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Abstract : 
 
In order to better understand and predict the dynamics of benthic macroinvertebrate communities, we need to 
first define the functional components of benthic biodiversity and then provide a mechanistic description of 
how they interact with their abiotic environment, their basic resources and each other. These interactions 
should be largely controlled by readily available biological traits, making trait-based modelling an ideal 
framework for the synthesis of relevant hypotheses from ecological theory and expert knowledge. With the 
help of benthic species traits, we derived a set of first principles regarding the role of organisms in processes 
of environmental filtering, consumption of algae/detritus, predation, use of space, biogenic habitat 
modification and trade-offs in the utilization and allocation of resources. These principles were incorporated 
into qualitative models in the form of functional relationships linking groups of benthic organisms in the Rance 
estuary (Brittany, France). The general stability of these models illustrates their potential to persist in time and 
to constitute a plausible representation of the natural world. Their structure provides insight into the role of 
various community assembly mechanisms and the direction that the system might take in response to 
perturbations. The results are expected to inform the development of quantitative models reproducing the 
spatial and temporal dynamics of marine benthic biodiversity in the Rance estuary. 

Highlights 

► We derived first principles on the role of benthic organisms in community assembly. ► These principles 
dictated functional relationships among groups of benthic species. ► Groups and functional relationships 
comprised qualitative models of benthic systems. ► Stability analysis supported the models’ potential to 
represent benthic communities. ► Model structure offered insight into the role of some community assembly 
mechanisms. 

 

Keywords : Benthic macroinvertebrates, Biological traits, Biotic interactions, Community assembly, 

Functional groups, Qualitative modelling 
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26 resources. These principles were incorporated into qualitative models in the form of 

27 functional relationships linking groups of benthic organisms in the Rance estuary 

28 (Brittany, France). The general stability of these models illustrates their potential to 

29 persist in time and to constitute a plausible representation of the natural world. Their 

30 structure provides insight into the role of various community assembly mechanisms 

31 and the direction that the system might take in response to perturbations. The results 

32 are expected to inform the development of quantitative models reproducing the 

33 spatial and temporal dynamics of marine benthic biodiversity in the Rance estuary.

34

35 Keywords: Benthic macroinvertebrates, Biological traits, Biotic interactions, 

36 Community assembly, Functional groups, Qualitative modelling

37

38 1

39 Introduction

40 Reliable prediction of biodiversity responses to environmental change remains a 

41 key challenge of ecological research (Sutherland et al., 2013). Because it involves 

42 combinations of species and environmental gradients that have not been observed 

43 yet, it requires a mechanistic understanding of the processes that shape biological 

44 communities (Kearney and Porter, 2009). Ecological theory has generated many 

45 hypotheses about the maintenance of species diversity (Chesson, 2000). However, 

46 empirical investigation of these hypotheses has been mostly performed by studies of 

47 relatively small spatial and temporal scales (Cardinale et al., 2012). This has limited 

48 the potential of their findings to be extrapolated to larger scales and has added 

49 uncertainty to projected trends of biodiversity (Pereira et al., 2010).
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50 In ecological systems where observation and experimentation fall short of fully 

51 revealing the drivers of biodiversity, the analysis of mechanistic models has been 

52 suggested as an alternative way of identifying the most likely community assembly 

53 mechanisms (Amarasekare, 2003). Since the role of organisms in the functioning of 

54 ecosystems is defined by their traits, the development of trait-based modelling 

55 approaches has been suggested as a fruitful avenue for models of ecological 

56 systems (Ings et al., 2009). Limited understanding of specific mechanisms should not 

57 exclude them from the modelling procedure (Queirós et al., 2015). Instead, 

58 awareness about the assumptions that are made at each step should allow models to 

59 test alternative hypotheses, elucidate domains of uncertainty and identify critical 

60 areas for research.

61 The development of mechanistic models of biodiversity can be considered to be 

62 subject to two main conditions. First, the functional components of biodiversity need 

63 to be defined through rigorous and testable procedures (Petchey and Gaston, 2006). 

64 Next, a mechanistic description of the way these components interact with their 

65 environment and among themselves is necessary. These issues have traditionally 

66 been addressed in the context of food web modelling. Organisms are typically 

67 separated into groups according to their food sources, and interactions among them 

68 are assumed to represent their trophic behaviour (Yodzis and Innes, 1992). In lack of 

69 empirical information to help formulate these models, various methods have been 

70 developed for the construction of food webs, based on principles of community (e.g., 

71 Cohen and Newman, 1985; Williams and Martinez, 2000; Cattin et al., 2004) or 

72 ecosystem ecology (e.g., Fath, 2004; Morris et al., 2005; Halnes et al., 2007). Still, a 

73 disproportionate focus on trophic interactions has restricted the scope of most 

74 modelling efforts (but see Kéfi et al. (2012)).
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75 Predicting biodiversity patterns is particularly challenging for communities of 

76 marine benthic macroinvertebrates (Constable, 1999). The study of these systems 

77 has long suffered from a lack of empirical information (Solan et al., 2003), while non-

78 trophic interactions often play a central role. Many of these organisms can alter the 

79 physical or chemical properties of their environment in ways that significantly impact 

80 other members of their communities (Meadows et al., 2012). These effects appear to 

81 be non-linear and form intricate feedback cycles (Herman et al., 1999), while they can 

82 greatly vary among different life stages (Pineda et al., 2009). Along with the 

83 prevalence of omnivory and facultative feeding modes, this has reduced the 

84 pertinence of classic trophic groupings of benthic macrofauna (Snelgrove and 

85 Butman, 1994). Moreover, theoretically derived allometries that have facilitated the 

86 quantification of trophic interactions appear to be less efficient for their non-trophic 

87 counterparts (Berlow et al., 2009; Petchey et al., 2008), in support of a more 

88 mechanistic representation of the latter.

89 Quite independent of mechanistic modelling, an increased interest in the 

90 functioning of marine benthic communities has led to the compilation of large data 

91 bases of species traits. At the same time, theoretical and expert knowledge about 

92 potential trait associations is being continuously generated. Particularly lacking is a 

93 systematic procedure for the assignment of functional groupings and inter-group 

94 relationships on the basis of such readily available information. Recent work in the 

95 terrestrial environment led to the development of a trait-based method for the 

96 construction of functional groups for models of plant diversity (Boulangeat et al., 

97 2012). The conceptual and methodological framework was provided by the emergent 

98 group hypothesis, which assumes functional equivalence within and functional 

99 divergence among emergent groups of species (Hérault, 2007). The adaptation of 
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100 this framework to the benthic macroinvertebrate communities of the Rance estuary 

101 (Brittany, France) can provide the functional components for a mechanistic 

102 representation of the system (Alexandridis et al., 2017). Here we implement these 

103 components in a demonstration of a systematic procedure for the assignment of 

104 functional relationships between them. In a first conception of the system, we are 

105 restricted to the qualitative nature of the relationships.

106 The objective of our study is to use mechanistic models of benthic macrofauna, 

107 in order to assess the role of different processes in shaping biodiversity patterns in 

108 the Rance estuary. To this end, we represented benthic macroinvertebrate 

109 communities through signed-directed graph (or signed digraph) models. The 

110 previously defined groups of species comprised the functional components of the 

111 system and were assigned to sub-systems based on rules of environmental filtering. 

