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UNITARY SKEW-DILATIONS OF HILBERT SPACE OPERATORS

VIDAL AGNIEL

Abstract. The aim of this paper is to study, for a given sequence (ρn)n≥1 of complex num-

bers, the class of Hilbert space operators possessing (ρn)-unitary dilations. This is the class of

bounded linear operators T acting on a Hilbert space H, whose iterates Tn can be represented

as Tn = ρnPHU
n|H , n ≥ 1, for some unitary operator U acting on a larger Hilbert space,

containing H as a closed subspace. Here PH is the projection from this larger space onto H.

The case when all ρn’s are equal to a positive real number ρ leads to the class Cρ introduced

in the 1960s by Foias and Sz.-Nagy, while the case when all ρn’s are positive real numbers has

been previously considered by several authors. Some applications and examples of operators

possessing (ρn)-unitary dilations, showing a behavior different from the classical case, are given

in this paper.

1. Introduction

Classes Cρ have been introduced by B. Sz-Nagy and C. Foias [22] in 1966. For a complex

Hilbert space H and a real number ρ > 0, a bounded linear operator T ∈ L(H) is said to be

in the class Cρ(H) if all powers of T can be skew-dilated to powers of a unitary operator on a

Hilbert space K, containing H as a closed subspace. This means that

Tn = ρPHU
n|H , for all n ≥ 1,

where U ∈ L(K) is a suitable unitary operator, and PH ∈ L(K) denotes the orthogonal pro-

jection onto H. Such an operator T is called a ρ-contraction, while the unitary operator U is

called a ρ-dilation, or a ρ-unitary dilation, of T .

The famous Sz.-Nagy dilation theorem (see [22]) shows that C1(H) is exactly the class of all

Hilbert space contractions i.e., operators of norm no greater than one. It is also known (see

[6]) that the class C2(H) coincides with the class of all operators T with numerical range W (T )

included in the closed unit disk; equivalently, those T satisfying w(T ) ≤ 1. Here the numerical

range W (T ) and the numerical radius w(T ) of T are defined by

W (T ) = {〈Tx, x〉 : ‖x‖ = 1} ; w(T ) = sup{|λ| : λ ∈W (T )}.

Let T be an operator in the class Cρ. Then

(i) T is power-bounded. More precisely, we have ‖Tn‖ ≤ max(1, ρ), for all n ≥ 0. In

particular, the spectral radius r(T ) of T satisfies r(T ) ≤ 1;

(ii) T k is in Cρ(H) for every k ≥ 1;

(iii) For a closed subspace, F , of H which is stable by T (i.e., T (F ) ⊂ F ), the restriction

T |F is in Cρ(F );
1
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(iv) The functional calculus map f 7→ f(T ) that sends a polynomial f into f(T ) can be

extended in a well-defined manner to the disk algebra A(D) := C0(D) ∩Hol(D). It is a

morphism of Banach algebras, and satisfies

‖f(T )‖ ≤ max(1, ρ)‖f‖L∞(D);

(v) T is similar to a contraction: there is an invertible operator L ∈ L(H) such that

‖LTL−1‖ ≤ 1.

We refer the reader to [11, 12, 15, 17, 23] for proofs of these results, which mainly use several

characterizations of classes Cρ(H). We record the principal ones in the following theorem.

Theorem. — Let T be an operator in L(H) and let ρ > 0. The following are equivalent:

(i) T ∈ Cρ(H);

(ii) r(T ) ≤ 1 and, for all z ∈ D, we have (1− 2
ρ)I + 2

ρRe((I − zT )−1) ≥ 0;

(iii) For all z ∈ D and all h ∈ H we have (2ρ − 1)‖zTh‖2 + (2− 2
ρ)〈zTh, h〉 ≤ ‖h‖2.

We remark that these characterization can be expressed in terms of classes of operator-valued

holomorphic functions. For instance, (ii) says that the map z 7→ (1 − 2
ρ)I + 2

ρ(I − zT )−1

is in the Caratheodory class of operator-valued holomorphic functions on D, having all real

parts positive-definite operators. Item (iii) can be equivalently expressed by the membership

of z 7→ zT ((ρ− 1)zT − ρI)−1 to the Schur class of holomorphic maps f : D→ L(H) having all

norms no greater than one (i.e., ‖f(z)‖ ≤ 1 for every z ∈ D).

J.A.R. Holbrook [11] and J.P. Williams [24] introduced the notion of ρ-radius of an operator

T ∈ L(H) as follows:

wρ(T ) := inf{u > 0 :
1

u
T ∈ Cρ(H)}.

This ρ-radius is a quasi-norm on the Banach space L(H), equivalent to the operator norm,

whose closed unit ball is exactly Cρ(H). Recall ([13]) that a quasi-norm satisfies all properties

of a norm, except that the triangular inequality holds true up to a multiplicative constant. For

ρ > 2, the quasi-norm wρ satisfies ([14,23])

wρ(T1 + T2) ≤ ρ (wρ(T1) + wρ(T2)) .

Therefore the ρ-contractions are exactly the contractions for the ρ-radius, and many relationships

between classes Cρ can be expressed more easily using the associated ρ-radii. The ρ-radius is a

usual Banach-space norm for 0 < ρ ≤ 2.

Some generalizations of classes Cρ have been studied, like classes CA(H) introduced by

H. Langer (see [23, page 53] and its references, and [20]), or the classes C(ρn)(H) considered

by several authors (see [4, 17, 18]). This latter generalization will be the main topic of study

in this paper, with the novelty that we consider the general case when the ρn’s are non-zero

complex scalars. This will lead to classes of operators with several new features and different

behavior.
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2. Hilbert space operators with (ρn)-dilations

Definition and first properties. In light of the preceding discussion we introduce the follow-

ing definition.

Definition 2.1 (Classes C(ρn)). — Let (ρn)n≥1 be a sequence of complex numbers, with ρn 6= 0

for each n. We write (ρn)n≥1 ∈ (C∗)N∗ . Let H be a complex Hilbert space. Define now

C(ρn)(H) := {T ∈ L(H) : there exists a Hilbert space K and a unitary operator U ∈ L(K)

with H ⊂ K and Tn = ρnPHU
n|H , ∀n ≥ 1}.

Here PH ∈ L(K) is the orthogonal projection from K onto its closed subspace H. We say in

this case that T possesses (ρn)-dilations.

In other words, an operator T is in the class C(ρn)(H) if and only if all its powers admit

dilations of the form ρnU
n for a certain unitary operator U acting on a larger Hilbert space.

For the rest of this paper, we will suppose that the Hilbert space H on which T acts is fixed.

If there is no ambiguity, C(ρn)(H) will be abbreviated as C(ρn). Note also that the sequence

(ρn) = (ρn)n≥1 starts at n = 1: for n = 0 we have of course T 0 = IH = PHU
0|H .

In the papers [4, 17, 18], the case when the ρn’s are non-negative real numbers is considered.

We went for a broader choice of sequences as the main ideas do not rely heavily on the fact that

ρn are in R∗+ and as this eventually allows for some interesting new phenomena for the classes

C(ρn). One first difference is recorded in the following remark.

Remark 2.2. — The definition of C(ρn) easily gives that T ∈ C(ρn) if and only if T ∗ ∈ C(ρn).

Therefore, when the ρn are real scalars, the class C(ρn) is stable under the adjoint map T 7→ T ∗.

This is no longer true in the general case.

Remark 2.3. — As another basic remark, we note that if T is in C(ρn), then we have ‖Tn‖ ≤ |ρn|.
Thus, r(T ) ≤ lim infn(|ρn|

1
n ). This relationship implies that two different cases appear in the

study of the classes C(ρn):

(i) 0 < lim infn(|ρn|
1
n ) ≤ +∞;

(ii) lim infn(|ρn|
1
n ) = 0.

Although many of the proofs below work the same way in both cases, most of the results will

be stated in the case (i). The study of the case (ii) is more problematic. Indeed, in case (ii), the

class C(ρn) will only contain quasinilpotent operators, that is operators whose spectra reduce to

{0}.
We also note that when lim infn(|ρn|

1
n ) = +∞, we trivially have r(T ) < lim infn(|ρn|

1
n ) for every

operator T . We also note that the condition lim infn(|ρn|
1
n ) = +∞ leads to small changes in the

proofs below: the main difference between this condition and lim infn(|ρn|
1
n ) < +∞ in case (i)

is the fact that the quantity 1

lim infn(|ρn|
1
n )

, which exists when lim infn(|ρn|
1
n ) ∈]0,+∞[, has to be

replaced by 0 when lim infn(|ρn|
1
n ) = +∞. This motivates the following convention.
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Convention. For the rest of this paper, we assume that

1

lim infn(|ρn|
1
n )

= 0 whenever lim inf
n

(|ρn|
1
n ) = +∞. (2.1)

One of the main tools to characterize the classes C(ρn) is the following Herglotz-type theorem.

Theorem 2.4. — Let H a Hilbert space. Let F : D→ H be an analytic function such that:

(i) F (0) = I

(ii) Re(F (z)) ≥ 0, ∀z ∈ D.

Then, there exists a Hilbert space K containing H and U ∈ L(K) an unitary operator such that

F (z) = PH(I + zU)(I − zU)−1|H , ∀z ∈ D

A proof of this theorem can be found in [8, p.65-69].

Definition 2.5. — For (ρn)n ∈ (C∗)N∗ and for w in a complex Banach algebra, f(ρn) denotes

the entire series given by f(ρn)(w) =
∑

n≥1
2wn

ρn
.

For a ∈ R, we denote Re≥a the half-plane {z ∈ C, Re(z) ≥ a}, while Re>a is the half-plane

{z ∈ C, Re(z) > a}.

Proposition 2.6. — Let (ρn)n ∈ (C∗)N∗ and let T ∈ L(H). The following are equivalent:

(i) T ∈ C(ρn);

(ii) The series

f(ρn)(zT ) =
∞∑
n=1

2

ρn
znTn

is absolutely convergent in L(H) and

I +Re(f(ρn)(zT )) ≥ 0, for all z ∈ D.

Proof. (i) ⇒ (ii) Let U be an unitary operator on a Hilbert space K, with K containing H as

a closed subspace, such that

Tn = ρnPHU
n|H , ∀n ≥ 1.

For every polynomial P (X) = a0 + · · ·+ anX
n and every z ∈ D, we have

a0I +
a1
ρ1
zT + · · ·+ an

ρn
(zT )n = PH(a0I + a1zU + · · ·+ an(zU)n)|H = PH P (zU)|H .

Since the series 1 +
∑

n≥1 2wn converges absolutely to f(w) = 1+w
1−w for all w ∈ D, and since U

is unitary, the series I +
∑

n≥1 2(zU)n converges in norm to

f(zU) = (I + zU)(I − zU)−1, for all z ∈ D.

Thus, as

‖T
n

ρn
‖ = ‖PHUn|H‖ ≤ ‖Un‖ ≤ 1,

the series IH+
∑

n≥1
2
ρn

(zT )n is absolutely convergent and converges to PH [(I+zU)(I−zU)−1]|H
for all z ∈ D. As U is unitary, f(zU) is normal, so the closure of its numerical range W (f(zU))
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is the convex hull of its spectrum. We have

σ(f(zU)) = f(σ(zU)) ⊂ f(D) ⊂ Re>0.

Thus,

W ((I + zU)(I − zU)−1)) = W (f(zU)) ⊂ Hull(σ(f(zU)) ⊂ Re≥0.

Furthermore, W (PHf(zU)|H) ⊂W (f(zU)), so the numerical range of IH +f(ρn)(zT ) is included

in Re≥0. This is equivalent to Re(IH + f(ρn)(zT )) ≥ 0, so (ii) is true.

- (ii) ⇒ (i) We define F (z) := IH + f(ρn)(zT ). Thus, F is analytic on D, F (0) = IH , and

Re(F (z)) ≥ 0 for all z ∈ D. By applying Theorem 2.4, we obtain a Hilbert space K and a

unitary operator U ∈ L(K), such that F (z) = PH(I + zU)(I − zU)−1|H , for all z ∈ D. By

developing both analytic expressions in entire series, and identifying their coefficients, we obtain
2
ρn
Tn = 2PHU

n|H for all n ≥ 1. Therefore T ∈ C(ρn). �

We will obtain most of the following results by applying Proposition 2.6. We can directly see

by applying this proposition that any class C(ρn) contains 0, the null operator, so none of these

classes is empty.

One remark is in order. We did not consider the case where ρn = 0 for some n in Definition

2.1. Indeed, this condition does not go well with computations similar to the ones in the proof

of Proposition 2.6. Having ρn = 0 implies Tn = 0, but it does not give any information on

PHU
n|H . This prevents us from showing that certain sums of powers of T and T ∗ are positive,

which is a crucial tool when dealing with operators in the class C(ρn).

