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Abstract—The performance of irregular scientific applica-
tions can be easily affected by an uneven distribution of
work among the computing resources. In this context, Load
Balancing (LB) stands as one of the most important solutions
to improve resource utilization. However, choosing the best-
performing load balancing algorithm for a given application
is not a trivial task. For instance, manually and statically
choosing an LB algorithm does not work in situations where
applications have a dynamic or unknown behavior. In this
context, we propose a Machine Learning-based Adaptive Load
Balancer (ADAPTIVELB) to automate the load balancing al-
gorithm decision at run time. This approach monitors and
collects information about the application dynamically, and
according to the analyzed data, it makes a decision of invoking
the most suitable LB algorithm. Our experiments show that
ADAPTIVELB can select a good load balancing algorithm in
most of the cases, leading to performance improvements over
statically chosen LB algorithms and over the absence of a load
balancer.

Keywords-dynamic load balancing; machine learning; per-
formance.

I. INTRODUCTION

Load imbalance is a recurring problem that haunts High
Performance Computing (HPC) applications since their in-
ception. Dynamic simulations, such as Molecular Dynamics
(MD) [1], Adaptive Mesh Refinement (AMR) [2], and
other N-Body simulations [3], tend to exhibit unpredictable
workload behavior. As machines grow larger, power con-
sumption becomes one of the main concerns of large-scale
computing [4], and wasting resources due to load imbalance
in parallel applications becomes unacceptable.

Dynamic Load Balancing (LB) emerges as a solution to
unpredictable application behavior, enabling the scalability
of these simulations [5]. However, solutions differ among ap-
plications, even though they are (in an abstract sense) solving
the same problem, scheduling jobs in parallel machines. For
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instance, iterative and bulk synchronous parallel applications
may use periodical load balancers [6]; data-flow and direct
asynchronous graph-decomposed applications may profit
from work stealing [7]; and AMR implementations may
perform dynamic migrations during refinement stages [2].

Nonetheless, there is no LB approach that is fit to every
parallel application. Additionally, since aspects of applica-
tion behavior may vary during execution (e.g., communi-
cation and computation costs of each task), a single load
balancer may not be able to always serve an application
efficiently. Selecting an LB algorithm is no trivial task, es-
pecially for those who are not intimate with the imbalanced
application.

With this in mind, we propose a Machine Learning-based
Adaptive Load Balancer (ADAPTIVELB) that chooses a
suitable LB algorithm for a given state of the application.
ADAPTIVELB considers system workload information and
communication among jobs to determine what is the best
possible LB algorithm among those that it was trained
with. We implemented ADAPTIVELB in Charm++ using a
K-Nearest Neighbors (KNN) classifier in Python, and our
experimental results using it on a parallel platform showed
improvements over statically-chosen LB algorithms.

The remainder of this paper is divided as follows: Sec-
tion II discusses basic concepts related to load balancing and
Machine Learning (ML). Section III presents ADAPTIVELB,
its multiple phases, and the ML algorithm decision process.
Section IV describes the experimental evaluation, while
Section V discusses related work on LB and ML. Section VI
presents concluding remarks.

II. BACKGROUND
A. Load Balancing

Load Balancing (or Global Scheduling [8]) is regarded
as defining where to run tasks (or work units) in a parallel
system, while the when is left to a local scheduler. We may
abstract this as the problem of minimizing the maximum
usage of resources in a parallel machine (P||Cay) in a
system of identical machines, which has been regarded as
NP-Hard [9]. The dynamic and iterative nature of parallel
scientific applications, along with the increasing number of



Processing Elements (PEs) in HPC platforms, make the load
imbalance an unavoidable issue.

We may divide LB algorithms in two main categories:
Global and Diffusive [10]. While global algorithms central-
ize system information to make scheduling decisions (most
list scheduling approaches follow this methodology [11],
[12]); diffusive algorithms will use local machine informa-
tion to dissipate load among its neighbors or other machines
in the system [13], [14], [15].