112 In each of these sub-systems, groups were linked by functional relationships that 

113 were largely derived from ecological theory and expert knowledge regarding general 

114 community assembly mechanisms. This procedure was dictated by each group's 

115 assigned trait values and representative species. The stability analysis of the signed 

116 digraphs demonstrated the potential of the respective systems to persist in time and, 

117 therefore, to constitute a plausible representation of the natural world. The structure 

118 of the models gave some insight into the role of different community assembly 

119 mechanisms, as well as the direction of the system’s response to potential 

120 perturbations. This work serves as a first step toward quantitative mechanistic models 

121 that will be able to reproduce the spatial and temporal dynamics of benthic 

122 biodiversity in the Rance estuary (Alexandridis, 2017).
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125 Methods

126 2.1

127 Study site

128 The Rance estuary (Brittany, France) is situated in the southern part of the 

129 English Channel (Fig. 1). The site is characterized by the presence of a tidal power 

130 plant at its mouth. The operating constraints of the installation have reduced the tidal 

131 range in the estuary compared to the open sea. The intertidal zone has shifted from 

132 70% of the total surface of the estuary before the construction of the power plant, to 

133 50% after. Maximum water depth is 17 m at low tide, but the main part of the basin is 

134 5-6 m deep. The sluice and turbine currents from the power plant have eroded parts 

135 of the riverbed. Sandbanks closest to the dam have shifted and the bed is 

136 predominantly covered with gravel or pebbles (Retière, 1994). At the same time, long 

137 periods of slack water have promoted the deposition of fine particles in coves and 

138 bays (Bonnot-Courtois and Lafond, 1991). From downstream to upstream of the 

139 estuary, pebbles and coarse sands are replaced by medium and fine sands, muddy 

140 sands and finally muds upstream of Port-St-Hubert. A similar sequence is observable 

141 from the central channel of the estuary to its banks.

142 Sediment samples were collected from 113 stations on the bed of the Rance 

143 estuary in April 1995, prior to the spring recruitment (Fig. 1). The sampled stations 

144 are expected to represent the variability of benthic communities in the system. A total 

145 of 240 macroinvertebrate (i.e., retained by a 1 mm sieve) species or higher taxonomic 

146 groups belonging to 9 phyla were identified in the samples and their abundances in 

147 each station were measured (Desroy, 1998).
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149

150 Fig. 1. Map of the study site. The Rance estuary is situated on the northern coast of 

151 Brittany, France. Crosses indicate the location of the 113 stations that were sampled 

152 in the spring of 1995. The tidal power plant is located at the mouth of the estuary, 

153 south of the city of St-Malo
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155 2.2

156 Functional groups
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157 For the representation of the primary functional components of benthic 

158 macroinvertebrate communities in the Rance estuary, we employed 20 functional 

159 groups, previously built on the basis of biological trait information for the 240 species 

160 of the system in 1995 (Alexandridis et al., 2017). The collected abundance data set 

161 allowed each of the groups to be assigned with a representative species along with a 

162 value for each of the 14 biological traits (Table 1). The traits are expected to describe 

163 the role of benthic algae/detritus feeders and predators/scavengers in 7 important 

164 community assembly mechanisms (Table 2). The list of mechanisms was mostly 

165 adopted from the framework developed by Boulangeat et al. (2012) for dynamic 

166 models of terrestrial vegetation. A few adjustments were made to the original 

167 framework, in order to adapt it to marine benthic systems (Alexandridis et al., 2017).

168
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169 Table 1. Functional groups with their assigned representative species and biological trait values (Alexandridis et al., 2017). For 

170 details about the biological traits, see Table 2. Group names starting with ‘H’ correspond to groups of algae/detritus feeders and 

171 those starting with ‘C’ correspond to groups of predators/scavengers

Groups Representative species T1. temperature T2. development T3. dispersal T4. fecundity T5. tide/salinity T6. substrate T7. size (cm) T8. area T9. position T10. mobility T11. growth rate T12. lifespan (yr) T13. epibiosis T14. engineering

H1 Morchellium argus eurythermal brooded short low stenohaline rock 3.3 0.1 epifauna sessile 2.6 1.7 epibiont neutral

H2 Lepidochitona cinerea stenothermal planktonic short high stenohaline rock 10.8 4.1 epifauna mobile 0.9 11.6 epibiont neutral

H3 Balanus crenatus eurythermal planktonic long high euryhaline rock 2.0 0.8 epifauna sessile 2.5 2.0 epibiont neutral

H4 Crepidula fornicata stenothermal planktonic long high stenohaline rock 7.6 0.0 epifauna sessile 1.9 11.2 basibiont neutral

H5 Oligochaeta stenothermal laid short low emersed muddy sand 4.5 5.0 infauna mobile 3.4 2.0 neutral destabilizer

H6 Thyasira flexuosa eurythermal planktonic short low stenohaline mud 3.6 0.8 infauna mobile 1.0 10.0 neutral stabilizer

H7 Melinna palmata stenothermal brooded short low stenohaline mud 7.5 0.3 interface sessile 2.6 3.6 neutral stabilizer

H8 Notomastus latericeus stenothermal brooded short low stenohaline muddy sand 6.0 2.9 interface mobile 2.6 1.9 neutral destabilizer

H9 Hediste diversicolor eurythermal laid short high emersed muddy sand 12.8 0.2 interface mobile 2.1 3.4 neutral destabilizer

H10 Malacoceros fuliginosus eurythermal planktonic long high euryhaline mud 8.5 1.9 interface mobile 2.5 2.7 neutral destabilizer

H11 Galathowenia oculata eurythermal planktonic long high euryhaline mud 11.1 0.0 interface sessile 2.7 4.4 neutral stabilizer

H12 Glycymeris glycymeris stenothermal planktonic short high stenohaline muddy gravel 8.0 1.4 infauna mobile 0.8 15.0 neutral stabilizer

H13 Anapagurus hyndmanni stenothermal planktonic long high stenohaline gravel 10.0 0.1 epifauna mobile 0.6 10.0 neutral neutral

H14 Cerastoderma edule stenothermal planktonic long high emersed muddy sand 8.6 0.5 interface mobile 0.7 8.9 neutral stabilizer

C1 Sphaerosyllis bulbosa stenothermal brooded short low stenohaline gravel 1.3 0.5 epifauna mobile 4.7 1.9 neutral neutral

C2 Marphysa bellii stenothermal planktonic short high stenohaline muddy sand 23.3 0.3 interface mobile 1.1 4.7 neutral neutral

C3 Nephtys hombergii stenothermal planktonic long high stenohaline gravel 10.5 0.3 interface mobile 2.2 7.3 neutral neutral

C4 Myrianida edwardsi stenothermal planktonic long low stenohaline mud 1.4 3.1 interface mobile 5.8 1.9 neutral neutral

C5 Urticina felina eurythermal planktonic short high euryhaline rock 16.7 10.3 epifauna sessile 1.1 14.0 epibiont neutral

C6 Syllis cornuta stenothermal planktonic long low stenohaline rock 7.4 5.2 epifauna mobile 2.3 2.3 epibiont neutral
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174 Table 2. List of community assembly mechanisms, biological traits that represent the 

175 organisms’ role in them, potential trait values and comments about their assignment 

176 to the system’s species, which formed the basis for the construction of the 20 

177 functional groups (Alexandridis et al., 2017)

Mechanisms Biological traits Trait values Comments

T1. low temperature 
tolerance eurythermal/stenothermal

Species that can tolerate continued exposure to single-digit 
temperatures (eurythermal) were distinguished from those that 
cannot (stenothermal).