If we were to denote m := inf({n : ρn = 0}), then any operator T in C(ρn) would need to

be nilpotent of order at most m. The following Corollary treats this nilpotent case and gives a

characterization that was the one we expected in the case ρm = 0. See also [5, Proposition 6.1]

for another use of the positivity condition (ii) below.

Corollary 2.7. — Let (ρn)n ∈ (C∗)N∗ and m ≥ 1. Let T ∈ L(H) be such that Tm = 0.

Then, the following are equivalent:

(i) T ∈ C(ρn);

(ii) I +Re(
m−1∑
n=1

zn 2
ρn
Tn) ≥ 0 for all z ∈ D.

Thus, for any sequence (τn) such that ρk = τk, for all 1 ≤ k < m, we have T ∈ C(τn) if and only

if T ∈ C(ρn).

Proof. A direct application of Proposition 2.6 with the extra condition Tm = 0 gives the equiv-

alence. �

Now we come back to Proposition 2.6. When lim infn(|ρn|
1
n ) > 0, we can see that the series

∞∑
n=1

2
ρn
znTn is absolutely convergent if and only if |z|r(T ) < lim infn(|ρn|

1
n ). We can thus

reformulate Proposition 2.6 as follows.
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Theorem 2.8. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. Let T ∈ L(H).

Then, the following assertions are equivalent:

(i) T ∈ C(ρn);

(ii) r(T ) ≤ lim infn(|ρn|
1
n ) and, for f(ρn)(zT ) :=

∞∑
n=1

2
ρn
znTn, we have

I +Re(f(ρn)(zT )) ≥ 0,∀z ∈ D.

Remark 2.9. — Replacing the condition of absolute convergence of a series by a condition

concerning the spectral radius of T is useful in several instances. We can first notice that if

we take v > 0 small enough, then vT will satisfy the spectral radius condition. However, if

lim infn(|ρn|
1
n ) = 0, this condition must be replaced by lim supn(‖T

n‖
|ρn|

1
n ) ≤ 1, which can only

be satisfied by certain quasinilpotent operators. Hence, aside from nilpotent operators and

Corollary 2.7, knowing which operators can be ”near” operators belonging to a class C(ρn) is a

difficult problem. In this case, the map f(ρn) also has convergence radius 0, so we cannot use

analytic or geometric properties related to the images of certain disks by f(ρn).

Many of the following results, related to specific operators or to f(ρn) will have no meaning

in this case, but others will be true under the additional condition

lim sup
n

(
‖Tn‖
|ρn|

) 1
n

≤ 1

We look now at the closure of the class C(ρn) for the operator norm.

Corollary 2.10. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. Then the class C(ρn) is closed

for the operator norm: if (Tm)m a sequence of operators converging in L(H) to T , such that

Tm ∈ C(ρn), then T ∈ C(ρn).

Proof. Let (Tm)m a sequence of operators converging to T such that Tm ∈ C(ρn). We have

r(T ) = lim
m

(r(Tm)) ≤ lim inf
n

(|ρn|
1
n ).

Thus, for any z ∈ D, the series f(ρn)(zT ) converges absolutely and f(ρn)(zT ) = limm f(ρn)(zTm).

Hence, for any h ∈ H, we have

Re(〈(I + f(ρn)(zT ))h, h〉) = Re[lim
m
〈(I + f(ρn)(zTm))h, h〉] ≥ 0.

This implies that I +Re(f(ρn)(zT ) ≥ 0, and the proof is complete by using Theorem 2.8. �

Operator radii. The condition in Theorem 2.8 will be useful when studying the (ρn)-radius,

which is introduced in the following definition.

Definition 2.11. — Let (ρn)n ∈ (C∗)N∗ . Let T ∈ L(H). We define the (ρn)-radius of T as:

w(ρn)(T ) := inf{u > 0 :
T

u
∈ C(ρn)} ∈ [0,+∞].

The definition of the (ρn)-radius is similar to the definition of the ρ-radius that can be found

in [1–3, 11]. As the classes C(ρn) and Cρ share the same type of definition, the (ρn)-radius and
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the ρ-radius will share the same role with some slight different variations.

We will for now focus on properties of the (ρn)-radius.

Lemma 2.12. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. Then, the map T 7→ w(ρn)(T )

takes values in [0,+∞[, is a quasi-norm, is equivalent as a quasi-norm to the operator norm

‖.‖, and its closed unit ball is the class C(ρn).

We also have

w(ρn)(T ) ≥
(
‖Tm‖
|ρm|

) 1
m

and w(ρn)(T ) ≥ r(T )

lim infn(|ρn|
1
n )
.

Proof. We start off by showing that the (ρn)-radius is finite while obtaining its equivalence with

the operator norm ‖.‖. Let T ∈ L(H). Let u > 0 be such that T
u ∈ C(ρn). For any m ≥ 1, we

have ‖T
m‖
um ≤ |ρm|, that is

u ≥
(
‖Tm‖
|ρm|

) 1
m

.

Therefore, by taking the infimum over u such that T
u ∈ C(ρn), we get

w(ρn)(T ) ≥
(
‖Tm‖
|ρm|

) 1
m

.

For m = 1 we obtain w(ρn)(T ) ≥ (‖T‖|ρ1| ). If we also take the lim sup of the right-hand side

quantity, we get

w(ρn)(T ) ≥ r(T )

lim infn(|ρn|
1
n )
.

Now, let r < lim infn(|ρn|
1
n ). Therefore, the series f(|ρn|)(rz) :=

∞∑
n=1

2
|ρn|r

nzn is absolutely

convergent for all z ∈ D, thus analytic on D. Since f(|ρn|)(0) = 0, there is a radius r0, with

1 > r0 > 0, such that |f(|ρn|)(r0w)| ≤ 1 for all |w| ≤ r. Let u > 0 be such that ‖T‖u < r0r. Thus,

we have

r(
T

u
) < r0r < lim inf

n
(|ρn|

1
n ),

and for all z ∈ D we have

‖f(ρn)(z
T

u
)‖ ≤

∞∑
n=1

2

|ρn|
|z|n(

T

u
)n ≤

∞∑
n=1

2

ρn
|z|n(r0r)

n = |f(|ρn|)(r0|z|r)| ≤ 1.

We recall that for any B ∈ L(H) we have

Re(B) ≥ −‖Re(B)‖.I = −‖B +B∗

2
‖I ≥ −‖B‖I.

Thus, for any z ∈ D, f(ρn)(z
T
u ) converges absolutely and we have

I +Re(f(ρn)(z
T

u
)) ≥ I − ‖f(ρn)(z

T

u
)‖I ≥ 0.
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This means that T
u ∈ C(ρn) according to Proposition 2.6, so w(ρn)(T ) ≤ u < +∞. Furthermore,

since T
u ∈ C(ρn) for every u such that u > ‖T‖

r0r
, we get w(ρn)(T ) ≤ ‖T‖r0r

. Hence, we have

‖T‖
|ρ1|

≤ w(ρn)(T ) ≤ ‖T‖
r0r

.

With these inequalities we immediately get

w(ρn)(T ) = 0⇔ T = 0.

These inequalities also imply that, for S, T ∈ L(H), we have

w(ρn)(S + T ) ≤ ‖S + T‖
r0r

≤ ‖S‖+ ‖T‖
r0r

≤ |ρ1|
r0r

(w(ρn)(S) + +w(ρn)(T )).

In order to show that w(ρn)(.) is a quasi-norm, we still have to show that it is homogeneous,

that is w(ρn)(zT ) = |z|w(ρn)(T ) for any z ∈ C. Let z ∈ C. The cases z = 0 and T = 0 have

been treated, so we now consider z = eit|z| 6= 0 and T 6= 0. Let u ≥ w(ρn)(zT ) be such that
zT
u ∈ C(ρn). Denote u′ = u

|z| . We can see that r( zTu ) = r( Tu′ ) and that f(ρn)(w
zT
u ) = f(ρn)(e

itw T
u′ )

for any w ∈ D. Thus, the series f(ρn)(e
itw T

u′ ) converges absolutely and I+Re(f(ρn)(e
itw T

u′ )) ≥ 0,

for any w ∈ D. Hence T
u′ ∈ C(ρn), so

u′ =
u

|z|
≥ w(ρn)(T ).

Thus, by taking the infimum for u ≥ w(ρn)(zT ), we get

w(ρn)(zT ) ≥ |z|w(ρn)(T ).

Applying the same result to T ′ = zT and z′ = 1
z , we obtain

w(ρn)(T ) = w(ρn)(z
′T ′) ≥ |z′|w(ρn)(T

′) =
1

|z|
w(ρn)(zT ),

which proves the desired equality.

We will now prove that the closed unit ball for the (ρn)-radius is exactly C(ρn). Notice again

that w(ρn)(T ) = 0 reduces to T = 0. If T ∈ C(ρn), then w(ρn)(T ) ≤ 1
1 = 1. Conversely, suppose

that w(ρn)(T ) ≤ 1 and let (um)m be a sequence, with um > 0, converging to w(ρn)(T ) such that
T
um
∈ C(ρn). Using the fact that the class C(ρn) is closed for the operator norm, as proved in

Corollary 2.10, we get T
w(ρn)(T )

∈ C(ρn). Therefore, we have

r(T ) ≤ r( T

w(ρn)(T )
) ≤ lim inf

n
(|ρn|

1
n )

and

I +Re(f(ρn)(zT )) ≥ 0, for every z with |z| ≤ 1

w(ρn)(T )
.

Since 1
w(ρn)(T )

≥ 1, we can conclude that T ∈ C(ρn). The proof is now complete. �

Remark 2.13. In the case when lim infn(|ρn|
1
n ) = 0, we have w(ρn)(T ) = +∞ unless T is

quasinilpotent and the sequence of ‖Tn‖
1
n decreases to 0 fast enough.
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Remark 2.14. Since the (ρn)-radius is homogeneous and

w(ρn)(T ) ≤ 1⇔ T ∈ C(ρn),

whenever T 6= 0, we have

{u > 0:
T

u
∈ C(ρn)} = [w(ρn)(T ),+∞[.

Corollary 2.15. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. Let T ∈ L(H). We have

(i) For any z 6= 0, 1
|z|w(ρn)(T ) = w(ρn)(

1
zT ) = w(znρn)(T );

(ii) If T ∈ C(ρn)(H), then T k ∈ C(ρkn)(H), for all k ≥ 1;

(iii) w(ρkn)n(T k) ≤ w(ρn)(T )k, for all k ≥ 1;

(iv) w(ρn)(T ) = w(ρn)(T
∗).

Proof. (i) The left-hand equality is given by the homogeneity of w(ρn)(·). For the right-hand

one, we can see that

(
T

z
)n = ρnPHU

n|H if and only if Tn = znρnPHU
n|H .

Thus T
z ∈ C(ρn) if and only if T ∈ C(znρn). Lemma 2.12 implies that

w(ρn)(
1

z
T ) = w(znρn)(T ).

- (ii) By definition of the class C(ρn), if T ∈ C(ρn), then

(T k)m = ρkmPH(Uk)m|H ,

so T k ∈ C(ρkn)(H).

- (iii) The result is true when T = 0. When T 6= 0, consider T ′ = T
w(ρn)(T )

. By homogeneity of

w(ρn)(·), we have w(ρn)(T
′) = 1, so T ′ ∈ C(ρn) according to Lemma 2.12. Thus, for any k ≥ 1,

(T ′)k ∈ C(ρkn)(H). Using again the homogeneity of the (ρn)-radius, we obtain

w(ρkn)n(T k)

w(ρn)(T )k
= w(ρkn)((T

′)k) ≤ 1.

This completes the proof.

- (iv) We use Remark 2.2 and Lemma 2.12 to obtain the equivalence

w(ρn)(T ) ≤ 1⇔ w(ρn)(T
∗) ≤ 1.

Since the (ρn)-radii are homogenous, these quantities must be equal. �

Corollary 2.16. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. Let T ∈ L(H). The following

assertions are true:

(i) Let F be an invariant closed subspace of T . Then w(ρn)(T |F ) ≤ w(ρn)(T );

(ii) For any isometry V we have w(ρn)(V TV
∗) ≤ w(ρn)(T ), with equality if V is unitary;

(iii) For a Hilbert space K we have w(ρn)(T ⊗ IK) = w(ρn)(T );
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(iv) For Tm ∈ L(Hm), m ≥ 1,n with supm(‖Tm‖) < +∞, we have

w(ρn)(⊕m≥1Tm) = sup
m≥1

(w(ρn)(Tm));

(v) If T (∞) denotes the countable orthogonal sum T ⊕T ⊕· · · , then w(ρn)(T
(∞)) = w(ρn)(T ).

