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Abstract:

HOX genes encode a family of evolutionarily conserved homeodomain transcription factors that are
crucial both during development and adult life. In humans, 39 HOX genes are arranged in four clusters
(HOXA, B, C, and D) in chromosomes 7, 17, 12 and 2, respectively. During embryonic development,
particular epigenetic states accompany their expression along the anterior-posterior body axis. This
tightly regulated temporal-spatial expression pattern reflects their relative chromosomal localization,
and is critical for normal embryonic brain development, when HOX genes are mainly expressed in
the hindbrain and mostly absent in the forebrain region. Epigenetic marks, mostly polycomb-
associated, are dynamically regulated at HOX loci and regulatory regions to ensure the finely tuned
HOX activation and repression, highlighting a crucial epigenetic plasticity necessary for homeostatic
development. HOX genes are essentially absent in healthy adult brain, whereas they are detected in
malignant brain tumours, namely gliomas, where HOX genes display critical roles by regulating
several hallmarks of cancer. Here, we review the major mechanisms involved in HOX genes
(de)regulation in the brain, from embryonic to adult stages, in physiological and oncologic conditions.
We focus particularly on the emerging causes of HOX gene deregulation in glioma, as well as on

their functional and clinical implications.

Keywords: glioma; epigenetics; transcriptional regulation; neurodevelopment; homeobox

Abbreviations: 3C: chromosome conformation capture; 3D: 3-dimensional; 4C-seq: circularized
chromosome conformation capture with deep sequencing; 5C: chromosome conformation capture
carbon copy; AQB: AC1Q3QWB drug; CAM: chicken chorioallantoic membrane; CGGA: Chinese
Glioma Genome Atlas; ChIP: chromatin immunoprecipitation, CHROMO: chromatin organization
modifier; CNS: central nervous system; CNV: copy number variations; COMPASS: complex proteins
associated with Setl; DNA: deoxyribonucleic acid; ESCs: embryonic stem cells; GBM: glioblastoma;
G-CIMP: glioma CpG island methylator phenotype; GSCs: GBM stem cells; H2AK119ub:
ubiquitination of H2AK119 residues; H3K27ac: histone H3 lysine 27 acetylation, H3K27me3:
histone H3 lysine 27 trimethylation; H3K4me3: histone H3 lysine 4 trimethylation; Hi-C:
chromosome capture followed by high-throughput sequencing; HOX: homeobox; HUVEC: human
umbilical vein endothelial cells; LGG: low-grade gliomas; IncRNA: long non-coding RNA; miRNAs:
micro RNA; mRNA: messenger RNA; OS: overall survival; PARs: promoter-associated RNAs; PcG:
polycomb group; PCR: polymerase chain reaction; PDX: patient-derived xenograft; PRE: polycomb
responsive element; RA: retinoic acid; RNA: ribonucleic acid; SINE: short interspersed nuclear

elements; TAD: topological associating domain, TCGA: The Cancer Genome Atlas; TMZ:
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1. Introduction

Genetic mutations in the fruit fly Drosophila melanogaster that resulted in homeotic transformations
of one body segment to another (e.g., antennae growing at the posterior part instead of at the head of
the fly) led to the identification of master transcriptional regulators named homeobox genes [1-5].
These genes are characterized by a consensus DNA sequence of 183 base pairs, the so-called
homeobox, that encodes the homeodomain, a 61-amino acid peptide motif with a distinctive helix-
loop-helix-turn-helix structure [6]. This homeodomain serves, among other functions, as a DNA
binding domain that preferentially recognizes a specific TA-rich core DNA sequence, such as TAAT
or TTAT [7-10]. Homeobox genes are of paramount importance for the developmental and post-
developmental regulation of morphogenesis, patterning and differentiation, independently of the

organ, limb or tissue where they are expressed [11-19].

HOX genes represent the main subset of the homeobox family. They display evolutionarily conserved
transcription factor functions common to all bilaterian animals [20], and are considered crucial for
the establishment of segmental identity along the anterior-posterior body axis of vertebrates. HOX
proteins also have non-transcriptional activities and are implicated in regulating various processes,
such as DNA replication and repair, mRNA translation, and protein degradation (reviewed by
Rezsohazy et al. [21]). Structurally, they are divided into two exons and one intron, being the
homeobox sequence present in the second exon (Fig. 1A). In D. melanogaster, eight collinear HOX
genes, split into two clusters (the antennapedia and bithorax complexes), are responsible for
segmental patterning. In amniotes, there are 39 HOX genes distributed into four clusters (HOXA,
HOXB, HOXC, and HOXD) according to their chromosomal localization (7p15, 17q21.2, 12q13, and
2q31, respectively, in humans) [22]. Each cluster is divided into 13 paralogue groups (HOX1 at the
3’ end to HOX13 at the 5° end of each cluster), with 9 to 11 genes assigned to each cluster, based on
their sequence homology and position within the cluster (Fig. 1B). It is thought that these four clusters
originated during vertebrate evolution due to two rounds of whole genome duplication that resulted
in paralogue clusters with partial redundant functions [20,23,24]. The temporal-spatial collinear
expression of HOX genes during embryogenesis [25,23] is one of the most organized and captivating
mechanisms of gene regulation, in which the expression pattern of each paralogue group directly
mirrors their collinear chromosomal organization. The first paralogues (HOX1 and HOX2) are the
first to be expressed (shortly after the establishment of the primitive streak), followed by the other
paralogues (from the 3’ end to the 5° end in each cluster) in a time/developmental stage-dependent
manner. In addition to their temporally regulated expression, they are gradually expressed from more
anterior regions to more posterior regions of the embryo. This spatial collinearity (i.e., the relation

between the relative chromosomal position of a HOX gene and its spatial expression in the body) was
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first described in D. melanogaster [4]. Since then, it has been observed throughout the animal
kingdom [26]. Nonetheless, temporal collinearity is reserved to bilaterians with intact chromosomal
organization of HOX in clusters [27,28]. Unsurprisingly, at least 15 genetic disorders were associated
with germline mutations in 10 out of 39 HOX genes in humans (as reviewed in Quinonez, Innis [29]).
In mouse, loss-of-function mutations of 26 out of 28 tested Hox genes resulted in a particular
phenotype/defect in the animal, which mirrors those observed in humans and may thus help clinicians

to better predict the effects of alterations in specific HOX genes in patients [29].

This review will critically summarize the major molecular mechanisms of transcriptional regulation
of HOX genes in the healthy brain, with a special focus on their dynamic epigenetic landscapes during
critical stages of neuro-development. In addition, it will discuss the most critical molecular alterations
and functional roles of HOX genes in brain tumours, as well as their recently highlighted clinical

relevance in patients.

2. General principles of HOX regulation
The collinear activation, in time and space, of HOX genes during vertebrate development relies on a
multi-scale regulation that involves the cis-regulatory landscape, the three-dimensional (3D)

chromatin configuration, the histone modification pattern and RNA-based regulation [27].
e Proximal and remote cis-regulatory regions

Early studies in transgenic mice showed that some individual Hox genes inserted at ectopic positions
in the genome can recapitulate their endogenous expression pattern, indicating that the necessary
regulatory sequences are in their vicinity [30,31]. Accordingly, multiple proximal cis-regulatory
sequences that can influence transcription of neighbouring genes were identified within Hox clusters
[32-34]. For instance, two retinoic acid (RA) response elements embedded in the Hoxb cluster control
expression of Hoxb5 to Hoxb9 in the developing neural tube [35]. Such proximal regulatory
sequences provide a frame for the evolutionary conserved temporal collinear activation of HOX
genes. However, novel HOX-associated patterning functions, which often use the collinear property
of only a subset of genes from the same cluster, emerged in vertebrate lineages. These novel functions
often rely on cis-regulatory sequences located outside the HOX cluster. For instance the development
of both proximal and distal limb segments, in the limb buds, relies on two subsequent waves of Hoxd
genes transcription, controlled by distinct remote cis-regulatory regions located on each side of the
gene cluster [36-38]. A similar long-range regulation is also documented at the other HOX clusters
to control the coordinated activation of HOX genes in specific developmental stages and tissues [41-