Recently, some Parallel Runtime Systems (RTSs) that
feature different LB algorithms have been proposed.
Charm++ [16] is one of the well-known RTSs that offer
some interesting features such as LB framework, overde-
composition, migrability and introspection. Overdecompo-
sition allows the division of computation into independent
units, resulting in data and work units that will be mapped to
each PE by the Charm++ Runtime System (Charm++ RTS)
[16]. This initial mapping can be changed during execution
by migrating objects (Charm++ chares) to other PEs if the
application is in an imbalanced state in terms of workload,
exploiting the objects migrability. Introspection allows the
system to collect information about the application during
run time, so it is possible to know the existing workload and
to make load balancing decisions.

Although Charm++ provides a set of global and diffusive
LB algorithms, we focus on global LB algorithms, which
achieve better results than diffusive ones on shared memory
architectures. We exploit the introspection feature to feed
ADAPTIVELB with useful information about the workload.
Based on this information, ADAPTIVELB chooses the most
suitable LB algorithm for an application at run time in a
transparent manner.

B. Machine Learning

Machine Learning has become a common tool to model
the behavior of complex interactions between applications,
systems and platforms. It provides a portable solution to
predict the behavior of new instances based on a set of
a priori trained ones. Within the field of ML, there are
mainly three types of techniques: supervised, unsupervised,
and reinforcement learning.

In supervised learning, we train the machine using data
which is well labeled (i.e., data that is already tagged
with the correct answer) [17]. Thus, the main objective
of supervised learning is to learn a function that, given a
set of samples and their desired outputs, best approximates
the relationship between inputs and outputs observable in
the data [18]. Common algorithms in supervised learning
include logistic regression, decision trees, support vector
machines, artificial neural networks and random forests [17].

Unsupervised learning, on the other hand, tries to infer the
natural structure present within a set of samples without us-
ing any explicitly-provided labels [18]. Common algorithms
in unsupervised learning are usually used to solve clustering

(e.g., k-means) and association (e.g., a priori) problems [18].
Finally, reinforcement learning algorithms employ agents
that take actions in sequence while trying to maximize a
cumulative reward [18]. The agents learn during run time
by receiving rewards based on the results of the actions that
they take at each step and state.

In this work, we focus on supervised learning algorithms.
As we will explain in the next section, ADAPTIVELB relies
on ML techniques to predict the most suitable LB algorithm
for an application at run time.

III. MACHINE LEARNING-BASED ADAPTIVE LOAD
BALANCER

Supervised learning-based approaches share a common
framework that is usually composed of static and dynamic
phases. In the following sections, we show an overview of
ADAPTIVELB and explain in detail each of these phases.

A. Overview

ADAPTIVELB is an entity that takes into account the
different characteristics that make up the context where the
application is being executed, whether they are the instant
when the balancing occurs, aspects of the parallel platform
of execution, or characteristics of the application itself. This
gives us the ability to choose different heuristics for the same
application execution at run time, according to the set of
characteristics collected. Additionally, this approach avoids
taking load balancing decisions manually by the user for
each HPC application. This manual process demands time
and knowledge of the application context, since the user
must estimate each task load, predict their behavior to decide
which algorithm should be used, and define the frequency
that the load balancing should occur.

In this work, we considered the most used global LB
algorithms in Charm++ applications. A brief description of
each LB algorithm is given below:

« GREEDYLB is a greedy strategy that only uses task
loads for its decisions (Longest Processing Time (LPT)
policy [11]). It sorts tasks in decreasing load order and
iteratively maps the unassigned task with the highest
load to the least loaded PE. This process leads to a large
number of task migrations, since GREEDYLB does not
take into account the initial task mapping at each LB
decision.

e GREEDYCOMMLB is similar to GREEDYLB, but it
also considers the communication costs involved in task
migrations. It sorts tasks in decreasing load order, and
iteratively chooses a PE to assign the unassigned task
with the highest load. However, the PE is chosen among
the least loaded PE and all PEs that have tasks that
communicate with the task being mapped. The decision
is based on the fotal load of the PE that includes its
current load, its communication load, and the com-
munication load of the task. The communication load



of a task is related to how many messages and bytes
it sends to tasks mapped to other PEs whereas the
communication load of a PE is equal to the sum of
the communication load of tasks currently mapped to
it.

