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Abstract

Performing physiologically relevant simulations of the beating heart in clinical context requires to
develop detailed models of the microscale force generation process. These models however may reveal
difficult to implement in practice due to their high computational costs and complex calibration. We
propose a hierarchy of three interconnected muscle contraction models – from the more refined to the
more simplified – that are rigorously and systematically related with each other, offering a way to
select, for a specific application, the model that yields a good trade-off between physiological fidelity,
computational cost and calibration complexity. The three models families are compared to the same
set of experimental data to systematically assess what physiological indicators can be reproduced or
not and how these indicators constrain the model parameters. Finally, we discuss the applicability
of these models for heart simulation.
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1 Introduction
Mechanical modeling of the micro-scale muscle contraction mechanisms is an essential component for
patient-specific physiologically relevant in silico heart simulations, with the aim of providing effective
diagnoses and treatment planning tools. The effectiveness of the developed models relies primarily on
their ability to reproduce the biological processes at the origin of the muscle contraction with a level of
detail adapted to the investigated clinical questions.

One of the most essential process to be modeled is the conversion of the metabolic energy extracted
from ATP turnover into mechanical work by Myosin II molecular motors in the presence of actin [Hill,
1938; Alberts, 2015; Barclay et al., 2010; Barclay, 2015].

In the muscle tissue, this myosin-actin interaction occurs inside elementary contractile units called
sarcomeres, where the myosin motors bundle into thick filaments. The heads of the myosin motors,
protruding from the thick filaments, can attach to specific actin binding sites on the neighboring parallel
actin (thin) filaments. This attachment is possible only after the actin filaments have been activated by
calcium ions whose release in the cell cytosol triggers the contraction.

While attached to actin, a myosin head produces force via a large conformational change – the power
stroke – which induces a relative displacement between the myosin filaments and the actin filaments
(∼ 10 nm at zero load) Lymn & Taylor [1971]; Huxley & Simmons [1971]; Rayment et al. [1993b,a].
The energy necessary to recharge the power stroke mechanism is provided by ATP hydrolysis inside the
catalytic domain of the myosin protein, while the motor is detached from actin.

The concerted action of antagonistically oriented groups of molecular motors, pulling the thin fila-
ments in opposite directions, allows for the shortening of the sarcomeres. These force generating units
are arranged in series along the longitudinal direction of the muscle fibers which allows to generate and
transmit force throughout the whole tissue.

The active force production is subjected to two types of regulation mechanisms that vary the level
of the developed force. The first regulation mechanism is extrinsic, via the neuroendocrine system
which affects various levels of the activation-contraction coupling. It results in particular in variations
of the calcium supply inside the cell [Silverthorn et al., 2009] and of the thin filament responsiveness to
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calcium [Solaro & Rarick, 1998], and it may also modify the actin-myosin interaction [de Tombe, 2003].
The second regulation mechanism is intrinsic, via the modulation of the actin filament responsiveness to
calcium, ultimately affecting the level of thin filament activation, and the availability of the myosin heads
as a function of the degree of sarcomere stretch [Ter Keurs et al., 1980; Dobesh et al., 2002; de Tombe
et al., 2010].

Both regulation pathways are essential for the physiological heart contraction and the intrinsic regu-
lation is, in particular, at the core of the so-called Frank-Starling effect at the macroscopic scale [Allen
& Kentish, 1985; de Tombe et al., 2010].

The extrinsic regulation acts by means of complex inter-protein interactions, whose study is beyond
the scope of this work, and we thus focus on the basal behavior of muscle cells, i.e. when isolated from the
neuroendocrine system, as is the case in ex-vivo preparations. Furthermore, recent experimental studies
performed on ex-vivo preparations of different types have demonstrated that the intrinsic regulation
mechanisms do not alter the cycling kinetics [Amiad Pavlov & Landesberg, 2016], the response to fast
load changes and the steady-state force-velocity relation [Caremani et al., 2016] nor the force per attached
head [Pinzauti et al., 2018]. All these indicators being directly linked to the actin-myosin interaction, we
conclude that the intrinsic regulation does not affect the internal mechanical properties of the actomyosin
system, and only modulates the number of motors participating in the contraction. Hence, the basal force
generation mechanism can be studied, both experimentally and theoretically, at any nominal sarcomere
length and any level of calcium activation, by appropriately normalizing the measured force.

The most widely used experiment designed to characterize the mechanical output of the contractile
system consists in measuring, at the sarcomere level, the transient isotonic shortening in response to a
sudden force step applied within ∼ 200 µs from an isometric state [Caremani et al., 2016]. Remarkably,
the reaction to this perturbation allows to identify, from a single experiment, three essential physical
characteristics of the actomyosin system – namely elasticity, power stroke and attachment and detach-
ment processes – by using the fact that they operate at three different timescales: ∼200 µs, ∼1 ms and
∼30 ms, respectively [Caremani et al., 2016].

The data obtained from these experiments have served as a benchmark for the theoretical modeling
of the actomyosin system since the seminal work of A.F. Huxley [Huxley, 1957], later thermodynamically
formalized by T.L. Hill [Hill, 1977]. In this framework, myosin heads are modeled as a spring that can
reversibly attach to specific binding sites on the surrounding actin filaments [Eisenberg et al., 1980;
Piazzesi & Lombardi, 1995; Smith et al., 2008; Smith & Mijailovich, 2008; Månsson, 2010; Caremani
et al., 2015]. The spring itself has internal – discrete or continuous – degrees of freedom that represent
the conformational – and ligand-binding – state of the protein. The actin and myosin filaments are then
usually modeled as an independent spring in series with the molecular motors [Linari et al., 1998], which
then effectively act on two rigid backbones [Ford et al., 1981].

A large variety of models of this type, though with different degrees of complexity, can be derived
to account for a large body of experimental data. The choice of a particular theoretical model of the
muscle tissue usually results from a compromise between the degree of model refinement – to reproduce
the micro-scale physiology – , the possibility to calibrate the model with the available data, and the
observability of the modeling assumptions effects on the macro-scale observables. Moreover, the use of
refined representations of the actomyosin interaction in realistic models of the heart contraction comes at
a high computational cost, which may limit the applicability of numerical simulation in a clinical context
where real-time simulations are often required, indeed.

In this paper, we propose a hierarchical approach to this problem by formulating a series of interrelated
models, from the more refined, capturing the finest effects observed in single cell experiments, to the
more coarse grained aimed at efficient organ simulations. Each coarse graining step is obtained from
simplifications of the more refined models, such that the loss of information is well controlled. For each
model in this hierarchy, we discuss its ability to reproduce the experimental data and its relevance for
heart simulations as a guidance for appropriate model choosing depending on the application sought.

Our starting point is the stochastic model formulated in [Caruel et al., 2019], which combines a
standard Hill-type approach to describe the attachment and detachment processes with a more recently
developed continuous stochastic dynamics for the internal variables describing the power stroke confor-
mational change [Marcucci & Truskinovsky, 2010; Caruel et al., 2013; Marcucci et al., 2016].

The first level of simplification is obtained by adiabatically eliminating these internal variables based
on the observation that the ∼ 1 ms timescale of power stroke can be considered to be low compared to
the ∼ 30 ms timescale associated with the completion of the ATPase cycle [Caremani et al., 2015, 2016].
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Hence, at each time one can make the approximation that internal degrees of freedom are in thermal
equilibrium. This procedure, already used in [Zahalak, 2000; Hill, 1977; Caruel et al., 2019], results in
a power stroke equilibrated model (PSE model), which can be viewed as an instance of the classical
Huxley’57 two-state (attached and detached) model.

Both the stochastic and the PSE models describe the evolution of the population of the available
myosin motors – either from stochastic differential equations (SDE) or deterministic partial differential
equations (PDE) – from which the mechanical macroscopic outputs such as force, stiffness or thermody-
namic yield, can be derived by direct statistical averaging.

The second level of simplification is based on the classical expansion of the PDE solution of the
PSE model into an infinite series of macroscopic moments, whose dynamics are obtained by solving an
infinite set of coupled Ordinary Differential Equations (ODEs) [Chapelle et al., 2012; Bestel et al., 2001;
Zahalak, 1981]. Simple closure relations can be formulated in order to limit the system at an arbitrary
– ideally low – number of equations. In this case, the macroscopic output of the models appears as linear
functions of the macroscopic moments.

Our first result is that, by restricting the space of functions describing the energy landscapes of the
conformational variables and the strain dependence of the transition rates, the constraints imposed by
the available experimental data define the set of parameters almost uniquely for both the stochastic and
the PSE models [Caremani et al., 2016]. We show that, once calibrated, the stochastic model accurately
reproduces the mechanical response to fast load clamp experiments. Interestingly, while the derived
PSE model fails, by construction, to reproduce the physiological processes associated with the shortest
timescales, it is still able to reproduce the most relevant markers of the mechanical performance of cardiac
fibers [Caremani et al., 2016; Pertici et al., 2018; de Tombe & Stienen, 2007]. We emphasize that with
both models the ATP consumption is not calibrated but correctly predicted, showing that the calibration
procedure is robust.

The macroscopic models are calibrated by further restraining the PSE model space of functions for
the attachment-detachment process and for the internal equilibrium energy landscape. The second result
of our work is that the obtained macroscopic models remain in good agreement with the PSE model
and experimental data over the range of loading conditions that is relevant for the heart functioning
during a typical pressure-volume loop, the differences becoming significant only in regimes that are non
physiological.

In conclusion, our stochastic model appears as a good candidate for representing the refined behavior
of the actomyosin system with the aim at understanding, for instance, the impact of a mutation or a drug
on its mechanical properties. Alteration of this type are typically investigated with tools such as struc-
tural crystallography [Robert-Paganin et al., 2019; Kuhlman & Bradley, 2019; Robert-Paganin et al.,
2018], or single molecule experiments [Woody et al., 2018], whose results could indeed be reproduced us-
ing our stochastic model. However, the computational costs associated with the stochastic model makes
it likely inadequate for organ scale finite elements simulation. The PSE model represents a significant
gain in terms of computational complexity while still being able to capture the main physiological char-
acteristics of the actomyosin system, therefore providing a good tradeoff between physiological relevance
and computational efficacy. The fastest simulations can be performed with the ODE-based macroscopic
models at the expanse of only a partial adequacy with the physiological functioning. Hence, despite
their simplicity and the fact that they are not able to fully reproduce the behavior of the contractile
system observed in vitro, the macroscopic models appears to be particularly fit for 3D heart simulation
in clinical context [Sermesant et al., 2012; Chabiniok et al., 2011]. The originality of our approach is
that the well established connexion between the different levels of our hierarchy allows to consistently
enrich the simpler models if need be.

The paper is organized as follows. In Section 2 we derive our hierarchy of models, starting with
the population models. Section 3 presents the calibration and the comparison of the models using the
isotonic shortening experimental data. Finally, Sections 4 and 5 present a discussion of the results and
our conclusions, respectively.
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(a) Stochastic model (b) PSE model

Figure 1: Summary of the stochastic model (a) and its reduction to a two state model PSE model (b).
In (a), the states are indexed as follows: 1 detached pre-power stroke; 2 attached pre-power stroke, 3
attached post-power stroke, 4 detached post-power stroke. The PSE model is obtained by the adiabatic
elimination of the stochastic model power stroke degrees of freedom X and Y .

2 Hierarchy of models

2.1 Population models
2.1.1 Stochastic model

The model on which the proposed hierarchy is built on was formulated in [Caruel et al., 2019], and
calibrated using data from frog skeletal muscle experiments. The main purpose of this model is to
capture all the response timescales of a fiber submitted to rapid load changes. The framework was
formulated by Huxley [1957] and Hill [1977, 1974, 1976], based on the hypothesis that the myosin heads
and actin sites are regularly distributed along their respective filaments, and that the distance to their
neighbors is constant. The compliance of the myofilaments is assumed to be lumped into an effective
linear elastic spring in series with a set of myosin motors interacting with two rigid backbones [Ford
et al., 1981]. We consider a single actin site model, in which the myosin head can bind only to the
nearest actin site, located at a distance s from the anchor point of the head in the myosin filament, see
Figure 1(a).

The state of the myosin head is parametrized by three stochastic variables :

• Xt, a continuous variable representing the displacement between the position of the head tip in
the current state and at rest;

• Y t, a continuous internal representing the internal conformation of the head (power stroke)

• αt, a discrete variable accounting for the attachment state of the head, taking the value αt = 1
when the myosin head is attached and the value αt = 0 when it is detached.