Proof. - (i) We have r(T |F ) ≤ r(T ). If I + Re(f(ρn)(zT )) is positive, then I + Re(f(ρn)(zT |F ))

is positive too. Thus, by using Lemma 2.12 we obtain

w(ρn)(T ) ≤ 1⇒ w(ρn)(T |F ) ≤ 1.

The homogeneity of the (ρn)-radius gives the result.

- (ii) We have r(V TV ∗) ≤ r(T ) and (V TV ∗)n = V TnV ∗. Thus, f(ρn)(zV TV
∗) = V f(ρn)(zT )V ∗.

Hence, for any h ∈ H and any z ∈ D, we have

Re(〈(I + f(ρn)(zV TV
∗))h, h〉) = Re(〈(I + f(ρn)(zT ))V ∗h, V ∗h〉).

By applying Theorem 2.8 and Lemma 2.12, we get

w(ρn)(T ) ≤ 1⇒ w(ρn)(V TV
∗) ≤ 1.

The homogeneity of the (ρn)-radii gives the desired inequality. When the isometry V is also

invertible, the converse inequality is true, so both quantities are equal.

- (iii) Since ‖Tn‖ = ‖(T ⊗ IK)n‖, we have r(T ) = r(T ⊗ IK). Let u > 0 be such that

u ≥ r(T )

lim infn(|ρn|
1
n )

. Thus the series f(ρn)(z
T⊗IK
u ) is absolutely convergent for all z ∈ D, and

f(ρn)(z
T⊗IK
u ) = f(ρn)(z

T
u )⊗ IK . Since for any h1 ⊗ k1, h2 ⊗ k2 ∈ H ⊗K we have

〈h1 ⊗ k1, h2 ⊗ k2〉 = 〈h1, h2〉〈k1, k2〉,

we can see that the condition

〈(I +Re(f(ρn)(z
T ⊗ IK
u

)))(h⊗ k), h⊗ k〉 ≥ 0, ∀h⊗ k ∈ H ⊗K,

is equivalent to

〈(I +Re(f(ρn)(z
T

u
)))(h), h〉 ≥ 0, ∀h ∈ H.

Hence, T⊗IK
u ∈ C(ρn)(H ⊗ K) is equivalent to T

u ∈ C(ρn)(H), which implies that w(ρn)(T ) =

w(ρn)(T ⊗ IK).

- (iv) Since supm(‖Tm‖) < +∞, the linear map T = ⊕m≥1Tm is bounded on the Hilbert space

H = ⊕m≥1Hm, and ‖T‖ = supm(‖Tm‖). Thus, r(T ) = supm(r(Tm)). Let u > 0 be such that

u ≥ r(T )

lim infn(|ρn|
1
n )

. We have

r(
Tm
u

) ≤ r(T
u

) ≤ lim inf
n

(|ρn|
1
n ).

Thus, the series f(ρn)(z
T
u ) and f(ρn)(z

Tm
u ) are absolutely convergent for all z ∈ D, and

f(ρn)(z
T

u
) = ⊕m≥1f(ρn)(z

Tm
u

).



(ρn)-DILATIONS 11

Since for any h = (hm)m ∈ H, we have

[I +Re(f(ρn)(z
T

u
))](h) = ((I +Re(f(ρn)(z

Tm
u

)))(hm))m,

this implies that

〈(I +Re(f(ρn)(z
T

u
)))(h), h〉 ≥ 0, ∀h ∈ H,

is equivalent to

〈(I +Re(f(ρn)(z
Tm
u

)))(hm), hm〉 ≥ 0, ∀hm ∈ Hm, ∀m ≥ 1.

Hence, the assertion T
u ∈ C(ρn)(H) is equivalent to Tm

u ∈ C(ρn)(Hm), ∀n ≥ 1, which implies that

w(ρn)(T ) = supm(w(ρn)(Tm)).

- (v) The proof is a consequence of item (iii) and [5, Remark 1.1]. �

The items (i) and (ii) of this Corollary show that the classes C(ρn) are unitarily invariant, and

stable under the restriction to an invariant closed subspace. The item (iv) is a generalization of

a known property of direct sums of operators in the class C(ρ). Items (i), (ii) and (v) show that,

under the condition of Corollary 2.16, the radius w(ρn) is an admissible radius in the terminology

of [5, Definition 1.1]. Thus, all the results proved in [5] for admissible radii are valid for w(ρn)

when lim infn(|ρn|
1
n ) > 0. In particular, the following result is true.

Corollary 2.17. — Let T ∈ L(H), with ‖T‖ ≤ 1 and Tn = 0 for some n ≥ 2. Then, for each

polynomial p with complex coefficients, we have

w(ρn)(p(T )) ≤ w(ρn)(p(S
∗
n)).

Here S∗n is the nilpotent Jordan cell

S∗n =


0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

0 0 0 · · · 0 0


on the standard Euclidean space Cn.

Some other consequences of the condition lim infn(|ρn|
1
n ) > 0 are proved in the next Propo-

sition.

Proposition 2.18. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. The following assertions

are true:

(i) We have

w(ρn)(I) = min({r ≥ lim inf
n

(|ρn|
1
n )−1 : f(ρn)(D(0,

1

r
)) ⊂ Re≥−1});

(ii) For any T ∈ L(H), we have w(ρn)(T ) ≥ r(T ).w(ρn)(I);

(iii) If T is normal, then w(ρn)(T ) = ‖T‖.w(ρn)(I).
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Proof. - (i) Take u = w(ρn)(I) such that I
u ∈ C(ρn). We have r( Iu) ≤ lim infn(|ρn|

1
n ), so 1

u is

no greater than the convergence radius of f(ρn). For any z ∈ D, we have f(ρn)(z
I
u) = f(ρn)(

z
u)I.

Thus, I +Re(f(ρn)(z
I
u)) ≥ 0 for any z ∈ D if and only if f(ρn)(D(0, 1u)) ∈ Re≥−1.

- (ii) Let T ∈ L(H). There is nothing to prove if T = 0 or r(T ) = 0. Otherwise, let u = w(ρn)(T )

be such that T
u ∈ C(ρn) (cf. Lemma 2.12). Since I + Re(f(ρn)(z

T
u )) ≥ 0, the spectrum of

I + f(ρn)(z
T
u ) lies in Re≥0. This spectrum is the set {1 + f(ρn)(zw), w ∈ σ(Tu )}. The union of

these spectra, when z describes D, is {1 + f(ρn)(w), |w| < r(T )
u }. Since r(T )

u > 0, we obtain from

item (i) that u
r(T ) ≥ w(ρn)(I). Hence w(ρn)(T ) ≥ r(T )w(ρn)(I).

- (iii) Let T be a normal operator with T 6= 0. For u = ‖T‖.w(ρn)(I), we have

r(
T

u
) =
‖T‖
u

=
1

w(ρn)(I)
≤ lim inf

n
(|ρn|

1
n ).

Thus, we obtain that⋃
z∈D

σ(I + f(ρn)(z
T

u
)) = {1 + f(ρn)(w), |w| < 1

w(ρn)(I)
}.

Item (i) of this Proposition tells us that this set is included in Re≥0. As T is normal, I+f(ρn)(z
T
u )

is also normal, so

W (I + f(ρn)(z
T

u
)) ⊂ Hull(σ(I + f(ρn)(z

T

u
))) ⊂ Re≥0, ∀z ∈ D.

Hence, I +Re(f(ρn)(z
T
u )) ≥ 0, and T

u ∈ C(ρn). By Lemma 2.12, we then have

w(ρn)(T ) ≤ u = ‖T‖w(ρn)(I).

The inequality of item (ii) provides the desired equality. �

Remark 2.19. Since we also have

w(ρn)(I) ≥ 1

lim infn(|ρn|
1
n )
,

the inequality in Proposition 2.18 is better than the last one of Lemma 2.12. Thus, if there is

T such that w(ρn)(T ) = r(T )

lim infn(|ρn|
1
n )

, the same must be true for the identity operator I. In the

case when ρn = ρ, ρ > 0, this can only happen when ρ ≥ 1.

3. Classes C(ρ) for ρ 6= 0

In this section, we will focus on the case where ρn = ρ, for some ρ ∈ C∗. This is an intermediate

class between the classical case considered by Sz.-Nagy and Foias (classes Cτ for τ > 0) and

the the general C(ρn)-classes. Thus the obtained results are already known when ρ > 0, but the

generalization to the case ρ ∈ C∗ seems to be new. Nevertheless, we acknowledge the influence

of [1,2,14,23] for the results of this section. The results obtained here will turn out to be useful

when we will look again at C(ρn)-classes in the next section.

Some characterizations.
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Lemma 3.1. — Let ρ 6= 0 and ρn = ρ, ∀n ≥ 1. Let T ∈ L(H).

The following are equivalent:

(i) T ∈ C(ρ)(H);

(ii) r(T ) ≤ 1 and Re((1− 2
ρ)I + 2

ρ(I − zT )−1) ≥ 0, ∀z ∈ D;

(iii) r(T ) ≤ 1 and Re(2ρ(I − zT )) +Re(1− 2
ρ)(I − zT )∗(I − zT ) ≥ 0, ∀z ∈ D;

(iv) Re(2ρ(I − zT )) +Re(1− 2
ρ)(I − zT )∗(I − zT ) ≥ 0, ∀z ∈ D.

Proof. - (i)⇔ (ii) We have lim infn(|ρn|
1
n ) = 1. When r(T ) ≤ 1, for z ∈ D, we have

I +
∑
n≥1

2

ρ
(zT )n = (1− 2

ρ
)I +

2

ρ
(I − zT )−1.

Apply now Proposition 2.6.

- (ii)⇔ (iii) We will use several times the known fact that for A,B ∈ L(H), with A invertible,

Re(B) ≥ 0⇔ Re(A∗BA) ≥ 0.

We obtain the equivalence (ii)⇔ (iii) by choosing

A = (I − zT ), B = (1− 2

ρ
)I +

2

ρ
(I − zT )−1

and by rearranging the expression, using that (I−zT )∗(I−zT ) is a positive self-adjoint operator

and Re(A∗) = Re(A).

- (iii)⇒ (iv) is immediate.

- (iv) ⇒ (iii) Suppose that r(T ) > 1. Thus, there exists γ ∈ C such that |γ| = r(T ) > 1, and

there is a sequence (hn) of vectors hn ∈ H such that ‖hn‖ = 1 and ‖(T −γI)hn‖ → 0 as n→∞.

Let 0 < ε < |γ| − 1 and set gn := (T − γI)hn. Let also η = ε.eit, for some t that will be chosen

later on. Let z := 1+η
γ . Then, |z| < 1+(|γ|−1)

|γ| = 1. Furthermore, we have

(I − zT )hn = (I − 1

γ
T )hn −

η

γ
Thn + ηhn − ηhn = −zgn − ηhn.

Thus, we obtain

Re(〈[ 2
ρ

(I − zT )) + (1− 2

ρ
)(I − zT )∗(I − zT )]hn, hn〉) ≥ 0

⇒Re(2

ρ
[−η.‖hn‖2 − 〈zgn, hn〉] + (1− 2

ρ
)‖(I − zT )hn‖2) ≥ 0

⇒Re(2

ρ
[−η − 〈zgn, hn〉] + (1− 2

ρ
)[|η|2 + 2Re(〈zgn, hn〉) + |z|2‖gn‖2]) ≥ 0

Hence, by taking the limit as n→ +∞, we obtain

Re(
2

ρ
(−η) + (1− 2

ρ
)|η|2) = Re(

−2

ρ
eit)ε+Re(1− 2

ρ
)ε2 ≥ 0.

We can then choose t ∈ R depending on arg(ρ) and sgn(Re(1− 2
ρ)) to obtain

either
−2

|ρ|
ε+ |Re(1− 2

ρ
)|ε2 ≥ 0 or

2

|ρ|
ε− |Re(1− 2

ρ
)|ε2 ≤ 0.
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But since −2|ρ| < 0, there is some ε > 0 such that −2|ρ| + |Re(1− 2
ρ)|ε is strictly negative, which is

impossible. This contradiction shows that r(T ) ≤ 1, which concludes the proof. �

Lemma 3.2. — Let ρ 6= 0 and α > 0 be two scalars. Let T ∈ L(H).