Resistance to 
perturbation

T2. early development 
mode planktonic/laid/brooded

Trait values should define a gradient of increasing ability to 
cope with perturbations during the early life stages, due to 
increasing investment in early offspring survival.

T3. larval dispersal 
distance short/long

Species were separated in two groups based on their 
maximum observed dispersal distance, with a distance of
10 km used as the breaking point.

Dispersal 
potential

T4. maximum 
fecundity low/high

Species were separated in two groups, with the number of 
1000 eggs produced by a female of each species per year 
used as the breaking point.

T5. tidal emersion/
low salinity tolerance

emersed/euryhaline/
stenohaline

Soft bottom species that can tolerate long tidal exposure 
should be able to tolerate low salinity (emersed). Immersed 
species either can tolerate salinities that differ greatly from 
those of the open sea (euryhaline) or cannot (stenohaline).Environmental 

filtering
T6. preferred 
substrate type

mud/muddy sand/
sand/muddy gravel/
gravel/rock

The assignment of one value to each species represented its 
greatest substrate affinity, but was often too restrictive.

T7. maximum size 1 cm/2 cm/10 cm/20 cm/
40 cm

Trait values should define a gradient of increasing area that 
can be searched for food or distance from the substrate, which 
should enhance food availability (McLean and Lasker, 2013).

Competitive 
effect

T8. minimum space 
requirement

0.003/0.1/49.5
(min./median/max.)
Values are not absolute, 
but rather relative levels.

Species with the lowest trait value should compete best for 
space (Tilman, 1980). Trait values were derived from data on 
body mass (Robinson et al., 2010) and use of an exponent of 
¾ from the metabolic theory of ecology (Jetz et al., 2004).

T9. preferred 
substrate position infauna/interface/epifauna

Living deep in the sediment (infauna), at its upper layer 
(interface) or on its surface (epifauna) should allow species co-
existence in spite of established competitive hierarchies.

Response to 
competition

T10. adult mobility mobile/sessile Differences in the ability of species to move should lead to 
resource partitioning and avoidance of competition.

T11. population 
growth rate

0.27/2.14/6.95
(min./median/max.)
Values are not absolute, 
but rather relative levels.

Trait values were derived from data on body mass (Robinson 
et al., 2010) and use of an exponent of -¼ from the metabolic 
theory of ecology (Savage et al., 2004).

Population 
dynamics

T12. maximum 
lifespan 1 yr/2 yr/10 yr/20 yr Different trait values should reflect differentiations in species 

population dynamics.
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T13. role in epibiosis basibiont/epibiont/neutral
Species that can grow on other organisms (epibiont) were 
distinguished from those that also provide biotic substrate 
(basibiont). Neutral species do not participate in epibiosis.Biogenic 

habitat 
modification

T14. role in sediment 
engineering

stabilizer/destabilizer/
neutral

Sediment destabilizing species should inhibit sessile, tube 
building species (stabilizers) and vice versa (Posey, 1987). 
Neutral species do not participate in sediment engineering.

178

179

180 2.3

181 Signed digraphs

182 The structure of the system was represented by signed digraphs (networks of 

183 interactions that portray the interactions’ direction and sign but not their strength) 

184 (Levins, 1998). The functional groups and the basic resources of food (algae/detritus) 

185 and space were depicted as nodes and the signs of the direct effects among them 

186 were represented by directed links between the nodes. A link ending in an arrow 

187 signified a positive direct effect, such as births produced through the consumption of 

188 prey, whereas a link ending in a filled circle signified a negative one, such as deaths 

189 from predation. A self-effect, as in self-thinning, was depicted as a link that starts and 

190 ends at the same node.

191 Links were drawn based on functional relationships representing general 

192 community assembly mechanisms and the expected role of each group in them. This 

193 role was defined by the groups’ assigned trait values and representative species 

194 (Table 1). The functional relationships encompass processes of 1) environmental 

195 filtering, 2) consumption of algae/detritus, 3) predation, 4) use of space, 5) food–

196 space competition trade-off, 6) early survival–colonization trade-off, 7) biogenic 

197 habitat modification and 8) intra-group inhibition. Predation of benthos by fish and 

198 birds was not included, because the former plays a limited role in the Rance estuary, 

199 while the latter is highly seasonal and mostly restricted to the intertidal zone.
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200 In addition to the explicit representation of space as a basic resource (see 

201 section 2.3.4), implicit spatial considerations were required for the representation of a 

202 few other processes (see sections 2.3.5–2.3.7). The modelled functional relationships 

203 represent interactions among populations of functional groups within an area that is 

204 adequately large for the processes that shape these inter-group interactions to occur. 

205 Intra-group spatial interactions were addressed independently (see section 2.3.8).

206

207 2.3.1

208 Environmental filtering

209 Epifaunal (T9) organisms with a preference for rock or gravel (T6) are clearly 

210 distinguished from infaunal or interface-positioned organisms (T9) that prefer finer 

211 sediment types (T6), with respect to both their functional characteristics (Alexandridis 

212 et al., 2017) and their distribution patterns in the Rance estuary (see section S1 in the 

213 Supplementary Material). This observation led to the drawing of two separate signed 

214 digraphs for these two groups of organisms, signed digraph 1 (SD1) for the former, 

215 epifaunal (Fig. 2a) and signed digraph 2 (SD2) for the latter, infaunal (Fig. 3a). Only 

216 group C6 is part of both models, because of the high mobility (T10) and ambiguous 

217 substrate preference (T6) of its species. The two sub-systems might co-occur but the 

218 way in which they interact is not addressed here.

219

220 2.3.2

221 Consumption of algae/detritus

222 Algae/detritus feeders along with predators/scavengers with the smallest 

223 maximum size (T7) among all functional groups (groups C1 in SD1 and C4 in SD2) 

224 are assumed to consume the basic food resource, either from the water column or 
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225 through deposit feeding. This interaction was represented by a negative effect on 

226 food and a positive effect on consumers (Fig. 2b, 3b). Group H2 in SD1 was excluded 

227 from the consumption of the basic food resource, because of the grazing behaviour of 

228 its representative species. The bulldozing effect of this behaviour, which is expected 

229 to deprive other organisms of the free use of space (Pascual, 1997), was represented 

230 by a consumption interaction with this resource.

231

232 2.3.3

233 Predation

234 The majority of predators appear to be larger than their prey, and predator size 

235 generally increases with the size of prey (Cohen et al., 1993). This general 

236 observation formed the assumption that groups of predators/scavengers (except for 

237 the smallest groups C1 and C4) can only feed on groups that are smaller or similar in 

238 maximum size (T7). Prey groups were, still, not allowed to be smaller than 1/3 of the 

239 maximum size of the predator/scavenger groups themselves. The reason is that 

240 predator–prey body-size ratios are generally the lowest, just over 2 on average, for 

241 marine invertebrate predators, compared to predators of other taxonomic groups and 

242 habitat types, probably due to the energetic costs of prey capture and consumption 

243 (Brose et al., 2006a).