Following [Marcucci & Truskinovsky, 2010], the myosin head is modeled as a bistable snap-spring com-
prising an elastic component, in series with a bi-stable element accounting for the power stroke confor-
mational change, see Figure 1(a). The internal energy of the head in state α is then defined as

w(x, y, α) = wα(x, y) =
κ

2
(x+ y)2 + uα(y), (1)

where κ is the stiffness of the elastic component and uα is a double well potential associated with
the bistable element. The force developed by the attached myosin head on the thin filament is thus
τc(x, y) = ∂xw1(x, y) = κ(x + y). Hence, an increase of y – representing the power stroke – effectively
stretches the elastic element and increases the developed force, see Figure 1(a). When the myosin is
detached, no force is developed on average.
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In the overdamped regime, the dynamics of an individual myosin head is governed by the following
system of stochastic equations [Caruel et al., 2019]

dXt =
[
αtẋc − (1− αt)η−1∂xwα(Xt, Y t)

]
dt+ δ(t− ts)[s(t)−Xt]dt+ (1− αt)

√
2DdBtx,

dY t = −η−1∂ywα(Xt, Y t)dt+
√

2DdBty,

P
[
αt+dt = 1|αt = 0

]
= k+(Y t, s)dt,

P
[
αt+dt = 0|αt = 1

]
= k−(Y t, s)dt,

(2a)

(2b)

(2c)

(2d)

where η is a drag coefficient, ẋc is the sliding velocity (being positive for an extending sarcomere). The
parameterD = kBT/η where T and kB denote the temperature and the Boltzmann constant, respectively,
is a diffusion coefficient scaling the variance of the two standard brownian motion increments dBtx,y. In
(2a), ts denotes the time when a transition from the detached to the attached state occurs and the
term δ(t− ts)[s(t)−Xt]dt ensures that between ts and ts + dt, the variable Xt jumps from its current
value Xts to the value s(ts + dt). Equations (2c) and (2d) represent the probabilities to switch between
the attached and the detached states in the time interval [t, t + dt]. The associated attachment and
detachment transition rates are denoted by k+ and k−, respectively.

We now consider a population of heads in a segment of a cardiomyocyte that has the thickness of a
half-sarcomere. Since the density of myosin heads in such a segment is 1.25× 1017 m−2 [Pinzauti et al.,
2018], a statistical description of the system can be used. We denote by p(x, y, α; s, t) the probability
distribution of the myosin head state for a subpopulation of the heads located at distance s of the nearest
actin site at time t. This probability distribution mixing continuous and discrete variables is normalized
in the following way: ∑

α={0,1}

∫∫
p(x, y, α; s, t) dxdy = 1, ∀t ∀s.

Since, in the attached state, the tip of the myosin head can only be located at the position of the actin
site (Xt = s(t)), the probability distribution p(x, y, α = 1; s, t) is degenerated and becomes

p(x, y, α = 1; s, t) = δ(x− s)p(y; s, t).

The Fokker-Planck equations associated to the system of SDEs (2) are (see [Caruel et al., 2019])

∂tp(x, y, 0; s, t) + ẋc∂sp(x, y, 0; s, t) = ∂y

[
η−1∂yw0(x, y)p(x, y, 0; s, t) +D∂yp(x, y, 0; s, t)

]
+ ∂x

[
η−1∂xw0(x, y)p(x, y, 0; s, t) +D∂xp(x, y, 0; s, t)

]
+ k−(y, s)δ(x− s)p(y; s, t)− k+(y, s)p(x, y, 0; s, t),

∂tp(y; s, t) + ẋc∂sp(y; s, t) = ∂y

[
η−1∂yw1(x, y)p(y; s, t) +D∂yp(y; s, t)

]
+

∫
k+(y, s)p(x, y, 0; s, t) dx− k−(y, s)p(y; s, t),

(3)

and their solution allows to compute the active force as the average force generated by the attached head

τc(t) =
1

da

s+∫
s−

+∞∫
−∞

∂sw1(s, y)p(y; s, t) dyds, (4)

where da is the distance between two consecutive actin sites, and [s−, s+] is the interval of reachable actin
sites with s+ − s− = da. The cross-bridges being arranged in parallel in the proposed half-sarcomere
model, the macroscopic tension developed by a cardiomyocyte is obtained by rescaling the active force
(4):

Tc(t) = ρsurfτc(t), (5)
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where ρsurf is the number of myosin heads in a longitudinal portion of a cardiomyocyte that has a
thickness equal to the half-sarcomere length `hs per cross-section area, both quantities being defined in
the reference configuration.

As noted by T.L. Hill [Hill, 1977], the assumption of a single actin site available at a given time for
each myosin head imposes that the probability that a myosin head is attached on the boundary of the
interval [s−, s+] vanishes. We should thus have∫∫

p(x, y, α; s−, t) dxdy =

∫∫
p(x, y, α; s+, t) dxdy = 0, for α ∈ {0, 1}. (6)

This property can be ensured by an adequate choice of the attachment and detachment rates k+ and k−.
We remind that this model does not take into account the calcium-induced thin filament activation

[Kobayashi et al., 2008]. The recently observed OFF-state in which the myosin head is folded on the back
bone of the thick filament and do not undergo the Lymn-Taylor cycle [Linari et al., 2015], [Reconditi
et al., 2017] is also not considered. Hence, all myosin heads are considered available for attachment and
all actin sites are considered activated.

2.1.2 Adiabatic elimination of the power stroke: the PSE model

The first level of simplification of the stochastic model is obtained by considering the experimental evi-
dence of a separation between the timescale of the power stroke transition (∼ 1 ms) and the characteristic
timescale for the completion of the Lymn-Taylor cycle (∼ 30 ms), observed in the muscle response to a
rapid change in loading conditions (see Section 3.1.1).

Building on this separation of timescales, one can adiabatically eliminate the internal degrees of
freedom X and Y – characterizing the power stroke conformational change – by assuming that their
dynamics is infinitely fast compared to the timescale associated with the other variable dynamics (αt).
Here we show that this elimination results in a two state Huxley’57 type model. In the limit of an
infinitely fast relaxation, the distribution of the random variablesX and Y follows the classical Boltzmann
equilibrium distribution 

pth0 (x, y) =
exp

(
− w0(x, y)/(kBT )

)
∫∫

exp
(
− w0(x, y)/(kBT )

)
dydx

,

pth1 (y; s) =
exp

(
− w1(s, y)/(kBT )

)
∫

exp
(
− w1(s, y)/(kBT )

)
dy
.

(7a)

(7b)

The probability distributions p(x, y, α; s, t) can then be decomposed as follows{
p(x, y, 0; s, t) = P0(s, t)pth0 (x, y),

p(x, y, 1; s, t) = P1(s, t)δ(s− x)pth1 (y; s),

where

P1(s, t) =

∫∫
p(x, y, 1; s, t) dxdy and P0(s, t) =

∫∫
p(x, y, 0; s, t) dxdy = 1− P1(s, t)

define the probabilities that a given myosin head is attached and detached, respectively, or equivalently
the ratio of attached and detached heads among the population. They are named hereafter population
probability of being attached and detached. Remark that the ratio P1 is denoted by n in [Huxley, 1957].
The ensuing model has only two states corresponding to α = {1, 0}, and characterized by the equilibrium
free energies 

F th0 =

∫∫ [
w0(x, y)pth0 (x, y) + kBTp

th
0 (x, y) ln

(
a2 pth0 (x, y)

)]
dxdy,

F th1 (s) =

∫ [
w1(s, y)pth1 (y; s) + kBTp

th
1 (y; s) ln

(
a pth1 (y; s)

)]
dy,

(8a)

(8b)
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where the parameter a denotes the characteristic size of the power stroke, used as the reference length
in our system. The free energies F th0,1 appear naturally as the averages of the equilibrium chemical
potentials (internal energy plus entropic terms) defined by the more refined stochastic model, while they
are postulated in the classical Huxley’57 type models. The two functions are represented schematically
in Fig. 1(b) and shown for the calibrated model in Fig. 15

To derive the simplified dynamics, we integrate the Fokker-Planck equation (3) with respect to x and
y. Then, using the explicit definition of the internal energy levels (1) and the equilibrium distributions (7)
and obtain {

∂tP1(s, t) + ẋc∂sP1(s, t) = f th(s)
(
1− P1(s, t)

)
− gth(s)P1(s, t),

P0(s, t) = 1− P1(s, t)

(9)
(10)

where (9) corresponds to the classical Huxley’57 model conservation equation. Importantly again, as
opposed to the Huxley’57-type model, [Huxley, 1957] the averaged transition rates

f th(s) =

∫∫
k+(y, s)pth0 (x, y) dydx,

gth(s) =

∫
k−(y, s)pth1 (y; s) dy.

(11a)

(11b)

are not defined per se but are instead derived from the rates k+ and k− of the stochastic model.
The average force per head generated by a population of myosin heads (4) now simplifies into

τ thc (t) =
1

da

s+∫
s−

P1(s, t)τ th(s) ds,

where the term τ th(s) is the average equilibrium tension exerted by an attached head located at a
distance s from its binding site, which derives from the thermal equilibrium free energy in the attached
state F th1 :

τ th(s) =
dF th1

ds
(s). (12)

With the assumption of a linear neck elasticity used in our model (see (1)), we simply have

τ th(s) =

∫
κ(y + s)pth1 (y; s) dy. (13)

The equivalence between (12) and (13) is given in Appendix (A.1), where the average stiffness per head
is also computed.

The boundary conditions requirement that no head can remain attached outside the [s−, s+] interval
(see (6)) becomes here

P1(s−, t) = P (s+, t) = 0, (14)

which is ensured by appropriate choices of the transition rates f th and gth or their antecedent k+ and
k−. A more detailed assessment of the mathematical properties of the Huxley’57 equation solutions is
presented in [Kimmig et al., 2019].

Finally, similarly to (5), the tension developed by a muscle fiber is

Tc(t) = ρsurfτ
th
c (t). (15)

To conclude this section we mention that the PSE model can be seen as an instance of a larger
family of models within the Huxley’57 framework (see Appendix A.2 for the details). These models
are characterized by only two states (detached and attached corresponding respectively to α = 0, 1)
associated with the free energies F0,1 and the transition rates f and g, which are the direct inputs of
the dynamical system (9) and the mechanical force (12). Furthermore the approach developed here to
eliminate the fast equilibrating continuous internal degrees of freedomX and Y can be directly transposed
to the more conventional modeling approach using a discrete internal degree of freedom to characterize
the various states of the cross-bridge Huxley & Simmons [1971]; Eisenberg et al. [1980].
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2.2 Macroscopic models
A further reduction of the model from Huxley’57 equations has been proposed in [Bestel et al., 2001;
Chapelle et al., 2012] and reused in [Caruel et al., 2019]. It aims at establishing the dynamics equations
associated directly with relevant macroscopic quantities such as the tension developed by the population
of myosin heads in a half-sarcomere. We apply this simplification here and extend it to non-linear
constitutive behaviors. For a choice of the attached state free energy as a polynomial function, the
active tension is defined as a combination of the population probability moments formally defined by∫
spP1(s) ds (see (29)), which motivates the decomposition of the solution on these quantities.
We consider in all generality a multi-site model, i.e. the myosin head can bind to any actin sites,

which are regularly located along the thin filament at distances s+ jda ∀j ∈ Z (see [Kimmig et al., 2019]
for more detail). The moment of order p of the population probability P1 is defined by

Mp(t) =
1

da

∫ s+

s−

∑
j∈Z

(s+ jda)pP1(s+ jda, t) ds.

Integrating (9) and performing an integration by parts – with the boundary conditions (14) – , we obtain
the following unclosed system of ODEs, for p ≥ 1

Ṁp(t) = pẋcMp−1(t) + fp −
1

da

∫ s+

s−

∑
j∈Z

(
f(s+ jda) + g(s+ jda)

)
(s+ jda)pP1(s+ jda, t) ds, (16)

with

fp =
1

da

∫ s+

s−

∑
j∈Z

(s+ jda)pf(s+ jda) ds.

Solving the infinite system of coupled ODEs (16) is equivalent to solving the PDE (9). However, a
significant gain in computational efficiency can obtained by reducing the number of relevant ODEs to
a finite set through appropriate closure relations. For instance, one can assume that the sum of the
transition rates f(s) + g(s) does not depend on the space variable s [Bestel et al., 2001]. In that case
(16) simplifies into Ṁ0(t) = −

(
f + g

)
M0(t) + f0,

Ṁp(t) = pẋcMp−1(t)−
(
f + g

)
Mp(t) + fp for p > 0,

(17)

where the dynamics of each moment only depends on the moments of inferior order, restricting the
computation of any moment to the resolution of a finite number of ODEs.

2.2.1 Linear macroscopic models

Assuming, as in [Bestel et al., 2001] that the cross-bridges has a quadratic energy of the form

wL1 (s) =
κxb

2
(s+ s0)2, (18)

where s0 is the length of the unloaded spring, the macroscopic first Piola-Kirchhoff stress developed by
the muscle fiber is then defined by

Tc(t) =
ρsurf

da

∫ s+

s−

∑
j∈Z

d

ds
wL1 (s+ jda)P1(s+ jda, t) ds (19)

which, given (18), gives Tc(t) = ρsurfκxb
(
s0M0(t) +M1(t)

)
. Similarly, the macroscopic stiffness per unit

surface is similarly given by

Kc(t) =
ρsurf

da

∫ s+

s−

∑
j∈Z

κxbP1(s+ jda, t) ds = ρsurfκxbM0(t).
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The moment dynamics (17) then reduces to two ODEs describing the dynamics of Tc and Kc, namelyK̇c(t) = −
(
f + g

)
Kc(t) + f0K∞,

Ṫc(t) = −
(
f + g

)
Tc(t) + ẋcKc(t) + (s0f0 + f1)K∞,

(20)

with K∞ = ρsurfκxb the stiffness in the rigor state where all cross-bridges are attached.
The relation between the force and the sliding velocity in steady-state shortening is classically mea-

sured by experimentalists and is usually termed force-velocity relation. With (20), the closed form
expression of the steady state force-velocity relation is linear

T∞c =
f0K∞

(f + g)2
ẋc +

s0f0 + f1
f + g

K∞. (21)

and reveals the close interplay between the cross-bridges stiffness (through the parameter K∞) and the
myosin cycling rate (through f and g) in the mechanical behavior. While the relation (21) is clearly
incompatible with the observed hyperbolic shape of the force-velocity relation, we show below that it
may still prove useful in some physiological conditions. Note that a non-linear force-velocity relation
can still be obtained with a linear elasticity assumption [Huxley, 1957; Duke, 1999]. The linearity of the
force-velocity relation predicted by this model results from the combined effect of the linear elasticity
assumption and the specific choice of the transition rates.