43]. These observations revealed the importance of the remote transcriptional control to the HOX-
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mediated patterning of the developing vertebrate embryo. In addition, as the distant enhancers and
HOX promoters must physically interact, the 3D chromatin conformation has to be taken into account
to understand HOX regulation. Accordingly, a significant advance in our understanding of HOX
control came with the development of molecular tools to assess the 3D genome organization at high-

resolution.
e A 3D chromatin conformation-based regulation

The development of the Chromosome Conformation Capture (3C) methodology and its derivatives
(circularized chromosome conformation capture with deep sequencing, 4C-seq; chromosome
conformation capture carbon copy, 5C; and chromosome capture followed by high-throughput
sequencing, Hi-C) [44] allowed the analysis of the relationship between genome architecture and
gene expression control over time. Specifically, Hi-C approaches showed that chromosomes are
divided into mega base-scale regions, called Topological associating domains (TADs) in which
chromatin interactions are highly favoured [45,46]. These domains are relatively stable in the
different cell types, and are proposed to be structural features of the genome [45]. Strikingly, both
HOXA and HOXD clusters lie at the boundary between two TADs [45]. This topological organization
might separate these compact gene clusters in two independent functional units that will specify
contacts between remote enhancers and their cognate HOX target genes during development (Fig. 2).
This scheme explains the bi-modal regulation of the Hoxd cluster during limb development. Long-
range interactions between the 3’ Hoxd genes and enhancers located in the telomeric gene desert
occur within the 3’ (telomeric) TAD. Conversely, 5° genes segregate in the 5° (centromeric) TAD
where they contact enhancers in the centromeric gene desert. Interestingly, a subset of contacts
between Hox promoters and their distal enhancers occur by default within the TAD, regardless of the
enhancer activity and their expression status [39,41]. In parallel to the enhancer-promoter contacts
established concomitantly with gene activation [48,49], this pre-established configuration at a subset

of genes might prime them for rapid induction [32,50].

The molecular bases of TAD ontogeny at HOX cluster are not fully understood. A critical factor is
the chromatin barrier insulator CTCF (CCCTC-binding factor) that is often located at TAD
boundaries [45]. Specifically, deletion of CTCF binding sites within the Hoxa cluster can reposition
the TAD boundary and lead to misregulation of Hox genes expression [51,52]. However, other yet to
be identified actors might contribute to TAD boundary positioning [53]. These include the structural
protein cohesin that promotes DNA loop formation between distant regions [54], as well as genomic
features, such as the presence of short interspersed nuclear elements (SINE) [45]. Tissue-specific

transcription factors also could influence TAD boundary position. This hypothesis is supported by
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the observation that this position can vary in a tissue-specific manner at the HOXA and HOXD
clusters (reviewed in [32]), with reallocation of some genes from one TAD to the other. Therefore,
there could be an interplay between intra-cluster TAD boundaries and tissue-specific transcriptional

machinery [32].

Unlike HOXA and HOXD, the HOXB and HOXC clusters are not associated with a TAD boundary
[45], suggesting that TADs are not required for long-range regulations within these clusters. Their
genomic organization might create a physical separation between the 3’ and 5’ parts of each cluster.
Indeed, due to its remote localization, HOXBI3 is isolated from HOXBI1-HOXBY9, while the HOXC

cluster does not contain paralogues for the groups 1-3 (Fig. 1B).
e HOX genes are bona-fide polycomb targets

HOX gene activation is associated with dynamic changes in their chromatin signature. Hence,
expression patterns induced by productive enhancer-promoter contacts are maintained and faithfully
transmitted to daughter cells. Besides the gain of the activating H3K27ac (acetylation of histone H3
lysine 27) mark within enhancers [55], the most drastic changes affect the distribution of the

repressive H3K27me3 and the permissive H3K4me3 marks within HOX clusters.

In embryonic stem cells (ESCs), which do not express HOX genes, whole HOX clusters are fully
decorated by H3K27me3, while at their promoter area this mark co-exists with H3K4me3,
constituting the so-called bivalent chromatin [56,57] (Fig. 3A). It has been suggested that bivalent
chromatin domains repress transcription of genes through H3K27me3, while keeping them ‘poised’
for alternative fates, through resolution into either H3K4me3 or H3K27me3, upon stem cell
differentiation [56]. In the developing embryo, collinear activation of HOX genes is accompanied by
a progressive loss of H3K27me3 associated with H3K4me3 gain. Consequently, H3K27me3- and
H3K4me3-marked domains demarcate repressed and active HOX genes, respectively, along the
cluster (Fig. 3B). In differentiated cells and tissues where all HOX genes are repressed, such as the
forebrain, H3K27me3 coats the whole clusters [58,59,57] (Fig. 3C). This observation highlights the
importance of the polycomb (PcG) and trithorax (TrxG) groups of proteins that regulate H3K27me3
and H3K4me3 deposition, respectively, in the epigenetic regulation of HOX genes.

PcG-mediated silencing relies on two complexes that act sequentially: Polycomb Repressive complex
1 and 2 (PRCI1 and PRC2). In the canonical model, PRC2 first deposits H3K27me3 at the targeted
chromatin. H3K27me3 then recruits PRC1 that induces a compacted chromatin state mainly through
ubiquitination of H2AK119 residues (H2AK119ub). This two-step model is supported by the finding
that while both complexes are required for proper HOX gene silencing [60,58,61], PRC1 deficiency
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does not affect the PRC2-mediated H3K27me3 pattern [58]. Unlike in Drosophila, no polycomb
responsive element (PRE) has been formally described in vertebrates, questioning the mechanism for
PRC targeting at specific loci. The observation that PRC2 components can associate with long non-
coding RNAs (IncRNA) and promoter-associated RNAs (PARs) suggests the implication of RNA
transcripts in this process [62-64]. For instance, the IncRNA HOTAIR, which is produced in the 5’
part of the HOXC cluster, recruits PRC2 and acts in trans to silence the genes located in the 5° part
of the HOXD cluster in cultured cells [63,65]. Similarly, it has been suggested that Hoxa adjacent
IncRNA 1 (Harll), a IncRNA located approximatively 50Kb downstream of the HOXA cluster,
represses this cluster in mouse ESCs by recruiting PRC2 to Hoxa promoters [66]. However,
functional studies in animals indicate that Har!I is dispensable for normal development [67,68], and
brought conflicting results on Hotair [69-71], questioning the role of IncRNAs in the regulation of
HOX clusters in vivo. It has also been proposed that PRC2 recruitment could be responsive to
permissive chromatin signatures at promoters [72]. In agreement, studies in mammalian cells and
tissues showed that PRC2 is recruited by default at transcriptionally inactive CpG islands/promoters

[73,74].

TrxG proteins are the second main epigenetic regulator of HOX clusters. Specifically, deposition of
H3K4me3 at HOX clusters in mammals relies on the COMPASS-like complex that contains MLL1
and 2, the homologues of Drosophila Trx [75]. Interestingly, this complex also contains the
H3K27me3-demethylase KDMO6A that removes H3K27me3 at HOX loci [76-78]. This suggests that
H3K4me3 deposition and H3K27me3 removal are coupled at HOX promoters. Like for PRC2, it has
been suggested that IncRNAs promote recruitment of the TrxG/MLL complex. For instance,
HOTTIP, located at the 5 tip of the HOXA locus, recruits in cis the WDR5/MLL proteins and
promotes H3K4me3 deposition [79]. Alternatively, as observed for other COMPASS-like complexes
[80], TrxG/MLL complexes could be recruited at promoters through association with the

transcriptional machinery.
e Active and repressed HOX genes are within distinct nuclear compartments in the nucleus

Altogether, a model emerges whereby H3K27me3 is deposited by default at transcriptionally inactive
HOX genes, a process that can be promoted by IncRNA activity. Upon enhancer-induced activation,
the transcriptional machinery would bring TrxG/MLL/KDM6A complexes to promoters to sustain
HOX gene transcriptional activity by inducing H3K4me3 deposition and H3K27me3 removal.
Interestingly, the dynamics of H3K27me3/H3K4me3 distribution along the different HOX clusters
impacts their 3D architecture. Indeed, 4C approaches showed the segregation of active and repressed

