Jeroen Wackers 
email: jeroen.wackers@ec-nantes.fr
  
Patrick Queutey 
email: patrick.queutey@ec-nantes.fr
  
Michel Visonneau 
email: michel.visonneau@ec-nantes.fr
  
Riccardo Pellegrini 
email: riccardo.pellegrini@insean.cnr.it
  
Andrea Serani 
email: andrea.serani@insean.cnr.it
  
Matteo Diez 
email: matteo.diez@cnr.it
  
CFD-Based Shape Optimization Under Limited Computational Resources -A Study on Adaptive Multi-Fidelity Metamodeling

The paper presents a study on five adaptive sampling methods of a multi-fidelity global metamodel for expensive computer simulations. The multi-fidelity metamodel selects the fidelity to sample based on the prediction uncertainty and the computational cost ratio of high-and low-fidelity evaluations. The sampling methods are applied to four analytical problems and to the CFD-shape optimization of a NACA hydrofoil. The performance of the sampling methods is assessed in terms of maximum uncertainty, root mean square error of the prediction, and objective function reduction.

Introduction

Fluid-dynamic shape design of complex industrial systems (such as aerial, ground, and water-borne vehicles) demand the use of high-fidelity numerical solvers with large computational grids to assess accurately the design performance and make sound design decisions. The latter can be achieved by combining computational fluid dynamics (CFD) analyses with a shape/design modification tool (CAD) and a minimization algorithm into an automatic simulation-based design optimization (SBDO). Highfidelity physics-based solvers results in computationally expensive analyses. Furthermore, the optimization algorithm may require a large number of function evaluations to converge to the final solution. Therefore, the resulting computational cost could become very high, making SBDO unaffordable for most users and projects for which limited computational resources and time are usually available.

In order to reduce the computational cost of the SBDO process, metamodeling methods have been developed and successfully applied in several engineering fields, [START_REF] Viana | Metamodeling in multidisciplinary design optimization: How far have we really come?[END_REF]. Metamodel performance depends on several concurrent issues, such as the dimensionality of the problem, the nature (smooth or noisy) of the function, and the sampling approach used for its training, [START_REF] Liu | A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[END_REF]. A priori sampling provides distribution of training-set points, without any knowledge of the function. Sequential sampling adds new training points iteratively, based on the knowledge gathered during the training process. An adaptive sampling for dynamic stochastic radial basis functions (RBF) has been presented in Volpi (2015) and compared to dynamic Kriging, [START_REF] Zhao | Metamodeling method using dynamic kriging for design optimization[END_REF]. A multi-criteria adaptive sampling method for dynamic RBF has been presented in Diez (2015) for design optimization problems.

In addition to metamodels, multi-fidelity (or variable-fidelity) approximation methods have been developed with the aim of combining to some extent the accuracy of high-fidelity solvers with the computational cost of low-fidelity solvers. Combining metamodeling methods with multi-fidelity approximations potentially leads to a further reduction of the computational cost of the SBDO procedure. Additive and/or multiplicative correction methods might be used to build multi-fidelity metamodels, using high-and low-fidelity evaluations, [START_REF] Ng | Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation[END_REF], [START_REF] Zheng | A hybrid variable-fidelity global approximation modelling method combining tuned radial basis function base and kriging correction[END_REF]. Several metamodels can be used with multi-fidelity data, as co-kriging, DeBaar (2015), andRBF, Pellegrini (2016). For instance, adaptive sampling methods for multi-fidelity metamodels have been adopted in [START_REF] Pellegrini | Multi-fidelity adaptive global metamodel of expensive computer simulations[END_REF], based on the multi-fidelity prediction uncertainty.

The objective of the present work is the assessment of five adaptive sampling methods for multi-fidelity metamodeling. These are based on the maximum prediction uncertainty, the expected improvement, [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF], the maximum prediction uncertainty and the objective function through an aggregated merit factor, and the multi-criteria based on the maximum prediction uncertainty and the objective function.