o REFINELB tries to improve load balance by incre-
mentally adjusting the current task map, instead of
creating an empty task map in each LB decision as
done by GREEDYLB and GREEDYCOMMLB. To do
so, it splits the PEs into two classes (heavy or light)
according to their loads. A PE is considered heavy
(or overloaded) if its load is greater than a specified
threshold over the average PE load. Then, it checks all
possible task migrations from the most loaded PEs to
all light PEs, and migrates the task that leaves its new
PE the closest to the threshold. This process is repeated
until no migrations seem to improve load balance, or
no PE is considered heavy.

o GREEDYREFINELB specifies a migration tolerance,
and then uses a greedy algorithm to migrate the heaviest
tasks in overloaded PEs to the least loaded ones. This
is done until the migration tolerance limit is achieved.
Like REFINELB, it attempts to minimize migrations,
but it is adaptive when accounting the cost of migra-
tions.

Fig. 1 shows the overview of the proposed approach,
which is composed of static and dynamic phases. The
main goal of the static phase is to generate ADAPTIVELB,
which will be responsible for selecting the most appropriate
LB algorithm during the dynamic phase. In the dynamic
phase, the application is analyzed at run time and, based on
its characteristics, a suitable LB algorithm is selected and
applied by ADAPTIVELB to improve load balancing.

B. Input Data Extraction

The first step to be taken in the static phase is to generate
a set of synthetic applications (a.k.a input instances) —
in our case, using Charm++’s LBTest benchmark. This set
should contain applications that vary in communication and
computation load, leading to samples with characteristics
and behaviors that differ from one another. This first stage
is essential so that ADAPTIVELB is trained well with any
possible scenarios that may come up in the future. In a real
situation, the selection of the best algorithm will only be
successful if, during the training phase, there was an input
instance with characteristics that are similar to the ones of
the real application being currently analyzed. Hence, we
generate input instances that contain a variety of parameter
values to illustrate different scenarios of real applications
that may arise at a later time.

The main goal of the Data Extraction stage is to obtain,
for every input instance in the training set, the characteristics
that compose it and the best LB algorithm for those char-
acteristics. In other words, characteristics will become the

Static Phase

Synthetic Applications

| Data Extraction |

!

| Data Training

Trained Model
AdaptivelLB

v
LB Algorithm

An overview of the proposed approach.

Dynamic Phase

Figure 1.

features for the future ML model, and the LB algorithm will
become their respective class/label, modeling a classification
problem. Therefore, this phase gathers the data for training
and it validates the ML model.

For a given input instance, we want to know its character-
istics at a given instant and which LB algorithm is the most
appropriate one, given the data extracted from that instance.
To do so, we take the average execution time of several runs
of each input instance with each one of the LB algorithms
described in Section III. Then, we compare the average
execution times of each instance/LB pair to find the best
LB algorithm for each input instance. That LB algorithm is
said to be the most appropriate one for that input instance
being analyzed.

Once we have the best LB algorithm for each one of
the input instances, we need information about how fo
represent the input instance based on its characteristics
(a.k.a. features). We implemented a profiler to monitor the
application at run time with the purpose to collect relevant
data about its load and behavior. This means that not only
do we need to define which type of information represents
an input instance well, but the overhead to calculate this
data must be low enough so that ADAPTIVELB can still be
beneficial.

The Charm++ RTS provides system load information
by having an LB manager that resides on each processor
monitoring the PE load, tasks load, background load, and
other statistics such as idle time. This information is stored in
an LB database that is accessed during this phase, allowing
ADAPTIVELB to use the stored data on the decision making
process for the new mapping of tasks to be performed. In
this work, we focus on centralized strategies, where there is
a dedicated processor that collects global information about
the state of the entire machine.

It is important to choose the right amount of information
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Figure 2. Accuracy measured for the different ML algorithms tested.

to represent an application, not only to avoid unnecessary
overhead, but also to prevent an overfitting situation in
our ML model. Hence, an empirical study was made to
discard ambiguous features and to keep the ones that can be
collected with low overhead. Overall, we selected 7 features:
1) average load of PEs; 2) percentage of overloaded PEs; 3)
load imbalance (maximum PE load divided by the average
load of PEs); 4) average PE idle time; 5) average load of
tasks; 6) communication/computation ratio; and 7) average
percentage of messages sent to other PEs.