HOX genes within distinct nuclear compartments [55,59]. Specifically, H3K27me3-marked HOX
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loci cluster together within inactive nuclear compartments, denoted polycomb bodies, where they can
contact, although at a lower frequency, other polycomb targets through intra- and inter-chromosomal
interactions [+ Pirotta & Li, 81,82]. Upon induction, HOX genes switch to more discrete H3K4me3-
associated compartments, thus modifying the cluster 3D organization [55,59]. This spatial separation

between the silent and expressed parts of HOX clusters might facilitate their finely tuned regulation.
e miRNA and post-transcriptional regulation

In addition to transcriptional regulation, HOX expression is also controlled at the post-transcriptional
level by the mean of several processes, including polycistronic transcription, RNA processing or
sequence-specific transcriptional control. These issues have been recently extensively reviewed
[Casaca et al., 2018]. Among those, one important mechanism is regulation via microRNA (miRNA)
repression. These short RNA species negatively regulate gene expression by binding target mRNA
in a sequence-specific manner, further leading to degradation via the RNA-induced silencing complex
(reviewed in Bartel, 2018). Several highly conserved miRNA families are embedded within HOX
clusters, including for instance the miR-10, miR-615 and miR-196 families. Interestingly, among the
predicted targets of these HOX-embedded miRNAs, many are protein-coding HOX mRNAs [Yekta
etal., 2008]. To which extent these miRNAs indeed contribute to control and coordinate HOX output
remain to be fully determined. Nonetheless, functional studies have highlighted that miR-796 and
miR-10 do contribute to HOX mRNA regulation in vertebrates [Mandsfiled and McGlinn, 2012;
Casaca, 2018]. This is best illustrated by miR-196 that acts by delimiting Hoxb8 activity in developing
hind limb and neural tissue [Hornstein , 2005; Asli and Kessel, 2010].

3. Roles of HOX genes in the developing brain

Most HOX genes are expressed in the developing vertebrate central nervous system (CNS) where
they have critical functions. They first play a central role in cell fate determination within hindbrain
and spinal cord segments, further contributing to the establishment of functional neuronal networks
[86; 98]. These structures are indeed key coordination centres of the CNS that, via dedicated neural
assemblies, regulate complex physiological processes, including breathing, locomotion, heartbeat,

and different sensory systems [107].

Following the onset of neural induction, the early vertebrate hindbrain is transiently segmented in
seven or eight cellular compartments, depending on the species, called rhombomeres (r1 to r8) (Fig.
1B). While no physical barrier exists between them, cells of each rhombomere remain well segregated
and do not mix with those of the other rhombomeres [83,84]. Each of these segments constitutes an

independent lineage-restricted unit that creates regional diversity along the anterior-posterior axis of
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the developing hindbrain, thus acting as a template for the future adult brainstem structure and
function. Each rhombomere is the source of distinctive neural progenitors that ultimately generate
rhombomere-specific populations of neurons [85]. For instance, among motor neurons, trigeminal
neurons develop in r2/r3, while facial and vagal neurons form in r4 and 17/18, respectively. Although
such a clear segmentation is not present in the spinal cord, neuronal regional diversity is also observed
along the anterior-posterior axis. Specifically, spinal motor neurons are organized into longitudinal
columns along the four main spinal cord units: cervical, thoracic, lumbar and sacral [86]. For instance,
phrenic motor neurons are generated at the anterior cervical level, while preganglionic and hypaxial

neurons form at the thoracic level (Fig. 1B).

Strikingly, specific combinations of Hox gene expression and/or expression levels define the regional
identity in hindbrain and spinal cord. Specifically, Hox1-Hox5 paralogue group genes display
rhombomere-specific nested expression patterns in hindbrain. Similarly, Hox4-Hox11 genes are
expressed in a nested fashion along the anterior-posterior spinal cord axis [87,88,86,89] (Fig. 1B).
Disturbance of these patterns in the mouse and other vertebrate models have revealed that HOX genes
play a key role in the segmentation and specification of several rhombomeres in hindbrain, and in the

maintenance of columnar identity in spinal cord [90-93,86].

The HOX combinatorial code in hindbrain and spinal cord is also involved in key steps of neural
development by acting as a determinant to control the formation of distinct neuronal subtypes within
the different segments. Specifically, studies conducted on motor neuron specification highlighted the
importance of HOX transcription factors in regulating the diversity and identity of motor neuron pools
in spinal cord, and in establishing the pattern and specificity of limb muscle innervation
[94,90,95,92,86,96]. In addition, studies conducted in Hox conditional mouse mutants support a role
for Hox genes in later stages of CNS development to generate neural circuit assemblies. For instance,
the formation of respiratory, somatosensory and auditory circuits is perturbed in the absence of

specific Hox genes [97-99].

Therefore, neuronal subtype specification and connectivity in hindbrain and spinal cord rely on HOX-
specific expression patterns and the associated regionalization along the anterior-posterior axis. These
expression patterns are set up sequentially during two phases of regulation in progenitors and post-
mitotic neurons, respectively. They involve a complex interplay between morphogen signals, cross-
regulatory interactions between Hox genes, and polycomb-associated epigenetic modifications. First,
in the neural tube, opposite gradients of RA and Fibroblast growth factor (FGF) signalling act in
concert to establish the initial Hox expression pattern in the early CNS [100,18]. RA primarily

promotes the expression of the Hox1-5 paralogue group of genes through activation and direct binding

10
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of RA receptors (RARs) [101]. In spinal cord, FGF establishes the Hox4-Hox10 gene expression
patterns through the induction and subsequent binding of the homeodomain protein factors CDX
[102,103]. Studies in differentiating mouse neural progenitors showed that binding of RARs and CDX
to their cognate Hox target genes and their subsequent activation are associated with the rapid removal
of the repressive H3K27me3 mark [104]. This chromatin remodelling provides a template to transmit
these initial gene expression patterns to early post-mitotic neurons where they will be refined and
segmentally restricted. Although neural progenitors display a nested pattern of Hox expression, clear
Hox posterior boundaries will be indeed established at the time of differentiation and often maintained
up to late foetal stages in restricted neuronal subpopulations. This second regulatory phase relies on
direct self- and cross-regulatory interactions between HOX transcriptions factors and Hox genes,
associated with the combined action of other transcription factors [105,106]. For instance, a complex
interplay between the KROX20 transcription factor and the Hox1 and Hox2 paralogue groups ensures
that Hoxb1 expression is restricted to 14 in the vertebrate hindbrain, where it will be then maintained
through an auto-regulatory loop [107,108]. EZH2, the enzymatic component of PRC2, is required to
maintain Hox expression patterns in the segmented hindbrain. Accordingly, its neural-specific
depletion in the mouse leads to migration and connectivity defects of pre-cerebellar pontine neurons
[109]. In the spinal cord, PRC2-mediated H3K27me3 pattern at Hox loci is determined during the
progenitor phase. However, Hox gene expression pattern is refined and maintained in post-mitotic
cells through a mechanism that seems to depend on PRCI, the other PRC complex. Specifically,
depletion of the PRC1 component BMI-1 affects Hoxc9 expression and the spinal cord columnar

identity [110].

After neurulation, HOX expression patterns are maintained up to late foetal/early post-natal stages in
restricted neuronal subpopulation of the hindbrain, and in restricted domains of the spinal cord
[95,98,99, Gofflot and Lizen, 2018]. A handful of studies further report that HOX expression may
persist post-natally and in the adult brain. For instance, RT-PCR analyses in human adult brain extract
highlighted the expression of the 3 HOX genes (HOX1-HOX7 paralogues) [12]. A more systematic
analysis conducted in the adult mouse brain evidenced that the expression of genes belonging to
Hox2-Hox8 paraloguegroups is maintained in the hindbrain derivatives. The same analysis also
support that some Hox transcripts are neo-expressed in specific brain regions at adulthood [Hutlet et
al., 2014]. These observations suggest that HOX transcripts could be functionally required in the brain
after birth, stressing the need to formally assess their function at adulthood. Indeed, several lines of
evidence mainly based on functional in vivo data obtained for the Hoxa2 and Hoxa5 loci suggest a
role in synapse formation and maturation [reviewed in Gofflot and Lizen, 2018]. Unlike in hindbrain

and spinal cord, HOX genes are not expressed in the developing forebrain, the most anterior part of
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the developing CNS, and also in adult brain [111]. This repression is mediated by H3K27me3 [59],
and is critical for brain expansion. This evolutionary conserved feature of the CNS leads to a more
prominent anterior region (brain) compared with the posterior ones. A study conducted in Drosophila
and the mouse revealed that brain expansion is severely reduced following Hox ectopic expression,
or loss of PcG function [112]. Surprisingly, mutation of the Abd-B HOX gene rescues the reduced
brain proliferation observed in PRC2 mutants in Drosophila. This intriguing observation, which has
not yet been assessed in vertebrate brain, suggests that in the developing Drosophila brain, one of the
primary roles of PRC?2 is to repress Hox genes [113]. From this analysis, it emerges a picture whereby
HOX genes repress the neural stem cell proliferation programme in the more posterior parts. PcG-
mediated repression of HOX genes prevent this anti-proliferative action in the forebrain, thus
promoting brain expansion [113]. Altogether, this observation stresses the importance of maintaining

HOX genes repressed in forebrain.

