, Section 2], except that we consider gradings taking values in an arbi-
trary set Ω rather than in a semigroup. The key point is that if an algebraic structure on a graded
object is compatible with the grading in a natural sense, this algebraic structure in turn provides
an algebraic structure on Ω. For example, a degree-compatible associative algebra structure on
a graded object yields a semigroup structure on Ω, a degree-compatible dendriform (resp. du-
plicial) algebra structure on a graded object yields a diassociative (resp. duplicial) semigroup
structure on Ω, and so on.

5.1. Color-mixing operads: the principle. Let Ω be a set of colors and C be a bicomplete
monoidal category. Keeping the notations of Paragraphs 3.3 and 3.4, for any operad P, all com-
ponents PΩ

A,α,ω of the colored operad PΩ are isomorphic once the finite set A of inputs is fixed.
This reflects the fact that, if a P-algebra V is a coproduct

V =
∐
ω∈Ω

Vω,

any operation µ : V⊗A → V with A-indexed inputs has a priori nonzero components

µα,ω :
⊗
a∈A

Vα(a) −→ Vω

for any α ∈ ΩA and ω ∈ Ω. This clearly contradicts the principle outlined in the introducting
paragraph of this section, according to which the graded object V = (Vω)ω∈Ω should be not only
a PΩ-algebra, but also a ”graded P-algebra” in some sense. This means that the output color ω
should be a combination of the input colors α in a way prescribed by the operad P.
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5.2. Color-mixing linear operads. From now on, we stick to the case when C is the category of
vector spaces over some field k. The coproduct is now given by the usual direct sum ⊕. Guided by
the dendriform and the pre-Lie examples detailed in the previous sections, we see that the color
set Ω will be endowed with a Pj-algebra structure, where Pjis a set operad derived from the
linear operad P. For example, if P is the dendriform operad, Pjis the the diassociative operad,
and if P is the pre-Lie operad, Pjis the Perm operad. When P is the linearization of a set operad
P, we should get Pj= P, as the duplicial example suggests.

We suppose that P is of finite presentation, i.e. it can be written as

(56) P = ME

/
R,

where E is a set species of generators, ME is the free set operad generated by E, and R is the op-
eradic ideal of the linear operad ME = k.ME generated by a finite linearly independent collection
µ1, . . . , µN of elements. Each of these elements can be written as

µi =

ki∑
j=1

λi
jµ

i
j,

where (µi
j) j is a linearly independent collection of monomial expressions involving elements of E

and partial compositions, and λi
j ∈ k − {0}.

Definition 5.1. The set operadic equivalence relation generated by R is the finest equivalence
relation Rjon ME, compatible with the set operad structure, such that

µi
p R

jµi
q for any i ∈ {1, . . . ,N} and p, q ∈ {1, . . . , ki}.

The set operad associated to P is the set operad

Pj:= ME

/
Rj.

Remark 5.2. The set operad Pjdepends on the presentation chosen for the linear operad P. When
P is given by the linearization of a set operad P, we have Pj= P.

Remark 5.3. Let Q be a quadratic set operad, and let P be the Koszul dual [11] of its linearization.
If E = Q2, the free set-operad ME generated by E is combinatorially represented by binary trees
which leaves are indexed and vertices decorated by elements of E. Let ∼ be the equivalence on
ME(3) such that ME(3)/ ∼= Q(3). By definition of the Koszul dual, P is generated by E, and the
relations ∑

T∈C

±T = 0,

where C is a class of ∼ and the signs ± depend only of the form of the tree. Applying Definition
5.1, we obtain that Rj=∼, so in this case, Pj= Q. This holds for example if Q is the associative,
or permutative, or diassociative operad: then P is the operad of, respectively, associative, or pre-
Lie, or dendriform algebras, with their usual presentations.

Proposition 5.4. Let Ω be a set endowed with a Pj-algebra structure. Considering the ME-
algebra structure on Ω given by the operad morphism πh : ME −→→ Pj,

(a) The colored subspecies M̃Ω
E of MΩ

E defined by

(M̃Ω
E )A,α,ω := {µ ∈ (ME)A, µ(α) = ω}

is a set colored suboperad of MΩ
E .
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(b) The colored subspecies M̃Ω
E of MΩ

E defined by

(M̃Ω
E )A,α,ω := k.(M̃Ω

E )A,α,ω

is a linear colored suboperad of MΩ
E .

(c) The colored subspecies I of MΩ
E defined by

IA,α,ω := k.{µ ∈ (ME)A, µ(α) , ω}

is a right colored operadic ideal, and the quotient ME/I is isomorphic to (M̃Ω
E ) as a

colored species.

Proof. Let (A, α, ω) and (B, β, ζ) be two Ω-colored finite sets. Let µ ∈ (M̃Ω
E )A,α,ω and ν ∈ (M̃Ω

E )B,β,ζ .

We have then by definition of M̃Ω
E ,

µ(α) = ω and ν(β) = ζ.