244 Predation was represented by a negative effect on prey and a positive effect on 

245 predators (Fig. 2c, 3c). The predator/scavenger group C5 in SD1 is represented by a 

246 sea anemone and its adult mobility (T10) is restricted, hence, only mobile functional 

247 groups were considered as its potential prey. Since all predator/scavenger groups are 

248 characterized as epifauna or interface-related (T9), infaunal functional groups (groups 

249 H5, H6 and H12 in SD2) along with groups whose representative species are 
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250 protected by plates (groups H2 and H3 in SD1), shells (groups H4, H13 in SD1 and 

251 H14 in SD2) or tubes (groups H7 and H11 in SD2) were excluded from predator–prey 

252 interactions.

253

254 2.3.4

255 Use of space

256 Just like food, space is assumed to be a basic resource that is “consumed” or 

257 used by groups of algae/detritus feeders. Predators/scavengers (including sessile 

258 group C5) are, instead, expected to only have their prey as their basic resource. In 

259 addition to the aforementioned group H2, space in SD1 is also used by algae/detritus 

260 feeders that are characterized as sessile (T10), since mobile organisms probably do 

261 not have such a strong interaction with space.

262 In SD2, we expect the role of organisms in sediment engineering (T14) to play a 

263 central role in their interaction with space, with sediment stabilizers being primarily 

264 limited by it. Organisms are also assumed to partition space, by occupying different 

265 positions with respect to the substrate (T9). Since the two-dimensional nature of the 

266 interface renders space particularly limiting for organisms that occupy this position, 

267 we set space as a resource only for stabilizing groups of the interface. The use of 

268 space by these organisms was represented by a negative effect on space and a 

269 positive effect on its consumers (Fig. 2d, 3d).

270

271 2.3.5

272 Food–space competition trade-off

273 In order to better represent differences in the functional roles of benthic 

274 organisms in a way that is consistent with the general trade-offs that are expected to 
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275 characterize these functional roles, we resorted again to the trait of maximum size 

276 (T7). Higher levels of this trait are expected to confer a competitive advantage for 

277 limited food resources, due to a larger area that can be searched for food or distance 

278 from the substrate, which enhances the availability of food from the water column 

279 (McLean and Lasker, 2013). On the other hand, maximum size (T7) appears to be 

280 positively associated with the trait of minimum space requirement (T8) among benthic 

281 macroinvertebrates of the Rance estuary (see section S2 in the Supplementary 

282 Material). Higher values of the latter trait should confer a competitive disadvantage 

283 for limited available space (Tilman 1980). We, thus, assumed that larger maximum 

284 size (T7) represents a competitive advantage for food and disadvantage for space.

285 Based on this assumption, we divided the functional groups of each signed 

286 digraph that consume the basic food resource in two categories, the small and the 

287 big. We did so, by making sure that groups with similar sizes are placed in the same 

288 category and that there are more small than large groups (Blackburn and Gaston, 

289 1994). The members of each category are expected to be limited by the resource for 

290 which they have a competitive disadvantage, while being able to efficiently reduce the 

291 levels of the resource for which they are competitively superior. This set of 

292 interactions was represented by an alteration of the existing resource consumption 

293 interactions, so that a functional group receives a positive effect from its limiting 

294 resource, while having a negative effect on the resource that it can efficiently reduce 

295 (Fig. 2e, 3e). This rule was not applied to any groups that would otherwise appear not 

296 to be limited by any of the basic resources, along with group H2 in SD1, whose 

297 relationship with space represents its bulldozing effect on macroinvertebrate recruits.

298

299 2.3.6
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300 Early survival–colonization trade-off

301 We used three traits to represent life history trade-offs: early development mode 

302 (T2), larval dispersal distance (T3) and maximum fecundity (T4). High levels for the 

303 last two traits appear to be associated with planktonic early development (T2) among 

304 benthic organisms in the Rance estuary, whereas low levels are associated with 

305 brooded early development (T2) and high population growth rates (T11) (see section 

306 S2 in the Supplementary Material). The former trait associations are expected to 

307 result in higher colonization potential, whereas the latter can be linked to higher early 

308 survival rates. The distinction between these groups of trait values represents a 

309 trade-off among benthic organisms in the allocation of resources toward early survival 

310 versus colonization potential (Tilman, 1990).

311 Functional groups with planktonic early development, long dispersal distance 

312 and high fecundity are the only groups expected to effectively interact with the 

313 resource of space, because of their high dispersal potential. The mobility of group H2 

314 in SD1 and its special relationship with space again excluded it from this rule. On the 

315 other hand, functional groups with brooded early development should be able to 

316 resist a variety of perturbations and, at least locally, reach high levels of abundance. 

317 They were, therefore, depicted as able to reduce the resource of food, even if their 

318 size did not qualify them to do so (Fig. 2f, 3f).

319

320 2.3.7

321 Biogenic habitat modification

322 The organisms that are represented by SD1 are distinguished from the rest by 

323 their epifaunal position (T9) and requirement for hard substrate (T6) (see section S2 

324 in the Supplementary Material). Their occurrence in the Rance estuary can be at 
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325 least partly attributed to the phenomenon of epibiosis (T13), regardless of the 

326 basibiotic organisms being alive or not (Wahl and Mark, 1999). The provision of hard 

327 substrate by the single functional group that is described as basibiont (group H4) was 

328 represented by a positive effect on all algae/detritus feeders of the system and the 

329 sessile predator/scavenger group C5 (Fig. 2g).

330 Substrate preferences among the organisms of SD2 (T6) appear to match their 

331 effect on the sediment (T14) (see section S2 in the Supplementary Material), in 

332 support of the mobility mode hypothesis and, hence, the separation of organisms into 

333 stabilizers and destabilizers (Posey, 1987). Sediment destabilization in the form of 

334 bioturbation should constitute the main mechanism of sediment engineering in 

335 estuarine soft bottoms (Meadows et al., 2012). Due to its high dispersal potential (T2, 

336 T3 and T4) and its role as a sediment destabilizer (T14), group H10 is expected to be 

337 mostly responsible for it. This group was, therefore, allowed to reduce the available 

338 space for stabilizing organisms of the interface and have a direct negative impact on 

339 infaunal stabilizers (groups H6 and H12). On the other hand, the ensuing bioirrigation 

340 is expected to generate favourable conditions for infaunal destabilizers and was 

341 depicted as a positive effect on group H5 (Fig. 3g).

342

343 2.3.8

344 Intra-group inhibition

345 Negative self-effects were added to all variables of SD1 and SD2, representing 

346 a variety of processes (Fig. 2h, 3h). In the case of the two basic resources, negative 

347 self-effects are mostly indicative of the existence of intrinsic limitations in the amounts 

348 that are available to their consumers. Negative self-effects for the rest of the variables 

349 can be the result of, among other things, crowding, behavioural inhibition of 
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350 reproduction, territoriality or accumulation of waste products (Levins, 1998). These or 

351 similar processes appear to be wide-spread in ecological systems (Connell, 1983).

352

353

354 Fig. 2. Stepwise drawing of signed digraph 1 (SD1, epifauna). The steps represent 

355 processes of a) environmental filtering, b) consumption of algae/detritus, c) predation, 

356 d) use of space, e) food–space competition trade-off, f) early survival–colonization 

357 trade-off, g) epibiosis and h) intra-group inhibition. The nodes represent functional 
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358 groups (see Table 1) or the basic resources of food and space. Links ending in 

359 arrows and filled circles represent positive and negative direct effects, respectively. 