2.2.2 Nonlinear macroscopic model

If, instead of the linear spring energy (18), we consider a nonlinear spring associated with a polynomial
internal energy of the form

wNL1 (s) =

n∑
i=0

ci
max(i, 1)

si,

then, adapting (19), the force can be written

Tc(t) =

n−1∑
i=0

Ci+1Mi(t) (22)

where Ci = ρsurfci. We show in appendix A.3 that considering the moment dynamics (17) in the perma-
nent regime, (22) leads to the steady-state tension

T∞c =
1

f + g

[
ẋc

n−1∑
i=1

iCi+1M
∞
i−1(ẋc) +

n−1∑
i=0

Ci+1fi

]
, (23)

where M∞i−1 is explicitly given by

M∞i (ẋc) =

i∑
j=0

i!
j!fi

(f + g)i+1−j ẋ
i−j
c .

The obtained force-velocity relation is then a polynomial function of the shortening velocity of order
n− 1 when the internal energy is of order n.

3 Results
In the previous section, we have derived two classes of models: the population models containing our most
refined stochastic model (see Section 2.1.1) and the PSE model (see Section 2.1.2), and the macro-models
(see Section 2.2). In what follows, we will first present the calibration and the results for the population
models and compare the stochastic model to the PSE model; then we will present the calibration of the
macro-models and study how they compare to the PSE model, the latter being considered at the pivot
of the whole model hierarchy.
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Table 1: Parameters whose value is not adjusted in the calibration process but directly taken from
the literature. We present here typical values for our modeling purposes but it should be noted that
uncertainties remain in the literature.

Non calibrated parameters symbol Value Reference
Power stroke characteristic length a 11 nm [Holmes & Geeves, 2000]
Distance between two actin sites da 40 nm [Craig & Padrón, 2004]
Density of thick filament in the
cross-section of thickness `hs

ρsurf 1.25× 1017 m−2 [Pinzauti et al., 2018]

Myofilament compliance Cm 17 nm MPa−1 [Pinzauti et al., 2018]

3.1 Population models
3.1.1 Calibration

The properties of the system depend on three categories of model parameters. The first category charac-
terizes the energy landscapes (wα for the stochastic model, see (1), and F thα for the PSE model, see (8))
and the viscosities associated with the internal degrees of freedom X and Y . The second category de-
termines the kinetics of the attachment and detachment interactions between the myosin heads and the
actin filaments (k+ and k− for the stochastic model or f th and gth for the PSE model). The last category
concerns the energetic properties of the system related the metabolic reactions among which the most
important one is the ATP turnover.

To limit the number of free parameters in the model and make the calibration process more robust,
we impose the following restrains on the space of parameters. First, we assume a bi-quadratic form
for the energy landscapes uα which, in addition to being analytically simple, have proven efficient in
reproducing the fast transient response of skeletal muscle fibers, see [Marcucci & Truskinovsky, 2010;
Caruel et al., 2013]. Second, the attachment and detachment transitions kinetics are described by
(minimally) regularized piece-wise constant functions over the interior of the [s−, s+] interval. Near the
boundaries, the transitions rates either tend to zero or grow to infinity, exponentially.

The models calibration procedure uses the hierarchical link between the stochastic and the PSE model,
which are thus calibrated in a interdependent and simultaneous manner. The parameters resulting from
this calibration strategy are listed in Table 5.

Fixed parameters Before turning to the calibration procedure per se, we mention that some of the
model parameters are not chosen through a calibration process but are directly taken from published
experimental data. These parameters are listed in Table 1.

Isometric indicators We here refer to isometric conditions when the developed force reaches its peak
in a twitch contraction in which the length of the fiber is maintained constant [Ter Keurs et al., 1980;
Van Heuningen et al., 1982; Caremani et al., 2016]. It is not, as for skeletal muscles, a tetanised state.

The main indicator of the isometric state is the maximal isometric tension (or stress) T0 generated
by the fraction ňatt of the myosin motors bound to actin. In maximal activation conditions, this tension
can reach the value of 118 kPa corresponding to a maximal ratio of attached heads ňatt = 0.15 and to a
tension per head of 6.14 pN [Caremani et al., 2016; Pinzauti et al., 2018].

For the PSE model, the isometric population probability P̌1 is the steady state solution of (9) with
ẋc = 0,

P̌1(s) =
f th(s)

f th(s) + gth(s)
=

f th(s)/gth(s)

1 + f th(s)/gth(s)
,

which depends only on the ratio f th(s)/gth(s), with f th and gth derived from k+ and k−, respectively,
through (11).

To limit the number of parameters that characterize this ratio, we assume, first that the attachment
rate k+ is non-zero only in an interval Sf = [−`+, `+] around the nearest binding site; second, that k+
is almost constant in this interval; and third that the detachment rate k− is strictly constant on this
interval, see Figure 14. Using these hypotheses in the definitions of f th and gth (see Equation (11))
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f
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δs
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0
κ1post

κ1pre

a s̃α

P1
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τ th

P1 · τ th
τ̌ thc

s− 0 s+

0
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κ1post κ1pre

P1

∂sτ th

P1 · ∂sτ th

κ̌th
c
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0
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P1(ẋc = −V0)
P1(ẋc = 0)
P1(ẋc = −V0) · τ th

(a) (b)

(c) (d)

Figure 2: Illustration of the calibration ground principles for the PSE model. Note that the model
elements represented here are chosen for illustration purposes and do not reflect the actual calibration.
(a) Isometric conditions. The ratio of attached heads ňatt depends on the width and the height of the
isometric population probability P̌1 (orange area). The isometric force per attached head τ̌ thc /ňatt is a
function of the isometric population probability P̌1 and the equilibrium tension τ th. (b) Illustration of
the situation at the end of phase II in a fast length step experiment. The isometric distribution is shifted
due to the applied step δs. The legend is the same as in panel (a). (c) Computation of the stiffness in
isometric conditions. The stiffness depends on the width of the isometric population probability P̌1 and
the asymptotic stiffnesses of the two attached potential wells κ1pre and κ1post. (d) When the filaments
slide past each other, the population probability P1 is spread towards negative values of s (solid red
curve). The force is then given by the integral of P1(s) against the thermal equilibrium tension τ th(s)
(blue area).
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together with the (regularized) piecewise constant shapes proposed in Table 5, leads to the following
approximations: for the attachment rate

f th(s) ≈
{
f
th

= kmaxα0pre if s ∈ [−`+, `+],

0 otherwise,

where α0pre denotes the fraction of detached myosin heads in the pre-power stroke conformation, which
is independent of s but depends on the energy landscape w0. For the detachment rate we have gth(s) ≈
gth = kmin for s ∈ [−`+, `+]. In summary, the isometric population probability P̌1, depends only on the
ratio f

th
/gth and on the support width df = 2`+ (see illustration in Figure 2(a)). If we carry on with

these assumptions, we obtain the following approximations: (i) for the isometric ratio of attached heads

ňatt =
1

da

∫ s+

s−
P̌1(s) ds ≈ df

da

f
th
/gth

1 + f
th
/gth

(see the orange area in Figure 2(a)) and (ii) for the isometric

force per attached head
τ̌ thc
ňatt

=
1

ňatt

1

da

∫ s+

s−
τ th(s)P̌1(s) ds ≈ 1

df

∫ `+

−`+
τ th(s) ds.

Given the bi-quadratic form postulated for the energy landscapes, the equilibrium tension τ th depends
on three parameters (see Figure 2(a)): the asymptotic stiffnesses κ1pre and κ1post and the position of
the potential barrier `1 of the attached energy landscape w1, see Table 5. The stiffness κ1post will
be univocally determined from the fast isotonic transients (see next paragraph), which leaves only 3
parameters (`+, κ1pre and `1) to determine the tension per attached heads. Once these parameters are
fixed, the ratio f

th
/gth is calibrated to match the measured fraction of attached heads, see Table 2.
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Figure 3: Experimental data from fast transient experiments in force control conditions. (a) Imposed
tension on the preparation. (b) Transient response following the tension drop. The response display
three different phases indexed by 1, 2 and 3 (see text for more explanations). (c) Signature of phase I
and phase II. The amount of shortening (per half-sarcomere) at the end of phase I and phase II, denoted
respectively by L1 and L2 is reported as a function of the relative tension drop.

Fast isotonic transients A typical shortening response of a cardiomyocyte to a sudden force drop
applied within ∼ 200 µs at the peak force T0 of an isometric twitch contraction is illustrated in Figure 3(a)
& (b).

The response in length displays three phases. First (phase I) an instantaneous shortening – L1 – is
observed alongside the load step itself. Second (phase II), after the force has stabilized to its prescribed
value, a second shortening – up to L2 – happens within the next ∼ 2 ms. After this second phase, the
system enters a steady state characterized by a constant load-dependent shortening velocity (phase III).
To reproduce the signature of phase I and phase II, namely the curves L1(Tc) and L2(Tc) shown in
Figure 3(c), we compute the response of our system to a rapid change in the filament relative position
(per half-sarcomere) δs and compute T1(δs) (phase I) and T2(δs) (phase II). This approach is justified by
the experimental observation that the relations T1(δ`hs) (phase I) and T2(δ`hs) (phase II), where δ`hs is
the applied step in length (per half-sarcomere), are identical to L1(Tc) and L2(Tc), respectively [Piazzesi
et al., 2002].

Due to the filament compliance, the displacement seen by the cross-bridges δs is different from the
displacement δ`hs measured or imposed in experiments. To account for this difference, we map the
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displacement δs applied in our simulations for phase I and phase II to its δ`hs counterpart, which
corresponds to the measured L1 and L2, using L1,2(δs) = δs + Cm[T1,2(δs) − T0] [Caruel et al., 2019],
where the filament compliance Cm is given in Table 1.

We assume that, during the first phase (from δ`hs = 0 to δ`hs = L1), all internal conformational
degrees of freedom can be considered “frozen”, and the fraction of attached heads constant. Phase I is
then a purely elastic response characterized by the relation (see Appendix B.2)

T1(δs) ∼ T0 + κ ρsurf ňattδs, (24)

which allows to give a first estimate of the parameter κ, found to be 1.07 pN nm−1 in [Pinzauti et al.,
2018]. When computing the response of the system to an idealized instantaneous length step, this choice
of κ allows to match the experimental data. However, in the length step experiments, the step is not
instantaneous (its duration being about 100 µs in [Pinzauti et al., 2018]). In this case, viscous effects
come into play and κ must be calibrated alongside the viscosity η.

The rapid shortening in phase II is the specific signature of the relaxation of the internal degrees of
freedom parametrizing the power-stroke conformational change, not involving attachments nor detach-
ments Huxley & Simmons [1971]. Consequently, the T2(δs) relation predicted by the PSE model can be
computed as (see Figure 2(b))

T2(δs) ≈ ρsurf

da

∫ s+

s−
P̌1(s− δs)τ th(s) ds =

ρsurf

da

∫ s+

s−
P̌1(s)τ th(s+ δs) ds. (25)

For large shortening, one can further assume that the whole population of attached cross-bridges are
in the post-power stroke conformation. The fact that the observed relation L2(Tc) is linear for large
shortening (see Figure 3(c)) supports the choice of the bi-quadratic form of u1, see (1) and Table 5. We
can then derive the following large shortening approximation (see Appendix B.3)

T2(δs) =
ρsurf

da

∫ s+

s−
P̌1(s)τ th(s+ δs) ds ≈ ρsurf ňatt

κκ1post

κ+ κ1post
(δs+ s̃1 + a), (26)

which allows to univocally calibrate both κ1post and s̃1, independently of the form of the population
probability P̌1, indeed. Equation (26) is an illustration of the explicit link between the stochastic
model—characterized by the stiffnesses defining the attached energy potential w1—and the PSE model—
characterized by the tension τ th.

The slope of the T2(δs) curve at the origin, which is given by ρsurf
da

∫ s+
s−

P̌1(y)∂sτ
th(s) ds = ρsurfκ̌

th
c ,

aggregates the contributions of the isometric population probability P̌1 and the attached energy land-
scape through the equilibrium average tension τ th. Its value results from the balance between heads
contributing with a negative stiffness and heads contributing with a positive stiffness, see Figure 2(c).
Increasing the width df of P̌1 leads to an increase in the stiffness and, conversely, decreasing df decreases
the stiffness, possibly to negative values. Therefore, the measured slope of the T2(δ`hs) curve at the ori-
gin imposes a limitation not only on the support of the attachment rate df but also indirectly on the
ratio f

th
/gth through the constraint on the isometric ratio of attached heads ňatt, see above.

Altogether, the data obtained from the isometric state and the fast transient experiments, allow to
fully calibrate the isometric population probability P̌1 (characterized by `+ and the ratio f

th
/gth) and

the attached energy landscape (parametrized by κ, κ1pre, κ1post, s̃, `1) along with the viscosity η.
The ratio f

th
/gth is fixed but a particularization of the attachment rates f

th
and gth is still to be

done. The shape of the detachment rate gth for value of s non close to the origin s = 0, along with the
detached energy landscape w0(x, y) also remain to the calibrated.