These methods are applied to four multi-modal analytical test problems with one and two dimensions. Furthermore, the sampling methods are applied to the CFD-based shape optimization of a NACA 2D hydrofoil, addressing the drag minimization at Re=8.41E6. The hydrofoil hydrodynamic performance is assessed by RANSE solver ISIS-CFD, developed at Centrale Nantes/CNRS and integrated in the FINE/Marine simulation suite from NUMECA. Mesh deformation techniques and adaptive grid refinement techniques are adopted to allow the automatic shape deformation of the hydrofoil. The high-and low-fidelity are defined by the numerical grid refinement. Once the training process of the multi-fidelity metamodel is complete, a multi-fidelity metamodel-based optimization is performed. The performance of the adaptive sampling methods is assessed by studying the convergence of prediction uncertainty, the normalized root mean square error of the prediction, and optimization procedure.

Multi-fidelity metamodeling

Two levels are used: high-(HF) and low-fidelity (LF). The multi-fidelity approximation makes use of stochastic radial basis functions (SRBF), Volpi (2015), which provide the function prediction 𝑓 ̃(𝐱) along with the associated uncertainty 𝑈 𝑓 ̃(𝐱).

Extension to multi-fidelity analysis

Consider an objective function 𝑓(𝐱), where 𝐱 ∈ ℝ 𝑁 is the design variable vector and N the design space dimension. The multi-fidelity prediction 𝑓 ̂(𝐱) is defined by an additive correction to a low-fidelity trained metamodel. The correction is provided by the metamodel of the error 𝜀 (difference) between high-and low-fidelity evaluations (𝑓 𝐻 and 𝑓 𝐿 ), [START_REF] Pellegrini | Multi-fidelity adaptive global metamodel of expensive computer simulations[END_REF] 𝑓 ̂(𝐱) = 𝑓 ̃𝐿(𝐱) + 𝜀(𝐱) 𝜀(𝐱) = 𝑓 𝐻 (𝐱) -𝑓 𝐿 (𝐱)

(1)

The training set for 𝑓 ̃𝐿 is denoted by ℒ, whereas the training set for 𝜀̃ is denoted by ℇ ⊆ ℒ. "~" indicates metamodel prediction and "∧" indicates multi-fidelity approximation. Assuming 𝑈 𝑓 ̃𝐿 (𝐱) and 𝑈 𝜀 ̃(𝐱) as uncorrelated, the uncertainty associated to the multi-fidelity prediction is Volpi (2015).

𝑈 𝑓 ̂(𝐱) = √𝑈 𝑓 ̃𝐿 2 (𝐱) + 𝑈 𝜀 2(𝐱) (2 

Adaptive sampling methods

New training points 𝐱 * for ℒ and ℇ are sequentially defined by the adaptive sampling method, shown in Fig. 1 where 𝛽 ∈ [0,1] is the ratio of low-and high-fidelity computational cost. In the first case, only a lowfidelity evaluation is performed, while the second case requires both low-and high-fidelity evaluations for the same 𝐱 * . The following sections present how 𝐱 * is defined, based on five adaptive sampling methods.

Two stopping criteria are adopted: (i) when the available budget of function evaluations is consumed and (ii) a check on the minimum distance among the training points of ℒ and ℇ to avoid excessively clustered training points, which would produce an ill-conditioned linear system.

Maximum uncertainty

The maximum uncertainty adaptive sampling (MUAS) method has been presented in [START_REF] Pellegrini | Multi-fidelity adaptive global metamodel of expensive computer simulations[END_REF]. This method identifies a new training point by solving the following single-objective maximization problem

𝐱 * = argmax 𝐱 [𝑈 𝑓 ̂(𝐱)]
(5)

Expected improvement

The expected improvement (EI), [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF], sampling method identifies a new training point by solving the following maximization problem

𝐱 * = argmax 𝐱 [EI(𝐱)] (6) with EI(𝐱) = EV [max[𝑓 𝑚𝑖𝑛 -𝑔 ̂(𝐱, 𝜏), 0]] 𝜏 , with 𝑓 𝑚𝑖𝑛 = min[𝑓 𝐻 (𝐱 𝑗 )] (7) 
where 𝑔 ̂(𝐱, 𝜏) is the multi-fidelity approximation conditional to 𝜏.

Each 𝜏 defines a stochastic RBF. The expected improvement is therefore the expected value of potential reduction provided by all SRBFs compared to the minimum at the present iteration of the sampling process.

Fig. 1: Adaptive multi-fidelity metamodel updating scheme

Multi-fidelity expected improvement

Since the multi-fidelity concept is to keep the high-fidelity training set as small as possible, a multifidelity expected improvement (MFEI) is introduced. This identifies a new training point by solving the maximization problem of Eqs.( 6) and ( 7) where 𝑓 𝑚𝑖𝑛 = min[𝑓 ̂(𝐱)].

