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Global Instability in Shock Wave Laminar
Boundary-Layer Interaction

F. Guiho, F. Alizard and J.-Ch. Robinet

Abstract The linear global stability of an interaction between an oblique shock
wave and a laminar boundary layer is carried out for various oblique shock angles. It
is illustrated that such a flow acts as a noise amplifier. The least temporally damped
global modes are classified into three main categories, low, medium and high fre-
quencies. The high frequencies are localized into the attached boundary layer, the
medium frequencies are associated with Kelvin–Helmholtz like structures along the
shear layer and convective waves in the separated flow downstream whereas the low
frequencies are driven by the interaction zone. In particular, a low frequency mode
emerges which is scaled by the interaction length and the freestream velocity.

1 Introduction

Shock-wave/boundary-layer interactions (SWBLI) have important applications in a
wide range of industrial problems, such as high speed flight occurring on aircraft,
space/launch vehicles and projectiles. In particular, these interaction phenomena is a
prior interest for supersonic/hypersonic flows where aerodynamic heating is a major
factor [3]. The generation of shock waves by various surfaces of a vehicle or aircraft
engine and the impingement of those shocks on other surfaces can greatly amplify
the local heat transfer. When shock wave interacts with a laminar boundary layer, the
experiments have shown that, for a sufficiently large pressure gradient amplitude, the
boundary-layer becomes turbulent. It stronglymodifies the interaction zone aswell as
its dynamics yielding to a reduced separated zone. Transition mechanisms are poorly
known. However, in the presence of a low environmental noise or low upstream
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disturbances, linear stability analysis can provide a good approximation of the
position of laminar-turbulent transition (see for instance the eN method) [7]. In
addition, when the interaction zone is higher, one may also trigger self-sustained
low-frequency oscillations or three-dimensionality [6]. This specific dynamics can
not be captured by a local linear stability analysis, a global analysis is thus required.

In this paper, the linear global stability of a two-dimensional interaction between
an oblique shock wave and a laminar boundary-layer on a flat plate is carried out. In
particular, it will be further examine whether such a flow may act as a resonator or
a noise amplifier when it is subjected to two-dimensional perturbations. In addition,
the global modes which are involved in the space-time dynamics will be highlighted.

2 Governing Equations and Numerical Methods

The present approaches are based on the standard small perturbation technique. The
instantaneous flow is decomposed into base flow and unsteady perturbations:

q(x, y, t) = Qb(x, y) + q′(x, y, t) (1)

where Qb = (ρb, ρbUb, ρbVb, ρb Eb)
T . The decomposition (1) is introduced into 

compressible Navier–Stokes equations. The base flow Qb is supposed to be an 
equilibrium solution of the 2-D compressible Navier–Stokes equations. The result-
ing equations are further simplified by considering that the perturbation is infin-
itesimal, i.e. the nonlinear fluctuating terms are neglected. Finally, compressible 
Navier–Stokes equations are transformed into a linear partial differential equations 
∂q′/∂t = A q′where q′ represents the conservative variables for the perturbation. 
Let-us introduce the following decomposition q′ = q̂k (x) e−iΩk t where the couple
(
q̂k,Ωk 

) 
is the so-called global mode and is a solution of large eigenvalue prob-

lem. The space and time behaviour of each global mode are governed by q̂k (the 
eigenfunction) and Ωk (the complex circular frequency) respectively.

The numerical method implemented in CFD DynFluid Phoenix solver is based on 
the finite-volume approach and on a cell centered discretization. Roe flux difference 
splitting scheme are employed to obtain advective fluxes at the cell interface. The 
MUSCL approach extends the spatial accuracy to third order. For viscous terms, a 
central difference method is used. For unsteady computations, the dual time stepping 
method is used, the derivative with respect to the physical time is discretized by a 
second-order formula. For more details about the numerical methods, see [4].

To obtain an equilibrium state of the compressible Navier–Stokes equations, the 
dual-time is turned off with a large CFL number with respect to the fully implicit 
method.
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(a) (b)

Fig. 1 Base flow characteristics for θ = 30.8o, Reδ� = 886. Comparison between numerical
solution and Degrez’s experiment a P(x)/P∞ b C f (x)

Toperformaglobal stability analysis, the eigenvalues of the JacobianmatrixA are
computedwith a time-stepper approach, see [1]. TheArnoldi algorithm implemented
into the temporal loop of Phoenix code is used to obtain the most unstable modes,
see [4].