The parameters of w0(x, y) are less constrained than the other parameters of the model. Indeed,
only few data characterizing the behavior of the detached myosin heads are available, most of them
being obtained with solutions of myosin heads and actin sites in vitro, whose applicability in the context
of modeling the actin-myosin interaction in the sarcomere may not be straightforward. We choose to
calibrate the detached double well potential so that the pre-power stroke well position y0pre and the energy
barrier position `0 correspond to that of the attached double well potential y1pre and `0, respectively.
The stiffness of the two wells κ0post and κ0pre and the position of the post-power stroke well y0post
are set such that the jumps occurring between the attached and detached states are associated with a
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“maximal” energy loss given the constraint that w1 is now fixed and that the energy brought by ATP in
the detachment process µT is equal to 100 zJ [Barclay, 2015], so that the reverse rates, which have been
neglected, are actually small compared to the forward rates.
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Figure 4: Summary of steady-state shortening experimental data measured on rat cardiac muscles tra-
beculae with data points obtained in various sarcomere stretch and thin filament activation conditions.
These data have been registered for decades with a great consistency in the results. (a) Force-velocity
curve. (b) Produced work. (Black) Data from [Van Heuningen et al., 1982] at 25 ◦C. (Yellow) Data from
[Daniels et al., 1984] at 25 ◦C. (Lilac) Data from [de Tombe & ter Keurs, 1990] at 25 ◦C. (Orange) Data
from [de Tombe & ter Keurs, 1992] at 25 ◦C. (Blue) Data from [Caremani et al., 2016] at 27 ◦C.

Global curvature of the force-velocity relation The force-velocity curve is the last element that
will allow to close the calibration. We have gathered experimental data from several works published
over the past four decades, which show a remarkable consistency, see Figure 4. The typical shape of
the curve is parametrized by its curvature, the maximum shortening velocity and the near isometric
behavior.

The global curvature of the force-velocity curve results from the balance between two effects: (i) a
“stiffness effect” as the shortening of the sarcomere reduces the force generated by attached myosin heads,
and (ii) a “cycling effect” as the myosin heads can detach from a position where they exert low or even
negative force and reattach somewhere else on the thin filament where they generate a positive force.
Both effects are illustrated in Figure 5.

The cycling effect can be illustrated with the PSE model by varying the attachment and detachment
rates kmax and kmin (thus augmenting the cycling rate) while maintaining the ratio kmax/kmin constant
(see Figure 5(a)). These variations also modify the thermal equilibrium transition rates f th and gth,
with a ratio f

th
/gth that remains constant. Since the heads always bind in a region where they exert

a high force (see Figure 2(a)), increasing the cycling rate increases the steady-state force produced at a
given velocity.

In the PSE model, the equilibrium state in the energy potentials wα is assumed to be always reached.
Therefore the apparent force-shortening relation is always given by the T2(δs) curve whose slope is an
apparent stiffness, see (25) and Figure 2(a). To illustrate the “stiffness effect”, we vary this apparent
stiffness by changing the value of κ, see Figure 5(c). Since the value δs = −(a + s̃1) corresponding
to T2(δs) = 0 is independent from κ (see Equation (26)), increasing κ increases the tension for low
shortening (δs > −(a+ s̃1)), and decreases the tension for large shortening ( δs < −(a+ s̃1)).

At low shortening velocity, the heads experience a moderate displacement before detachment and
therefore exert a higher force at higher apparent stiffnesses. Conversely for high shortening velocity, the
attached heads can reach a region where they start to be under compression (negative forces) before they
detach, and a higher apparent stiffness then lowers the average force. These tendencies are illustrated in
Figure 5(d).

At this stage of the calibration process, the stiffness parameters are already fixed, the global shape
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Figure 5: Parametric study on the force-velocity curve predicted by the PSE model. (a) & (b) Illustration
of the “cycling effect”. (a) The attachment rate kmax is varied while the ratio kmax/kmin is maintained
constant. The condition kmax/kmin constant also implies that f

th
/gth is constant. (b) Variation of the

position `−,l, which varies in the same way as the position of gth pseudo-asymptote `l (see Figure 2(d)).
(c) & (d) Illustration of the “stiffness effect”. Variation of the stiffness κ and subsequent effects on the
T2-curve (c) and the force-velocity curve (d). The slope of the T2-curve constitutes the apparent stiffness
for slow time scale responses (as it is the case in steady-state shortening).
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of the experimental force-velocity curve is used to particularize the parameters f
th

and gth.

Large shortening velocity behavior In steady state isotonic shortening, while the myosin and
actin filaments slide pass each other, the population probability P1(s) is spread towards negative values
of s. A zero force is obtained when the contributions of heads exerting a negative force and that of heads
exerting a positive force balance, see Figure 2(d).

In the PSE model, the unloaded shortening sliding velocity is determined mainly by the position `l of
the vertical pseudo-asymptote of the detachment rate gth for negative values of s, see Figure 2(d). The
value of `l itself depends the position of the detachment rate k− pseudo-asymptote – denoted `−,l – and
on the reciprocal spatial characteristic length λ3 for the stochastic model (see Table 5). Hence, different
couples (`−,l, λ3) may lead to the same force-velocity relation, and we present here only the effect of
`−,l, see Figure 5(b). When the vertical pseudo-asymptote of the detachment rate is located at a higher
position `−,l, the detachment rate is increased for all value of s at the vicinity of s−. This results in an
increase in the cycling rate, which, as presented in Figure 5(b), leads to an increase of the developed
force. Hence the maximum shortening velocity is increased by increasing `l through an increase of `−,l.

Similarly, the position `r of the vertical pseudo-asymptote of the detachment rate gth for positive
values of s – parametrized by `−,r and λ3 – is chosen such that we can numerically ensure that P1(s =
s+) ≈ 0 when the sliding velocity is positive and corresponds to the maximal physiological value observed
in the filling phase of the heart or in the relaxation phase of a fiber twitch contraction (ẋc ∼ 2 µm s−1).

Near isometric behavior The shape of the force-velocity curve in near isometric conditions –
i.e. for shortening with characteristic time `hs/ẋc that is small with respect to the transition rates – is
determined by a balance between two effects: a change in the number of attached heads and a change in
the averaged force per attached head. This balance can lead to an increase or a decrease of the force at
slow sliding velocities with respect to the isometric force and therefore to dynamic instabilities, generally
refered to as “anomalous force-velocity relation”, which have been studied both experimentally Edman
[1988]; Edman et al. [1997]; Edman & Curtin [2001] and theoretically Jülicher & Prost [1995, 1997];
Vilfan et al. [1999]; Duke [1999]; Guérin et al. [2011]; Månsson [2010, 2014, 2016].

In our reference model, the detachment function gth = kmin is constant over the whole interval [s+, s+]
except near the boundary where it diverges. In this case, we observe that the tension actually increases
at slow shortening velocities compared to the isometric configuration, see Figure 5 and Figure 16(b, black
line) in Appendix B.4.

We also show in Appendix B.4 that this effect can be modulated by introducing a plateau in the de-
tachment rate gth with only a marginal influence on the rest of the force-velocity curve and, importantly,
without having to modify the other model parameters.

In summary, the isometric indicators and the fast transients allow to unambiguously determine the
isometric population probability P̌1 and the attached energy landscape w1. Adding information from the
force-velocity curve leads to the unique definition of the transition rates f th and gth. Only the detached
potential w0 remains subjected to variability in the calibration. More experimental data targeting the
detached state would be needed to reduce this variability.

3.1.2 PSE model vs Stochastic model

We recall that the PSE model is derived as the asymptotic limit of the stochastic model by performing
the adiabatic elimination of the fastest time scales. We analyze here in detail the differences between
the two population models induced by this assumption.

Isometric indicators We show in Table 2 that, in isometric condition, the PSE model and the stochas-
tic model are both in good agreement with the experimental macroscopic indicators.

Once calibrated, our models can be used to predict the energetic properties of the contractile system
in isometric conditions. We choose as an indicator of the energetic performance the “ATP tension
cost”, which we define as the ATP consumption rate per myosin head in the sarcomere per unit of
produced force. Combining the experimentally measured ATP consumption per unit volume (obtained
with rat cardiac cells at 25 ◦C in skinned conditions ensuring that ATP is solely consumed by the cycling
myosin heads, see [de Tombe & Stienen, 2007]) with the density of myosin heads per unit volume of

16



Table 2: Isometric physiological indicators for cardiac isometric experiments and models predictions.
The experimental maximal stress and force per attached head are taken from [Caremani et al., 2016] and
[Pinzauti et al., 2018], respectively. The maximal stress is obtained with intact cells with an extra-cellular
calcium concentration higher than in physiological conditions, and we assume that these conditions
correspond to a full activation of the thin filament. The experimental ratio of attached heads value is
inferred from data obtained in [Pinzauti et al., 2018] in sub-maximal activation conditions knowing that
the relationship between the developed force and the ratio of attached heads is linear. The ATP tension
cost is then derived from data obtained in [de Tombe & Stienen, 2007] (see text for more explanation).

Isometric indicators symbol Experiments Stochastic model PSE model
Ratio of attached heads ňatt 0.15 0.150 0.154

Force per attached head τ̌ thc / ňatt 6.14 pN 6.15 pN 6.17 pN

Maximal total stress T0 118 kPa 115 kPa 119 kPa

ATP tension cost AT 0.109 /s/head/kPa 0.0875 /s/head/kPa 0.0878 /s/head/kPa

ATP consumption
at T0 (/s/head) JATP/µT 12.8 10.1 10.4

1.25× 1023 heads/m3 [Pinzauti et al., 2018] decreased by 21 % due to the skinning process [Konhilas
et al., 2002], we obtain an estimate of 0.109 /s/head/kPa for the ATP tension cost.

In the Lymn-Taylor cycle, ATP binding promotes the detachment of myosin from actin. The ATP
consumption rate per myosin head is therefore equal to the flux of detachment per myosin head. For the
PSE model, the tension cost is therefore given by

AT =
detachment flux per myosin head

produced force
=

1

da

∫ s+

s−
gth(s)P̌1(s) ds

ρsurf

da

∫ s+

s−
τ th(s)P̌1(s) ds

,

and we obtain a value of 0.0878 /s/head/kPa in relatively good agreement with the experimental data
and with the prediction of the stochastic model, see Table 2. The fact that the models reproduce this
indicator without further adjustments confirms that our parametrization is well constrained.

Fast isotonic transients We continue by comparing the calibrated models predictions of the fast
transient response with experimental data. The calibration results are presented in Figure 6.

While the relation T2(δs) is explicitly defined in the PSE model (see Equation (25)), it has to be
inferred from the average trajectory of the internal variables Xt, Y t and αt for the stochastic model. We
used the method proposed in [Ford et al., 1981; Caruel et al., 2019] to reconstruct the T2(δs) relation.

The fundamental assumption underlying the derivation of the PSE model is precisely to neglect the
time required for the equilibration of the internal mechanical degrees of freedom corresponding to the
power stroke. There is thus a theoretical equivalence between the end of phase II for the stochastic
model and the PSE model. This translates into the numerical simulations (see Figure 6) showing that
the (δs, T2)-curves obtained with the stochastic and the PSE models are effectively the same. As a
result, the elastic response of the PSE model aggregates the dynamics of these two – fast – power stroke
elements into a single – instantaneous – nonlinear elastic dynamics.

The accordance between the predictions of the calibrated PSE model (blue line in Figure 6(a)) and
the predictions of the stochastic model (green triangles in Figure 6(a)) validates the hypotheses of the
PSE model, that the force length relation characterizing the end of phase II corresponds to the thermal
relaxation of the internal degrees of freedom.

The response in phase I, which corresponds to the fastest time scale, is already averaged into the
equilibrium nonlinear elastic element of the PSE model (blue line in Figure 6(a)), and therefore it can
only be captured by the stochastic model.

In our simulations the T1(δs) relation is obtained simply by reporting the value of the tension at the
end of the applied length step, as in experiments. Since the length step is not applied instantaneously, the
Phase I response is viscoelastic, and therefore the T1(δs) relation depends on both the stiffness κ and the
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Figure 6: Comparison of the calibrated model prediction and experimental data for the fast transient
response. The simulation data where obtained by applying a shift in the binding site position s within
100 µs (marks in green) starting from the isometric steady state. (a) Tension-length relationship char-
acterizing the end of phase I and II. The results a displayed as function of the half sarcomere length
change, taking into account the filaments deformation corresponding to the applied step. (b) Influence
of viscosity on the force T1- and T2-curves predicted by the stochastic model.
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drag coefficient η, which are then calibrated together. The result of this calibration is shown in Figure 6(a)
(green symbols) where we have set κ = 1.34 pN nm−1 (slighly larger than the value κ = 1.07 pN nm−1

obtained by assuming a purely elastic response, see (24) and Figure 3) and ηref = 0.0972 ms pN nm−1, see
Table 5. The effect of changing the value of the drag coefficient is illustrated in Figure 6 (b). Remarkably
none of the values tested affects the T2(δs) response. Furthermore, one can recover an almost purely
elastic response by doubling the drag coefficient (red symbols).The choice of the value of η has also a
strong influence on the rate of the tension recovery in phase II, we checked that our choice allows to keep
this rate in the physiological range, see section 4.1.1.
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Ẇ

(z
Js

−
1 )

Ẇ Exp. data
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Figure 7: Steady state shortening response. (a) Force-velocity curve for the stochastic model and the
PSE model. (b) Produced work rate and energy input rate per myosin head in steady state shortening
conditions. (c) Efficiency of the transduction of ATP energy into work for the PSE model in steady
state shortening conditions. (d) Influence of the viscosity on the force-velocity curve computed with the
stochastic model.