4. HOX deregulation in brain gliomas

HOX genes may present tumour suppressive or oncogenic functions, and their expression is
frequently altered in cancer, including leukaemia [114-118], breast [119-121], brain [122-127], lung
[128,129], colon [130], cervix [131], bladder [132,133], and kidney cancers [134]. In the context of

this review, we will focus on brain tumours, specifically high-grade gliomas.

4.1. Malignant primary brain tumours

Malignant primary brain tumours represent approximately 32% of all brain tumours and affect more
than 250 000 individuals each year worldwide (17" most common cancer type) [135]. Despite their
relatively low incidence compared with other primary cancers (e.g., lung, breast, prostate and
colorectal cancers) and metastatic brain tumours, they constitute a major source of morbidity and
mortality. They are the 12" most deadly cancer worldwide (almost 190 000 estimated deaths per year)
[135], and rank first in average of years of life lost among all tumour types [136].

Gliomas represent the majority of all malignant brain tumours (81%).

Until 2016, gliomas were traditionally classified based on histologic features as astrocytic,
oligodendroglial, oligoastrocytic (mixed), or ependymal tumours, as described in the 2007 World
Health Organization (WHO) classification guidelines [139]. In this classification, tumours were
named after the normal cells from which they resembled. However, this classification methodology
was prone to considerable inter-observer variability, particularly in the context of diffusely infiltrating
gliomas (e.g., differences in the classification of astrocytoma vs. oligodendroglioma vs.

oligoastrocytoma) [140-142]. Moreover, advances in (epi)genetics and transcriptomic analyses have
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shed light on the biological and clinical variability observed within each histologically-defined
glioma entity [143,142]. These observations suggested that some of the molecular alterations
underlying this variability might in fact be used as biomarkers for more accurate glioma classification
[143], which contributed to the 2016 revision of the guidelines [141]. For example, according to the
most recent WHO classification of CNS tumours, gliomas can be isocitrate dehydrogenase (IDH)-
wildtype or IDH-mutant [142]. Gliomas are also stratified according to their malignancy grade, from
benign grade I to highly-malignant grade IV. Glioblastoma (GBM) is the most common and
malignant form of glioma [137], being almost universally fatal with very low 2- and 5-year survival
rates [138]. IDH-wildtype GBMs are the most common (90%), occur mainly in elderly patients
(median age at diagnosis: 62 years), are localized in the supratentorial region, and correspond to
primary GBM that develop de novo (i.e., with a short clinical history of less than 3 months before
diagnosis, and without a pre-existing lower-grade precursor lesion) [143,142]. They are associated
with copy number gains on chromosome 7 (where the HOXA cluster is located), chromosome 10
monosomy, EGFR amplification, and mutations in PTEN, TERT, CDKN2A4 and CDKN2B genes.
TERT promoter mutation is mutually exclusive with ATRX mutation, which are common in IDH-
mutant GBM [142]. IDH-mutant GBMs typically occur in younger adults (median age at diagnosis:
44 years), are preferentially localized in the frontal lobe, and include most of secondary GBMs (i.e.,
GBMs that develop from a pre-existing diffuse or anaplastic astrocytoma) [142,143]. These tumours
are characterized by copy number gains on chromosome 7, loss of heterozygosity of the 17p arm,

TP53 and ATRX mutations, and the glioma CpG island methylator phenotype (G-CIMP) [142,143].

4.2. Aberrant HOX gene expression in glioma

Abdel-Fattah et al. [125] were the first to report the aberrant overexpression of 9 of the 39 HOX genes
(HOXA6, A7, A9, A13, Bi3, D4, D9, D10, and DI13) in gliomas compared with normal human
astrocytes and temporal lobe cells (these may include astrocytes, microglia, and neurons; summarized
in Table 1). In 2008, Murat et al. [124] described the overexpression of several HOX genes (HOXA2,
A3, A5, A7, A9, A10, C6, D4, D8, and D10) in tumour samples compared with non-neoplastic brain
samples from patients with GBM. In 2009, Buccoliero et al. [144] analysed the expression of HOXD
genes in 14 paediatric grade I gliomas and 6 non-neoplastic human brain tissues, and described that
HOXDI and HOXD12 were overexpressed in grade I gliomas compared to non-neoplastic tissues,
while HOXD3, D8, D9, and D10 presented lower expression in grade I glioma (the last three were
exceptionally expressed in non-neoplastic tissues). On the other hand, HOXD4, D11, and D13 were
not expressed in grade I glioma. Sun et al. [145] reported later that HOXD10 was expressed in GBM.
In 2010, Costa et al. [122] showed widespread activation of HOX genes (HOXA1, A2, A3, A4, A5,
A7, A9, A10, B7, and C6) in a subset of GBM patients compared with less malignant gliomas or
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normal brain tissues. Duan et al. [146] later corroborated these findings by describing that HOXA9,
Al1, and A13 proteins, and HOXA9, A10, A11, and A13 mRNA levels were strongly upregulated in
GBM compared with grade II/IIl gliomas. However, HOXAIl expression was significantly
downregulated in recurrent GBMs compared with primary GBMs [147]. Several other studies also
reported the overexpression of specific HOX genes in GBM compared with non-neoplastic brain
samples: HOXAI [148], HOXA9 [150], HOXA13 [146], HOXB3 [151], HOXB7 [152], HOXBY [153],
HOXC6 [154], HOXCY [155], HOXC10 [156,157], HOXD4 [158], and HOXD9 [126]. Among these
genes, HOXAI, HOXAY9, HOXA13, HOXBY, and HOXCI0 were expressed in a grade-dependent
manner [148,150,146,153,156]. HOXB1 and HOXD10 expression levels were shown to be lower in
glioma than in non-neoplastic samples [159,160], and HOXB/1 particularly low in GBM compared to
grade I and II gliomas. Moreover, Gaspar et al. [123] found that HOXA2, A5, A7, and A9 were
overexpressed in short-term (<1 year) paediatric GBM survivors compared with long-term survivors.
Gallo et al. [161] identified a specific gene signature of patient-derived GBM stem cells (GSCs),
compared with normal human foetal neural stem cells and non-neoplastic brain cortical tissues, which
included 24 of the 39 HOX genes. In agreement, Li et al. [162] reported that CD133 expression, a
marker of GBM stem cells, correlates with HOXAS5, A7, A10, C4, and C6 expression in GBM.

In summary, different studies reported that the expression of several HOX genes is consistently
altered in glioma. The few discrepancies among studies, in which a particular HOX gene was
described to be up- and down-regulated, might be explained by: i) the different methods used to
evaluate gene/protein expression; ii) the different processing and origin of patients’ samples; iii) the
use of cell lines in some studies and tumour samples in others; and iv) the different types of samples
used to define the “non-tumour” condition. Some of these limitations could be mitigated by using
larger cohorts of equally processed and normalized samples (e.g. [163,164], n >500 glioma samples),

and by defining standard methodologies for assessing gene expression alterations in these tumours.

4.3. HOX functional roles in GBM

Considering the aberrant expression of HOX genes in GBM, it is reasonable to hypothesize that they
might be functionally relevant for the pathophysiology of these tumours. Various studies based on
genetic manipulations of these genes, employing silencing or overexpressing approaches, reported
that 18 of the 39 HOX genes, have important functional roles in glioma, including HOXAS5, A6, A7,
A9, A10, All, A13, Bl, B3, B7, B9, B13, C6, C9, C10, D4, D9, and D10. Most of the described roles
are associated with oncogenic functions, although HOXAI1, HOXBI, and HOXDI0 displaying

tumour suppressive functions in GBM (summarized in Fig. 4).