The following asertions are equivalent:

(i) w(ρ)(T ) ≤ α;

(ii) r(T ) ≤ α, ((ρ− 1)zT − ραI) is invertible and ‖(zT )((ρ− 1)zT − ραI)−1‖ ≤ 1, ∀z ∈ D;

(iii) r(T ) ≤ α, ((ρ− 1)T − ρwI) is invertible and ‖T ((ρ− 1)T − ρwI)−1‖ ≤ 1, ∀|w| > α.

Proof. - (i) ⇒ (ii) When replacing T with T
α , all expressions in (i) and (ii) are reduced to the

case α = 1. Now, as w(ρn)(T ) ≤ α = 1, we use Lemma 3.1 to have r(T ) ≤ 1 and

Re((1− 2

ρ
)I +

2

ρ
(I − zT )−1) ≥ 0, ∀z ∈ D.

We denote Cz := (1− 2
ρ)I + 2

ρ(I − zT )−1, for z ∈ D. We recall that since Re(Cz) ≥ 0, we have

(Cz + I) invertible and

‖(Cz − I)(Cz + I)−1‖ ≤ 1.

A computation gives

Cz − I =
2

ρ
zT (I − zT )−1 and Cz + I = [2I + (

2

ρ
− 2)zT ](I − zT )−1.

Thus,

(Cz− I)(Cz + I)−1 =
1

ρ
zT [I + (

1

ρ
− 1)zT ]−1 = zT [ρI + (1− ρ)zT ]−1 = −zT [−ρI + (ρ− 1)zT ]−1.

This means that all the conditions of (ii) are fulfilled.

- (ii) ⇒ (i) We again reduce to the case α = 1. We denote Dz = zT [ρI − (ρ − 1)zT ]−1, for

z ∈ D. Since ‖Dz‖ ≤ 1, we have Dz ∈ C(1) so r(Dz) ≤ 1 and Re((I + wDz)(I − wDz)
−1) ≥ 0,

for all w ∈ D. We obtain:

I + wDz = [ρI + (w + 1− ρ)zT ][ρI − (ρ− 1)zT ]−1

and

I − wDz = [ρI + (−w + 1− ρ)zT ][ρI − (ρ− 1)zT ]−1.

Thus,

(I + wDz)(I − wDz)
−1 = [ρI + (w + 1− ρ)zT ][ρI + (−w + 1− ρ)zT ]−1.

Since r(T ) ≤ 1, (I− zT ) is invertible so [ρI+ (−w+ 1−ρ)zT ]−1 converges to 1
ρ(I− zT )−1 when

w tends to 1, by continuity of the inverse map. Thus,

lim
w→1, w∈D

(I + wDz)(I − wDz)
−1 =

1

ρ
(ρI + (2− ρ)zT )(I − zT )−1 = Cz.

Hence, Re(Cz) ≥ 0 for all z ∈ D and r(T ) ≤ 1, so T ∈ C(ρ).

- (ii) ⇔ (iii) For z 6= 0, we take w = α
z to obtain the result. The converse gives the result for

all z ∈ D, z 6= 0, which extends to D by continuity. �
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Reducing to the case ρ > 0. With this characterization of C(ρ) classes, we are now able to

obtain the main relationship between (ρ)-radii and (τ)-radii, ρ ∈ C∗, τ > 0. This relationship

extends the ”symmetric” relationship

τw(τ)(T ) = (2− τ)w(τ)(T ), 0 < τ < 2,

that was already known (see [2, Thm.3]).

Proposition 3.3. — Let ρ 6= 0 and α > 0 be two scalars. Let T ∈ L(H).

The following asertions are equivalent:

(i) w(ρ)(T ) ≤ α;

(ii) ((ρ− 1)zT − ραI) is invertible and ‖(zT )((ρ− 1)zT − ραI)−1‖ ≤ 1, ∀z ∈ D;

(iii) ((ρ− 1)T − ρwI) is invertible and ‖T ((ρ− 1)T − ρwI)−1‖ ≤ 1, ∀|w| > α.

Furthermore, we have:

|ρ|w(ρ)(T ) = (1 + |ρ− 1|)w1+|ρ−1|(T ). (3.1)

Hence, the map ρ ∈ C∗ 7→ |ρ|w(ρ)(T ) is constant on circles of center 1, is continuous on C∗ and

can be extended continuously to 2w(2)(T ) at 0.

Proof. Using the results of Lemma 3.2, we can see that items (ii) and (iii) are equivalent and

that item (i) implies item (ii). We only need to show that item (ii) implies r(T ) ≤ α. We can

reduce the proof to the case α = 1 by considering T
α instead of T . We also recall that if ρ > 0,

the result is valid (see [19, Thm.1] or [7] for a proof). Let ρ 6= 0. We denote S = 1+|ρ−1|
|ρ| T .

Suppose that [(ρ−1)zT −ρI]−1 exists and that ‖zT [(ρ−1)zT −ρI]−1‖ ≤ 1, for all z ∈ D. With

ρ− 1 = |ρ− 1|eit, ρ = |ρ|eis and w = z.e−is+it we then have

‖zT [(ρ− 1)zT − ρI]−1‖ ≤ 1

⇔‖zT [|ρ− 1|eitzT − |ρ|eisI]−1‖ ≤ 1

⇔‖ze−iseite−itT [|ρ− 1|ze−iseitT − |ρ|I]−1‖ ≤ 1.

⇔|e−it|‖wT [|ρ− 1|wT − |ρ|I]−1‖ ≤ 1

⇔‖wT [(1 + |ρ− 1| − 1)wT − |ρ|I]−1‖ ≤ 1

⇔‖w1 + |ρ− 1|
|ρ|

T [(1 + |ρ− 1| − 1)w
1 + |ρ− 1|
|ρ|

T − (1 + |ρ− 1|)I]−1‖ ≤ 1

⇔‖wS[(1 + |ρ− 1| − 1)wS − (1 + |ρ− 1|)I]−1‖ ≤ 1.

Since w describes D when z does, this is true for all w ∈ D. Therefore w(1+|ρ−1|)(S) ≤ 1 as

1 + |ρ− 1| > 0 (see the beginning of the proof and Lemma 3.2). Thus, r(S) ≤ 1, which implies

r(T ) ≤ |ρ|
1+|ρ−1| ≤ 1.

Now that we have showed that the condition about the spectral radius of T is not necessary,

we can see that the equivalences in the previous computations give

w(ρ)(T ) ≤ 1 ⇔ w(1+|ρ−1|)

(
1 + |ρ− 1|
|ρ|

T

)
≤ 1.
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By homogeneity of the (ρn)-radii, this is equivalent to

|ρ|w(ρ)(T ) = (1 + |ρ− 1|)w(1+|ρ−1|)(T ).

- The properties of the map ρ ∈ C∗ 7→ |ρ|w(ρ)(T ) can now be obtained from its restriction to

[1,+∞[, which is known to be continuous (see [2, Cor.2] for example ). �

Equation (3.1) gives a simple geometric understanding of a formula that was previously known

only for real numbers ρ between 0 and 2. It also implies the following relationship between Cρ

classes.

Corollary 3.4. — We have

C(ρ) =
1 + |ρ− 1|
|ρ|

C(1+|ρ−1|).

We conclude that complex (ρ)-radii of an operator T can be expressed in terms of the real

positive ones.

Corollary 3.5. — Let ρ 6= 0 and let T ∈ L(H). We have:

(i) w(ρ)(I) = 1+|ρ−1|
|ρ| , ∀ρ 6= 0;

(ii) If T is normal, then w(ρ)(T ) = ‖T‖1+|ρ−1||ρ| ;

(iii) If T 2 = 0, then w(ρn)(T ) = w(ρ1)(T ) = 2w(T )
|ρ1| = ‖T‖

|ρ1| ;

(iv) It T 2 = bI, b ∈ C, then |ρ|w(ρ)(T ) = w(T ) +
√
w2(T )2 + |b|(|ρ− 1|2 − 1);

(v) It T 2 = aT , a ∈ C, then |ρ|wρ(T ) = 2w(T ) + |a||ρ− 1|.

Proof. - (i) It is known that w(ρ)(I) = 1 when 1 ≤ ρ. The relationship of Proposition 3.3 gives

the result.

- (ii) When T is normal, we have w(ρn)(T ) = ‖T‖w(ρn)(I).

- (iii) If T 2 = 0, then T ∈ C(ρn) if and only if I + Re( 2
ρ1
zT ) ≥ 0 for all z ∈ D. By Corollary

2.7, this is equivalent to T
|ρ1| ∈ C(1), to 2T

|ρ1| ∈ C(2) and to T ∈ C(ρ1). Thus, Lemma 2.12 and the

following facts

w(2)(T ) = w(T ) and w(1)(T ) = ‖T‖

imply that

w(ρn)(T ) = w(ρ1)(T ) =
2w(T )

|ρ1|
=
‖T‖
|ρ1|

.

- (iv), (v) We can reduce these cases to T 2 = I (respectively T 2 = T ) by taking δ to be a square

root of b (respectively a) and looking at T
δ (respectively T

δ2
). Then, [2, Theorem 6] gives the

result when ρ > 0, and we extend it to ρ ∈ C∗ by using Proposition 3.3. �

Computations and some applications. For the next auxiliary result we need some notation.

For an operator T acting on H and for h ∈ H, define

Vh := Span(Tn(h), n ≥ 0) and Th := T |Vh ∈ L(Vh).
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Lemma 3.6. — Let T ∈ L(H). Let ρ 6= 0. Then, with the previous notation, we have

w(ρ)(T ) = sup
h∈H

(w(ρ)(Th)).

If we also have P (T ) = 0 for some P ∈ C[X] with deg(P ) = n, then Th can be identified as

some matrix S ∈ Mn(C) such that P (S) = 0, and the computation of w(ρ)(Th) can be obtained

from the computation of w(ρ)(S).

Proof.

Let h ∈ H. We already proved in Corollary 2.16 that w(ρ)(Th) ≤ w(ρ)(T ). Conversely, for
1
u = sup

h∈H
(w(ρ)(Th)), (I − z Tu ) is invertible as (I − z Thu ) is invertible for all h ∈ H and we have

Re(〈(I+f(ρ)(z
T
u ))g, g〉) ≥ 0 for all g ∈ H. Thus T

u ∈ C(ρ), which implies sup
h∈H

(w(ρ)(Th)) ≥ w(ρ)(T )

and concludes the proof. �

Remark 3.7. — Here is an attempt to compute w(ρ)(T ), ρ > 1, when T satisfies the quadratic

equation T 2+aT +bI = 0. We use some ideas from [2], which allows one to obtain an expression

of w(ρ)(T ) depending on w(2)(T ) when a = 0 or b = 0.

Up to considering reitT , we can assume that |b| = 1 and Re(āb) = 0. With α, β the roots of

X2 + aX + b and η ∈ C, we want to compute w(ρ)(M), for M =

(
α η

0 β

)
. Using Lemma 3.2,

(ii), and Proposition 3.3, we obtain that w(ρ)(M) is the largest (in modulus) z that is solution

of

2(ρ− 1)2 + ρ2|z|2( |a|
2 + |a2 − 4b|

2
) + |η|2ρ2|z|2 = |(ρ− 1)2

ia

|a|
+ a(ρ− 1)ρz + ρ2z2|2 + 1.

In the case ρ = 2, the equation simplifies into

2 + 2|z|2(|a|2 + |a2 − 4b|) + 4|η|2|z|2 = |4z2 + 2az +
ia

|a|
|2 + 1.

However, unlike the case where a = 0 or b = 0 in [2], we couldn’t find a way to have an algebraic

expression of w(ρ)(T ) in terms of w(2)(T ).

Using Proposition 3.3, we can also generalize some results of [1] about characterizing unitary

operators through their ρ-radii.

Proposition 3.8. — Let T ∈ L(H) be invertible. Then

(i) T is unitary if and only if σ(T ) ⊂ ∂D and there exists ρ ∈ C∗ such that

w(ρ)(T ) ≤ w(ρ)(I).

(ii) T = ‖T‖U for U unitary if and only if there exists ρ ∈ C∗ and m > 0 such that

w(ρ)(T
−m)

w(ρ)(I)
=

(
w(ρ)(T )

w(ρ)(I)

)−m
.

Proof. - (i) The formula of Proposition 3.3 can be rewritten as w(ρ)(S) = w(ρ)(I)w(1+|ρ−1|)(S).

It allows us to obtain the same relationship between T and I for w(1+|ρ−1|), and we can then
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apply [1, Theorem 2.1] to get the result.

- (ii) The formula of Proposition 3.3 allows us to obtain the same relationship for w(1+|ρ−1|),

which simplifies into:

w1+|ρ−1|(T
−m) = w1+|ρ−1|(T )−m.