Isotonic shortening velocity The force-velocity relations obtained with both the stochastic model
and the PSE model are shown in Figure 7(a). The predictions of the two models are relatively similar
between ẋc = 0 and −ẋc = 3 µm s−1. Beyond this value, the tension computed from the stochastic model
is systematically lower that the one computed from the PSE model.

In general, the discrepancy between the two models lies in the fact that the fundamental assumption
that the distribution of the myosin heads in the attached and detached energy potentials are distributed
according to the thermal equilibrium distribution is not fully satisfied, implying that the equilibration
of the myosin heads in the attached and detached potential is not always very fast compared to other
dynamical processes. As an illustration of this statement, one can note that the discrepancy between the
force-velocity relations predicted by the two models can be reduced by a decrease in the drag coefficient
η (that is by speeding up the equilibration process) or conversely increased by increasing this coefficient.

To understand the origin of the difference between the response of the two models, we compare in
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Figure 8 the ratio of attached heads in steady-state conditions (panels (a), (b) & (c)), which we denote
by P∞1 , along with the associated tension (panels (d), (e) & (f)) in isometric conditions and at two
different sliding velocities. In isometric conditions (see Figure 8(a)), the ratio P∞1 for the two models
coincide for s > 3 nm while below this value, the PSE model predicts a higher fraction of attached
bridges. This observation was already made in [Caruel et al., 2019] and explained again by the fact that
the characteristic relaxation time in the detached energy potential is not much faster than the inverse of
the attachment rate (see Figure 21 in appendix). Cycling heads thus spend more time in the detached
state resulting in a lower ratio of attached heads. For larger values of s this limitation is not involved
since the post-power-stroke configuration is not populated, which prevents the heads from completing
their cycle. Altogether the ratio of attached heads is higher for the PSE model than for the stochastic
mode (see also Table 2) with heads populating configurations that produce on average a positive force
(see Figure 15(b) in appendix). The global developed tension is thus higher for the PSE model as can
be seen in Figure 8(d).

For nonzero sliding velocities (see Figure 8(b and c)), the shapes of the ratios P∞1 predicted by the
two models are similar (with the stochastic model predicting slightly lower values than that from the
PSE model) except for low values of s where the fraction of heads vanishes in the PSE model while
∼ 10 % of cross-bridges remain attached within the stochastic model. This result is explained by the fact
that, if the equilibration in the attached potential is very fast, which corresponds to the conditions of
the PSE model, heads are present in configuration where the detachment rate k− that diverges, resulting
in an averaged detachment rate gth for the PSE model that also diverges when s ≈ −20 nm. In the
stochastic model, attached heads can still encounter a detachment rate as low as kmin + k∗ = 228 s−1

for large values of Y , where the tension is negative (see Figure 13 in the appendix). Therefore, in the
stochastic model for s < −20 nm some heads remain attached and produce on average a negative force,
while they are already detached in the PSE model, leading to a lower global force, see Figure 8 (e) & (f)
for values of s around −20 nm.

An additional effect also contributes to the higher developed force in the PSE model. In Appendix C
(Figure 17), we show that the distributions of the conformational variable Y predicted by the two models
start to differ over a limited range of s as velocity increases, which shows that the sliding kinetics start
to compete with the equilibration process kinetics. This behavior is naturally expected since increasing
the filament sliding velocity impairs the validity of the PSE model fundamental assumption that the
equilibration processes in the energy potentials is much faster than any other process in the system. At
a given value of s, this competition leads for the attached heads to an increased likelihood to remain
in the pre-power stroke configuration, in which less force is developed than in the post-power stroke
configuration. This behavior is illustrated in Figure 8(e) & (f) for values of s in the range [−4 nm, 0 nm]
and see also Figure 17 for the same values of s at non-zero sliding velocities.

However, we show that beyond these discrepancies, the steady state normalized probability distribu-
tions p∞(x, y, 0; s)/

∫∫
p∞(x, y, 0; s)dydx and p∞(y; s)/

∫
p∞(y; s)dy obtained from the stochastic model

fit very well (with the above mentioned exceptions) with the thermal equilibrium distributions pth0 (x, y)
and pth1 (y; s) used in the PSE model, respectively. Note that in the region where the distributions display
a large discrepancy between the two models, the real quantity of interest, which is the force, displays a
less pronounced difference (see Figure 8 (d), (e) & (f)). Overall this match justifies the validity of the
assumption made to derive the PSE model from the stochastic model. Besides, the force-velocity differ
between by less than 30 % in the physiological regions in terms of mechanical loading Tc ∼ 0.5T0 (see
Section 3.2.2 for more explanations on the definition of the physiological region).

Finally, as in isometric contraction, we are able to make some prediction regarding the contraction
energetics, see Figure 7(b). The work production rate and the associated ATP energy consumption rate
per myosin head can straightforwardly be computed from the steady state isotonic shortening response.
They are defined by 

Ẇ = ẋcτc,

Ė =
µT
da

∫ s+

s−
gth(s)P̌1(s) ds,

respectively, where µT is the chemical potential brought by ATP. From the latter the yield ηT = Ẇ/Ė
can be calculated (see Figure 7(c)).

Again without any particular adjustment of the parameter and using the validated ATP turnover
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Figure 8: (Upper row) Fraction of attached cross-bridges predicted by the PSE model (in blue) and by
the stochastic model (in black) at different shortening velocities, −ẋc = 0 (a), 3 µm s−1 (b) and 6 µm s−1

(c). (Lower row) Force developed by cross-bridges predicted by the PSE model (in blue) and by the
stochastic model (in black) at different shortening velocities, −ẋc = 0 (d), 3 µm s−1 (e) and 6 µm s−1 (f).
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energy µT = 100 zJ, our model recovers the experimental ATP consumption rate in isometric conditions
obtained from the tension cost and the maximal tension (see Table 2). Our prediction of the consumption
rate and the yield during shortening remains to be validated experimentally.

3.2 Macro models
3.2.1 Calibration

We recall that the main assumption made to obtain the simplified macro-models was to consider that the
sum f(s)+g(s) was constant over the whole [s−, s+] interval, see Section 2.2. To compare the PSE model
with the macro-models we thus need to define “equivalent” transition rates for the different versions of
the macroscopic models.
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Figure 9: (a) & (b) Ingredients of the macroscopic models and the PSE model: transition rates (a) and
free energy of the cross-bridge (b). Note that the energy levels are defined up to a constant. (c) & (d)
Models predictions and corresponding experimental data: elastic response (c) and force-velocity relation
(d). Experimental data are as in Figure 4.

We chose the attachment rates of the macro-models such that the maximal value f of the attachment
rate is equal to f

th
for the PSE model and we adjusted the width of region where the attachment function

f(s) does not vanish, such that the isometric ratio of attached heads ňatt matches the data while verifying
the condition that f + g is constant (see Figure 9(a)). The minimal value of the detachment rate g is
denoted by g.

The first macro-model (linear macro-model) assumes a linear elastic cross-bridges characterized by
two parameters: a stiffness κxb and a reference length s0. We consider two cases for the definition of
these constants. In the first case (T1-linear macro-model), we chose the value of the stiffness measured
experimentally κxb = κ = 1.34 pN nm−1 and the pre-strain s̃ = 4.59 nm that leads to an isometric
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Table 3: Target isometric physiological indicators for the calibration on cardiac data of the PSE model
and the macro-models.

Isometric indicators Symbol PSE model T1-linear
macro-model

T2-linear
macro-model

nonlinear
macro-model

Ratio of
attached head ňatt 0.154 0.153 0.153 0.153

Force per
attached head τ̌ thc / ňatt 6.17 pN 6.14 pN 6.32 pN 6.14 pN

Maximal total
stress T0 119 kPa 117 kPa 121 kPa 117 kPa

ATP tension cost
(/s/head/kPa) AT 0.0878 0.107 0.104 0.107

ATP consumption
at T0 (/s/head) JATP/µT 10.4 12.6 12.6 12.6

force per attached head of 6.14 pN (see free energy profile in Figure 9(b)). In the second case (T2-
linear model), we aim at approximating the response at the end of phase II (δs, T2) with a linear elastic
response. The cross-bridge stiffness is then taken equal to κxb = 0.52 pN nm−1 and the pre-strain s̃ is
then set to 12.15 nm to obtain an isometric force per attached head of 6.31 pN (see free energy profile in
Figure 9(b)).

The second macroscopic model (nonlinear macro-model) assumes a nonlinear elastic energy for the
cross-bridge. We choose to define the free energy of the attached state with a polynomial of order 6
(n = 6) and calibrate the model so that the elastic response follows the (δs, T2) response (the model
parameters are given in Table 6), see Figure 9((b) and (c)).

3.2.2 PSE model vs macro-models

Isometric indicators The isometric indicators are presented in Table 3. With the proposed calibra-
tions, all models are able to reproduce the key isometric indicators. The good agreement between the
four models is due to the fact that the population probabilities P1 are similar (see rates in Figure 9
(a)) and that the forces developed in the interval Sf are similar (similar slope of the four free energy
potentials in Figure 9 (b)).

Effective elastic response By construction, the PSE model and the macro-models cannot reproduce
the fast transients. The parameters of the stochastic model has been chosen such that the effective elastic
response of the PSE model reproduces the (δ`hs, T2) relation obtained from the isotonic fast transients.

With the calibration choices made in the previous section, the elastic response of the T1-linear macro-
model corresponds to the (δs, T1)-curve, while the elastic response of the T2-linear macro-model corre-
sponds to a linear approximation of the (δs, T2)-curve (see Figure 9(c)). As expected the nonlinear
macro-model best reproduces the results of the PSE model as regards to the effective elasticity.

Steady-state isotonic shortening We compare the steady-state isotonic behavior of the macro-
models in Figure 9(d). The force-velocity relation corresponding to both linear models are straight lines
given by (21), see Figure 9(d, dotted purple and green dashed lines). Note that a curved force-velocity
relation can be obtained with a macroscopic model using a linear elastic cross-bridge with the addition
of a velocity dependent term in the definition of the detachment rate [Chapelle et al., 2012; Månsson,
2010]. However, in the hierarchical framework, these terms do not appear and are thus not considered
here.

The force of the T2-linear macro-model (green dashed line) is larger at any fixed shortening velocity
than that of the T1-linear macro-model, which has a larger stiffness, in accordance with the prediction
of (21). This illustrates the “stiffness effect” discussed in Section 3.1.1.
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For the nonlinear macro-model, the force-velocity curve is given by (23). It remains close to the PSE
model at low shortening velocity as expected from the higher force at small displacements. However the
polynomial approximation leads to a dramatic force drop for s < 20 nm therefore, as the velocity in-
creases, the nonlinear macro-model rapidly looses force and thus has a low maximum shortening velocity,
again because of the “stiffness effect”.

Macro-models as effective heart contraction models To put the development of the macro-
models into perspective, we compare the implication of the behavior differences between the two proposed
versions (linear elastic and nonlinear elastic) in the context of modeling the ejection phase of the heart.

Considering experimental pressure-volume loops and end-systolic pressure-volume relations obtained
on rats, the range of physiological loads can be estimated to be between 45 % and 65 % of the maximal
load [Sato et al., 1998; Pacher et al., 2004]. In this region the shortening velocity measured experimentally
has a value of about 2 µm s−1 (the physiological region is indicated in blue in Figure 9(d)). The same
value is predicted by the PSE model and the T2-linear macro-model, whereas the T1-linear macro-model
predicts a shortening velocity of 0.6 µm s−1.

Denoting the duration of ejection by τe and assuming that the heart cavity is spherical and that the
thickness is negligible, we obtain a end-systolic volume VES of

VES = VED

(
1 + ẋc

τe
`hs

)3
.

The ejection fraction being defined by (VED−VES)/VED and taking a duration of ejection equal to 45 ms
and end-diastolic volume of 200 mL, the T1-linear macro-model would predict an ejection fraction that is
66 % lower than that predicted by the PSE model and the T2-linear macro-model. Note that the ejection
fractions estimated with the PSE model and the T2-linear macro-model are outside of the physiological
range observed (50–65 %) at 37 ◦C [Pacher et al., 2004]. This is due to the fact that the models are
calibrated on data obtained at 25 ◦C. Considering the data measured by de Tombe & ter Keurs [1990]
at 30 ◦C, we see that the shortening speed in the physiological range is approximately 5 µm s−1, which
leads to an ejection fraction of 53 %.

The T1-linear macro-model is thus not applicable in the context of heart modeling. On the contrary,
the T2-linear macro-model has good properties to be used in heart simulations. Its force-velocity curve
presents a good match with the data over the whole physiological range and the elastic response is in
good agreement with the experimental (δs, T2)-curve.

The PSE model has the capability of reproducing the end of phase II response and the whole force-
velocity curve. The computational complexity is further increased because the dynamics is governed by
the partial differential equation (9).