HOX genes act mostly as oncogenes in glioma:
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The genetic manipulation of HOXAS, A9, A10, A13, B3, B7, B9, C6, C9, C10, and D9 showed that
their expression increases the viability of GBM cell lines
[151,154,152,149,146,153,161,157,156,150,126,165,122], and five of them (HOXA9, 413, C6, C10,
and DY) also reduce cell death [122,146,156,150,126,151]. HOXA7, A9, B7, B9, C9, and CI10 also
increased GBM cell lines migration capacity [166,152,153,157,156,150,165], while HOXA6, 413,
B3, and BI3 promoted increased invasion [166,152,153,157,167,156,150,151,165,146].
Interestingly, HOXC6, C10, and D9 also increased GBM cell lines colony formation capacity
[157,156,126,154], and HOXA13, C6, and D9 prevented cell cycle arrest [146,126,154].

Additionally, HOXA9 and HOXBY increased GBM stem cell capacity and increased expression of
stem cell markers (e.g., NESTIN) in vitro [153,150]. Similarly, HOXD9 was highly expressed in the
“side population” of GBM cells, a population of cells identified by flow cytometry and associated
with cancer stem cell features, and in GSCs compared with normal astrocytes and neural
stem/progenitor cells [126]. Interestingly, HOXC9 was one of the 16 genes upregulated in CD133", a
glioma stem cell marker, but not in CD133- GBM cell lines, compared in both cases with non-
neoplastic cells. Moreover, in this 16-gene list, HOXC9 and E2F2 were the only genes associated

with increased glioma malignancy [155].

In another in vitro study, HOXC9 was shown to decrease Beclinl-mediated autophagy through
inhibition of DAPK1 (death-associated protein kinase 1) [165]. Moreover, it has been reported that
HOXA9 and HOXC10 increase tumour angiogenesis in vitro and in vivo [150,168]. Indeed, HOXC10
overexpression enhances tube formation, migration, and proliferation of Human Umbilical Vein
Endothelial Cells (HUVEC, a specific type of endothelial cells) and neovascularization in the Chicken
Chorioallantoic Membrane (CAM) in vivo assay {Tan, 2018 #9161}.

Three genes from the HOXA cluster have also been reported to have an important role in resistance
to therapy. Specifically, HOXA9 and HOXA10 have been associated with decreased sensitivity to the
chemotherapy drug temozolomide (TMZ) in GBM patients, a finding that was further supported by a
causal relationship in cell lines [169,124,150], and HOXAS also decreased sensitivity to radiotherapy

in vitro and in vivo [149].

In vivo, three genes of the “nine paralogues”, HOXA9, HOXBY, and HOXC9, were shown to promote
oncogenesis, as shown by the increased tumour volumes in subcutanecous GBM mouse models
[153,150,165]. In clinically more relevant orthotopic models (i.e., based on intracranial implantation
of GBM cells in mice), HOXA5, A9, A10, A13, C6, and C9 expression increased the GBM-associated
death rate [146,161,150,165,154,149]. Particularly interesting in these orthotopic models was HOXA9Y
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and HOXAS5, which increased the resistance to TMZ-based chemotherapy and radiotherapy,
respectively, as indicated by the lower overall survival (OS) of mice bearing tumours positive for
these HOX genes, as compared to negative tumours [150]. Interestingly, HOXA9 overexpression in
non-neoplastic human astrocytes induced their transformation when intracranially implanted, as
shown by tumour formation and tumour-related death in 70% of the tested mice. Moreover,
histological examination of the tumours formed after intracranial injection showed the presence of
characteristic hallmarks of malignant gliomas. Remarkably, this tumorigenic capacity is not observed
when cells are implanted subcutaneously, which stresses the critical importance of the tumour

microenvironment.

Although most HOX genes display pro-tumour functions, a few exceptions have been reported.
HOXBI1 has tumour suppressive functions in GBM, by decreasing cell viability and promoting
apoptosis in vitro [159]. HOXD10 decreases the invasive potential of GBM cell lines [170,171], and
HOXAT11 increases the sensitivity of GBM cell lines to chemotherapy and radiotherapy [147].

The functional impact of approximately half of HOX genes in GBM has already been described,
particularly concerning the HOXA cluster. This stronger emphasis in HOXA genes could be partly
explained due to the fact that they are on chromosome 7, which is frequently amplified in GBM,
although HOXA gene copy number alterations have not been consistently associated with its
expression [122,150,149,161]. Future studies on the roles of the other HOX genes in glioma will be
critical to provide a more complete picture of their implication in these tumours. Additionally,
considering the enormous heterogeneity observed between different glioma tumours, studies in
glioma subtypes other than GBM will be of critical importance. Moreover, some of the previous
findings could be consolidated by using: i) more biologically relevant models based on gene silencing,
instead of overexpression approaches in which gene expression may reach unrealistic levels; ii) more
clinically relevant patient-derived primary cell cultures, as opposed to cell lines that have been
established and cultured for many years and that no longer faithfully reflect the original tumour; iii)
stem cell cultures in serum-free conditions (e.g., neurospheres) that could be particularly useful to
understand whether HOX roles are more relevant in the glioma stem-cell subpopulation or in more
differentiated cells; and iv) 3D cultures (e.g., organoids) that better mimic the tumour
microenvironment, endogenous cell organization, and organ structures, which could help might be

relevant to better understand the role of HOX genes in more complex contexts.

4.4. Molecular bases of HOX gene deregulation in glioma
It is now clear that in glioma, the HOX gene activation pattern does not follow the coordinated

collinear expression observed during normal embryonic development (described above). This process
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is complex, which in addition to the deregulation of the main processes controlling HOX expression
in normal contexts (described above) also involves epigenetic alterations, gene copy number

variations, and direct activation by other transcriptional complexes.

Copy number variations (CNV) at HOX loci:

A pathognomonic characteristic of GBM IDH-wildtype is chromosome 7 trisomy (considered an
early event in gliomagenesis) and chromosome 10 monosomy. As the HOXA locus is on chromosome
7, chromosome 7 trisomy might increase HOXA gene expression in these patients. Indeed, a
correlation was observed between chromosome 7 gain and HOXA1, HOXA4 [172], and HOXA5 [149]
expression in GBM and IDH-wildtype patients. However, this is not true for all HOXA genes because
no correlation was observed between CNV and expression of HOXA2 [172], HOXA9 [150], HOXA10
[161], and HOXA13 [172]. This issue has been less studied at the other HOX clusters. Nonetheless,
it was recently shown that overexpression of eight HOX genes distributed over the HOXB, C and D
clusters was CNV-independent in IDH-wildtype samples [172]. Altogether, these observations
support the hypothesis that CNV, if present, are not the main driving force of HOX gene

overexpression in aggressive glioma.

Protein- or miRNA-directed targeting of HOX genes: Several miRNAs have been shown to

negatively regulate HOX genes in GBM. For example, HOXBI is a target of hsa-miR-3175 [148],
and HOXDI0 is a target of hsa-miR-21 [162], hsa-miR-10b [134], and hsa-miR-23a [149,160] in
GBM. Moreover, hsa circ_ 0074362 (circular RNA) was shown to act as a hsa-mir-1236-3p sponge
to promote HOXB7 expression in GBM [141].

Protein-gene promoter interactions is another well-known mechanism governing HOX deregulation.
Gallo et al. [161] described that MLL protein, which contributes to HOXA gene regulation in
haematopoiesis and leukemic cells, directly interacts with the promoter of HOXA410 in glioblastoma
stem cells. HOXA10 protein then interacts with the promoter region of HOXA7 and HOXCI0,
activating their transcription [161].

Epigenetic alterations

As depicted in section 2, Polycomb group proteins and the associated H3K27me3 mark are key
players in the control of HOX expression during normal development. A large number of studies have
highlighted that bona-fide polycomb target genes are also more likely to gain aberrant DNA
methylation in cancer cells [Ohm et al. 2007; Deneberg et al. 2011; 176]. Thus, not surprisingly,
aberrant DNA methylation is a well-documented signature at HOX loci in glioma.