360 Dashed and dotted lines represent links that are added and removed, respectively, at 

361 each step. See text for details

362

363

364 Fig. 3. Stepwise drawing of signed digraph 2 (SD2, infauna). The steps represent 

365 processes of a) environmental filtering, b) consumption of algae/detritus, c) predation, 
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366 d) use of space, e) food–space competition trade-off, f) early survival–colonization 

367 trade-off, g) sediment engineering and h) intra-group inhibition. The nodes represent 

368 functional groups (see Table 1) or the basic resources of food and space. Links 

369 ending in arrows and filled circles represent positive and negative direct effects, 

370 respectively. Dashed and dotted lines represent links that are added and removed, 

371 respectively, at each step. See text for details

372

373 2.4

374 Feedback analysis

375 The concept of feedback in qualitatively specified systems, such as signed 

376 digraphs, can be defined at different levels of a system, depending on the number of 

377 interactions that are considered to participate in feedback cycles (i.e., closed paths of 

378 interactions linking a subset of a system’s variables without crossing any of them 

379 twice). Feedback cycles at level 1 are self effects, at level 2 they comprise pair-wise 

380 interactions, such as predator–prey, with the highest level of feedback involving n 

381 interactions in a model with n variables. A cycle can consist of positive and negative 

382 interactions and the product of their signs sets the overall sign of the cycle. In general 

383 terms, negative feedback cycles provide stability and positive feedback cycles act to 

384 destabilize a system (Puccia and Levins, 1985).

385 We assessed the potential for stability of our qualitative models as an indication 

386 of the likelihood of the respective systems to exist in nature. To this end, we followed 

387 the approach of Dambacher et al. (2003), who derived two criteria for the stability of 

388 qualitative models, classified conditionally stable models accordingly and developed 

389 stability metrics for each of the two model classes. The stability of class I models is 

390 jeopardized by positive feedback dominating feedback at the highest level of a 
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391 system. Instability in class II models is characterized by overcompensation, which 

392 leads to oscillations, due to feedback at higher levels in a system overwhelming 

393 feedback at lower levels. The latter case can be assessed by measuring the relative 

394 balance of feedback at different system levels.

395 Most biological systems appear to be represented by class I models and their 

396 potential for stability is determined by their maximum weighted feedback (Dambacher 

397 et al., 2003). This metric is calculated by counting all feedback cycles (both positive 

398 and negative) at the highest level of a system and computing the ratio of their net to 

399 absolute sums. It portrays the contribution of negative and positive feedback cycles to 

400 the overall system feedback. Values that tend toward -1 indicate a high potential for 

401 the variables of a system in equilibrium to converge toward their original levels 

402 following a pulse perturbation. Values that tend toward 1 indicate a high potential for 

403 post-perturbation divergence from these levels. Values near 0 show high ambiguity 

404 with respect to the system’s stability potential.

405 The classification of the models and the calculation of the stability metrics were 

406 based on qualitatively specified community matrices, which are equivalent to signed 

407 digraphs as a representation of a system. With the help of tools specifically designed 

408 for their analysis (Dambacher et al., 2002), we assigned the qualitative models to one 

409 of the two stability classes. Based on this classification, we calculated the metric that 

410 quantifies each model's potential for stability.

411

412 Signed digraphs were drawn, and from them qualitatively specified community 

413 matrices were derived using the digraph editor software PowerPlay version 2.0 

414 (Westfahl et al., 2002). The stability analysis of the qualitative mathematical models 

415 was performed with a program for the qualitative and symbolic analysis of community 
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416 matrices (esapubs.org/archive/ecol/E083/022) using the technical computing 

417 software Maple version 18.0 (Maplesoft, 2014).

418

419 3

420 Results

421 3.1

422 Signed digraphs

423 Building the signed digraphs of benthic macroinvertebrate communities in the 

424 Rance estuary left the epifaunal SD1 with 9 functional groups and the infaunal SD2 

425 with 12, as group C6 participates in both models. In spite of having fewer groups, 

426 SD1 has 3 of them acting as predators, compared to only 2 predatory groups in SD2. 

427 Only 5 groups interact with algae/detritus in SD1 and 10 groups in SD2, while 3 

428 groups interact with the basic resource of space in both models. The representation 

429 of the trade-off in competitive ability for food and space appears to have a deeper 

430 impact on the structure of the models than the trade-off between early survival and 

431 colonization potential. Incorporating the latter often resulted in a reversal of changes 

432 made to the models to represent the former. Biogenic habitat modification is of 

433 facilitating nature in SD1, taking the form of epibiosis, and of mostly inhibiting nature 

434 in SD2, where it represents bioturbation.

435 The qualitatively specified community matrices that correspond to SD1 (Table 3) 

436 and SD2 (Table 4) offer a detailed description of the interactions that comprise the 

437 two models. Of the 121 possible interactions in SD1 and the 196 possible interactions 

438 in SD2, only 36 occur in the former model and 41 in the latter. As a measure of 

439 system complexity, the proportion of possible interactions among each system’s 

440 variables that are actually realized is equal to 0.29 in SD1 and 0.21 in SD2. SD1 
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441 comprises 21 negative and 15 positive interactions, while SD2 has the same number 

442 of positive interactions as SD1 and 26 negative.

443

444 Table 3. Qualitatively specified community matrix corresponding to SD1 (see Fig. 2). 

445 Values along each column indicate negative (-), positive (+) or absent (0) direct 

446 effects of the respective variable on the variables of the rows. The variables 

447 represent functional groups (see Table 1) or the basic resources of food and space

food space H1 H2 H3 H4 H13 C1 C3 C6 C5

food - 0 - 0 0 - - - 0 0 0

space 0 - 0 - - 0 0 0 0 0 0

H1 + 0 - 0 0 + 0 0 0 - 0

H2 0 + 0 - 0 + 0 0 0 0 0

H3 + 0 0 0 - + 0 0 0 0 0

H4 0 + 0 0 0 - 0 0 0 0 0

H13 + 0 0 0 0 + - 0 0 0 0

C1 + 0 0 0 0 0 0 - 0 0 0

C3 0 0 0 0 0 0 0 0 - + -

C6 0 0 + 0 0 0 0 0 - - -

C5 0 0 0 0 0 + 0 0 + + -

448

449

450 Table 4. Qualitatively specified community matrix corresponding to SD2 (see Fig. 3). 

451 Values along each column indicate negative (-), positive (+) or absent (0) direct 

452 effects of the respective variable on the variables of the rows. The variables 

453 represent functional groups (see Table 1) or the basic resources of food and space

food space H5 H9 H14 H8 C2 C6 H6 H7 H10 H11 H12 C4

food - 0 0 - 0 - 0 0 0 - 0 - 0 0
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space 0 - 0 0 - 0 0 0 0 0 - 0 0 0

H5 + 0 - 0 0 0 0 0 0 0 + 0 0 0

H9 + 0 0 - 0 0 - 0 0 0 0 0 0 0

H14 + 0 0 0 - 0 0 0 0 0 0 0 0 0

H8 + 0 0 0 0 - 0 - 0 0 0 0 0 0

C2 0 0 0 + 0 0 - 0 0 0 + 0 0 0

C6 0 0 0 0 0 + 0 - 0 0 + 0 0 0

H6 + 0 0 0 0 0 0 0 - 0 - 0 0 0

H7 + 0 0 0 0 0 0 0 0 - 0 0 0 0

H10 + 0 0 0 0 0 - - 0 0 - 0 0 0

H11 0 + 0 0 0 0 0 0 0 0 0 - 0 0

H12 + 0 0 0 0 0 0 0 0 0 - 0 - 0

C4 + 0 0 0 0 0 0 0 0 0 0 0 0 -

454

455

456 3.2

457 Feedback analysis

458 The results of the stability analysis for the qualitatively specified community 

459 matrices that correspond to SD1 and SD2 are shown in Table 5. The pattern of 

460 increasing weighted feedback with increasing system level for both models indicates 

461 that their stability could be compromised by positive feedback dominating feedback at 

462 the highest level of the system rather than by overcompensation; SD1 and SD2 are, 

463 therefore, class I models (sensu Dambacher et al. (2003)). Consequently, their 

464 potential for stability is determined by their maximum weighted feedback, which 

465 quantifies the contribution of negative and positive feedback cycles to the overall 

466 system feedback. This metric is well below 0 for both models, indicating the 
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467 dominance of negative feedback cycles over positive ones, along with a moderate 

468 level of ambiguity with respect to the stability potential of the system.