The use of one or the other of the models will naturally depend on the goal of the simulation. For a
heart simulation in which a default physiological active behavior is sufficient, the T2-linear macro-model
is probably a good trade-off between the physiological consistency and the computational cost. However,
if the heart simulation is targeting the active behavior of the cardiac tissue, the PSE model should be
recommended. Indeed, with its tighter link to the physiology, the PSE model main advantage is to be
able to give a better physiological interpretation of the simulated behavior. Moreover, it can consistently
transfer properties across time and space scales, for instance the impact of a cardiomyopathy that affect
the actin-myosin interaction can then be incorporated in the model by an adjustment of the calibration
and then brought to the macroscopic space scale.

4 Discussion
In this section we put our results in perspective with other theoretical and experimental works.

4.1 Limitations of the models
Despite its ability to reproduce the most fundamental physiological indicators of muscle contraction with
a rather limited number of parameters, we list here the limitations our model hierarchy.
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4.1.1 Viscoelasticity

Internal viscous damping controlling the kinetics of the relaxation of the conformational variables Y is
the essential link between the stochastic model and the PSE model. The lower the internal viscosity
parameter η, the more valid the PSE approximation.

For the stochastic model, the parameter η was calibrated together with the head stiffness κ to match
the observed T1. The viscosity also controls the kinetics of the Phase II, but to our best knowledge data
are only available for load step experiment, and it has been shown that the results may differ in length
controlled experiments. Futhermore, in the length controled experiment the kinetics of the force recovery
strongly depends on the filament elastic properties which are not taken into account in this paper Caruel
et al. [2013]; Piazzesi et al. [2014].

Therefore we cannot conclude at this stage on the ability of the stochastic model to reproduce the
rate of phase II. Nevertheless, in Figure 10 we show predictions of the model obtained with three different
values of the viscosity. While data are lacking for a direct assessment of our viscosity, we note that the
predicted range of values remains physiological Piazzesi & Lombardi [1995]; Piazzesi et al. [2002].
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Figure 10: Influence of the internal viscosity parameter η on the recovery rate associated with phase II.

4.1.2 Rate of tension redevelopment

In the calibration process, we adjust the transition rates k+ and k− to fit the experimental force-velocity
curve. In particular, the parameters kmax and kmin, or equivalently the value of the equilibrium transition
rate f

th
and gth, influence the global shape of the force-velocity curve (see Section 3.1.1).

de Tombe & Stienen [2007] propose an alternative way to calibrate these model parameters. They
measure the tension redevelopment characteristic time in isometric conditions after applying a fast
release-restretch maneuver to force the detachment of some myosin heads. With this experimental setup,
the dynamics of the tension is supposedly not affected by the thin filament activation process. For the
family of models derived from the Huxley’57 model, the tension redevelopment characteristic time τtr is

given by τtr =
1

f + g
. Coupling these data with the ATP consumption measurement, which is linked to

the detachment rate g, they obtain an estimation of the transition rates f and g. For rat cardiac muscle
at 25 ◦C, they obtain f = 35.0 s−1 and g = 14.4 s−1. These values are different from the ones obtained
after our calibration. We have f

th
= 205 s−1 and gth = 66 s−1, which means that our model would fail

to reproduce the kinetics of force redevelopment reported in de Tombe & Stienen [2007]. Nevertheless,
if we use the value proposed by [de Tombe & Stienen, 2007] – all other things remaining equal – , we
obtain the force-velocity curve presented in Figure 11, which does not match the experimental data. This
comparison illustrate one of current challenges in the understanding and modeling of muscle contraction:
how a given model can match both the observed power-output of the fiber – which necessitates a high
cycling rate – and the rather low rate of force redevelopment – which necessitates low cycling rate. For
a discussion of this conundrum, we refer to Månsson et al. [2015].

To resolve this issue Pertici et al. [2018] proposed a model (simplified version of Caremani et al.
[2015]) that is able to capture the physiological skeletal muscle force-velocity curve without involving
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Figure 11: Force-velocity curve using the transition rate values given in [de Tombe & Stienen, 2007], all
other model parameters remain as given in Table 5.

a cycling rate comparatively as high as in our calibration. To do so, they introduce the possibility for
the attached myosin heads to slide to a neighbor actin site without detaching, thus restoring a part of
their force generation capability without consuming ATP. Another attempt, consisting in prescribing a
phenomenological dependence of the attachment rate on the shortening velocity, is considered in Måns-
son [2010]. While both attempts successfully reconcile the two apparently contradicting observations
within a single model, to our best knowledge, further studies are required to assess the validity of their
assumptions.

4.1.3 Compatibility with X-ray diffraction

As we discussed in Section 3.1.1, the width df of the equilibrium attachment rate support Sf (see Figure 2)
is adjusted to match the indicators of the isometric contraction. We have df ≈ 8 nm, which is larger than
values reported for instance in [Piazzesi & Lombardi, 1995; Caremani et al., 2015; Månsson et al., 2015]
but comparable to the values reported in [Smith & Mijailovich, 2008]. According to [Reconditi, 2006],
the dispersion of the projected mass of the attached myosin heads on the actin filament in isometric
contraction, which corresponds to the dispersion of the attachment rate, is about 5 nm and and is thus
incompatible with a wider value of df . To reconcile our model with these observations, one can consider
a chain of half-sarcomeres as the elementary unit of the contraction instead of a single representative
motor as it is done most of the time. While the tension-elongation relation τ thc (s) of a single motor shows
a region of negative slope, Caruel & Truskinovsky [2018] have shown that, with the same parameters,
the tension-elongation relation of a series arrangement of half-sarcomere is necessarily larger or equal to
0. If we take such a relation as a “constitutive behavior” of the PSE model, we would need a lower value
of df to match the isometric contraction indicators, indeed.

4.1.4 Comparison with other models

Our model can be compared to two other Huxley’57-type models, the first one developed in [Pertici
et al., 2018] and the other in [de Tombe & Stienen, 2007], see Table 4.

One of the major differences is that our model considers the actin periodicity to be da = 40 nm,
which corresponds to the periodicity of the double helix, whereas the other models consider the distance
between monomers: da = 5.5 nm. To match the experimental indicators of the isometric contraction
both Pertici et al. [2018] and de Tombe & Stienen [2007] define a positive attachment rate over the
interval df = da whereas our model has df < da. The consequence of this choice is that the fraction of
the heads that are attached in isometric contraction ňatt can, in the PSE model, be decorrelated from
the duty ratio r, i.e. the fraction of the cycle that a motor spends bound to actin. Indeed, the fraction
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Table 4: Coarse model comparison in isometric conditions. Note that we consider in this table the model
proposed by Pertici et al. [2018] without the possibility of actin shifting so that we can compare the
calibration of the transition rates.

Pertici et al. [2018] PSE model de Tombe & Stienen [2007]
da 5.5 nm 40 nm 5.5 nm

df 5.5 nm 8 nm 5.5 nm

f 15 s−1 205 s−1 35 s−1

g 40 s−1 66 s−1 14 s−1

ňatt 0.25 0.15 0.7
r 0.25 0.75 0.7
JATP
µT

11 s−1 10 s−1 10 s−1

τtr 2× 10−2 s Ë 3.5× 10−3 s é 2× 10−2 s Ë

F-V curve é Ë é

of attached heads and the duty ratio are given by

ňatt =
1

da

s+∫
s−

P̌1(s) ds ≈ df
da

f

f + g
,

r =

1
da

s+∫
s−

1
g(s) P̌1(s) ds

1
da

s+∫
s−

(
1

f(s) + 1
g(s)

)
P̌1(s) ds

≈ f

f + g
,

so that having df = da necessarily implies r = ňatt. Another consequence of having df 6= da is that, a
significant fraction of heads cannot attach and therefore do not consume energy. The consumption of
ATP is defined by

JATP

µT
=

1

da

s+∫
s−

g(s)P̌1(s) ds ≈ g ňatt = g
df
da

f

f + g

which shows that, even with high attachment and detachment rates, the energy consumption of the PSE
model can be kept low, again by tuning the ratio df/da.

As explained above the two-state models presented in Table 4 cannot reproduce both the rate of force
recovery τtr and the force velocity relation at the same time. In the case of Pertici et al. [2018], the two
state model as to be supplemented by the addition of the possibility for actin shifting without detachment
in order to reproduce the power output. In this paper, we chose to concentrate on reproducing the force-
velocity relation assuming that other physiological mechanisms may play a role in the specific kinetics
of the force redevelopment.

4.2 Limitations of our calibration
The experiments are performed at 25–27 ◦C and not at body temperature for technical reasons: at
higher temperatures the first phase of the response become too fast to allow a precise measurement of
T1. Moreover, temperature is known to affect the shape of the force-velocity curve, the value of the
unloaded shortening velocity V0 and the value of the force developed in isometric conditions [de Tombe
& ter Keurs, 1990], but also the apparent cycling rates of the cross-bridges [de Tombe & Stienen, 2007].
However, the only range of temperature, at which all types of quantitative characterization of the cardiac
muscle behavior are available, is around 25 ◦C. We have therefore performed the calibration of our models
with data measured at this temperature.
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Furthermore, the actin-myosin interaction quantitative properties vary between species. Experiments
performed on rat trabeculae may therefore not give precise information and the behavior of human cardiac
muscles.

To give an idea of the potential variability induced by this parameters, we can compare the data
in isotonic shortening protocols measured on rat cardiomyocytes at 25 ◦C [Caremani et al., 2016] and
on skeletal muscles at 4 ◦C performed on frog [Piazzesi et al., 2002]. These two experimental conditions
variations combined results in a rate of phase II that is about four times larger on cardiac sample than on
skeletal samples, and the transition rates needed with our model to match the measured power-output
of a fiber are about six times larger on cardiac sample than on skeletal samples, see Caruel et al. [2019].

5 Conclusion
In this paper we have developed a hierarchy of interconnected models of the actomyosin system, from
the more refined, accounting for a large number of physiological indicators, to the more coarse-grained,
allowing for fast simulation at the organ scale.

We have shown that our starting stochastic mechanical model can be calibrated to reproduce essential
mechanical indicators of the cardiac contractile unit that can be obtained experimentally. The calibration
procedure leads to a robust definition of the parameters value, which allow, in particular, for specifically
identifying the effect of a parameter value on the output of the model.

Our second model (PSE model) is based on the assumption that the internal stochastic variables
parametrizing the power stroke conformational change quickly relax towards their equilibrium distribu-
tion. It can be viewed as an instance landmark Huxley’57 family of models, whose dynamics takes the
form of a local PDE in a finite element simulation environment. Unlike existing model of this type, its
parameters are directly inherited from the stochastic model and not postulated a priori. Importantly
this allows to rigorously calibrate the PSE model with experimental data obtained at fine time scales.
Moreover, in the region of in vivo physiological loadings in vivo ranges, the force-velocity curve of the
stochastic model and the PSE model are similar, see Fig. 7.

By imposing specific constrains on the parameters of the PSE model, we derived the system of
ordinary differential equations, accounting for the moments dynamics characterizing our third model.
This type of moment-based approach can be combined with standard geometrical simplification of the
heart to construct reduced dimensional models of the organ that can be simulated in real time and
therefore used as a primary estimation tool or for rapid pre-calibration purposes Caruel et al. [2014] or
in clinical contexts [Le Gall et al., 2020].

The advantage of our approach is that the hierarchical relation between the models allow to predict
the consequences of microscopic actin-myosin constitutive behavior variations, for instance as a result of
a disease or a treatment affecting the molecular motor [Robert-Paganin et al., 2019; Woody et al., 2018],
at the larger time and spaces scales.

In addition, the coarse graining approach is well controlled i.e. the loss of information inherent to
the simplifications is quantified and the associated hypothesis can always be tested. Therefore, a more
refined model can be called upon if needed for a specific application, without having to start over a
tedious calibration procedure. Moreover, the method is not specific to our starting stochastic model:
it can be applied to the widely used chemical-mechanical modeling framework [Eisenberg et al., 1980;
Caremani et al., 2015], which, through elimination of the fastest chemical-like reactions, can be also
reduced to a simple population model and further to a moment-based model [Zahalak, 1981].

Finally, we recall that only the basal mechanical behavior of the actomyosin system have been ad-
dressed in this work. In particular, all the regulation aspects, essential for a relevant simulation of the
organ behavior, remain out of the scope of our study. Detailed activation models also involve the simu-
lation of the dynamics of populations of active and inactive agents – actin sites or myosin heads – using
similar chemical analogy. Therefore, building a similar model hierarchy, might also be a solution for an
organ-scale simulation of the microscopic activation and regulation physiology.
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Appendices

A Model computations

A.1 Computation of the PSE tension
To show the equivalence of the two expression of the equilibrium tension τ th(s), let us compute the
derivation of the equilibrium attached free energy F th1 (s).

dF th1
ds

(s) =

∫
∂sw1(s, y)pth1 (y; s) dy +

∫
∂sp

th
1 (y; s)

[
w1(s, y) + kBT

(
ln
(
a pth1 (y; s)

)
+ 1
)]

dy︸ ︷︷ ︸
≡A(s)

. (27)

Defining Z1(s) =
∫

exp
(
− w1(s, y)/(kBT )

)
dy, we have

A(s) =

∫ [[
− 1

kBT
∂sw1(s, y)

e−w1(s,y)/(kBT )

Z1(s)
+

1

kBT

e−w1(s,y)/(kBT )

Z1(s)

∫
∂sw1(s, y′)

e−w1(s,y
′)/(kBT )

Z1(s)
dy′
]

·
[
w1(s, y) + kBT

(
− w1(s, y)

kBT
− ln

(
Z1(s)/a

)
+ 1
)]]

dy

= kBT
(

1− ln
(
Z1(s)/a

))[
−
∫
∂sw1(s, y)

e−w1(s,y)/(kBT )

Z1(s)
dy

+

∫
∂sw1(s, y′)

e−w1(s,y
′)/(kBT )

Z1(s)
dy′
∫
pth1 (y, s) dy︸ ︷︷ ︸

=1

]
= 0.