We can now apply [1, Theorem 1.1], and the proof is complete. �

Proposition 3.9. — Let ρ 6= 0 be a complex number. Then

(i) The ρ-radius w(ρ)(·) is a norm on L(H) if and only if |ρ− 1| ≤ 1;

(ii) If |ρ− 1| > 1, then, for all operators T1 and T2 in L(H), we have

wρ(T1 + T2) ≤ (1 + |ρ− 1|) (wρ(T1) + wρ(T2)) .

Proof. For two operators T1, T2, we have w(ρ)(T1 + T2) ≤ C
(
w(ρ)(T1) + w(ρ)(T2)

)
if and only if

the same is true for w(1+|ρ−1|). It is known [14, 23] that for τ > 0, w(τ) is a norm if and only if

0 < τ ≤ 2. We conclude that w(ρ)(·) is a norm if and only if ρ lies in the closed circle of center

1 and radius 1. Moreover, when τ > 2, w(τ) is a quasi-norm with multiplicative constant (also

called the modulus of concavity of the quasi-norm [13]) lower or equal to τ . We thus obtain

(ii). �

For the next proposition we recall that for r > 0 the disc algebra over the disc D(0, r),

A(D(0, r)), is the set of holomorphic functions on D(0, r) that are continuous on D(0, r).

Proposition 3.10. — Let ρ 6= 0 be a complex number. Let T ∈ C(ρ). Then the functional

calculus map f 7→ f(T ) that sends a polynomial f into f(T ) can be extended continuously to the

disk algebra A(D(0, 1
w(ρ)(I)

)). It is a morphism of Banach algebras, and satisfies

‖f(T )‖ ≤ (1 + |ρ− 1|)‖f‖L∞(D(0, 1
w(ρ)(I)

)).

Furthermore, for f ∈ A(D(0, 1
w(ρ)(I)

)) such that f(0) = 0, we have

w(ρ)(f(T )) ≤ w(ρ)(I)‖f‖L∞(D(0, 1
w(ρ)(I)

)).

If f ∈ A(D) with f(0) = 0, we also have

w(ρ)(f(T )) ≤ ‖f‖L∞(D).

The constants in these three inequalities are optimal.

Proof. We notice first that T ∈ C(ρ) is equivalent to w(ρ)(T ) ≤ 1, which is equivalent to

w(1+|ρ−1|)(T ) ≤ |ρ|
1 + |ρ− 1|

=
1

w(ρ)(I)
≤ 1.

Hence, w(ρ)(I)T lies in C(1+|ρ−1|), so there exists a Hilbert space K and an unitary operator U

over K such that

(w(ρ)(I)T )n = (1 + |ρ− 1|)PHUn|H , ∀n ≥ 1.
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Therefore, if we denote V := U
w(ρ)(I)

, for any polynomial P we get

P (T ) = PH [(1 + |ρ− 1|)P (V )− |ρ− 1|P (0)I]|H .

Since V is a normal operator with spectral radius 1
w(ρ)(I)

, we then have

‖P (T )‖ ≤ ‖(1 + |ρ− 1|)P (V )− |ρ− 1|P (0)I‖ ≤ ‖(1 + |ρ− 1|)P − |ρ− 1|P (0)‖L∞(D(0, 1
w(ρ)(I)

)).

As the polynomials are dense in the algebra A(D(0, 1
w(ρ)(I)

)), the morphism of algebras P 7→ P (T )

extends continuously on A(D(0, 1
w(ρ)(I)

)).

Let us estimate the norm of this map. For f in the algebra we denote g(z) := f( z
w(ρ)(I)

).

Hence, g ∈ A(D), and we have f(T ) = g(w(ρ)(I)T ). Applying a reformulation of Theorem 2 in

[15] by Ando and Okubo, we obtain

‖f(T )‖ = ‖g(w(ρ)(I)T )‖ ≤ max(1, 1 + |ρ− 1|)‖g‖L∞(D) = (1 + |ρ− 1|)‖f‖L∞(D(0, 1
w(ρ)(I)

)).

We will now prove the two remaining inequalities. The fact that V is normal implies that

f 7→ f(V ) is well defined and bounded on A(D(0, 1
w(ρ)(I)

)). Therefore

f(T ) = PH [(1 + |ρ− 1|)f(V )− |ρ− 1|f(0)I]|H , ∀f ∈ A(D(0,
1

w(ρ)(I)
)).

We now suppose that f satisfies f(0) = 0. If f ≡ 0, then f(T ) = 0 and the statements are true.

Otherwise, up to dividing f by its norm, we may assume that ‖f‖L∞(D(0, 1
w(ρ)(I)

)) = 1. For a

fixed n ≥ 1, we get

f(T )n = fn(T ) = (1 + |ρ− 1|)PHfn(V )|H = (1 + |ρ− 1|)PHf(V )n|H .

As we have ‖f(V )‖ ≤ ‖f‖L∞(D(0, 1
w(ρ)(I)

)) = 1, the operator f(V ) lies in C(1) which in turns

implies that f(V ) can be dilated on a larger Hilbert space as follows

f(V )m = PKW
m|K , ∀m ≥ 1,

with W a suitable unitary operator. Combining the two dilations, we obtain

f(T )n = (1 + |ρ− 1|)PHWn|H , ∀n ≥ 1.

Therefore f(T ) lies in C(1+|ρ−1|), which is equivalent to w(1+|ρ−1|)(f(T )) ≤ 1. This inequality is in

turn equivalent to w(ρ)(f(T )) ≤ w(ρ)(I), which proves the second inequality of this Proposition.

Lastly, if f ∈ A(D) with f(0) = 0, we can use Schwarz’s lemma to obtain

‖f‖L∞(D(0, 1
w(ρ)(I)

)) ≤
1

w(ρ)(I)
‖f‖L∞(D),

which in turn gives w(ρ)(f(T )) ≤ ‖f‖L∞(D).

For the optimality of these inequalities, let us take T such that T 2 = 0 and ‖T‖ = |ρ|, and
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f(z) = z. We then have

w(ρ)(T ) =
‖T‖
|ρ|

= 1 = w(ρ)(I)‖f‖L∞(D(0, 1
w(ρ)(I)

)) = ‖f‖L∞(D)

and

‖f(T )‖ = |ρ| = (1 + |ρ− 1|)‖f‖L∞(D(0, 1
w(ρ)(I)

)).

The proof is complete. �

When ρ does not lie in [1,+∞[, the algebra where the functional calculus is defined strictly

contains the disc algebra A(D). For 0 < ρ < 1, the norm of this map is then 2− ρ. This result

differs from [15, Theorem 2] as Ando and Okubo looked in [15] at the map f 7→ f(T ) on A(D)

and not on a larger algebra.

4. Inequalities and parametrizations for (ρn)-radii

Operator radii of products and tensor products. A useful tool, used to study the behavior

of a product or sum of double-commuting operators, is the following result, proved in [11,

Thm.4.2].

Proposition 4.1. — Let Tn, Sn ∈ L(H), n ∈ Z, be such that for all 0 ≤ r < 1, t ∈ R, the series∑∞
n=−∞ r

|n|eintTn and
∑∞

n=−∞ r
|n|eintSn converge absolutely and have self-adjoint non-negative

sums. If, moreover, we have Tn ·Sm = Sm ·Tn, ∀m,n ∈ Z, then the series
∑∞

n=−∞ r
|n|eintTn ·Sn

converges absolutely and has a self-adjoint non-negative sum, for all 0 ≤ r < 1, t ∈ R.

Using Proposition 4.1 we can easily obtain the following auxiliary result.

Lemma 4.2. — Let T, S ∈ L(H) be two operators that are double-commuting (i.e., TS = ST ,

TS∗ = S∗T ). Let (ρn)n, (τn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0 and lim infn(|τn|

1
n ) > 0. Then,

we have

w(ρnτn)(S.T ) ≤ w(ρn)(S)w(τn)(T ).

Proof. If S = 0 or T = 0, then ST = 0 and both sides of the inequality are equal to zero. If

S 6= 0 and T 6= 0, then, up to dividing S and T by their respective radius, we can consider that

w(ρn)(S) = w(τn)(T ) = 1 . Thus, we need to prove that w(ρnτn)(S.T ) ≤ 1. We define

Tm :=


1
ρm
Tm if m ≥ 1

I if m = 0
1

ρ|m|
(T ∗)|m| if m ≤ −1

, Sm :=


1
τm
Sm if m ≥ 1

I if m = 0
1

τ|m|
(S∗)|m| if m ≤ −1.

The condition w(ρn)(S) = w(τn)(T ) = 1, together with Lemma 2.12 and Proposition 2.6,

ensure us that the conditions of Proposition 4.1 are fulfilled, since I + Re(f(ρn)(re
itS) =∑

m∈Z r
|m|eimtSm, for all 0 ≤ r < 1, t ∈ R. Thus,

∑
m∈Z r

|m|eimtSmTm converges absolutely, is

self-adjoint, and has a positive sum, for all 0 ≤ r < 1, t ∈ R. This implies that the series∑
n≥1

2

ρnτn
(reitST )n = f(ρnτn)(re

itST )
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is absolutely convergent and that I + Re(f(ρnτn)(re
itST )) ≥ 0 for all 0 ≤ r < 1, t ∈ R. Thus

ST ∈ C(ρnτn) and w(ρnτn)(ST ) ≤ 1, which concludes the proof. �

Corollary 4.3. — Let T, S ∈ L(H) and let (ρn)n, (τn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0 and

lim infn(|τn|
1
n ) > 0.

(i) If T and S double-commute, then

w(ρn)(ST ) ≤ w(1)(S)w(ρn)(T ) ≤ |τ1|w(τn)(S)w(ρn)(T ).

This inequality is optimal when dim(H) ≥ 4.

(ii) We have

w(1)(ST ) ≤ w(1)(S)w(1)(T ) ≤ |τ1||ρ1|w(τn)(S)w(ρn)(T ).

This inequality is optimal when dim(H) ≥ 2.

(iii) For R ∈ L(H ′), we have

w(ρnτn)(T ⊗R) ≤ w(ρn)(T )w(τn)(R).

Proof. - (i) We use Lemma 4.2 for S, T and (1)n, (ρn)n to get the left-hand side inequality. The

right-hand side inequality comes from the fact w(τn)(S) ≥ ‖S‖|τ1| (cf. Lemma 2.12). By taking

S =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 , T =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 such that ST =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 ,

some computation show that S and T double-commute, and that

‖S‖ = ‖T‖ = ‖ST‖, S2 = T 2 = (ST )2 = 0.

Corollary 3.5,(iii), shows that all three quantities are equal to ‖ST‖|ρ1| .

- (ii) The inequality on the right-hand side follows again from Lemma 2.12. By taking

S =

(
0 1

0 0

)
, T =

(
0 0

1 0

)
such that ST =

(
1 0

0 0

)
,

we have

‖S‖ = ‖T‖ = ‖ST‖ = 1, S2 = T 2 = 0, and ST is self-adjoint.

Thus, w(τn)(S) = w(ρn)(T ) = 1
ρ and w(1)(ST ) = 1, so all quantites are equal to 1.

- (iii) As IH , T double-commute and IH′ , R double-commute too, we can apply Lemma 4.2 to

(T ⊗ IH′)(IH ⊗R) = T ⊗R. We then apply item (iii) of Corollary 2.16. �

Although these inequalities are optimal for some operators, they tend to lose a good part of

the information in the general case. For example, we have w(3)(I) = 1 ≤ w(−1)(I)w(−3)(I) = 5.

Such a loss of information on the radius of the identity operator I also impacts almost every

estimate of radii for other operators in L(H).
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Corollary 4.4. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. Then,

‖T‖
|ρ1|

≤ w(ρn)(T ) ≤ ‖T‖w(ρn)(I).

Furthermore, the coefficients in this equivalence of quasi-norms are optimal.

Proof. The left-hand side inequality ‖T‖
|ρ1| ≤ w(ρn)(T ) has been obtained in Lemma 2.12. The

equality case is obtained for T such that T 2 = 0, as seen in Corollary 3.5. The right-hand side

inequality comes from Lemma 4.2, with S = I and τn = 1. It is an improvement of the one that

was obtained in Lemma 2.12. The equality case is obtained for any T normal of norm 1. �

Operator radii as 1-parameter families. To better understand the behavior of the associ-

ated radii associated with classes of operators, it is useful to look at (ρn)-radii as 1-parameter

families. This is obtained by studying the map z 7→ w(zρn). We will present results for the real

parameter case (r ∈]0,+∞[) and for the complex one (z ∈ C∗).
The two main ingredients we are using are the double-commuting inequality of Lemma 4.2

for T, I and (ρn)n,(1)1, and the fact that f(zρn) = 1
zf(ρn).