469

470 Table 5. Results of the stability analysis for the systems represented by SD1 (see 

471 Fig. 2) and SD2 (see Fig. 3). Values along each row correspond to weighted 

472 feedback (wF) calculated at the system level that is indicated by the ensuing number. 

473 The value of maximum weighted feedback for each model is indicated by an asterisk

wF1 wF2 wF3 wF4 wF5 wF6 wF7 wF8 wF9 wF10 wF11 wF12 wF13 wF14

SD1 -1 -1 -0.99 -0.97 -0.94 -0.9 -0.83 -0.75 -0.66 -0.57 -0.5* - - -

SD2 -1 -1 -1 -0.99 -0.98 -0.95 -0.9 -0.84 -0.77 -0.69 -0.6 -0.51 -0.42 -0.33*

474

475

476 In both SD1 and SD2, the basic resources of food and space are part of positive 

477 feedback cycles of length four. In the case of SD1, the positive feedback cycle is 

478 formed with groups H3 and H4 (Fig. 4a). The former, being small, is enhanced by 

479 food and reduces space, while the latter, being big, plays the opposite role. In SD2 

480 there are two equivalent positive feedback cycles (Fig. 4b). Each of them is formed 

481 with one of the small groups H10 and H14, which are enhanced by food and reduce 

482 space, along with big group H11, which plays the opposite role. Due to the self-

483 enhancing nature of positive feedback cycles, variables are likely to respond to long-

484 term perturbations in a correlated manner. Food quantity and the abundances of 

485 small groups H3, H10 and H14 would shift in the same direction, opposite to the 

486 amount of available space and the abundances of big groups H4 and H11.

487
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488

489 Fig. 4. Positive feedback cycles from a) SD1 (see Fig. 2) and b) SD2 (see Fig. 3). 

490 Each feedback cycle links the basic resources of food and space with one big and 

491 one small functional group. Links ending in arrows and filled circles represent positive 

492 and negative direct effects, respectively

493

494 4

495 Discussion

496 4.1

497 Functional groups

498 Qualitatively specified food-web models often represent only a few dominant 

499 species of marine benthic macroinvertebrates, while other community members may 

500 be grouped into broad trophic categories (e.g., Carey et al., 2014; Reum et al., 2015). 

501 This practice cannot explicitly account for key non-trophic interactions and tends to 

502 ignore the rarest members of a community, in spite of evidence for their significant 

503 contribution to ecosystem functioning (Lyons et al., 2005). This contribution can be 

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516



27

504 disproportionate to their abundance, as species with the most distinct combinations of 

505 traits have been shown to be rarer than expected by chance (Mouillot et al., 2013).

506 The variables of the models developed here were built through a procedure that 

507 places emphasis on the species’ functional role instead of their abundance; the latter 

508 is used only secondarily for the assignment of trait values to each group (Alexandridis 

509 et al., 2017). The wide functional scope of the traits that formed the basis for the 

510 grouping allowed the representation of not just trophic interactions, but the majority of 

511 the mechanisms that are expected to shape benthic communities in many parts of the 

512 world. Trait variation within the groups was found to be largely neutral, allowing a 

513 system representation that is free of functionally equivalent variability (Hérault, 2007).

514

515 4.2

516 Signed digraphs

517 The evaluation of the functional grouping against its theoretical assumptions 

518 suggested that species abundances in the Rance estuary depend, at least to some 

519 extent, on species trait values (Alexandridis et al., 2017). The nature of this 

520 relationship was further elucidated through the investigation of associations of 

521 biological traits with environmental variables and with each other (see Supplementary 

522 Material). These results were combined with theoretical expectations and expert 

523 knowledge to define functional relationships between the groups and their basic 

524 resources.

525 Each of the community assembly mechanisms that are represented by these 

526 relationships encompasses a variety of processes that could potentially be 

527 represented much more explicitly. The level at which each mechanism was actually 

528 represented was dictated by the available trait and environmental information. Hence, 
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529 biological traits were used as proxies for the role of functional groups in a set of 

530 theoretically expected community assembly mechanisms that were illustrated through 

531 a highly abstract representation of the system.

532 For instance, the biogeochemical aspects of sediment engineering were not 

533 explicitly represented, as the distinction between sediment stabilizers and 

534 destabilizers (Posey, 1987) was the best possible representation, given the available 

535 information at the species level. Still, this tenet of the mobility-mode hypothesis has 

536 been empirically upheld and shown to have cascading and long-lasting effects on 

537 benthic communities (Volkenborn et al., 2009). Similarly, the complex set of 

538 processes that comprise the phenomenon of resource competition was only 

539 represented through the use of each group’s maximum size in the context of the 

540 concentration reduction hypothesis for space and food (Tilman, 1980). Space 

541 limitation due to adult–juvenile interactions and exploitative competition for food have 

542 been shown to play a central role in the successional dynamics of benthic 

543 communities, with the functional role of organisms largely defined by their size (Van 

544 Colen et al., 2008). The combined representation of food and space as limiting 

545 resources can significantly increase our understanding and predictability of marine 

546 benthic systems (Svensson and Marshall, 2015).

547 The separation of benthic macroinvertebrates into algae/detritus feeders and 

548 predators/scavengers aimed to preserve the homogeneity of their resource base, so 

549 that theoretically expected community assembly mechanisms could be implemented. 

550 This choice might appear to ignore important differentiations in the feeding habits of 

551 these organisms, such as the distinction between suspension- and deposit-feeders. It 

552 has been, however, shown that feeding behaviour in the marine benthos is highly 

553 facultative and similar categorizations are not always valid (Snelgrove and Butman, 
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554 1994). Instead, the modification of networks of trophic interactions through expert 

555 knowledge is expected to increase their realism, while the use of allometric scaling 

556 should enhance their stability (Brose et al., 2006b).

557 Survival rates (Schratzberger and Larcombe, 2014) and colonization potential 

558 (Limberger and Wickham, 2011) have been separately involved in trade-offs with the 

559 competitive ability of benthic organisms. Our assumptions allow for both scenarios, 

560 while the deconstruction of competitive ability into two constituents, for the basic 

561 resources of food and space, could resolve inconsistencies in previous findings.

562 The role of recruitment in the assembly of benthic communities may still be 

563 under-represented. Biological traits related to species' reproductive strategy were 

564 found to deviate the most from the theoretical assumptions that allowed the 

565 construction of the functional groups (Alexandridis et al., 2017). Relevant trait 

566 information is, however, consistently lacking (Tyler et al., 2012). A more accurate 

567 depiction of recruitment-related processes would allow the explicit representation of 

568 trade-offs that have been shown to play a significant role in the assembly of benthic 

569 communities (Lindquist and Hay, 1996; Marshall and Steinberg, 2014).