From the expression (1) of w1, we thus finally obtain

τ th(s) =

∫
κ(y + s)pth1 (y; s) dy =

∫
∂sw1(s, y)pth1 (y; s) dy =

dF th1
ds

(s).

Naturally, a calculation with the free energy F(s) = −kBT ln(Z(s)), the partition function defined as
Z(s) =

∫
e−w1(s,y)/(kBT ) dy and a definition of τ th as τ th(s) = −∂sF(s) leads to the same result.

Note that similarly the equilibrium average stiffness per head can be computed:

κthc (t) =
1

da

∫ s+

s−
P1(y, t)∂sτ

th(s) ds.

A.2 Generalized Huxley’57 model
The PSE model can be seen as an instance of a larger family of models within the Huxley’57 framework.
These models are characterized by only two states (α = 0, 1) associated with the free energies F0,1 and
the transition rates f and g, which are the inputs of the model. The probability of being attached is
ruled by the PDE

∂tP1(s, t) + ẋc∂sP1(s, t) = f(s)
(
1− P1(s, t)

)
− g(s)P1(s, t), (28)

29



and the active tension is given by

τc(t) =
1

da

∫
dF1

ds
(s)P1(s, t) ds. (29)

We see that our PSE model pertains to this larger family with the inputs derived from a more refined
model and not prescribed directly as parameters.

Finally, we mention that a more widely used modeling approach can be retrieved by replacing the
continuous internal degree of freedom y by a discrete variable i that is defined only in the attached state,
the detached states being as before characterized by constant (space independent) energy levels [Hill,
1977; Eisenberg et al., 1980]. In that case, the internal energy of the attached state i is usually written
as

w1(s, i) =
κxb

2
(s+ si)

2 + u1(i).

The original Huxley’57 model has only one of such states.
In this framework, the adiabatic elimination of the fast variable i leads to the definition of the

equilibrium probabilities

ath(i; s) =
exp[−w1(s, i)/(kBT )]∑
i exp[−w1(s, i)/(kBT )]

,

and the resulting two-state model is then characterized by the free energy

F th1 (s) =
∑
i

[
w1(s, i)ath(y; s) + kBTa

th(i; s) ln
(
a · ath(i; s)

)]
,

as an analog to (8b) and the tension

τ th(t) =
∑
i

κxb(s+ si) a
th(i; s)

as an analog to (13).

A.3 Steady-state tension in the non-linear macro-model
We recall that in the non-linear macro model

Tc(t) =

n−1∑
i=0

Ci+1Mi(t) (30)

where Ci = ρsurfci. The dynamics of this force then follows

Ṫc(t) =

n−1∑
i=0

Ci+1Ṁi(t).

In the permanent regime, and using the moment dynamics (17), we obtain the relation

0 = C1

[
− (f + g)M∞0 + f0

]
+

n−1∑
i=1

Ci+1

[
iẋcM

∞
i−1 − (f + g)M∞i + fi

]
,

where M∞ is the steady-state value of the moments given by the recursive relation deduced from (17).
They are given by 

M∞0 =
f0

f + g
,

M∞i (ẋc) =
i

f + g

[
ẋcM

∞
i−1(ẋc) + fi

]
, for i ≥ 1.

(31)

Applying recursively (31), we obtain a general form of the steady-state moment value

M∞i (ẋc) =

i∑
j=0

i!
j!fi

(f + g)i+1−j ẋ
i−j
c .

Noting finally that the steady-state tension is defined from (22) by T∞c =
∑n−1
i=0 Ci+1M

∞
i , we obtain

equation (23).
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B Calibration

B.1 Reference calibration
The double quadratic well potentials uα are presented in Figure 12. Combining them with the myosin
neck potential energy, we obtain the energy landscapes wα of the attached and detached states, which
are depicted in Figure 13. The transition rates k+ and k− are presented in Figure 14.

From these calibration choices, we derive the constitutive elements of the PSE model. The energy
landscapes uα allow to compute the equilibrium probability densities pth0 and pth1 . Then, the integration
against the transition rates k+ and k− leads to the derivation of the thermal equilibrium transition rates
f th and gth. The elements of the PSE model are presented in Figure 15.
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Figure 12: Double well potential in both attached (u1) and detached state (u0). The value of ATP
chemical potential µT is 100 zJ
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Figure 13: Contour lines of the myosin head energy landscape. The thin dashed line represents the
separation between the pre-power stroke and post-power stroke conformations. (Left) Detached potential
w0(x, y). (Right) Attached potential w1(s, y). The solid black line of equation s + y = 0 separates the
regions where attached heads develop positive (traction) and negative (compression) forces.
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Table 5: Calibration of the model for cardiac data.

Parameter Symbol Value
Power stroke potentials

Power stroke characteristic length a 11 nm

Bistable element in attached state (α = 1)

u1(y) =

{
κ1pre/2 (y − y1pre)

2 + v1 if y < `1,

κ1post/2 (y − y1post)
2 otherwise,

κ1pre 5.60 pN nm−1

κ1post 1.40 pN nm−1

`1 1.42 nm

v1 = κ1post/2 (`1 − y1post)
2 − κ1pre/2 (`1 − y1pre)

2 y1post a

y1pre 0
Bistable element in detached state (α = 0)

u0(y) =

{
κ0pre/2 (y − y0pre)

2 + v0 + E if y < `0,

κ0post/2 (y − y0post)
2 + E otherwise,

κ0pre 11.5 pN nm−1

κ0post 0.45 pN nm−1

`0 1.42 nm

v0 = κ0post/2 (`0 − y0post)
2 − κ0pre/2 (`0 − y1pre)

2

y0post 6 nm

y0pre 0
E 80 zJ

Energy landscapes wα(y) = uα(y) + 1
2κ(x+ y)2 (Figure 13)

uα(y) = uα(y + s̃α)

κ 1.34 pN nm−1

s̃0 1.2 nm

s̃1 1.2 nm

µT 100 zJ

Stochastic dynamics
Drag coefficient η 0.0972 ms pN nm−1

Microscopic timescale γ = η/κ 0.0725 ms

Temperature T 298 K

Attachment / detachment rates (Figure 14)
ψ0α(y) = 1/2 {1 + tanh [λ1 (`α − y)]} , ψ1α = 1− ψ0α λ1 7.27 nm−1

k+(s, y) = ψ00 (y) k+(s) kmax 390 s−1

k−(s, y) = ψ01 (y) kpre (s, y) + ψ11 (y) kpost (s, y) + k∗ (s, y) λ2 1.60 nm−1

k̄+(s) =
kmax

2

[
tanh

(
λ2(s+ `+)

)
1]−∞,0](s) + tanh

(
λ2(s− `+)

)
1]0,∞[(s)

]
kpost (s, y) = k0 exp

(
− λ3(s+ y − `−,l)

)
kpre (s, y) = k0 exp

(
λ4(s+ y − `−,r)

)
k∗ (s, y) = kmin +

k∗
2

[
2 + tanh

(
λ∗(s− `∗)

)
− tanh

(
λ∗(s+ `∗)

)]

`+ 3.5 nm

k0 1400 s−1

λ3 5 nm−1

λ4 5 nm−1

`−,l −6.5 nm

`−,r 9 nm

kmin 66 s−1

k∗ 162 s−1

λ∗ 72.7 nm−1

`∗ 4.5 nm−1

Geometric parameter
Reference length of a half sarcomere `hs 0.925 µm

Lower bound of the reachable actin sites interval s− −30 nm

Upper bound of the reachable actin sites interval s+ 10 nm
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landscape (contour line). The solid black line of equation s+ y = 0 separates the regions where attached
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Figure 15: Constitutive elements of the PSE model. (a) Equilibrium energy levels. (b) Equilibrium
average tension. (c) Equilibrium transition rates.

Table 6: Model parameters of the macro-models.

T1-linear macro-model
κxb 1.34 pN nm−1

s0 4.59 nm

T2-linear macro-model
κxb 0.52 pN nm−1

s0 12.15 nm

Nonlinear macro-model
c0 0.349 κa2

c1 0.534 κa2/a

c2 0.155 κa2/a2

c3 −0.286 κa2/a3

c4 0.213 κa2/a4

c5 0.234 κa2/a5

c6 0.0511 κa2/a6
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B.2 Asymptotic calculation of the T1-curve
At the time scale of the phase I (assuming that this phase is instantaneous), the force predicted by the
stochastic model (4) becomes

T1(δs) =
ρsurf

da

s+∫
s−

+∞∫
−∞

κ(s+ δs+ y)p̌(y; s) dyds = T0 + κρsurfδs
1

da

s+∫
s−

+∞∫
−∞

p̌(y; s) dyds, (32)

where p̌(y; s) is the isometric probability density of being attached and is the steady-state solution of (3)
with ẋc = 0. By definition, we have

1

da

s+∫
s−

+∞∫
−∞

p̌(y; s) dyds = ňatt,

and thus the tension T1 is given by

T1(δs) = T0 + κρsurfňattδs.

B.3 Asymptotic calculation of the T2-curve
We want to establish the equation of the asymptotic branch of τ th for large and negative s. We consider
the energy landscape w1 defined with the quadratic double well potential u1 by w1(s, y) = κ/2(s+ y)2 +
u1(y). We have

τ th(s) ≈
∞∫
−∞

κ(s+ y)pth1 (y; s) dy =

∞∫
−∞

κ(s+ y)
e−w1(s,y)/kBT

∞∫
−∞

e−w1(s,y′)/kBT dy′
dy

= κs+
κ

∞∫
−∞

e−w1(y′,s)/kBT dy′

∞∫
−∞

ye−w1(y,s)/kBT dy. (33)

The integral over the internal variable y can be split into two parts, one for each well of the attached
potential. For large and negative s, all the heads are concentrated in the post-power stroke well of the
energy landscape (see Figure 13). Therefore, we can neglect the contribution of the pre-power stroke
well to the integral and we approximate the whole bistable potential by the post power stroke well, and
obtain

∞∫
−∞

e−w1(s,y
′)/kBT dy′ ≈

∞∫
`1

e−w1(s,y
′)/kBT dy′

≈
∞∫
−∞

exp

[
− 1

kBT

[κ
2

(s+ y′)2 +
κ1post

2
(y′ − y1post)

2
]]

dy′.

Writing the quadratic potential in the canonical form leads to

∞∫
−∞

e−w1(s,y
′)/kBT dy′ ≈

∞∫
−∞

exp

[
− κ+ κ1post

2kBT
(y′ +

κs− κ1posty1post

κ+ κ1post
)2 − 1

2kBT

κ1postκ

κ1post + κ
(s+ y1post)

2

]

= exp

[
− 1

2kBT

κ1postκ

κ1post + κ
(s+ y1post)

2

]√
2πkBT

κ+ κ1post
.

34



We define the stiffness κ and the two lengths y′0(s) and Lref by

κ =
κκ1post

κ+ κ1post
, y′0(s) =

κs− κ1posty1post

κ+ κ1post
, and Lref =

√
kBT

κ+ κ1post
.

Using the previous calculation and its result, (33) becomes

τ th(s) ≈ κs+
κ

exp
[
− 1

2kBT
κ(s+ y1post)2

]√
2πLref

· exp
[
− 1

2kBT
κ(s+ y1post)

2
] ∞∫
−∞

y exp
[
− 1

2L2
ref

(
y + y′0(s)

)2]
dy.

With the change of variable u = 1
Lref

(y + y′0(s)), we obtain

τ th(s) ≈ κs+
κ√

2πLref

∞∫
−∞

(
Lrefu− y′0(s)

)
exp

[
− u2

2

]
Lref du.

Noting that
∞∫
−∞

u exp
[
− u2

2

]
du = 0,

and expanding y′0(s), we obtain

τ th(s) ≈ κs− κ√
2π

√
2π
κs− κ1posty1post

κ+ κ1post
.

Finally, the asymptotic expression of τ th(s) for large and negative values of s is

τ th(s) ∼
s→−∞

κκ1post

κ+ κ1post
(s+ y1post).

Similarly, we obtain the asymptotic branch for large and positive values of s, neglecting the contri-
bution of myosin heads in the post-power stroke conformation, as

τ th(s) ∼
s→+∞

κκ1pre

κ+ κ1pre
(s+ y1pre).

In conclusion, the T2-curve being given by

T2(δs) =
ρsurf

da

∫ s+

s−
P̌1(s)τ th(s+ δs) ds,

the its asymptotic slopes are given by∣∣∣∣∣∣∣∣∣
∂T2
∂δs

∣∣∣∣
δs→−∞

= ρsurfňatt
κκ1post

κ+ κ1post
,

∂T2
∂δs

∣∣∣∣
δs→+∞

= ρsurfňatt
κκ1pre

κ+ κ1pre
.