Aggregate criteria

The aggregate criteria adaptive sampling (ACAS) method identifies a new training point by solving the following single-objective minimization

𝐱 * = argmin 𝐱 [𝑓 ̂(𝐱) -𝑈 𝑓 ̂(𝐱)] (8) 

Multi-criteria

The multi-criteria adaptive sampling (MCAS) method identifies a number of new training points 𝑁 𝑃 (user defined) by solving the following multi-objective problem for the minimization of the objective function and maximization of the prediction uncertainty

minimize f(x)={𝑓 ̂(𝐱), -𝑈 𝑓 ̂(𝐱)} 𝑇 , subject to 𝑈 𝑓 ̂(𝐱) > 𝑈 𝑓 * (9)
where 𝑈 𝑓 * is a user defined parameter used to avoid overfitting in the neighborhood of the minimum, Diez (2015). This sampling method produces a non-dominated solution set of potential training points. This is down-sampled to 𝑁 𝑃 solutions, Diez (2015). Here, 𝑈 𝑓 * = 0.1%R, where R is the function range of the initial high-fidelity training set.

Single-and multi-objective optimization algorithm

A deterministic single-objective formulation of the particle swarm optimization (DPSO) algorithm Serani ( 2016), is used for the solution of the minimization/maximization problems of Eqs.( 5), (6), and (8). Furthermore, it is used for the metamodel-based optimization. The multi-objective extension of DPSO (MODPSO, Pellegrini ( 2017)) is used for the minimization problem of Eq.( 9).

Benchmark test problems

The effectiveness and efficiency of the adaptive multi-fidelity metamodel is assessed by four analytical tests and one SBDO problem.

Analytical test problems

The analytical test problems (Far1, MLF1, SK1, SSFYY2) are selected from Huband ( 2006). These problems have dimension ranging from one to two and contains two objective functions. The first objective function is considered as the high-fidelity objective (𝑓 𝐻 ), whereas the second objective is considered as the error function (𝜀). Therefore, the low-fidelity evaluation is computed as 𝑓 𝐿 = 𝑓 𝐻 -𝜀.

Fig. 2 shows the analytical test problems, the high-fidelity functions are multi-modal and have many local minima. Furthermore, problems #3 and #4 have multi-modal error functions. Three metrics are used to assess the effectiveness of the multi-fidelity sampling methods with the analytical tests. The maximum value of the multi-fidelity metamodel uncertainty, the normalized root mean square error (NMRSE) between the multi-fidelity prediction and the analytical objective, and the validation of the objective function value at the predicted minimum. The NRMSE is computed on a set of 50 N evenly-spaced points. The objective is evaluated by the analytical function at the predicted minimum. Furthermore, to assess the multi-fidelity metamodel efficiency its performance is compared with a single-fidelity metamodel trained only with high-fidelity evaluations.

NACA hydrofoil optimization problem

The problem addresses the minimization of the drag coefficient 𝐶 𝑑 (𝐱). When optimizing a lifting hydrofoil, it is necessary to compare the different geometries at the same lift coefficient 𝐶 𝑙 * . The optimization problem reads minimize 𝐶 𝑑 (𝐱), subject to 𝐶 𝑙 (𝐱) = 𝐶 𝑙 * (10) The 2D foil shape is defined by the general equation for 4-digit NACA airfoils. The upper (𝑦 𝑈𝑝 ) and lower (𝑦 𝐿𝑜 ) hydrofoil lines are computed as

{ 𝜉 𝑈𝑝 = 𝜉 -𝑦 𝑡 𝑠𝑖𝑛𝜃 𝜉 𝐿𝑜 = 𝜉 + 𝑦 𝑡 𝑠𝑖𝑛𝜃 𝑦 𝑈𝑝 = 𝑦 𝑐 + 𝑦 𝑡 𝑐𝑜𝑠𝜃 𝑦 𝐿𝑜 = 𝑦 𝑐 -𝑦 𝑡 𝑐𝑜𝑠𝜃 where y c = { 𝑚 𝑝 2 (2𝑝 ( 𝜉 𝑐 ) -( 𝜉 𝑐 ) 2 ) , 0 ≤ 𝜉 ≤ 𝑝𝑐 𝑚 (1 -𝑝) 2 ((1 -2𝑝) + 2𝑝 ( 𝜉 𝑐 ) -( 𝜉 𝑐 ) 2 ) , 𝑝𝑐 ≤ 𝜉 ≤ 𝑐 ( 11 
)
where 𝜉 is the position along the chord, c the chord length, 𝑦 𝑐 the mean camber line, p the location of maximum camber, m the maximum camber value, and 𝑦 𝑡 the half thickness, computed as