Proposition 4.5. — Let T ∈ L(H) and consider (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0.

(i) For all z 6= 0, we have:

|z|
1 + |z − 1|

w(zρn)(T ) ≤ w(ρn)(T ) ≤ w(zρn)(T )(|z|+ |z − 1|).

(ii) The map z 7→ w(zρn)(T ) is continuous on C∗, and r 7→ w(r.eitρn)(T ) is continuous and

decreasing on ]0,+∞[, for all t ∈]− π, π].

(iii) We have
1

3
.w(zρn)(T ) ≤ w(|z|ρn)(T ) ≤ 3.w(zρn)(T ),

and these inequalities are optimal.

Proof. - (i) We use Lemma 4.2 to obtain

w(zρn)(T ) ≤ w(z)(I)w(ρn)(T ) and w(ρn)(T ) ≤ w(z−1)(I)w(zρn)(T ).

As w(z)(I) = 1+|z−1|
|z| and w(z−1)(I) = |z|+ |z − 1|, we obtain the desired inequalities.

- (ii) Up to changing (ρn)n by (wρn)n, the continuity must only be shown at the point w = 1,

that is when z → 1. As we have

w(ρn)(T ) ≤ w(zρn)(T )(|z|+ |z − 1|) ≤ w(ρn)(T )(|z|+ |z − 1|)1 + |z − 1|
|z|

and as (|z|+ |z − 1|),1+|z−1||z| both tend to 1 from above as z → 1, we obtain

lim
z→1

w(zρn)(T ) = w(ρn)(T ).

For any t ∈ R and 0 < r < R, we have

w(Reitρn)(T ) ≤ w(R.r−1)(I)w(reitρn)(T ) = w(reitρn)(T ).
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Thus, r 7→ w(r.eitρn)(T ) is decreasing on ]0,+∞[.

- (iii) We use the fact that w(eit)(I) = 1 + |eit − 1| has a maximum of 3 when eit = −1. The

equality case for the inequality on the left-hand side is attained at T = I, ρn = 1 and z = −1,

whereas the equality case for the one on the right-hand side is attained at T = I, ρn = −1,

z = −1. �

Since r 7→ w(rρn)(T ) is decreasing, the classes C(rρn) are increasing (for the usual order of

inclusion of sets), for r ∈]0,+∞[. By using nilpotent operators of order 2, and item (iii) of

Corollary 3.5, we can also immediately show that these inclusions are always strict.

For the following propositions, we recall that 1

lim infn(|ρn|
1
n )

= 0 if lim infn(|ρn|
1
n ) = +∞.

Proposition 4.6. — Let (ρn)n ∈ (C∗)N∗ and T ∈ L(H) be such that lim infn(|ρn|
1
n ) > r(T ) ≥ 0.

Then, there is r > 0 such that for all z with |z| = r,

r(T )

lim infn(|ρn|
1
n )
≤ w(zρn)(T ) ≤ 1.

Proof. Let s > 1 be such that r(sT ) < lim infn(|ρn|
1
n ). As

lim sup
n→∞

(
2sn‖Tn‖
|ρn|

) 1
n

=
r(sT )

lim infn(|ρn|
1
n )

< 1,

there is B > 0 such that 2sn‖Tn‖
|ρn| ≤ B. Thus, for all w ∈ D, we have

‖f(zρn)(wT )‖ ≤
∑
n≥1

2‖Tn‖
|z||ρn|

≤
∑
n≥1

B

|z|sn
=

1

|z|
sB

1− s
< +∞.

By taking |z| large enough, we have ‖f(zρn)(wT )‖ < 1, which implies that

I +Re(f(zρn)(wT )) ≥ 0, ∀w ∈ D.

Thus w(zρn)(T ) ≤ 1. The left-hand side inequality comes from items (i) and (ii) of Proposi-

tion 2.18: we have

w(zρn)(T ) ≥ r(T )w(zρn)(I) and w(zρn)(I) ≥ 1

lim infn(|zρn|
1
n )
.

�

Proposition 4.7. — Let T ∈ L(H) and let (ρn)n ∈ (C∗)N∗ be such that lim infn(|ρn|
1
n ) > 0.

Then

lim
|z|→+∞

(w(zρn)(T )) =
r(T )

lim infn(|ρn|
1
n )
.

Proof. According to Proposition 4.5 and Proposition 2.18, the map r 7→ w(reitρn)(T ) is decreasing

on ]0,+∞[ and

w(ρn)(T ) ≥ r(T )w(ρn)(I) ≥ r(T )

lim infn(|ρn|
1
n )
.
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We will show that w(zρn)(T ) is as close to this lower bound as we want when z is large enough.

Let ε > 0. If r(T ) = 0, then r(1εT ) = 0, so Proposition 4.6 implies the existence of r > 0 such

that w(zρn)(
T
ε ) ≤ 1 for all z with |z| = r. Thus, w(zρn)(T ) ≤ ε.

If r(T ) 6= 0, for 0 < R < lim infn(|ρn|
1
n ) we have

r

(
RT

(1 + ε)r(T )

)
≤ lim inf

n
(|ρn|

1
n ).

Thus, by Proposition 4.6, there exists r > 0 such that w(zρn)

(
RT

(1+ε)r(T )

)
≤ 1 for all z with

|z| = r. Hence,
r(T )

lim infn(|ρn|
1
n )
≤ w(zρn)(T ) ≤ (1 + ε)r(T )

R
.

We then obtain the result by taking R = lim infn(|ρn|
1
n )(1 − ε) if lim infn(|ρn|

1
n ) is finite, or

R = 1
ε if lim infn(|ρn|

1
n ) = +∞. �

Proposition 4.8. — Let T ∈ L(H). Let (ρn)n ∈ (C∗)N∗ be such that lim infn(|ρn|
1
n ) > 0. We

have:

(i) z 7→ w(zρn)(T ) is uniformly continuous on C \ D(0, ε), for all ε > 0. This maps tends to

+∞ as |z| → 0, and to r(T )

lim infn(|ρn|
1
n )

as |z| → +∞;

(ii) For any t ∈ R, the map r 7→ w(reitρn)(T ) is log-convex on ]0,+∞[.

Proof. - (i) On the closed set C \ D(0, ε), the function

z 7→ w(zρn)(T )

is continuous, decreasing on every half-line of the form eit[ε,+∞[, and converges to

r(T )

lim infn(|ρn|
1
n )

as |z| → +∞. Thus, a standard argument (considering two cases, ε ≤ |z| ≤ R and |z| ≥ R)

shows that this map is uniformly continuous. One can also use the double-commuting inequality

of Lemma 4.2 for T and IH , as well as the uniform continuity of the map z 7→ w(z)(I) on

C \ D(0, η), in order to prove the uniform continuity of z 7→ w(zρn)(T ). The limit as |z| → +∞
has been obtained in Proposition 4.7, while the limit as |z| → 0 comes from the fact that

w(zρn)(T ) ≥ ‖T‖
|z||ρ1| , as remarked in Lemma 2.12.

- (ii) Let t ∈ R. Denote G′(z) := −e−itf(ρn)(zT ). For any α > 0, we have w(reitρn)(T ) ≤ α

if and only if f(eitρn)(z
T
α ) is analytic on D and I + Re(1rf(eitρn)(z

T
α )) ≥ 0, for all z ∈ D. By

taking w = z
α , this is equivalent to G′(w) being analytic on D(0, 1α) and Re(G′(w)) ≤ rI, for all

w ∈ D(0, 1α). The result is then obtained by mimicking the proof of [2, Theorem 1] by Ando and

Nishio and replacing G with G′. �

Even though the expression of f(zρn) is more complex than f(z)(w) = 2
z

w
1−w , the main regu-

larity properties remain valid due to its analyticity.
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Proposition 4.9. — Let (ρn)n ∈ (C∗)N∗ be such that lim infn(|ρn|
1
n ) > 0. If one of the following

assertions is true

(i) lim infn(|ρn|
1
n ) < 1;

(ii) |ρn| < 1 for some n ≥ 1;

(iii) w(ρn)(I) > 1;

(iv) ρn = M + xn, (xn)n ∈ `2(C),

then all operators in C(ρn)(H) are similar to contractions.

If, on the contrary, we have:

(i’) w(ρn)(I) < 1,

then C(ρn)(H) contains operators that are not similar to contractions.

Both statements remain true if the conditions are only fulfilled for the subsequence (ρkn)n, for

some fixed k ≥ 1.

Proof. - (i), (ii), (iii) We can see that (i)⇒ (ii) ⇒ (iii). If (iii) is true, then for T ∈ C(ρn), we

have

r(T ) ≤
w(ρn)(T )

w(ρn)(I)
< 1,

so T is similar to a contraction.

- (iv) It has been shown in [17, Ch.2] (see also [4, Cor 5.2.1]) that when ρn = M + xn, (xn)n ∈
`2(C), all operators in C(ρn) are similar to contractions.

- (i′) On the contrary, when w(ρn)(I) < 1, 1
w(ρn)(I)

I ∈ C(ρn) and this operator is not similar to a

contraction.

The last assertion of the theorem follows from two facts. The first one is that T ∈ C(ρn) implies

T k ∈ C(ρkn). The second one is that T k is similar to a contraction if and only if T is similar to

a contraction: see [10, Problem 6,(ii)] for a proof when k = 2 that extends to any k by taking

((f, g)) :=
∑k−1

j=1〈Ajf,Ajg〉. �

Proposition 4.10. — Let (ρn)n ∈ (C∗)N∗ be such that lim infn(|ρn|
1
n ) > 0.

(i) If lim infn(|ρn|
1
n ) = +∞, then

⋃
r>0C(rρn)(H) = L(H).

(ii) If lim infn(|ρn|
1
n ) < +∞, then we have

{T : r(T ) < lim inf
n

(|ρn|
1
n )} ⊂

⋃
r>0

C(rρn)(H) ⊂ {T : r(T ) ≤ lim inf
n

(|ρn|
1
n )}.

(iii) Moreover, we have

{T : r(T ) < lim inf
n

(|ρn|
1
n )} =

⋃
r>0

C(rρn)(H)

if and only if

w(rρn)(lim inf
n

(|ρn|
1
n ).I) > 1, ∀r > 0.

Proof. - (i) By using Proposition 4.6, for any T there exists r > 0 such that w(rρn)(T ) ≤ 1.

- (ii) We use again Proposition 4.6 in order to obtain the left-hand side inclusion. The other
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inclusion follows from Proposition 2.6.

- (iii) Suppose that there is a number r > 0 and an operator T with r(T ) = lim infn(|ρn|
1
n ) such

that w(rρn)(T ) ≤ 1. Then

1 ≥ w(rρn)(T ) ≥ r(T )w(rρn)(I) ≥ r(T )

lim infn(|ρn|
1
n )

= 1.

Thus all inequalities are equalities, and w(rρn)

(
lim infn(|ρn|

1
n ).I

)
= 1. Hence, the union of all

C(rρn) strictly contains {T : r(T ) < lim infn(|ρn|
1
n )} if and only if it contains (lim infn(|ρn|

1
n )I).

The proof is complete. �

Remark 4.11. — Replacing (ρn)n by (eitρn)n leaves unchanged the quantity lim infn(|ρn|
1
n ).

However, the union of all classes C(rρn) can become a different set.

With ρn = ρ, we have lim infn(|ρn|
1
n ) = 1 and w(ρ)(I) = 1 if and only if ρ ∈ [1,+∞[. Thus,⋃

r>0

C(reit)n(H) = {T : r(T ) < 1} if t 6= 0 [2π].

This is not an equality if t = 0 (look at the identity operator I). However, the set
⋃
r>0C(r)(H)

does not contain all operators with spectral radius one. Indeed, it has been proven in [17, Ch.2]

(see also [4, Cor 5.2.1]) that all operators contained in this union are all similar to contractions.

Furthermore, all operators similar to a contraction are not in this union. For a counterexample,

any non-orthogonal projection T (that is T 2 = T and ‖T‖ > 1) is not in this union since

Corollary 4.3,(v), says that w(ρ)(T ) = ‖T‖+|ρ−1|
|ρ| > 1.

- For a sequence (ρn)n that satisfies α = lim infn(|ρn|
1
n ) ∈]0,+∞[, we can go back to the case

lim infn(|ρn|
1
n ) = 1 by considering the sequence ( ρnαn )n. As this normalization is equivalent to a

dilation by a factor 1
α on the class C(ρn), we can then try to see if in this case the class C(ρn)

is always included in the set of operators that are similar to contractions. This question is

motivated by Properties 4.10 and 4.9. The answer is true when w(ρn)(I) > 1, but Corollary 4.18

will give a negative answer in many remaining cases, even if we consider the inclusion in the set

of power-bounded operators.