3 Base Flow

The configuration studied is similar as the case of Degrez et al. described in [2]. An
oblique shock wave, whose the angle of the shock relative to the horizontal axis is
referred as θ hereafter, is made to impinge on the flat plate laminar boundary layer
at M∞ = 2.15 by enforcing at the inlet boundary discontinuous conditions that
satisfy the Rankine–Hugoniot relations. In addition, the stagnation pressure is fixed
at 12,300Pa. Nonreflecting boundary conditions are enforced at the freestream and
downstream boundaries. Finally, Dirichlet boundary conditions for both the velocity
components and the temperature are prescribed at the adiabatic wall.

A preliminary computation is performed by considering a laminar boundary layer
without impinging shock. Hence, δ∗ is the displacement thickness taken at the the-
oretical location where the shock impinges the boundary layer, U∞, ρ∞ andμ∞,
are the velocity, the density and the molecular viscosity at the freestream.In the
next, the Reynolds number based on the previous quantities is fixed to Reδ∗ = 886.
After having reached a stationary state for the laminar boundary layer, the shock is
introduced at the inflow condition. Hereafter, we consider four-different values for
θ = 30.8o, 31.2o, 31.6o and 32o while holding the Reynolds number and the Mach
number constants. Finally, we note Lsep and Lint the separation and the interaction
length respectively.

The computational domain D extends from
[
x0/δ�; xn/δ�

] × [
y0/δ�; yn/δ�

] =
[0; 400] × [0; 250] in the streamwise and wall-normal directions respectively.
Figure 1a, b show comparisons between the base flow obtained by the Phoenix
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Fig. 2 Base flow characteristics for θ = 30.8o, Reδ� = 886. Iso-lines of streamwise velocity
U (x, y), streamlines and some characteristic phenomena: 1 incident shockwave; 2 separated waves;
3 expansion waves; 4 reattachment waves

Fig. 3 Eigenspectrum
for Degrez’s case, θ =
30.8o and Reδ� = 886. St =
�r Lint/(2πU∞)

code and data from the experiments of Degrez et al. [2] for  θ = 30.8o. Both the wall 
pressure distribution (Fig. 1a) and the friction coefficient (Fig. 1b) exhibit a good 
agreement with the experimental results. As an example, we plot the streamwise 
velocity for θ = 30.8 in Fig. 2.

4 Global Stability Analysis

4.1 Stability for the Shock Wave Angle θ = 30.8

As shown in Fig. 3, all the global modes are damped temporally which is consistent 
with the experiment of Degrez et al. [2] where none global unsteadiness is observed. 
Such a flow acts therefore as a noise amplifier.

The modes labelled 1, 2, 3, medium, low and high frequencies respectively, are 
shown in Fig.  4a, b and c. All these modes are associated with convective waves which 
are travelling along the shear layer in the separated zone and the attached boundary



(a) Mode labelled 1 in Fig. 3. (b) Mode labelled 2

(c) Mode labelled 3

Fig. 4 Eigenfunctions for θ = 30.8o, Reδ� = 886. The streamwise component is shown

layer. In particular, lower the frequency is, more the spatial support of the global 
mode is localized inside the interaction region. Finally, the medium frequencies are 
clearly associated with Kelvin–Helmholtz like structures along the shear layer which 
emits Mach wave radiation in the vicinity of the impingement of the incident shock.

One may precise that the convergence of our results have been carefully checked 
by carrying out the global stability analysis with a large computational box which 
extends up to 400δ� and a coarse mesh, where 20 grid points per wavelength are used 
for the mode labelled 3 for instance.

4.2 Influence of the Shock Wave Angle

When the incident angle increases, the interaction becomes stronger, causing an 
increase in the recirculation zone (not shown here for the sake of conciseness). The 
spectrum for θ = 30.8, 31.2, 31.6 and 32 are shown in Fig. 5. Because all the modes 
are damped temporally for all the shock angles which are considered, the present 
shock wave-laminar boundary layer interaction is clearly identified as a noise 
amplifier. Hence, our global stability analysis further confirms the DNS results of 
Pagella et al. [5]. In addition, it is interesting to remark that a low frequency mode 
emerges for all equilibrium states (labelled as 2 in Fig. 3). When rescaled by the 
interaction length L int  and the freestream velocity U∞, the corresponding frequency 
is seen to be almost constant around St ≈ 0.05.



Fig. 5 Eigenspectrum for various shock angles θ(30.8o(+), 31.2o(×), 31.6o(•), 32.0o(�)].Reδ� =
886

5 Conclusion

The linear global stability analysis of the interaction between an oblique shock wave
and a laminar boundary-layer confirms that such a flow acts as a noise amplifier,
even for large shock wave angles. The global modes exhibit a Kelvin–Helmholtz
like structure developing in the shear-layer. The lower frequency modes are mainly
localized in the interaction zone. Finally, a low frequency mode strongly localized in
the interaction zone and scaled by the interaction length and the freestream velocity
emerges which may provides new insight about the low frequencies unsteadiness
observed in the turbulent regime.
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