This was first observed by Martinez et al. [174] who evaluated the DNA methylation profile of 1505
CpGs sites, covering 807 genes, in 87 GBM patient samples. They identified 25 genes that were
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hypermethylated and 7 that were hypomethylated in at least 20% of samples. Among the 25
hypermethylated genes, 3 were HOXA genes: HOXA11 (hypermethylated in 51% of GBM), HOXA9
(in 44%), and HOXAS5 (in 20%). Genome-wide analyses confirmed that the four HOX clusters tend
to be hypermethylated in GBM and IDH-wildtype glioma, when compared to non-tumour brain
samples (Kurscheid et al. [175]. This reminds the observation that hypermethylation of homeobox
gene promoters, including HOX genes, is emerging as a pan-cancer signature [176]. Interestingly, the
level of DNA methylation alteration can vary between genes and patients. In 2012, Di Vinci et al.
[177] analysed DNA methylation of HOXA3, A7, A9, and 410 in 63 glioma and found patient-specific
DNA methylation patterns. This finding was validated by Pojo et al. [150] for HOXAY9. HOXA3 was
the gene with the highest DNA methylation levels in GBM, while HOXA7, A9, and 410 presented

lower levels [177].

Gain of expression associated with gain of methylation at HOX loci is not in line with the canonical
inhibitory effect of DNA promoter methylation on gene transcription. Refined analyses that integrated
DNA methylation and strand-oriented expression patterns in glioma patient samples [172] provided
some explanations to this apparent paradox. Specifically, for several genes, ectopic expression was
associated with CpG islands/promoters that gained methylation at their borders, while their
transcription start sites (T'SS) remained methylation-free. At other genes, extensive methylation of
their main CpG islands/promoter was associated with the use of an alternative promoter. For instance,
in IDH-wildtype glioma, HOXC1 ] transcription initiated from an unmethylated alternative promoter
located 5 kb upstream the canonical, aberrantly methylated promoter [172]. This picture becomes
even more complex in the case of chromosome 7 gain. Kurscheid et al. [175] suggested that
hypermethylation of the HOXA cluster could compensate the CNV at this cluster in GBM cells with
low expression level (HOX-low), while key CpG sites located in the HOXA locus could escape this
hypermethylation phenotype in HOX-high GBM cells. Specifically, they showed that a CpG island
located at the HOXA 10 non-canonical promoter escape to hypermethylation in HOX-high GBM cells.

Court et al. [172] provided evidences that besides the DNA methylation gain, HOX clusters in IDH-
wildtype glioma samples are characterized also by dramatic reduction of H3K27me3. Given the
importance of this mark for HOX gene repression in normal brain [59] (as previously detailed in
section 2), its loss might be crucial for their aberrant expression in aggressive glioma. A study by
Costa et al. [122] suggests that alteration of the PI3K pathway could be involved in this process. They
showed that PTEN-dependent activation of the PI3K pathway resulted in AKT-mediated
phosphorylation of EZH2, the catalytic subunit of the PRC2 complex, that suppresses H3K27me3,

leading to derepression of previously silenced HOXA genes. Moreover, they demonstrated that this
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process is reversible, because PI3K pathway pharmacological inhibition abolished HOXA gene
overexpression in GBM cells. Court et al. [172] also proposed that loss of H3K27me3 at HOX genes
is a consequence of genome-wide hypomethylation that characterizes cancer cells. In the mouse,
widespread DNA methylation depletion triggers H3K27me3 redistribution [179,180] that in turn
leads to dramatic loss of H3K27me3 and ectopic expression at a subset of polycomb target genes,

including Hox clusters [180].

Alterations in 3D chromatin structure and HOX deregulation in glioma

Recent studies revealed that alteration in 3D genome organisation is also a feature of glioma cells.
Flavahan et al. [178] showed in IDH-mutant glioma that hypermethylation of CTCF binding sites
leads to the decrease in the recruitment of CTCF insulator proteins. Therefore, the resulting loss of
insulation between TADs leads to aberrant gene activation, such as the oncogene PDGFRA [178].
The generation of 3D genome maps by in situ Hi-C in glioblastoma stem cells (GSCs) also stressed
that 3D structures are altered in these cells, and also between different GSCs lines, providing a layer
of glioblastoma inter-patient heterogeneity (Johnston et al. 2019). Whether this type of alteration also
contributes to HOX deregulation in glioma is not documented. However, given the importance of
remote regulatory regions and 3D structure in the control of HOX expression during normal

development, it is critical to further explore this issue.

In conclusion, HOX clusters display various molecular alterations in glioma cells. To which extent
and how each of these alterations contributes to HOX genes gain of expression remain to be
determined. Comprehensive studies in which CNVs, DNA methylation, histone modifications and
gene expression are analysed in an integrative manner at HOX clusters are now required to decipher
the interplay between these molecular signatures in glioma samples and to identify the causes of their
alterations. Interestingly, the finding that the HOXA cluster is over-activated in GBM concomitantly
with specific HOXB, C and D genes [125,124,122] suggests again that a complex and inter-dependent

mechanism of HOX gene regulation might exist in glioma.

4.5. HOX target genes

As HOX proteins are transcription factors and their targets might be the true biological effectors of
their functional roles, several authors have tried to identify these targets in GBM. Potential direct or
indirect targets of HOXAS, A9, A10, All, A13, B9, C6, C9, C10, D9, and D10 were already
described, and direct targets were confirmed by chromatin immunoprecipitation (ChIP) for HOXA9,

A10, B9, C9, and C10. For the sake of comprehensiveness, a brief summary of some potential HOX
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targets genes is presented in the following paragraphs (the complete list of potential targets can be

found in the original publications).

HOXAS5

Cimino et al. [149] identified 692 differentially expressed genes (144 upregulated and 412
downregulated) upon HOXAS expression in mouse GBM cell lines. By combining this information
with data on genes containing HOXAS binding sequences found by ChIP-seq analysis in human
carcinoma cells, they identified 136 common genes (46 upregulated and 90 downregulated). Pathway
enrichment analysis of the 46 upregulated genes (e.g. ASPM, AURKA, BLM, CCNBI, CDC25C,
CDKN3, CLSPN, FOXM1, INCENP, MDK, and PCNA) showed that many were implicated in the cell
cycle and DNA damage pathways, fitting well with the findings from other studies implicating
HOXAS as a pro-tumour factor.

HOXA9

Microarray analysis of GBM cell lines (U87, U251, and a primary GBM cell line) in which HOXA9
is overexpressed or silenced, identified more than 3000 deregulated transcripts in U87 and U251 cells,
and over 6000 transcripts in the primary GBM cell line [182,150]. Only 61 were altered (18
upregulated and 43 downregulated) in all three cell lines, indicating that gene regulation by HOXA9
in GBM follows a cell-specific pattern. Overexpression of HOXA9 in normal human astrocytes led to
the differential expression of more than 500 transcripts, from which 256 were common to at least one
of the GBM cell lines (77 upregulated and 179 downregulated) [182,150]. Pathway and gene set
enrichment analyses showed that the HOXA9 differentially expressed genes were enriched, for
example, in inflammatory response, cell adhesion/migration, stem cells, DNA repair, and cycling
genes. Moreover, HOXA9-overexpressing cells showed deregulation of the mismatch repair (MMR)
and BCL2 DNA repair systems, as indicated by downregulation of PMS2 and MSH6, and
upregulation of BCL2 proteins. Later, Xavier-Magalhaes et al. [183] identified HOTAIR, a IncRNA
located at the HOXC cluster with oncogenic functions in GBM, as a direct target (positive regulation)
of HOXA9 by ChIP-PCR. Interestingly, HOTAIR, the first described IncRNA to present trans-acting
functions, negatively regulates HOXD genes in physiological conditions [63]. Whether this
mechanism also occurs or is deregulated in glioma remains to be explored. Recently, Gongalves et al.
[184] demonstrated that WNT6, a ligand and activator of the WNT pathway, which displays
oncogenic functions in GBM [185], is transcriptionally regulated by HOXA9, identifying a novel link
between HOX and WNT signalling.