𝑦 𝑡 = 5𝑡[0.2969√𝜉 -0.1260𝜉 -0.3516𝜉 2 + 0.2843𝜉 3 -0.1015𝜉 4 ] (12) 
In this work, two parameters are considered as design variables, the maximum thickness (t) and maximum camber (m). 

CFD simulation for multi-fidelity optimization

The CFD simulations are performed with the unstructured two-fluid finite-volume Navier-Stokes solver ISIS-CFD developed at Centrale Nantes/CNRS and integrated in the FINE/Marine simulation suite from NUMECA Int.

Mesh deformation

The unstructured hexahedral meshes for the simulations are generated using HEXPRESS. Like for most unstructured mesh generators, the grids created by this mesher may be quite different for geometries that are nearly identical. This could result in numerical noise in the simulations results. Therefore, the simulations of all the candidate geometries are performed on the same mesh, which is deformed to fit each geometry. The deformation algorithm is based on the work of Durand ( 2012). The mesh is divided in layers of cells around the geometry. Then, the displacement from the original to the deformed geometry is computed for the faces on the body and this displacement is propagated through the layers of cells. Two smoothing mechanisms are applied: (i) the displacements are diffused over the faces of a single layer, so the mesh deformation becomes more uniform; (ii) a weighting technique is applied based on the distance to the body, such that the deformation goes to zero on the outer boundaries.

Adaptive grid refinement

After the initial mesh deformation to fit each geometry, the final meshes are obtained with adaptive grid refinement, Wackers (2017). The decision on where to refine the mesh is based on metric tensors, George (1998). The 3 × 3 criterion tensors 𝒞 𝑖 in each i-th cell are computed from the flow solution.

These tensors indicate the target size of the cells: in a hexahedral cell, let the cell sizes 𝐝 𝑖,𝑗 (j=1,2,3) be the vectors between the opposing face centers in the three cell directions. The goal of the grid refinement is to obtain

‖𝒞 𝑖 𝐝 𝑖,𝑗 ‖ = 𝑇 𝑟 ∀ 𝑖, 𝑗 (13) 
where 𝑇 𝑟 is a constant. This is accomplished by refining i-th cells in the j-th direction, until ‖𝒞 𝑖 𝐝 𝑖,𝑗 ‖ no longer exceeds the constant 𝑇 𝑟 . The refinement criteria are based on the Hessian matrix of second spatial derivatives. The interest of this procedure for multi-fidelity optimization is that the cell size in the entire mesh varies proportionally to the threshold 𝑇 𝑟 , Wackers (2017). Thus, the precision of the simulation can be adjusted by varying this parameter, which makes it easy to automate multi-fidelity simulations.

A further advantage is that this technique allows to perform the mesh deformation on the coarse initial grid, instead of a fine grid where small errors in the placement of the nodes can lead to inverted cells. A potential disadvantage is that the refined grids for the different geometries are not the same, which could introduce noise in the results.

Dynamic positioning

To maintain a constant lift coefficient the angle of incidence for the hydrofoil is adjusted dynamically during the simulations. At regular intervals, the difference between the target and the actual lift is evaluated and divided by the theoretical lift slope of 2D airfoils (∆𝐶 𝑙 = 2𝜋∆𝛼). The change in angle of attack ∆𝛼, is applied over a few time steps and the flow is allowed to settle, then another ∆𝛼 is computed. The mesh is deformed with an analytical weighting technique, to accommodate the rotation.