At this point we would like to mention that, for every k ≥ 2, there is ([9]) a Hilbert space

operator T /∈ ∪ρ>0Cρ but with T k belonging to C(τ) for every τ ≥ 1. Related results are given

in the next proposition.

Proposition 4.12. — Let (ρn)n ∈ (C∗)N∗ be such that lim infn(|ρn|
1
n ) > 0. Let H a Hilbert

space of dimension at least 2.

(i) For T ∈ L(H) with T 2 = 0 and ‖T‖ > |ρ1|, T k is in the class C(ρn) for every k ≥ 2, but

T is not.

(ii) If lim infn(|ρn|
1
n ) > 1, then T k ∈

⋃
r>0C(rρn) for some k ≥ 2 implies that T ∈

⋃
r>0C(rρn).

(iii) If lim infn(|ρn|
1
n ) < 1, then there exists T ∈ L(H) such that T k lies in

⋃
r>0C(rρn) for

every k ≥ 2 whereas T does not.
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(iv) If lim infn(|ρn|
1
n ) = 1 and I /∈

⋃
r>0C(rρn), then T k ∈

⋃
r>0C(rρn) for some k ≥ 2 implies

that T ∈
⋃
r>0C(rρn).

Proof. - (i) As we have ‖T‖ > |ρ1|, T cannot lie in C(ρn), whereas T k = 0 does.

- (ii) Let T be such that T k ∈
⋃
r>0C(rρn) for some k ≥ 2. Then, r(T k) ≤ lim infn(|ρn|

1
n ).

Hence,

r(T ) ≤ lim inf
n

(|ρn|
1
n )

1
k < lim inf

n
(|ρn|

1
n ),

that is T ∈
⋃
r>0C(rρn) according to Proposition 4.10, (i) and (ii).

- (iii) Take r > 0 such that

lim inf
n

(|ρn|
1
n ) < r < lim inf

n
(|ρn|

1
n )

1
2 ,

and denote T = r.I. Thus, using item (ii) of Proposition 4.10, we can see that since for every

k ≥ 2 we have

r(T k) ≤ r(T 2) < lim inf
n

(|ρn|
1
n ) < r(T ),

T doesn’t lie in
⋃
r>0C(rρn) whereas T k does.

- (iv) If T k ∈
⋃
r>0C(rρn), then r(T k) < 1 according to item (iii) of Proposition 4.10. This

implies that r(T ) < 1, which implies in turn that T ∈
⋃
r>0C(rρn). �

Remark 4.13. — As the classes C(rρn) are increasing for the inclusion of sets, the assertion

T ∈
⋃
r>0C(rρn) is equivalent to the existence of R > 0 such that T ∈ C(rρn) for every r ≥ R.

When lim infn(|ρn|
1
n ) = 1 and I ∈

⋃
r>0C(rρn), which is the case when ρn = ρ > 0, we do

not know if the result of Găvruţa [9] stays true, as the type of operators he used in his proof

is not suited in this setting: since there are sequences (ρn) such that
⋃
r>0C(rρn) contains all

power-bounded operators (see Corollary 4.18), taking a T such that T k = I will not work.

Example 4.14. — For ρn = 2(n!), we have I + f(ρn)(zT ) = exp(zT ), and a quick computation

gives w(2(n!))(I) = 2
π < 1 (see item (iv) of Example 4.20 for another proof). Therefore π

2 I ∈
C(2(n!))(H) and this class contains an operator not similar to a contraction.

We can also try to obtain some relationships between the (γnρn)-radii of an operator, for

sequences (γn)n ∈ ∂DN∗ , in order to see for which sequences (γn)n the maximal or minimal radii

are attained. The following Lemma answers the question for the maximal radii when T = I.

Lemma 4.15. — Let (ρn)n ∈ (C∗)N∗ be such that α = lim infn(|ρn|
1
n ) > 0. If limx→α− f(|ρn|)(x) >

1, then f(|ρn|)(x) = 1 has a unique solution, r1, on ]0, α[. Otherwise, denote r1 = α. We then

have:

(i) w(−|ρn|)(I) = 1
r1

;

(ii) w(−|ρn|)(I) ≥ w(γnρn)(I) ≥ 1
α , for any (γn)n ∈ ∂DN∗;

(iii) The condition

w(rγnρn)(I) =
1

α
, ∀r ≥ 1, ∀γn ∈ ∂D

is equivalent to

lim
x→α−

f(|ρn|)(x) ≤ 1
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and to

w(−|ρn|)(I) =
1

α
.

Proof. - (i), (ii) The right-hand side inequality of (ii) is the last inequality of Lemma 2.12.

For any z ∈ D(0, α) and γn ∈ ∂D, we have

|f(γnρn)(z)| ≤
∑
n≥1

2|z|n

|ρn|
= f(|ρn|)(|z|).

Also, the map x 7→ f(|ρn|)(x) is strictly increasing on ]0, α[, as f(|ρn|) is non-constant with positive

Taylor coefficients, so if limx→α− f(|ρn|)(x) > 1 the real number r1 is indeed unique. Let u > 0

be such that u ≥ 1
r1
≥ 1

α . Then 1
u ≤ r1 and

lim
x→ 1

u

−
f|ρn|(x) ≤ 1.

Since we have

f(γnρn)(D(0,
1

u
)) ⊂ D(0, lim

x→ 1
u

−
f(|ρn|)(x)) ⊂ D,

Proposition 2.18 implies that w(γnρn)(I) ≤ 1
r1

. When γn = − ρn
|ρn| , we have

f(γnρn)(x) = f(−|ρn|)(x) = −f(|ρn|)(x).

Thus, the negative number lim
x→ 1

u

−(−f(|ρn|)(x)) lies in the adherence of f(−|ρn|)(D(0, 1u)), and

the smallest u ≥ 1
α such that

f(−|ρn|)(D(0,
1

u
)) ⊂ Re≥−1

is 1
r1

. Hence,

w(−|ρn|)(I) =
1

r1
≥ w(γnρn)(I).

- (iii) By (ii) and using that r 7→ w(rγnρn)(I) is decreasing, we have

w(rγnρn)(I) =
1

α
, ∀r ≥ 1, ∀(γn)n ∈ ∂DN∗

if and only if

w(−|ρn|)(I) =
1

α
.

This equation is equivalent to r1 = α, that is limx→α−(f(|ρn|)(x)) ≤ 1. �

We do not know if the (|ρn|)-radius of I is always the minimal one.

The idea of the proof of Lemma 4.15 can be transported to any operator T if we add a summa-

bility condition to the sequence (ρn)n.

Proposition 4.16. — Let a = (an)n ∈ (C∗)N∗ be such that
∑

n≥1
1
|an| ≤ 1. Let T ∈ L(H) and

define

ρn :=

{
2an‖Tn‖ if Tn 6= 0

1 otherwise

(i) If r(T ) > 0 or if T is nilpotent, then T ∈ C(ρn).



(ρn)-DILATIONS 29

(ii) If r(T ) > 0 and lim infn(|an|
1
n ) = 1, then w(znρn)(T ) = 1, for all zn such that |zn| ≥ 1

and limn(|zn|
1
n ) = 1.

Proof. - (i) Suppose first that r(T ) > 0. Since
∑

n
1
|an| < +∞, we have lim infn(|an|

1
n ) ≥ 1, thus

lim infn(|ρn|
1
n ) ≥ r(T ) > 0. We also have:

‖f(ρn)(zT )‖ ≤
∑
n≥1

2|z|n‖Tn‖
2|an|‖Tn‖

≤
∑
n≥1

1

|an|
≤ 1.

Thus, I+Re(f(ρn)(zT )) ≥ (1−‖f(ρn)(zT )‖)I ≥ 0 for all z ∈ D, so T ∈ C(ρn). If T is nilpotent then

f(ρn)(zT ) becomes a finite sum and the same computation gives the result, as lim infn(|ρn|
1
n ) > 0.

- (ii) When r(T ) > 0 and lim infn(|an|
1
n ) = 1, we have r(T ) = lim infn(|ρn|

1
n ), so

1 ≥ w(ρn)(T ) ≥ r(T )

lim infn(|ρn|
1
n )

= 1.

Thus w(ρn)(T ) = 1. If we multiply each an by a complex number zn with |zn| ≥ 1 and

limn(|zn|
1
n ) = 1, the sum

∑
n≥1

1
|znan| decreases, while lim infn(|znan|

1
n ) = 1. Thus, we can

apply the previous result to (znρn)n and obtain w(znρn)(T ) = 1. �

Remark 4.17. — For any T with r(T ) > 0, if we take a sequence (ρn)n as in item (ii) of the

previous Proposition, then the result says that z 7→ w(zρn)(T ) is constant and equal to 1 on

C \ D.

- The choice of (ρn)n only depends on ‖Tn‖. For example, with any T normal with ‖T‖ = 1,

by taking an = π2

6 n
2, we have w(2anzn)(T ) = 1 for any sequence (zn)n such that 1 ≤ |zn| and

sup |zn| < +∞.

- If T is quasinilpotent but not nilpotent, we have lim infn(|ρn|
1
n ) = 0. However, the statement

of item (i) holds true for such a T , with a very similar proof.

Using the ideas in the proof of Proposition 4.16, we can show that some sets
⋃
r>0C(rρn)

largely differ from
⋃
ρ>0C(ρ) or {T : r(T ) < 1} even if lim infn(|ρn|

1
n ) = 1.

Corollary 4.18. — Let (ρn)n be such that lim infn(|ρn|
1
n ) = 1. The following assertions are

true:

(i) If ( 1
ρn

) ∈ `1, then
⋃
r>0C(rρn) contains all power-bounded operators;

(ii) If f(ρn) ∈ H∞(D) and f ′(ρn) ∈ H
∞(D), then

⋃
r>0C(rρn) contains an operator that is not

power-bounded.

(iii) If nk+1+ε = O(|ρn|) for k ∈ N∗ and some ε > 0, then
⋃
r>0C(rρn) contains all operators

T such that ‖Tn‖ = O(nk).

Proof. - (i) Let T be a power-bounded operator with ‖Tn‖ ≤ C. Let r > 0 and z ∈ D. We have

‖f(rρn)(zT )‖ ≤
∑
n≥1

2

r|ρn|
|z|n‖Tn‖ ≤ 2C

r

∑
n≥1

1

|ρn|
< +∞.
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Hence, for r large enough, we have ‖f(rρn)(zT )‖ ≤ 1 for every z ∈ D. This implies that

I +Re(f(rρn)(zT ) ≥ 0, ∀z ∈ D.

This in turn implies that T ∈ C(rρn) since we also know that r(T ) ≤ 1 = lim infn(|rρn|
1
n ).

- (ii) We first note that both the entire series f( ρn
n
)(z) =

∑
n≥1

2n
ρn
zn and f(ρn) have radii of

convergence 1, so their sum is analytic on D. We also have f( ρn
n
)(z) = zf ′(ρn)(z). Let N be a

nilpotent operator of order 2 and set T = I +N . Since Tn = I +nN , we have ‖Tn‖ ' n.‖N‖ so

T is not power-bounded. We will show that T belongs to a class C(rρn) for large enough r > 0.

Let r > 0 and z ∈ D. We have:

‖f(rρn)(zT )‖ = ‖
∑
n≥1

2

rρn
zn(I + nN)‖ = ‖1

r
f(ρn)(z)I +

1

r
zf ′(ρn)(z)N‖

≤ 1

r
(‖f(ρn)‖H∞ + ‖f ′(ρn)‖H∞‖N‖) < +∞.

Hence, for r large enough, we have ‖f(rρn)(zT )‖ ≤ 1 for every z ∈ D, which implies that

I +Re(f(rρn)(zT ) ≥ 0, ∀z ∈ D.

This in turn implies that T ∈ C(rρn) since we also know that r(T ) = 1 = lim infn(|rρn|
1
n ).

- (iii) Let T be such that ‖Tn‖ = O(nk) and let z ∈ D. We have ‖T
n‖
|ρn| = O( 1

n1+ε ), so this

sequence is in `1. If T is nilpotent, then T is power-bounded and we can apply (i) to get a

positive r > 0 such that T ∈ C(rρn). Otherwise, we can consider the complex numbers

an :=
ρn
‖Tn‖

∥∥∥∥(‖Tn‖|ρn|
)
n

∥∥∥∥
`1
.

We have ∑
n≥1

1

|an|
=

∥∥∥∥(‖Tn‖|ρn|
)
n

∥∥∥∥−1
`1

∑
n≥1

‖Tn‖
|ρn|

= 1.