HOXA10
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Gallo et al. [161] identified, by ChIP-on-chip analysis, 261 direct HOXA10 targets in GBM stem
cells, and validated 7 of them by ChIP-quantitative PCR (HOXA7, HOXC10, HOXCI11, HOXCI2,
HOXBI13, CBX6, TERT, FGF17, JAG2, and NODAL). Enrichment analysis identified significant
enrichment for genes involved in processes as growth factor activity, homeobox, CHROMO domain,
cytokine, and actin cytoskeleton organization. Additionally, Kim et al. [169] showed that, in GBM
cell lines, HOXA10 regulates, in a PI3K-independent manner, PTEN nuclear function (with a
different function than the tumour suppressive PTEN cytoplasmic function) through induction of
EGR1, which consequently upregulates RADS51 expression, impairing the homologous
recombination DNA repair system. In agreement, HOXA10 silencing increased y-H2AX, a marker of

DNA double strand breaks, in GBM cells [169].

HOXAL11

Silencing of HOXAT11, which presents tumour suppressive functions in GBM, led to more than two-
fold changes in the expression of 62 genes (11 upregulated and 51 downregulated) in GBM cells
[147]. This gene list was significantly enriched in genes implicated in the regulation of growth and
mitochondrion activity. Specifically, TGFBR2, CRIMI1, DPYSL2, and CRMP1 were downregulated
upon HOXA11 silencing, whereas TXNIP, CD22, EPCAM, MMP3, and SLC16A6 were upregulated.

Duan et al. [146] analysed the gene expression profiling data from The Cancer Genome Atlas
(TCGA), Rembrandt and the Chinese Glioma Genome Atlas (CGGA) datasets to identify genes
showing high correlation (positive or negative) with HOXA13, in order to discover its potential
targets in GBM. Positively correlated genes belonged mainly to pathways related to cancer, focal
adhesion, WNT pathway, and cell cycle. On the other hand, negatively correlated genes were mostly
implicated in the MAPK, ERBB, VEGF, PPAR, and mTOR signalling pathways. In vitro, Duan et
al. [146] observed that HOXA13 silencing led to decreased levels of nuclear B-catenin and of
phosphorylated SMAD2 and SMAD3. Conversely, the level of phosphorylated B-catenin was
increased in the cytoplasm, which is indicative of WNT pathway inactivation. Similarly, Yan et al.
[154] suggested that the WNT pathway is regulated by HOXC6, through downregulation of WIF-1,
a WNT antagonist.

HOXB9
TGFp1 was identified as a direct target of HOXB9 by ChIP-PCR, leading to increased levels of
CD133, OCT4, NESTIN, BMI-1, and, similarly to HOXA13, phosphorylated SMAD2 [153].

HOXC9
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HOXC9 has a role in the regulation of autophagy, and DAPK1 was identified as a direct target
(negative regulation) by ChIP-quantitative PCR and luciferase reporter assays [165]. HOXC9
silencing released DAPK1 transcriptional repression, resulting in activation of the DAPK1-Beclinl
pathway and autophagy induction in GBM cells. In agreement, the expression of autophagy protein
(i.e., ATG7, ATGS, ATG3, and LC3B) was induced by HOXC9 silencing, while no alterations were
found in apoptotic-related proteins (e.g., caspase 9/3 and BCL2) [165].

HOXCI10

In the context of the growing interest in understanding the complex interactions between cancer and
immune cells, a recent study showed HOXC10 plays a role in tumour immune evasion [156]. Indeed,
HOXC10 silencing in GBM cell lines decreases the expression of proteins involved in tumour
immunosuppression (i.e., TGFB2, PDL2, CCL2, and TDO?2). PDL2 and TDOZ2 were identified as
direct targets of HOXC10 in these cells by ChIP-quantitative PCR [156]. Moreover, Tan et al. [168]
reported a significant enrichment of HOXC10-correlated genes and angiogenic gene sets in GBM
patients. Mechanistically, they found that HOXC10 modulates GBM angiogenesis through direct
regulation of VEGFA (ChIP-quantitative PCR and luciferase reporter assays). Moreover, they showed
that PRMTS and WDRS, which regulate histone post-translational modifications, are required for
HOXC10-mediated VEGFA upregulation [168]. Thus, although bevacizumab (anti-VEGFA
monoclonal antibody) does not significantly improve OS in patients with GBM [186,187], it
significantly decreased the growth of HOXC10-overexpressing intracranial tumours in mice and
efficiently impaired their angiogenic capacity [168]. This suggests that HOXC10 may be a clinically

useful biomarker of bevacizumab response in GBM.

HOXD9

Tabuse et al. [126] performed gene microarray analysis to identify potential HOXD?9 target genes in
GBM cell lines. HOXD?Y silencing led to upregulation of some genes known to be relevant in cancer
(e.g., TRAIL, ANGPTL4, and SEMA4D), and downregulation of others (e.g., BRCAI, TGFBI, and
BCL?2). Interestingly, BCL2 was also positively associated with another group 9 paralogue, HOXA9,
in GBM [150].

HOXDI10

Finally, it has been repeatedly reported that, in GBM cell lines, HOXD10 acts by negatively
regulating the metastatic-related protein RHOC [173,170,171] and matrix metalloproteinases, such
as MMP14 [160,145,171].
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Overall, these findings suggest that although the transcriptional target genes of the different HOX
proteins mostly do not overlap, they frequently lead to transcriptional programmes that regulate
similar molecular processes/pathways (e.g., cell cycle, death, migration/invasion, and inflammation
are pathways commonly affected across studies testing different HOX genes), all of which are
particularly relevant in the context of cancer. Moreover, it is not surprising that many of the identified
targets might be cell type-dependent, as several factors are known to contribute to the diversity and
specificity of HOX protein activity, leading to highly dynamic, context-specific HOX transcriptional
activation, and to their functional diversification. Indeed, it was described that i) there are many
transcriptional partners — HOX cofactors and collaborators — that also present cell type-specific
expression patterns [188,189]; ii) the binding between HOX proteins and their cofactors might be
context-dependent [190], and different combinations may lead to distinct binding specificities,
contributing to the spatiotemporal specificity of HOX proteins; and iii) chromatin accessibility and
DNA shape, which may vary between cells, also showed to confer HOX specificity [191].
Bioinformatic studies are needed to cross the thousands of genes and dozens of pathways
differentially regulated by each of the 39 HOX proteins in glioma, to better integrate the data. More
studies are also needed to identify HOX targets in particular glioma cells of the various tumour niches
(e.g., in glioma stem cells versus more differentiated glioma cells; and proliferating versus invading

cells), which may be relevant for the design of new therapeutic interventions.

4.6. Clinical implications of HOX genes

In 2008, Murat et al. [124] suggested that a HOX-dominated gene signature, which included HOXA2,
A3,A45,A47,A49,A410, C6, D4, DS, and D10, was an independent predictive factor of therapy resistance
in GBM. In 2010, Costa et al. [122] showed that HOXAI, A2, A3, A4, A5, A7, A9, B7, and C6 are
overexpressed in GBM compared with non-tumour brain samples, and found that HOXA49 expression
was associated with poor prognosis, independently of other well-known prognostic factors [122].
Indeed, in patients with MGMT promoter methylation (associated with better prognosis), HOXA9
could still identify a subset of patients with poor prognosis [122]. Moreover, the combination of
HOXA9 and HOXA 10 expression was also associated with shorter OS in paediatric patients with GBM
[123]. More recently, the prognostic value of HOXA9 in GBM was consolidated in additional patient
cohorts [150]. Although the DNA methylation levels of HOXA3, 49, and 410 positively correlate
with WHO grading, HOXA9 and HOXAI10 DNA methylation has been associated with better
prognosis in patients with GBM [177]. Conversely, HOXDS, D13, and C4 hypermethylation was
observed in short-term (<1 year OS) GBM survivors [192]. Additionally, HOXAS5, A10, A13, B9, C4,
C6, C9, CI10, and D4 were individually associated with shorter OS in patients with GBM

23



A W N R

O© 00 N O u!m

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

[149,146,153,157,156,124,165,154,158,162]. Among them, HOXBY and HOXD4 are also associated
with shorter OS in patients with glioma, grade Il glioma (HOXD4 only), and grade III glioma
[153,158]. In line with their tumour suppressive functions in GBM, HOXA11 and HOXB1 were
individually associated with longer OS in patients with GBM [159,147].