Analytical test problems

An arbitrary computational cost is assigned to each HF and LF evaluation equal to 10.0 and 10.0 𝛽, respectively. Several values of 𝛽 are considered to reproduce different ratio of computational cost between low-and high-fidelity. Specifically, 𝛽 = {0.05, 0.1, 0.2, 0.4, 0.8}. The available computational budget is set equal to a maximum cost of 500N. The number of samples 𝑁 𝑃 computed at once by the MCAS sampling method is 𝑁 𝑃 = 4, for all the test problems. Fig. 3 shows the convergences of the maximum uncertainty, the NMRSE, and the validation of the predicted minimum of the sampling methods with 𝛽 = 0.1 for the analytical problems. It is worth noting that MUAS and MCAS achieve a significant reduction of maximum uncertainty and NRMSE. Differently, EI, MFEI and ACAS methods do not provide the same reduction. EI, MFEI, and ACAS methods do not converge to the minimum for problems #3 and #4. MUAS and MCAS sampling methods always converge to the real minimum, with MCAS achieving a faster convergence than MUAS for problems #1, #2, and #4. All sampling methods use a similar number of HF evaluations (see Table I), with MUAS and MCAS spreading the HF evaluations over the whole domain. Furthermore, it is worth noting that both MUAS and MCAS request HF training points in the domain corners. Differently, MFEI and ACAS methods focus HF evaluations only in the minimum region.

Figs. 7 and8 show an interesting phenomenon. The convergence of the uncertainty prediction of MUAS and MCAS is noisy (Fig. 7). MUAS and MCAS aim at the minimization of the maximum uncertainty, therefore clustering the training points in regions where the uncertainty is high. The metamodel uncertainty is affected by a small-scale noise found in the numerical simulations, in regions with clustered training points. Therefore, MUAS and MCAS add training points in regions where the uncertainty is due to the numerical noise and not to the objective function shape.

The effects of the numerical noise are evident in Figs. 8a and8d. MUAS clusters samples in the neighborhood of 𝐱 = {0.1,0.35} (Fig. 8a) while MCAS clusters samples in the neighborhood of 𝐱 = {0.6,0.0} (Fig. 8d). Both MUAS and MCAS methods cluster in such regions mainly LF training points, while MFEI and ACAS methods provide also a less significant clusterization of HF training points. Table I summarizes the results of the multi-fidelity metamodel performance. The predicted minimum of the drag coefficient is close to the reference value. Nevertheless, the minimum location identified by the MUAS and MCAS sampling methods is not accurate. The MFEI sampling method uses the greatest number of high-fidelity evaluations, while MCAS uses the lowest. Finally, Figs. 9a-d show the velocity contours of the optimal hydrofoil shape identified by the four sampling methods. The differences of the hydrofoil shapes are not evident, although the velocity contours are considerably different.

Conclusions and future work

Five adaptive sampling methods for multi-fidelity metamodeling are presented and applied to four analytical test problems and to the CFD-shape optimization of a NACA hydrofoil. The multi-fidelity approximation is obtained as the sum of a low-fidelity-trained metamodel and the metamodel of the difference (error) between high-and low-fidelity evaluations. The metamodel is based on stochastic RBF, which provides the prediction and the associated uncertainty. The prediction uncertainty of both the low-fidelity and the error metamodel is used for the adaptive refinement of the low-and highfidelity training sets, respectively. The ratio of the computational cost of high-and low-fidelity evaluations affect the choice of the fidelity to sample.

The refinement of the training set is performed with five sampling methods. The methodologies aim at: (i) minimization of the maximum uncertainty of the multi-fidelity metamodel prediction, (ii) maximization of the expected improvement (as originally formulated), (iii) maximization of the expected improvement (computed with a different reference to better comply with the multi-fidelity methodology), (iv) minimization of an aggregated merit factor of prediction uncertainty and predicted objective function, and (v) multi-objective minimization of prediction uncertainty and predicted objective function. A parametric study on the effect of the ratio of computational cost between highand low-fidelity is performed. The multi-fidelity metamodel performance is assessed in terms of convergence of the maximum uncertainty, normalized root mean square error between the multi-fidelity prediction and the high-fidelity function, and convergence of the objective function minimum. The CFD-shape optimization problem of the NACA hydrofoil is an interesting challenge for the multifidelity metamodel. The existence of numerical noise affects the SRBF interpolation, resulting in large uncertainty of the multi-fidelity prediction in noisy regions of the domain. Therefore, the sampling methods that directly take into account the multi-fidelity prediction uncertainty have been "trapped" in adding training points in such region.

Future work includes comparing the current multi-fidelity results with a metamodel trained only with high-fidelity evaluations for all the sampling methods. Furthermore, the effects of 𝑈 𝑓 * on the MCAS method in presence of numerical noise will be assessed, as well as the use of approximation methods (e.g. least square fit) as opposed to interpolation. Finally, the CFD simulation procedures will be optimized to reduce the noise at its source.