570 The functional divergence between organisms that occupy the surface of the 

571 sediment (epifauna) and those that are buried in it (infauna) has been previously 

572 recognized in the study of marine benthos (Reiss et al., 2010). In the Rance estuary, 

573 the epifauna (SD1) features a lower functional diversity of algae/detritus feeders and 

574 a higher functional diversity of predators/scavengers, compared to the infauna (SD2). 

575 Additionally, a much higher number of groups ended up interacting with algae/detritus 

576 in SD2 compared to SD1. The complex diagenetic processes that affect the basic 

577 food resource within the sediment of the seafloor (Herman et al., 1999) could be 

578 responsible for the diversity of infaunal organisms that feed on it. On the other hand, 
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579 the high structural complexity of the habitat occupied by epifaunal organisms may 

580 result in a higher diversity of predatory strategies. Trophic differences could be 

581 associated with a variety of biological traits, leading to observed patterns of functional 

582 diversity. The epifaunal system also appears to be more complex, with a higher 

583 proportion of possible interactions realized compared to the infaunal system. This is 

584 primarily caused by an under-representation of positive interactions in the latter 

585 system. The qualitatively antithetical role of biogenic habitat modification in the two 

586 systems (facilitating in SD1, mostly inhibiting in SD2) contributes partly to these 

587 differences. Its impact may extend to productivity patterns, as epifauna-dominated 

588 systems (seagrass/algae beds) seem in general to be more productive than infauna-

589 dominated (estuaries) (Costanza et al., 1998).

590

591 4.3

592 Feedback analysis

593 The results of the stability analysis suggest that the models developed in this 

594 work have a moderate to high potential for stability. This demonstrates the likelihood 

595 of the system to persist in time in spite of perturbations. These perturbations can take 

596 various forms, from local sediment re-suspension due to wave action, to system-wide 

597 reduction of secondary production during extremely cold winters (Desroy, 1998). 

598 Despite the impact of such pulse perturbations on spatial and temporal distribution 

599 patterns of benthic macroinvertebrates, the composition of their communities has 

600 been mostly stable in the Rance estuary since late 1970's. The agreement between 

601 observed stability levels and the predictions of feedback analysis can be considered 

602 as partial validation of the generated models.
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603 Populations of benthic macroinvertebrates in the Rance estuary are still 

604 expected to change in response to constant or press perturbations, but in a way that 

605 can be attributed to the structure of the qualitative models. For instance, the 

606 participation of the basic resource of food in positive feedback cycles in both SD1 and 

607 SD2 allows the formulation of predictions about the direction in which the other 

608 variables in these cycles would respond as a result of system-wide persistent 

609 changes in primary production. Within these cycles, which constitute a qualitative 

610 representation of Tilman's (1980) concentration reduction hypothesis, a decrease in 

611 the amount of available food is expected, in general, to lead to less smaller and more 

612 larger individuals, with a concomitant increase in the amount of available space. 

613 Similar patterns have been observed as a result of bathymetric decreases in nutrient 

614 input (Rex and Etter, 1998) and can have profound impacts on the functioning of 

615 ecological systems (Woodward et al., 2005).

616

617 5

618 Conclusions

619 Qualitative mathematical models have been successfully employed for the study 

620 of both soft- (Ortiz and Wolff, 2002) and hard-bottom (Marzloff et al., 2011) marine 

621 benthos. The properties of these models make them particularly well-suited for the 

622 integration of systems that comprise processes of disparate nature (Dambacher et 

623 al., 2007). Our approach primarily differs from previous work in the way organisms 

624 are represented and interactions are attributed between them. This is done through a 

625 systematic procedure that employs theoretical and expert knowledge from a wide 

626 range of sources. It can be applied, with adjustments of various degrees, for the 
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627 mechanistic representation of many ecological systems for which empirical 

628 information is limited.

629 Qualitative models sacrifice the element of precision, in order to produce a 

630 general and realistic representation of the causal relationships that shape a system 

631 (Levins, 1966). When there is uncertainty in the model components or interactions, 

632 alternative model configurations can be easily generated and assessed with respect 

633 to the functioning of the system (Dambacher et al., 2002). Qualitative modelling can, 

634 therefore, direct the initial steps of more quantitative approaches, before investment 

635 in model development has rendered structural changes too costly. We plan to use 

636 this property to inform the structure of dynamic and spatially explicit trait-based 

637 models of marine benthic communities in the Rance estuary (Alexandridis, 2017).

638 Similar efforts in terrestrial environments were able to predict the responses of 

639 plant (Boulangeat et al., 2014) and animal communities (Scherer et al., 2016) to 

640 projected climatic and land use change. They faced issues that are shared by our 

641 study, such as the lack of information on important biological traits or the limited 

642 potential for validating model predictions with species data. Quite similar to our study, 

643 they addressed these issues by using surrogate traits or investigating the plausibility 

644 of their findings in view of specific system perturbations. The conclusion of our work 

645 should help bridge the gap between terrestrial and marine systems with regard to the 

646 formulation of reliable predictions of biodiversity responses to environmental change.

647
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SUPPLEMENTARY MATERIAL

S.1 Environmental filtering

S.1.1 Methods

Each station sampled in the spring of 1995 was associated with a particular sediment 

type (pure mud, mud, silty mud, sandy mud, muddy sand, fine/intermediate sand, 

intermediate/coarse sand, coarse sand, gravel), based on a sedimentary map established in 

1994 (Bonnot-Courtois, 1997). The depth (or elevation) of each station was measured at low 

tide during the collection of samples. Each station was assigned a salinity regime, depending 

on which of three sectors of the Rance estuary it was situated in. The innermost part of the 

estuary, up to Pleudihen-sur-Rance, was subject to high salinity variation, ranging from 0.5 to 

30. Beyond this point, downstream to Port-St-Hubert, salinity values ranged between 18 and 

30. The rest of the estuary experienced more or less constant salinity levels, over the value of 

30, similar to those of the open sea (Desroy, 1998).

Among the 14 biological traits for which the species of the system were assigned with 

values, we expect the trait of tolerance to tidal emersion and low salinity levels (T5) along 

with that of preferred substrate type (T6) to adequately represent the most important 

environmental limitations that are faced by benthic macroinvertebrates in the Rance estuary 

(Desroy, 1998). If this is indeed the case, these two biological traits, describing species 

preference for abiotic conditions, should show high degrees of covariation with the respective 

environmental variables. Other biological traits that might correlate with the two traits in 

question are also expected to show similar patterns of covariation.

RLQ analysis is a statistical technique that can relate the biological traits of organisms to 

the characteristics of the environment in which they live (Dolédec et al., 1996). L refers to a 

table of species abundance at a number of sites and it describes, among other things, the actual 

habitat utilization of different species. R refers to a table of environmental variables measured 

at the same sites as species abundance. Q refers to a table of biological traits for all the species 

of table L. RLQ analysis starts with the separate ordination of table L. It then uses the 

resulting sites and species weights in the separate ordinations of tables R and Q, respectively. 

The result is an ordination of the common structure of tables R and Q with a link expressed by 

table L.