We run each input instance several times with the profiler
to collect information about all selected features. Then, we
compute the average value of each profiled feature. Finally,
ML algorithms can be trained using the set of features and
classes found in the previous stages.

C. Training

The final stage in the static phase is training our ML
model using a set of input instances that have been described
by their features (characteristics) and by their class/label (the
chosen LB). This fits perfectly in a classification problem for
a supervised learning approach. Since several ML algorithms
could be used, we performed an empirical study to determine
the best ML algorithm for our problem.

We used the scikit-learn library [19] available for
Python for this purpose. One advantage of using this library
is the support for a variety of ML algorithms. Additionally,
Python has become popular in the field of scientific comput-
ing due to its interactive nature, support to data analysis and
visualization, and scientific libraries, such as NumPy, SciPy
and Cython [20].

Given the data generated in the previous stage, we made
an analysis based on the accuracy, classification report, and
confusion matrix for each ML algorithm. The analyzed data
was normalized, since the values from the features have
a significant range variation. Finally, the input dataset was
split into a training set (70%) and a validation set (30%),
allowing to train the model with a significant amount of
data and to later validate the trained model to verify its
accuracy. The ML algorithms considered in our empirical
study are: Ada Boost (AB), Decision Trees (DT), K-
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Figure 3. Precision, recall and F; results for each class for the KNN

Classifier.

Nearest Neighbors (KNN), Gradient Boosting (GB), Gaus-
sian Naive Bayes (GNB), Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA), Support
Vector Machines (SVM), and Random Forests (RF). The
values of the parameters used for each algorithm are listed
in Appendix A.

We generated 314 input instances to train the ML algo-
rithms using LBTest. Fig. 2 shows the classification accuracy
results of all the aforementioned ML algorithms, which
corresponds to the ratio of the number of correct predictions
to the total number of input samples. As it can be noticed,
the best ML algorithm for the context of this work was the
KNN Classifier with a classification accuracy of 35%. After
a deep analysis, we concluded that the KNN Classifier chose
the second best LB algorithm in most of its wrong decisions
and the second best LB algorithm usually had a performance
similar to the best one. As we show in Section IV, this re-
sulted in almost no performance degradation when compared
to the best LB algorithm.

KNN performs the classification by computing the sim-
ilarity based on the distance from the data to its closest
neighbors. It verifies the distance from the data being tested
to its neighbors, which have been classified previously in
the training phase, and the data group (class) that presents
the smallest distance is selected. The precision, recall and
F; results for the KNN Classifier are shown in Fig. 3.

Before moving to the dynamic phase, the model is trained
with the input dataset. Then, the trained model is serial-
ized first before writing it to the disk for future use. The
serialization procedure is done by the pickle! module
available in Python, which implements serialization and de-
serialization protocols for Python objects. It converts an in-
memory Python object into a serialized byte stream that
contains all the information necessary to reconstruct the

Thttps://docs.python.org/3/library/pickle.html



Algorithm 1: ADAPTIVELB decision process.

features < profiler.extract_features();
selected_balancer < predict_balancer(features);
if selected_balancer == ‘GreedyLB’ then
| greedyLB.work()
else if selected_balancer == ‘GreedyCommLB’ then
| greedyCommLB.work()
else if selected_balancer == ‘GreedyRefineLB’ then
‘ greedyRe fineL B.work()
else
| refineLB.work()
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object afterwards. The de-serialization procedure is done in
the dynamic phase and the trained model is kept in memory
to be used by ADAPTIVELB during the execution of the
application.

D. Online Predictor

The last stage is the dynamic phase, having as the final
goal to predict the best LB algorithm for new, unseen,
applications. Overall, the dynamic phase works as follows.
The application is profiled at run time and its features
are extracted when LB occurs. Then, this information is
sent to ADAPTIVELB, which uses the trained model to
make decisions. Algorithm 1 illustrates the decision making
process executed by ADAPTIVELB.