Thus, for τn := 2an‖Tn‖, we can use Proposition 4.16 to obtain T ∈ C(τn). Since τn =

2ρn

∥∥∥(‖Tn‖|ρn| )n∥∥∥`1 , we have τn = rρn for some r > 0, which concludes the proof. �

The condition f ′(ρn) ∈ H∞(D) implies that the sequence ( nρn )n is bounded, but it does not

imply the condition ( 1
ρn

) ∈ `1 from (i). Thus, for a sequence (ρn) satisfying the conditions of

item (ii), the set
⋃
r>0C(rρn) may not contain every power-bounded operator.

Some examples. We conclude this paper by providing a computation of w(zρn)(I) in two

examples, where sequences (ρn)n were chosen to match some common analytic maps. The

difficulty lies in the computation of the boundary of f(zρn)(D(1, 1u)), as some specific points on

the boundary do not always have an explicit expression.

Example 4.19. — Let R > 0 and −π < t ≤ π. We have:

(i) I + f(Reitn)(zI) = I − 2
R.eit

log(1− zI);

(ii) w(Reitn)(I) = 1 if t = 0 and R ≥ 2 log(2);
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(iii) w(Reitn)(I) = 1
exp(R

2
)−1 > 1 if t = 0 and 0 < R < 2 log(2);

(iv) w(Reitn)(I) = 1
1−exp(−R

2
)
> 1 if t = π;

(v) w(Reitn)(I) = 1 if t = ±π
2 and R ≥ π;

(vi) w(Reitn)(I) = 1
sin(R

2
)

if t = ±π
2 and 0 < R < π;

(vii) w(Reitn)(I) = 1 if 0 < |t| < π
2 and R ≥ 2 cos(t) log(2 cos(t)) + 2 sin(t)t;

(viii) If we have 0 < |t| < π
2 and 0 < R < 2 cos(t) log(2 cos(t)) + 2 sin(t)t, then

w(Reitn)(I) = inf({u > 1 : 1− 2

R
gt(u) ≥ 0} > 1

with gt(u) := cos(t) log(

√
u2−sin(t)2+cos(t)

u ) + arcsin( sin(t)u ) sin(t).

The same holds if π
2 < |t| < π.

Proof. Let R > 0, t ∈]− π, π]. As n ∈ R, we have w(Re−itn)(I) = w(Reitn)(I), so we can restrict

the study to t ∈ [0, π]. A direct computation gives:

f(R.eitn)(zT ) = − 2

Reit
log(1− zT ).

As lim infn(|n|
1
n ) = 1, we have w(Reitn)(I) ≥ 1. Thus, we consider those u > 1 such that

I +Re(f(R.eitn)(
zI
u )) is positive for every z ∈ D. It is equivalent to look at the positivity of

1 +Re(f(R.eitn)(
z

u
)) = 1− 2

R
Re(e−it log(1− z

u
)).

We start off by studying the boundary of log(D(1, 1u)). By analyticity, we have ∂ log(D(1, 1u)) ⊂
log(∂D(1, 1u)). As log(eisR∩D(1, 1u)) is a horizontal interval that is non-empty if and only if |s| ≤
arcsin( 1

u), the previous sets are equal and log(D(1, 1u)) is convex. Thus, the set log(∂D(1, 1u))

can be parametrized by two arcs depending on the imaginary part of its elements:

s 7→ log

(
cos(s)± 1

u

√
1− sin(s)2u2

)
+ is, s ∈ [− arcsin(

1

u
); arcsin(

1

u
)].

We want to compute the minimum of 1− 2
RRe(e

−it log(1− eis

u )) in order to find for which u > 1

this minimum is non-negative. For the cases t = 0, t = π, and t = π
2 , computing this minimum

amounts to finding the extrema of the real or imaginary part of the elements in log(∂D(1, 1u)).

As these extrema are log(1± 1
u) for the real part and ± arcsin( 1

u) for the imaginary part, an easy

computation gives all the u > 1 such that infw∈R(1 − 2
RRe(e

−it log(1 − eiw

u ))) ≥ 0 in all three

cases, which proves the items (ii), (iii), (iv), (v), (vi).

For 0 < t < π
2 , computing this minimum leads to searching the lower bound of

f1(s) := cos(π − t) log(cos(s)− 1

u

√
1− sin(s)2u2)− s sin(π − t).

For π
2 < t < π, computing this minimum leads to searching the lower bound of

f2(s) := cos(π − t) log(cos(s) +
1

u

√
1− sin(s)2u2)− s sin(π − t).
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The derivatives of these maps are:

f ′1(s) =
sin(s)u cos(π − t)√

1− sin(s)2u2
− sin(π − t), f ′2(s) = −sin(s)u cos(π − t)√

1− sin(s)2u2
− sin(π − t).

Both of them only have one zero, at s = − arcsin( sin(t)u ). And in both cases the searched

minimum for 1− 2
RRe(e

−it log(1− eis

u )) is:

1− 2

R
[cos(t) log(

√
u2 − sin(t)2 + cos(t)

u
) + arcsin(

sin(t)

u
) sin(t)] = 1− 2

R
gt(u).

If 0 < t < π
2 , this minimum decreases towards 1− 2

Rgt(1) := 1− 2
R [cos(t) log(2 cos(t)) + t sin(t)]

when u→ 1+. So I
u ∈ C(Reitn) for every u > 1 if and only if 1− 2

Rgt(1) ≥ 0, that is R ≥ 2gt(1).

This proves item (vii) and half of item (viii).

If π
2 < t < π, this minimum decreases towards −∞ as u→ 1+, so the smallest u for which this

minimum is non-negative verifies u > 1 and w(Reitn)(I) = u. This gives the other half of item

(viii) and concludes the proof. �

Example 4.20. — Let R > 0 and −π < t ≤ π. We have:

(i) I + f(Reitn!)(zI) = I + 2
R.eit

(exp(zI)− I);

(ii) w(Reitn!)(I) = 1
log(R

2
+1)

if t = π;

(iii) w(Reitn!)(I) = 1
log( 2

2−R )
if t = 0 and 0 < R ≤ 2− 2

e ;

(iv) w(Reitn!)(I) = 1
π
2
−t if 0 ≤ |t| < π

2 and R = 2 cos(t);

(v) w(Reitn!)(I) ≤ 1
log(R

2
−cos(t)) for R > 2 + 2 cos(t);

(vi) w(Reitn!)(I) ≥ 1√
π2+log( R

2 cos(t)
−1)2

if 0 ≤ |t| < π
2 and R > 4 cos(t);

(vii) In general, we have

w(Reit.n!)n(I) = inf({u > 0 : ∀θ ∈ [−π, π] with θ +
sin(θ)

u
= t+ kπ,

k ∈ Z, we have (−1)ke
cos(θ)
u cos(θ) ≥ cos(t)− R

2
}).

For R ≥ 2eπ/2 − 2, we can restrict the infimum after u in ]0, 2π ] and to the smallest

θ ∈]−π2 , 0] such that θ + sin(θ)
u = t+ kπ.

Proof. Let R > 0, t ∈ [−π, π] and u > 0. As n ∈ R, we have w(Re−itn!)(I) = w(Reitn!)(I), so we

restrict the study to t ∈ [0, π]. A computation gives

I + f(Reitn!)(zI) = I +
2

R.eit
(exp(zI)− I).

We will first use Lemma 4.15 to compute w(−Rn!)(I) and rule out the case t = π. As f(Rn!)(x) =
2
R(exp(x)− 1), we get

f(Rn!)(x) = 1⇔ x = log(
R

2
+ 1).

Hence, w(−Rn!)(I) = 1
log(R

2
+1)

and item (ii) is proved.

As lim infn(|n!|
1
n ) = +∞, we have I

u ∈ C(Reitn!) if and only if u ≥ w(Reitn!)(I), if and only if
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I +Re(f(Reitn!)(z
I
u)) for every z ∈ D. Thus, we need to study the positivity of

1 +Re(f(Reitn!)(
z

u
)) = 1 +

2

R
Re(e−it(exp(

z

u
)− 1)),

for every z ∈ D and for any u > 0. By analyticity, we only need to make the computations for

z ∈ ∂D. We have

1 +
2

R
Re(exp(

z

u
− it)− e−it) ≥ 0

⇔ exp(Re(
z

u
)) cos

(
Im(z)

u
− t
)
≥ −R

2
+ cos(t).

Denote, for s ∈ [−π, π],

gu(s) := e
cos(s)
u cos(t− sin(s)

u
).

Thus, I
u ∈ C(Reitn!) is equivalent to

min
s∈[−π,π]

(gu(s)) ≥ −R
2

+ cos(t).

Therefore, this inequality will be verified if and only if u ≥ w(Reitn!)(I). Also, since

min
s

(gu(s)) = min
|w|= 1

u

(Re(exp(w − it))) = min
|w|< 1

u

(Re(exp(w − it))),

we can see that mins(gu(s)) is the minimum of a harmonic non-constant map over the disc

D(0, 1u). The maximum principle implies that the map u 7→ mins(gu(s)) is strictly increasing.

Hence, w(Reitn!)(I) is the only number u > 0 such that mins∈[−π,π](gu(s)) = −R
2 + cos(t).

Let us focus now on the minimum of gu. The derivative of gu is

g′u(s) =
1

u
e

cos(s)
u sin(t− sin(s)

u
− s).

Hence, the minimum of gu will be reached for a s0 such that hu(s0) := t− s0 − sin(s0)
u = kπ, for

some k ∈ Z. For such a s0, we will also have

gu(s0) = (−1)ke
cos(s0)
u cos(s0).

If u ≥ 1, the map hu is strictly decreasing, with range [t − π, t + π]. Hence, there will only be

2 (resp. 3) values of s such that hu(s) = kπ if t ∈]0, π[ (resp. t = 0). If t = 0 and u ≥ 1, these

values of s will be −π, 0, π, and the minimum of gu will be gu(π) = exp(−1u ). Thus, if t = 0 and

w(Rn!)(I) ≥ 1, we will have

exp

(
−1

w(Rn!)(I)

)
= −R

2
+ 1,

which is equivalent to 0 < R ≤ 2− 2
e . Thus w(Rn!)(I) = 1

log( 2
2−R )

, proving item (iii).

When t ∈]0, π[ and u ≥ 1, we have however no explicit formula for the two values of s mentioned

above.

For t ∈ [0, π2 [ and R = 2 cos(t), we will have mins(gw(Reitn!)(I)
(s)) = 0. As e

cos(s)
u cos(s) = 0 if and

only if s = ±π
2 , this minimum will be attained at π

2 or −π2 , and w(Reitn!)(I) will be the largest
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u > 0 such that gu(π2 ) = 0 or gu(−π
2 ) = 0. The latter condition is equivalent to 1

u ± t = π
2 + kπ,

that is 1
u = π

2 ± t+ kπ. Since we have 0 ≤ t < π
2 , the integer k needs to be positive. By looking

at the smallest possible value for 1
u we get w(Reitn!)(I) = 1

π
2
−t , proving item (iv).

In general, we can see that mins(gu(s)) ≥ −e
1
u . When R > 2 + 2 cos(t), the inequality −e

1
u ≥

cos(t)− R
2 is equivalent to u ≥ 1

log(R
2
−cos(t)) , which proves item (v).

If uπ < 1, we have uπ = sin(α) for some α > 0, and gu(α) = − cos(t)e

√
1−u2π2
u . When R >

4 cos(t), the inequality gu(α) ≤ cos(t) − R
2 is equivalent to u ≤ 1√

π2+log( R
2 cos(t)

−1)2
. Item (vi) is

now proved.

Taking R ≥ 2eπ/2 − 2 = R0, we get −R
2 + 1 ≤ 2− eπ/2 < −1 and

w(Reitn!)(I) ≤ w(−Rn!)(I) ≤ w(−R0n!)(I) =
2

π
,

for every 0 ≤ t ≤ π, according to Lemma 4.15. We can then see that for u = w(Reitn!)(I) and

for a number s0 such that gu(s0) = mins(gu(s)) and hu(s0) = kπ, the relationship

(−1)ke
cos(s0)
u cos(s0) = gu(s0) = −R

2
+ cos(t) < −1

implies that cos(s0) > 0 and that k is odd. In this case, |s0| will be the smallest real s in [0, π2 [

such that hu(s) or hu(−s) is equal to kπ with k odd. As we also have hu(−π2 ) = t + π
2 + 1

u ≥
π ≥ t = hu(0) ≥ 0, we can see that s0 lies in ]−π2 , 0]. This gives all the announced results. �
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