Since environmental variables and biological traits include both qualitative and 

quantitative information, we opted for Hill and Smith analysis (Hill and Smith, 1976) for the 

separate ordinations of the 113 sites × 3 environmental variables (R) and the 240 species × 14 

biological traits (Q) tables. Correspondence analysis (Legendre and Legendre, 1998) was 
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performed for the separate ordination of the 113 sites × 240 species abundance table (L). The 

application of correspondence analysis allows RLQ analysis to maximize the covariance 

between linear combinations of environmental variables and biological traits (Dolédec et al., 

1996). This maximized covariance, projected on orthogonal axes of decreasing contribution to 

the total value, is called co-inertia.

The comparison of this eigenvalues decomposition (RLQ) with the eigenvalues 

decomposition from the separate ordinations of the environmental variables (R) and biological 

traits (Q) tables can show what part of the variance of the original data sets is represented in 

their common structure. The optimal correlation between sites and species scores from the 

separate ordination of the species abundance table (L) can be compared with the equivalent 

correlation from the RLQ analysis, in order to illustrate how well the original species 

abundance patterns are represented by the associations between environmental variables and 

biological traits. These associations can be best demonstrated by projecting environmental 

variables and biological traits side-by-side on the same dimensions of the common co-inertia 

space.

All analyses were performed using the statistical software R version 3.2.2 (R Core 

Team, 2015) with the package ade4 (Dray and Dufour, 2007).

S.1.2 Results

The eigenvalues decomposition of the RLQ analysis shows that the proportion of the 

common structure between environmental variables and biological traits that is portrayed 

along the first axis (73%) is much larger than the proportion that is portrayed along the second 

one (17%). The first two axes combined represent 90% of the covariance between 

environmental variables and biological traits. The cumulated amount of variance that is 

preserved on the first two axes of the RLQ ordination, compared to the equivalent variance 

from the separate ordinations of the environmental variables (R) and biological traits (Q) 

tables, is just over 85% in both cases. The correlation values between sites and species scores 

along the first and second axes of the RLQ analysis are 76% and 60% of the respective 

correlation values from the separate ordination of the species abundance table (L).

The side-by-side projection of environmental variables (Fig. S1a) and biological traits 

(Fig. S1b) on the first two dimensions of the common co-inertia space reveals one 

conspicuous pattern: coarse sediment types are strongly associated with trait values that 

represent preference for gravel or rock (T6), no role in sediment engineering (T14), an 
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epifaunal position (T9) and the role of basibionts (T13). These trait values, along with the one 

that identifies epibiotic organisms (T13) and is associated with increasing water depth, are all 

characteristic of benthos that occupies the surface of the seabed, supported by structure of 

abiotic or biotic origin. Increasing water depth is further associated with a transition from 

organisms that tolerate tidal exposure to those that have to be submerged in high salinity 

levels (T5).

Fig. S1 Projection of a) environmental variables and b) biological traits on the first two 

dimensions of the common co-inertia space of the RLQ analysis. In both graphs the horizontal 

axis represents the first dimension and the vertical the second. In the case of continuous and 

ordinal variables, the arrows indicate the direction of increasing values. In the case of nominal 

and binary variables, the tips of the arrows indicate the position of the centroids for the 

respective variable values (shown as variable.value). Plural in the variable names indicates the 

representation of multiple values that are close in nature and ordination. For details about the 

traits, see Table 2
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S.2 Functional trade-offs

S.2.1 Methods

Our set of 14 biological traits allows the representation of functional trade-offs through 

specific combinations of trait values. In the case of a trade-off among benthic 

macroinvertebrates in their utilization efficiency for the two basic resources (food and space) 

(Tilman, 1980), we would expect trait values that confer a competitive advantage for each 

resource (greater size (T7) and lower minimum space requirement (T8)) to be negatively 

associated. A trade-off in the allocation of resources toward early survival versus colonization 

potential (Tilman, 1990) would result in the survival-enhancing brooded early development 

mode (T2) being negatively associated with both dispersal distance (T3) and maximum 

fecundity (T4). Finally, the stabilizers of the mobility-mode hypothesis (Posey, 1987) are 

expected to bind fine particles, thus leading to the creation of muddy sediments, while 

destabilizers are expected to disrupt the substrate, resulting in more heterogeneous sediment 

types. Since each group is assumed to create sediment conditions that are favourable to its 

own members and detrimental to those of the opposite group, sediment preferences (T6) 

among stabilizers and destabilizers should correspond to their respective effects on the 

substrate (T14).

Because values were assigned to the species independently for each biological trait, we 

can assess the ecological pertinence of each hypothesis, by inspecting the biological traits data 

set, looking for the respective trait associations. The multivariate ordination technique of Hill 

and Smith allowed the transformation of the 240 species × 14 biological traits table into a set 

of orthogonal variables that contain decreasing portions of the table’s total variance (Hill and 

Smith, 1976). The eigenvalues decomposition, on which this technique is based, reveals the 

amount of variance that each of these variables represents. The projection of the initial trait 

variables on the first few axes of the transformed multivariate space can provide insights into 

the most important associations among biological traits.

All analyses were performed using the statistical software R version 3.2.2 (R Core 

Team, 2015) with the package ade4 (Dray and Dufour, 2007).

S.2.2 Results

The eigenvalues decomposition of Hill and Smith for the biological traits data set shows 

that about twice as much variation can be found along each of the first two axes (15% and 

14% of total variation) compared to each of the two axes that follow (8% and 7% of total 
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variation). The first four axes combined represent just over 43% of the total variation of 

biological traits among species of benthic macroinvertebrates.

The projection of biological traits on the first four dimensions of the transformed 

multivariate space reveals the most important biological trait associations. Along the first axis 

(Fig. S2a), maximum size (T7) is assumed to define a competitive hierarchy for food. 

Minimum space requirement (T8), in the same direction of the axis, is expected to define an 

inverse competitive hierarchy for space.

On the positive half of the first axis (Fig. S2a), high levels of maximum fecundity (T4) 

and dispersal distance (T3) are associated with planktonic early development mode (T2). The 

combination of these trait values is expected to lead to higher colonization potential among 

marine benthos. On the negative half of the same axis, low levels of maximum fecundity (T4) 

and dispersal distance (T3) are associated with brooded early development mode (T2) and 

high population growth rate (T11), thus forming a trait combination that is assumed to 

enhance early survival rates.

The second axis of the Hill and Smith ordination (Fig. S2a) mainly serves to distinguish 

organisms with an epifaunal position (T9) and requirement for hard substrates (T6). Trait 

differences among the rest of the organisms, which are mostly associated with soft bottoms 

(T6), are featured along the first (Fig. S2a) together with the third and fourth axes of the 

ordination (Fig. S2b). It appears that sessile organisms (T10) that prefer mud (T6), stabilize 

the sediment (T14) and create substrate for epibionts (T13) are distinguished from mobile 

(T10), destabilizing organisms (T14) that have a preference for coarser and mixed sediment 

types (T6).
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Fig. S2 Projection of biological traits on a) the first and second and b) the third and fourth 

dimensions of the transformed multivariate space of Hill and Smith analysis. In both graphs 

the horizontal axis represents the lower dimension and the vertical the higher. In the case of 

continuous and ordinal traits, the arrows indicate the direction of increasing values. In the case 

of nominal and binary traits, the tips of the arrows indicate the position of the centroids for the 

respective trait values (shown as trait.value). For details about the traits, see Table 2
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