In the future, these very interesting results should be updated and put into perspective in the light of
the new 2016 WHO classification of gliomas that includes molecular features to differentiate glioma
subtypes. Moreover, the validation of the prognostic value of HOX genes in several independent,
large, and robust datasets, preferably using more robust multivariable statistical analysis, will be of

paramount importance to potentially bring HOX genes into the clinics.

Recently, drugs interfering with the PRC2 complex emerged as promising agents for cancer
treatment, as the FDA recently-approved drug Tazemetostat for epithelioid sarcoma. While the
overall benefit in other tumour types remains to be determined, it is important to consider that PRC2
inhibitors might lead to decreased H3K27me3 at HOX loci, potentially leading to their over-
activation. Nonetheless, Khan et al. [193] recently demonstrated that, in opposition to the classical
view that PRC2 is the major transcriptional repressive complex of HOX genes, the knockdown of
some PRC2 subunits, such as SUZ12, EZH2, or EED, in mouse F9 teratocarcinoma cells, globally
decreased H3K27me3 levels, but not in HOX clusters, where curiously H3K27me3 increased instead.
Indeed, although decreased enrichment of the PRC2 complexes was observed at HOX loci upon
SUZ12, EZH2, or EED silencing, the expression of HOX genes did not increase [193]. MTF2 was
pointed as the potential responsible molecule for H3K27me3 enrichment in HOX loci in the absence
of PRC2 [193]. Whether a similar effect and underlying mechanism is more generally observed in
cancer, including in GBM, remains to be investigated. Additionally, Li et al. [194] described that
ACIQ3QWB (AQB), a small-molecule compound, is a selective disruptor of HOTAIR-EZH2
interactions, blocking PRC2 recruitment to target genes, presenting a pre-clinical potential worth of
further evaluation for the treatment of GBM and breast cancers with high levels of EZH2 and
HOTAIR. Indeed, AQB administration to orthotopic mice models of GBM and breast cancer
significantly decreased tumour aggressiveness. /n vitro and in vivo, AQB treatment resulted in
increased HOXD10 expression, among other PRC2 target genes. Further experiments in orthotopic
mice models of a breast cancer and a GBM patient-derived xenograft (PDX) demonstrated that the
combinatorial treatment of AQB with an indirect inhibitor of EZH2 (DZNep) significantly reduced
tumour growth and increased mice OS, respectively. However, besides the unknown role of HOXD10
in GBM, and whether it acts as a tumour suppressor or an oncogene, the complete transcriptional

profile of HOX genes before and after treatment with these PRC2-targeting compounds remains
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unknown. Moreover, drugs like DZNep are now recognized as global histone methylation inhibitors,
rather than a H3K27-specific one [195]. These studies emphasize that, in the context of precision
medicine, the global identification of the transcriptional signatures of a specific cancer patient should
be considered to aim in the decision for particular targeted therapies, as the uninformed use of these

agents may lead to pro-tumour effects that will harm a subset of patients.

5. Conclusions and future perspectives

Deregulation of HOX genes is a common phenomenon in malignant primary brain tumours, and most
findings reported to date associate HOX gene overexpression with oncogenic functions in glioma.
These include critical cancer hallmarks, such as increased cell viability, invasion, migration,
angiogenesis, stem cell capacity, and therapy resistance, and decreased cell death/apoptosis
(summarized in Fig. 4). Of note, all these studies have not explored the potential role of HOX genes
in influencing interactions between cancer cells and those of the tumour microenvironment.
Interestingly, Bertolini et al (2019) reported that GBM neurospheres influence non-neoplastic cells
from their microenvironment by delivering HOXA7 and HOXA10 via large oncosomes. This large
oncosomes, which were abundantly found in the serum of patients with shorter OS, are able to
reprogram recipient cells to proliferate, grow as spheres and to migrate. It should also be interesting
to investigate how HOX genes may influence tumour immune responses, both in treatment-naive
contexts and under treatment, particularly with immunotherapies. Interestingly, Pojo et al. [150]
showed that HOXA9 downregulates genes involved in antigen processing/presentation in various
human GBM [150]. Moreover, Li et al. [ 156] found that HOXC10 positively regulates genes involved
in tumour immunosuppression in GBM, including PDL2 and TDOZ2. Together with recent reports in
ovarian cancer linking HOXA9 to an M2 macrophage tumour-promoting phenotype and reduction of
CD8" lymphocyte infiltration [196], these findings strengthen the idea that HOX genes may play an

important role in the regulation of the immune system in the tumour microenvironment.

Considering the critical functional roles and putative prognostic value of specific HOX genes in
cancer, including in malignant glioma, and their complex molecular interactions with upstream
regulators and downstream targets, it becomes clear that additional studies are necessary to better
understand how HOX operate in glioma, and whether they may be therapeutically explored in the
clinics. For example, future studies will be critical to identify the whole molecular networks
interacting with HOX genes in brain tumours, by generating genome-wide binding profiles to identify
their targets, their upstream binding factors (including IncRNA and miRNAs), and protein partners,
as well as HOX-specific DNA methylation studies to explore both transcription factor-related and —

independent HOX functions. These integrated approaches will broaden our understanding of HOX
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roles in normal and abnormal development and malignant transformation, may allow the
identification of potentially targetable players suitable for therapeutic intervention, and/or to the
development of clinically useful diagnostic/prognostic tools in a paradigm of precision medicine. In
addition, it is still unclear whether HOX genes have causative roles in gliomagenesis, or whether their
alterations are a bystander consequence of malignant transformation, as well as whether HOX-
directed therapies may be useful for the treatment of glioma and other HOX-driven cancers (e.g.,
acute myeloid leukaemia). These open questions will continue to feed the researchers’ interest for

many years.
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Figure legends

Fig. 1

HOX expression patterns in the hindbrain and spinal cord

(a) HOX genes are composed by only two exons and one intron. The homeobox sequence, which
encodes a 61-amino-acid peptide motif (the homeodomain) with a distinctive helix-loop-helix-turn-
helix structure, is within the second exon. (b) A colour code indicates the relative area of expression
of each HOX gene along the anterior-posterior axis in the developing CNS. The left panel illustrate
the rhombomere (r)-specific nested patterns of expression of the Hox1-Hox5 paralogues in the
hindbrain. Higher colour intensity indicates higher expression. Positions of motor neuron pools are
shown within their rhombomere(s) of origin (Trigem.: Trigeminal; Gl.: Glossopharyngeal). In the
spinal cord (right panel), the overlapping Hox4-Hox11 gene expression pattern is shown in relation
with the motor neuron columnar organization. MMC: Medial motor column; PMC: Phrenic motor
column; LMC: Lateral motor column; PGC: preganglionic motor column; HMC: hypaxial motor

column.

Fig. 2

Topological architecture at the HOXD cluster. The HOXD cluster is localized at the boundary of
two adjacent topological associated domains (TAD) that each includes an enhancer-enriched gene-
desert area. Consequently, the 3’ and 5° HOXD genes are controlled by distinct sets of remote

enhancers during development. Cen., centromere; Tel., telomere.

Fig. 3

H3K27me3- and H3K4me3-marked domains demarcate silent and expressed HOX genes
Encode-derived ChIP-seq and RNA-seq data show H3K27me3 and H3K4me3 distribution and Hoxa
gene expression in mouse A) ES cells, B) embryonic kidney and C) forebrain. In ES cells and
forebrain, where all Hoxa genes are repressed, H3K27me3 covered the whole cluster. It may be
associated with H3K4me3 at promoter regions, constituting bivalent domains. In embryonic kidney,
two H3K4me3- and H3K27me3-marked domains delineate expressed and repressed genes along the

cluster.
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Fig. 4

Summary of the main functional roles of HOX genes in glioblastoma and their clinical
prognostic value.

HOX genes display various critical functional roles in GBM (regulation of cell viability, invasion,
migration, apoptosis, cell cycle, colony formation, angiogenesis, resistance to temozolomide and to
radiotherapy, and stem cell capacity) that are globally associated with malignancy in vitro and in vivo.
Importantly, some HOX genes have prognostic value in GBM, with putative clinical relevance. Red
and blue colours in the heatmap indicate increased and decreased effects, respectively, upon
expression of the corresponding HOX gene. Grey colour indicates unknown effects. Empty cells
represent absence of the respective paralogue in that cluster. OS, overall survival; TMZ,

temozolomide.
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