B.4 Near isometric behavior
The shape of the force-velocity curve in near isometric conditions – ie. for shortening with characteristic
time `hs/ẋc that is small with respect to the transition rates – is determined by a balance between two
effects: a change in the number of attached heads and a change in the averaged force per attached head.
This balance can lead to an increase or a decrease of the force at slow sliding velocities with respect to
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the isometric force. In our calibration, once all other parameter are fixed, the near isometric properties
of the force-velocity curve are adjusted with the function k∗ (see Table 5).

In our reference model, k∗ = 0 and therefore the detachment function gth = kmin is constant over the
whole [s+, s+] except near the boundary where it diverges. With this detachment function, we observe
that the tension actually increases at slow shortening velocities compared to the isometric configuration,
see Figure 5 and Figure 16(b, black line).

This effect may be linked to the observed change of curvature of the force-velocity relation at high
load Edman [1988], as well as the oscillatory behavior following load small load perturbations in near
isometric condition Edman & Curtin [2001]. We shown in Figure 16 that this effect can be modulated
by the function k∗ with only a marginal influence on the FV-curve.

The function k∗ depends on three parameters: the position of the transition between the two detach-
ment rate regions `∗, the reciprocal characteristic length λ∗ and the detachment rate value k∗.

We here analyze only the influence of k∗, see Figure 16. Increasing the detachment rate reduces the
fraction of attached heads (see Figure 16(c)) but it also increases the tension per attached heads (see
Figure 16(d)). The first effect has to be stronger than the second to eliminate the increase of the overall
tension at low shortening velocity. Furthermore, this increase of the detachment rate only marginally
affects the rest of the force-velocity curve, as shown in Figure 16(b). Therefore this introduction of a
s-dependence in the detachment rate can be adjusted only at the end of the calibration procedure. Note
that similar effect can be obtained by adjusting the parameters `∗ and λ∗, also without affecting the
global shape of the force-velocity curve.

The deviation of the force-velocity relation from the canonical hyperbola has been extensively studied,
both experimentally Edman [1988]; Edman et al. [1997]; Edman & Curtin [2001] and theoretically Jülicher
& Prost [1995, 1997]; Vilfan et al. [1999]; Duke [1999]; Guérin et al. [2011]; Månsson [2010, 2014, 2016].
In our work, we show that once all other parameter have been calibrated, the near isometric behavior
can be adjusted by modifying the detachment rate only. In [Vilfan et al., 1999], the authors also show
that the shape of the force-velocity curve close to the stall force is very sensitive to the detachment
rate. Other work have shown that this part of the force-velocity curve also depends on the cross-bridge
stiffness (our parameter κ) [Månsson, 2014] or on the free energy difference between the two attached
states [Månsson, 2010]. The first method does not seem to strongly affect the rest of the force velocity
curve, as in our case, while the second method has a strong impact on the whole curve. We mention
that another effect that might play a role is the viscous damping by the fluid surrounding the contractile
apparatus Duke [1999]. This viscous term is not modeled in this work but is usually included in the
behavior law of the tissue, and accounts for its passive visco-elastic response, see for instance [Chapelle
et al., 2012; Caruel et al., 2014].

B.5 Effect of the viscous drag on the fast transient response
In Figure 6(b), we show different T1(δ`hs) obtained with the stochastic model for different values of the
drag coefficient η.

As η increases, the deviation from the purely elastic response (see black curve in Figure 6(b)
and (24)) is reduced and r2, the rate of phase II, decreases (see Figure 6(c)). Our reference value
η = 0.0972 ms pN nm−1 was chosen to match the measured T1 response while maintaining the order of
magnitude of r2 in accordance with experimental data [Caremani et al., 2016]. It must be noted however
that our estimate of the rate of phase II cannot be directly compared with experimental data as it does
not consider the effect of filament compliance, which has a strong impact on the rate of force recovery
[Piazzesi et al., 2014].

C Model comparison
In this section, we present a more detailed analysis of the validity of the fundamental assumption used to
derive the PSE model from the stochastic model. This assumption supposes that the internal variables
X and Y of the stochastic model are distributed according to the thermal equilibrium distribution for
both the attached and the detached states. Equivalently this assumption can be characterized by the
fact that the equilibration of the internal variables in their respective energy potential occurs within a
time scale that is much faster than any other time scale in the system.
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To evaluate validity of this assumption, we thus need to compare the distribution p(x, y, 0; s, t)/P0(s, t)
and p(y; s, t)/P1(s, t) with their respective counterparts for the PSE model pth0 (x, y) and pth1 (y; s). We
recall that we have the following definitions

P0(s, t) =

∫∫
p(x, y, 0; s, t)dydx,

P1(s, t) =

∫
p(y; s, t)dy.

We compare the distributions of the two models in steady-state in isometric conditions and at two different
shortening velocities ẋc. The results are presented in Figure 17 for attached state and in Figures 18, 19
and 20 for the detached state.

We can first notice that the two sets of distributions display a very good match in isometric conditions
for both the attached and the detached state. Moreover, the distributions also show a good consistency
in the detached state at all considered sliding velocities. This justifies the validity of our approach to
derive the PSE model. However, for the attached state, a few notable differences appear when the sliding
velocity increases.

First, for values of the parameter s approximately in the range [−2 nm, 2 nm], myosin heads are
more likely to be in the pre-power stroke configuration (and thus less likely to be in the post-power
stroke configuration) in the stochastic model compared to the PSE model. This is the result of the
competition between the time scale of the transition from the pre-power stroke configuration to the
post-power stroke configuration, which implies to overcome the energy barrier, and the time scale of the
filament sliding. With increasing velocity, heads are more quickly moved to lower values of s and thus
have less time to accomplish the power stroke. Therefore they are more likely to remain in the pre-power
stroke configuration. For values of s outside of the range [−2 nm, 2 nm], the energy barrier is lower and
therefore this effect is less present.

Second, the distributions also slightly differs for low values of the parameter s (s < −20 nm) with
a distribution for the variable y that can reach lower value in the PSE model (we present the results
for the value s = −24 nm in Figure 17 as an example). This difference is due to the fact that in the
stochastic model, heads with these low values of y are subjected to a very high detachment rate so their
probability of having this configuration is reduced. This is not the case with the PSE model since the
equilibration process is assumed to be much faster than any attachment-detachment process.

We will now see how the comparison of the distributions can be used to explain the discrepancy
observed between the force-velocity relations predicted by the two models. Let us first analyze the
attached distributions (see Figure 17). In the first distribution discrepancy between the stochastic and
the PSE model, the configuration of the myosin heads in the PSE model is shifted from the pre-power
stroke configuration to the post-power stroke configuration, which is associated with a higher force.
Therefore, this discrepancy contributes to the fact that the developed force is higher in the PSE model
than in the stochastic model.

In the second distribution discrepancy, lower values of the variable y are more likely for the PSE
model than for the stochastic model. However, since the detachment rate k− diverges in this region of y,
the small difference in the distribution has a very large impact on the averaged transition rate gth and
explains the differences in the shape of the ratio of attached heads (see Figure 8) and ultimately on the
force-velocity relation at large sliding velocities.

We now analyze the detached distributions. At the first glance no noticeable differences appear
between the stochastic and the PSE models. However, we have seen in Figure 8 that the shape of
isometric ratio of attached heads differ slightly between the two models, which we interpret as a result
of the competition between the attachment rate and the rate for returning to the pre-power stroke
configuration in the detached state for cycling heads. To analyze this effect in more detail, we estimate the
average transition time from the post-power stroke configuration to the pre-power stroke configuration in
the detached state. The results are displayed in Figure 21(a). The average transition time is 1.7 ms which
is not much faster than the inverse of the attachment rate 1/kmax = 2.6 ms explaining the discrepancy in
the ratio of attached heads P∞1 but still shorter which explains that differences do not appear clearly in
the distributions. Note that we also estimated the transition time from the pre-power stroke to the post-
power stroke configuration in the attached state (see Figure 21(b)) and we obtain an average transition
time of 0.68 ms.
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ẋc = 0 µm s−1

s = -24 nm

PSE

0 10 20

y (nm)

ẋc = 0 µm s−1

s = -4 nm

PSE Stoch.

0 10 20

y (nm)
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Figure 17: Comparison of the distribution of the variable y in the attached state between the stochastic
and the PSE models in steady-state conditions at various sliding velocities ẋc. The estimations of the
distribution for the stochastic model are computed from a simulation using a population of 2× 106

myosin heads. For each sliding velocity, several values of the parameter s are displayed. Note that here
we present the distribution of the variable y for heads that are attached, the actual ratio of attached heads
can be read in Figure 8. Note also that for (ẋc = 0 µm s−1, s = −25 nm), the stochastic distribution
cannot be evaluated because not heads are attached for this value of the parameter s.
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Figure 18: Comparison of the distribution of the variables x, y in the detached state between the stochas-
tic and the PSE models in steady-state conditions at the sliding velocities ẋc = 0 µm s−1. The estimations
of the distribution for the stochastic model are computed from a simulation using a population of 2× 106

myosin heads. For each sliding velocity, several values of the parameter s are displayed. Note that here
we present the distribution of the variable y for heads that are attached, the actual ratio of attached
heads can be read as P∞0 (s) = 1− P∞1 (s) in Figure 8.
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Figure 19: Comparison of the distribution of the variables x, y in the detached state between the stochas-
tic and the PSE models in steady-state conditions at the sliding velocities ẋc = −3 µm s−1. The estima-
tions of the distribution for the stochastic model are computed from a simulation using a population of
2× 106 myosin heads. For each sliding velocity, several values of the parameter s are displayed. Note
that here we present the distribution of the variable y for heads that are attached, the actual ratio of
attached heads can be read as P∞0 (s) = 1− P∞1 (s) in Figure 8.
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Figure 20: Comparison of the distribution of the variables x, y in the detached state between the stochas-
tic and the PSE models in steady-state conditions at the sliding velocities ẋc = −6 µm s−1. The estima-
tions of the distribution for the stochastic model are computed from a simulation using a population of
2× 106 myosin heads. For each sliding velocity, several values of the parameter s are displayed. Note
that here we present the distribution of the variable y for heads that are attached, the actual ratio of
attached heads can be read as P∞0 (s) = 1− P∞1 (s) in Figure 8.
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Figure 21: Estimation of the configuration transition time in the stochastic model for both the attached
and detached state. (a) Detached state. Myosin heads are initially in the post-power stroke configuration
and we register over time the ratio of the population that has transition to the post power stroke
configuration. The average transition time is 1.7 ms (b) Attached state. Myosin heads are initially in the
pre-power stroke configuration and we register over time, for various values of the parameter s, the ratio
of the population that has transition to the post power stroke configuration. The average transition time
is 0.68 ms

D Summary of the main symbols used in the paper
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Symbol Definition First occurrence
Xt, x location of the head tip p.4
Y t, y internal dof of the head (power stroke) p.4
s position of the nearest actin binding site p.4
αt attachment state of the head (0 or 1) p.4
wα, wLα , wNLα energy of the attached state (1), p.8, p.9
F free energy level p.29
Fth free energy level for the PSE model (8)
u double well potential (1)
p(x, y, α; s, t) probability function for (x, y, α) (densities in (x, y), discrete in α) p.5
p effective probability in the attached state p.5
pthα equilibrium probability distribution of the fast internal variables (x and y) (7)
da distance between two consecutive actin sites (4)
Pα population probability p.6
ẋc filaments relative sliding velocity (2)
η drag coefficient (2)
k+ attachment rate of the stochastic model (2)
k− detachment rate of the stochastic model (2)
f th attachment rate of the PSE model (9)
gth detachment rate of the PSE model (9)
f attachment rate of the Huxley’57 like models (28)
g detachment rate of the Huxley’57 like models (28)
Sf support of the attachment rate f th or f p.10
df width of Sf p.12
f
th value of f th on Sf p.12
gth value of gth on Sf p.12
f value of f on Sf p.22
g value of g on Sf p.22
ňatt ration of attached heads in isometric conditions p.12
`hs length of the half-sarcomeres in the reference configuration p.6
ρsurf surface density of myosin heads in a longitudinal portion of a cardiomyocyte

of thickness `hs
(5)

τc force per myosin heads p.4
τ th average equilibrium tension (12)
τ thc force per myosin heads for the PSE model p.7
τ̌ thc force per myosin heads for the PSE model in isometric conditions p.12
κthc stiffness per myosin heads for the PSE model p.29
κ̌thc stiffness per myosin heads for the PSE model in isometric conditions p.13
Tc macroscopic tension (5)
T0 macroscopic tension in isometric conditions p.10
T∞c macroscopic tension in steady-state shortening (21)
T1 macroscopic tension at the end of phase I in fast transient experiments p.12
T2 macroscopic tension at the end of phase II in fast transient experiments p.12
Kc macroscopic stiffness p.9
K∞ macroscopic stiffness in the rigor state (20)
L1 shortening per half-sarcomere at the end of phase I in fast transient experi-

ments
p.12

L2 shortening per half-sarcomere at the end of phase II in fast transient experi-
ments

p.12

µT ATP chemical potential p.14
JATP ATP consumption flux per myosin head p.27
Ė flux of internal energy per myosin head p.20
Ẇ flux of work produced per myosin head p.20
Mp moment of the population probability P1 p.8
M∞ moment of the population probability P1 in steady-state p.30
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