Based on the features collected at run time from the
new application (line 1), ADAPTIVELB is able to predict
the most suitable LB algorithm. This is done by having
a system call in the code of ADAPTIVELB in Charm++.
Then ADAPTIVELB uses its KNN Classifier to choose an
LB algorithm (line 2). In our experiments, these two steps
took approximately 0.7 seconds to complete, on average.

Once an LB strategy has been selected for a given
application at a given instant of time, ADAPTIVELB invokes
the selected LB strategy by calling its work () method
(lines 3 — 10). This method is responsible for performing
the task migrations according to its LB heuristics. As it
can be noticed, our solution can be easily extended to other
LBs, since every centralized load balancer in Charm++ must
implement a work () method.

It is important to point out that, during this phase, we
can see one of the main advantages of using ADAPTIVELB.
Depending on the workload characteristics, some LB heuris-
tics make task migration decisions better than others. Ap-
plications that feature unpredictable and irregular behaviors
at run time may achieve suboptimal performance due to
wrong decisions made by a statically chosen LB heuristic.
Since ADAPTIVELB chooses an LB algorithm dynamically,
it is able to switch to a suitable LB algorithm based on the
current state of the workload.

In the next section, we validate and analyze the results

obtained from different executions of new applications with
ADAPTIVELB on a real parallel platform.

IV. EXPERIMENTAL EVALUATION

This section presents a performance evaluation of ADAP-
TIVELB. We first detail the characteristics of the platform
and applications used in the experimental evaluation. Then,
we discuss the performance results obtained with ADAP-
TIVELB.

A. Platform and Applications

All experiments were run on an Intel(R) Xeon(R) ES-2640
v4 @ 2.40GHz (10 physical cores + HT) with 128 GB of
RAM. The operating system used was Ubuntu Linux 16.04
with Charm++ version 6.9.0 installed (build multicore-linux-
x86-64). All applications and Charm++ were compiled with
GCC version 5.4.0 with —O3 optimization.

All applications considered in the experimental evaluation
were generated with LBTest, which is a synthetic benchmark
implemented in Charm++ with the purpose of testing LB
algorithms. The advantage of its use is the flexibility in
its parameters tuning, allowing to simulate a wide variety
of computation and communication load distributions. The
parameters set at launch time include: number of tasks,
number of iterations, task communication topology (Ring,
Mesh2D, Mesh3D), minimum duration time for a task,
maximum duration time for a task and the LB algorithm.

As we mentioned before, we generated 314 input in-
stances to train the KNN Classifier. In addition, we created
12 synthetic applications (4 applications for each task com-
munication topology, named Ring-1, ..., Ring-4; Mesh2D-1,
weo, Mesh2D-4; and Mesh3D-1, ..., Mesh3D-4), which have
not been used in the training phase, to test the efficiency
of ADAPTIVELB. The specific values of parameters used
in these 12 synthetic applications are listed in Appendix A.
All results in the next section represent the average over five
repetitions for each experiment.

B. Experimental Results

Fig. 4 presents the average execution times achieved
by 4 synthetic applications (Ring-3, Mesh2D-2, Mesh2D-4
and Mesh3D-2) with different LB algorithms (GREEDYLB,
GREEDYCOMMLB, REFINELB, GREEDYREFINELB, and
ADAPTIVELB) and without load balancing. Note that each
figure has its own y-axis scale because the execution times
of these synthetic applications are significantly different.
Moreover, the y-axis does not start at O to better show the
differences between LB algorithms.

Fig. 4c shows the results obtained with Mesh2D-4. As
it can be noticed, ADAPTIVELB was able to obtain a gain
of approximately 28.3 seconds compared to the case where
no load balancing occurs. When compared to the best LB
algorithm for this case (GREEDYLB), ADAPTIVELB was
2.14 seconds faster. Among the other load balancers, we
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Figure 4. Execution times (in seconds) of 4 synthetic applications (Ring:
with different starting points to emphasize differences.

can see that GREEDYCOMMLB and REFINELB showed
the worst performance. A similar behavior was observed
with Mesh3D-2 (Fig. 4d), where ADAPTIVELB achieved the
best performance among all other load balancers. Among
the other load balancers, GREEDYREFINELB achieved the
best performance for Mesh3D-2, although this meant taking
approximately 6.9 seconds more than ADAPTIVELB.