Now let a ∈ A. The partial composition µ ◦a ν is defined in the colored operad MΩ
E if and only if

ζ = α(a). In that case we obviously have

ω = µ(α) = (µ ◦a ν)(α ta β),

hence µ ◦a ν ∈ (M̃Ω
E )AtaB, αtaβ, ω. The second assertion is an immediate consequence of the first.

Now let µ ∈ (ME)A and ν ∈ (ME)B where A and B are two finite sets, and choose a ∈ A. The
partial composition µ◦aν vanishes in MΩ

E unless the color matching condition ζ = α(a) is verified.
If µ ∈ I, then by definition µ(α) , ω, hence

(µ ◦a ν)(α ta β) =

{
µ(α) if ζ = α(a),

0 if not,

hence µ ◦a ν ∈ I. The last assertion is obvious from the definition. �

We denote by J the two-sided colored operadic ideal of ME generated by I. The following
corollary is immediate:

Corollary 5.5. Let π be the projection from the free linear operad ME onto P, and let πhbe the
projection from ME onto k.Pj. Suppose that Ω is a Pj-algebra. Then the colored subspecies
P̃Ω := π(M̃E) of PΩ is a linear colored suboperad of PΩ, and π(J) is a two-sided colored operadic
ideal of PΩ.

Definition 5.6. The colored operad ˜̃
P

Ω

:= P/π(J) is the color-mixing operad associated to the
operad P. It does depend on the presentation P = ME/R, and supposes a Pj-algebra structure on
Ω.

Remark 5.7. The notion of color-mixing operad was already approached in the case when Ω

is a commutative semigroup : an Ω-colored operad in which the output color is the sum of the
input colors was given the name current-preserving operad in [18]. The colored suboperad P̃Ω

associated to any ordinary operad P is an example.

Remark 5.8. The right ideal I is not two-sided in general, hence the color-mixing operad ˜̃
P

Ω

is
in general a proper quotient of the colored suboperad P̃Ω.
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5.3. Graded algebras over a color-mixing operad and family structures. Let Ω be a set, let
k be a field, and let P be an operad in the category of k-vector spaces. We keep the notations of
the previous paragraphs, and in particular we fix a finite presentation P = ME/R.

Definition 5.9. An Ω-graded P-algebra is an algebra over the Ω-colored operad ˜̃
P

Ω

, i.e. an

Ω-graded k-vector space V together with a morphism of colored operads Φ : ˜̃
P

Ω

→ End(V).

Let us remark that the notion of Ω-graded P-algebra depends on the presentation of the operad P.

Proposition 5.10. Any Ω-graded P-algebra V is an algebra over both colored operads PΩ and
P̃Ω.

Proof. It is an immediate consequence of the following diagram of Ω-colored operads:

P̃Ω ↪−−−→PΩ −−−→→
˜̃
P

Ω

−→ End(V).

�

We are now ready to define Ω-family P-algebras, also called Ω-relative P-algebras in M.
Aguiar’s terminology [2, Definition 14]:

Definition 5.11. An Ω-family P-algebra is an Ω-graded P-algebra for which the underlying
Ω-graded object is uniform.

Again, this notion depends on the presentation of P.

Proposition 5.12. Any Ω-family P-algebra is an Ω-graded vector space U(V), where V is an

algebra over the operad F(˜̃PΩ

).

Proof. By definition, an Ω-family P-algebra is given by a vector space V and a colored operad
morphism

Φ : ˜̃
P

Ω

−→ End
(
U(V)

)
.

We have End
(
U(V)

)
= U(EndV) by Equation (39). The functor U of the left- (resp. right-) hand

side is defined in Paragraph 3.4 (resp. 3.3). The functor U is right-adjoint to the completed
forgetful functor F defined in Paragraph 3.3, hence there is a morphism of ordinary operads from

F(˜̃PΩ

) to EndV . �

Finally, we recover the close link between algebras and family algebras which was already
observed on the known examples, and established by M. Aguiar in the case when Ω is a semigroup
[2, Paragraph 2.4]:

Proposition 5.13. Let V = U(V) be an Ω-family P-algebra. Then the vector space FU(V) =

V ⊗ kΩ is a P-algebra.

Proof. From Proposition 5.10, V = U(V) is an algebra over PΩ = U(P). We have then a colored
operad morphism

Φ : U(P) −→ End
(
U(V)

)
= U(EndV).

Now the functor U is left-adjoint to the forgetful functor F, hence there is an operad morphism

Ψ : P −→ FU(EndV).



34 LOÏC FOISSY, DOMINIQUE MANCHON, AND YUANYUAN ZHANG

We conclude by the following observation: for any finite set A we have(
FU(EndV)

)
A =

⊕
α∈ΩA, ω∈Ω

(EndV)A

⊂
⊕
ω∈Ω

∏
α∈ΩA

(EndV)A

= End
(
FU(V)

)
A.

These inclusions jA yield an operad morphism j, hence j ◦ Ψ is an operad morphism from P to
End

(
FU(V)

)
. �
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