Fig. 2 :

 2 Fig.2: High-and low-fidelity and error functions of the analytical test problems

Fig. 4 Fig. 3 :

 43 Fig.4shows the convergence of the maximum uncertainty, the NMRSE, and the validation of the predicted minimum of the MCAS sampling method for the analytical problems for different 𝛽 values. The performance of the high-fidelity trained metamodel is also reported for comparison. The multifidelity metamodel achieves better or similar convergence than the HF metamodel of the maximum uncertainty, the NRMSE, and the objective function for 𝛽 < 0.4, except for problem #3.
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 8 Fig.8: Training sets and 𝐶 𝑑 (x) value at the final iteration
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 9 Fig.9: Hydrofoil optimization, velocity contour for the optimal configuration identified with the sampling methods

  

) 2.2. Stochastic radial basis functions

  

	𝑓(𝐱) is approximated by means of SRBF 𝑔(𝐱, 𝜏), where 𝜏~unif[1,3] is a stochastic tuning parameter,
	Volpi (2015). Due to the stochastic nature of g, the metamodel prediction 𝑓 ̃(𝐱) is computed as the
	expected value (EV) over 𝜏		
	𝐽		
	𝑓 ̃(𝐱) = EV[𝑔(𝐱, 𝜏)] τ , with 𝑔(𝐱, 𝜏) = ∑ 𝑤 𝑗 ‖𝐱 𝑖 -𝐱 𝑗 ‖	τ	3
	𝑗=1		
	where 𝑤 𝑗 are unknown coefficients, || • || is the Euclidean norm, 𝐱 𝑗 are the training points with
	associated objective function value 𝑓(𝒙 𝑗 ), and J is the number of training points of the interpolation.
	The coefficients 𝑤 𝑗 are determined by enforcing the interpolation 𝑔(𝐱 𝑗 , 𝜏) = 𝑓(𝐱 𝑗 ) by solving Aw=f, with 𝐰 = {𝑤 𝑗 }, 𝑎 𝑖,𝑗 = ‖𝐱 𝑖 -𝐱 𝑗 ‖ 𝜏 , and 𝐟 = {𝑓(𝐱 𝑗 )}. The uncertainty 𝑈 𝑓 ̂(𝐱) associated with the
	metamodel prediction is quantified by the 95%-confidence interval of 𝑔(𝐱, 𝜏), evaluated using a Monte
	Carlo sampling over 𝜏,		

  and described in later sections. Once 𝐱 * is identified, the training sets ℒ and ℇ are updated as

	{	If 𝑈 𝑓 ̃𝐿 (𝐱 * ) ≥ 𝛽𝑈 𝜀 ̃(𝐱 * ), add {𝐱 * , 𝑓 𝐿 (𝐱 * )} to ℒ else, add {𝐱 * , 𝑓 𝐿 (𝐱 * )} to ℒ and {𝐱 * , 𝜀(𝐱 * )} to ℇ	(4)

Table I :

 I Summary of the performance of the adaptive sampling methods for the SBDO problem

	Sampling	|ℒ| |ℇ| Predicted Cd,min	Coordinates	Cd,min	Verified	𝐶 𝑑,𝑚𝑖𝑛 *	𝑥 1 *	𝑥 2 *
	method		of Cd,min	associated	Cd,min		
			x1	x2	uncertainty			
	MU	136 14 7.1759E-3	0.3084 0.0000 0.1092%	7.2582E-3		
	EI AC	135 15 7.1545E-3 138 12 7.1754E-3	0.3709 0.0000 0.0087% 0.3620 0.0001 0.0427%	7.2371E-3 7.2403E-3	7.2340E-3 0.3554 0.0003
	MC	137 11 7.2816E-3	0.3291 0.0000 0.0591%	7.2606E-3		

Acknowledgements

Development of the adaptive multi-fidelity methodology has been partially supported by the Office of Naval Research, NICOP grant N62909-15-1-2016 and N62909-18-1-2033, administered by Dr. Woei-Min Lin, Dr. Salahuddin Ahmed, and Dr. Ki-Han Kim; by the Italian Flagship Project RITMARE, founded by the Italian Ministry of Education; and by the EU H2020 Project Holiship "HOLIstic optimisation of SHIP design and operation for life cycle", grant N.689074.