Although REFINELB showed the worst performance in
both previous cases, Fig. 4a (Ring-3) displays a scenario
where it performed the best among all load balancers, even
surpassing ADAPTIVELB by approximately 0.4 seconds.
After analyzing this scenario in more detail, we concluded
that this difference came mostly from the overhead of the
invocation of the ML model.

Fig. 4b illustrates the results for experiment Mesh2D-2,
which uses the same communication pattern of the exper-
iment in Fig. 4c. In this experiment, GREEDYCOMMLB
provided the best performance with ADAPTIVELB taking
approximately 0.6 seconds more in its execution. It is
interesting to note that, even though the same commu-
nication pattern is being used, there is an inversion in
performance behavior in these two experiments between
GREEDYCOMMLB and both GREEDYLB and GREEDYRE-
FINELB. Furthermore, each of these four experiments shows
a different load balancing algorithm as the best one (besides
ADAPTIVELB), reinforcing the difficulty of finding the best
LB for an application.

Table 1 summarizes ADAPTIVELB’s performance
throughout the different experiments. Positive values
represent the cases where ADAPTIVELB was faster than
the approach it is being compared to, and the negative
values represent the cases where our strategy was slower.
It is important to note that there is an overhead of about
0.7 seconds involved in each invocation of the trained ML
model at run time, as mentioned in Section III-D. Thus,
if that overhead would happen to be reduced in future

(c) Mesh2D-4
-3, Mesh2D-2, Mesh2D-4 and Mesh3D-2). Vertical axes in different scales and

(d) Mesh3D-2

Table 1
ADAPTIVELB OVERALL PERFORMANCE

Performance Gain  Performance Gain

Experiment with LB (s) without LB (s)
Ring-1 2.0278 213634
Ring-2 0.0776 7.4856
Ring-3 203937 5.3408
Ring-4 01118 02416

Mesh2d-1 0.0007 0.8634
Mesh2d-2 -0.5747 92.4698
Mesh2d-3 0.7320 5.2299
Mesh2d-4 2.1443 28.2617
Mesh3d-1 210290 19.3386
Mesh3d-2 6.9394 90.9603
Mesh3d-3 0.5797 10.8362
Mesh3d-4 7.3626 6.1183

works, then ADAPTIVELB would have achieved the best?
performance in all experiments.

The application Mesh3D-4 represents an interesting sce-
nario. In this case, ADAPTIVELB was about 7.4 seconds
faster than the second best balancer and about 6.1 seconds
faster than the case where no load balancing occurs. In
other words, if we were to compare only the four LB
algorithms described in Section III with the scenario without
load balancing, then we would see that all other load
balancers would degrade the performance of the application.
For the application being executed in this experiment, its
behavior shows that using the same balancer throughout
its entire lifetime does not present any benefits, since the
cost of migrations made the overall performance worse.
Since ADAPTIVELB has an adaptive nature and reacts to
the current state of the application, it was able to switch be-
tween LB algorithms throughout the application execution,
resulting in a better overall performance.

2 Although ADAPTIVELB is around 1 second slower than the best LB for
Mesh3d-1, this experiment includes two LB calls for a total of 1.4 seconds
of overhead.



V. RELATED WORK

Since load balancing in parallel machines is an NP-hard
problem, which can lead to major impacts on application
performance [5], it is a very well studied subject. Procedural
solutions are the most prevalent in the literature, since
dynamic load balancers must solve this issue in a timely
manner.

Existing solutions tend to account for different machine-
specific or application-specific characteristics, such as mem-
ory contention [21], network congestion [22], and number
of hops [22]. Additionally, they may employ related strate-
gies such as graph partitioning [23], hierarchical decision
making [24], or topology mapping [25].

ML may be employed in several different ways to op-
timize scheduling in parallel machines. It has been used
to optimize thread mapping in Transactional Memory (TM)
applications [26], [27], using TM benchmarks to train and
evaluate an ID3 decision tree model, which outputs a map-
ping strategy to be employed.

In a different approach, statistical learning has been used
to infer the best thread and data mapping [28], with focus
on Non-Uniform Memory Access (NUMA) machines. This
strategy employs metrics acquired from hardware counters in
order to profile applications and determine the best mapping
strategy in a given situation.

Reinforcement learning (RL) has been employed in itera-
tive applications to find, during execution, the loop schedul-
ing algorithms that are the best performing or the most
robust to perturbations [29], [30]. In this approach, each
internal loop of the application has its own learning agent
and, at each time step, the agent must choose a scheduling
algorithm for its loop. Although RL algorithms are shown
to be suitable for this scenario, they do not map well to
ours where an LB is chosen only a few times during the
execution of the application.

Automated LB decisions have also been employed to
determine the best time to perform load balancing in
Charm++ [31]. The idea is to continually collect application
behavior data in order to start the LB, instead of using a
static iteration interval. The same author also proposed the
use of ML to determine the best possible LB algorithm
in Charm++ [32]. However, the author did not analyze the
performance impact of the proposed approach on the appli-
cations. Moreover, the proposed solution only employed a
decision tree and a random forest algorithm for its decision-
making process. In contrast, we evaluated 9 different ML
algorithms and selected the most appropriate one. In addi-
tion, we carried out a performance evaluation with different
applications, illustrating the benefits of ADAPTIVELB.

VI. CONCLUSION

Load imbalance is a critical issue that affects the per-
formance and scalability of diverse parallel applications.
Selecting the best LB algorithm for applications that are

unpredictable, irregular and dynamic is a non-trivial task.
Additionally, choosing an LB algorithm statically may
present a good performance at an initial moment, but due
to the application dynamic behavior, that LB can become
inappropriate throughout the execution.

In this context, we presented an approach for automating
the LB algorithm decision at run time by using ML named
ADAPTIVELB. We demonstrated that ADAPTIVELB is able
to switch between LB algorithms according to the needs
that a given application presents at a given instant of time,
achieving the best performance in most cases. We showed
that ADAPTIVELB presented advantages over the scenario
where no load balancing occurs, even in the case that
a statically balancer selection had a slower performance
compared to the context without load balancing. In the cases
where ADAPTIVELB was the second best strategy, it was
approximately one second slower than the fastest approach.
We observed that most of this performance degradation was
due to the overhead of about 0.7 seconds for each invocation
of the trained model at run time.

As future work, we intend to reduce the overhead caused
by the ML model invocation, leading to a better overall
performance. Additionally, we intend to extend the current
solution to diffusive (distributed) LB algorithms. In that
case, other features related to communication overhead and
network congestion shall be added to the model. Finally,
we intend to apply the same ML-based approach to other
application programming libraries.
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APPENDIX A.
ML AND LBTEST PARAMETERS

ML training was done using Python 3.6.8 with
modules scikit-learn (v0.21.3) and yellowbrick
(v1.0.postl). Use used the default parameters for GB, GNB,
LDA and QDA. The parameters used for the other ML al-
gorithms were the following: 1) KNN: number of neighbors
= 3; 2) SVM: kernel = rbf, penalty parameter C = 0.025,
probability estimated enabled; 3) DT: maximum depth = 20;
4) RF: number of estimators = 50, maximum depth = 20;
and AB: number of estimators = 80.

Table II summarizes the parameters used in LBTest. All
experiments were run with a print frequency of 1.

Table 11
LBTEST PARAMETERS AND TIMES WITHOUT LB PER EXPERIMENT

Experiment # Elem.  # Iter. LB Min. Task  Max. Task Exec. Time
Name : *  Freq. Time (us) Time (us)  Without LB (s)
ring-1 5400 2000 300 1 4000 205.82
ring-2 4400 501 100 1 4000 94.46
ring-3 1200 1001 250 1 4000 54.37
ring-4 500 101 100 1000 3100 373

mesh2d-1 6400 101 100 100 5000 33.69
mesh2d-2 5000 3001 200 1 5000 815.20
mesh2d-3 3600 601 200 1 4000 93.30
mesh2d-4 5400 601 100 1 5000 185.19
mesh3d-1 9200 601 300 1 4000 238.18
mesh3d-2 5400 2000 300 1 4000 509.40
mesh3d-3 4500 601 150 1000 3000 194.62
mesh3d-4 6600 601 100 1000 5000 355.98




