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Abstract10

When subjected to some anti-plane shear mode III loading, segmentation of the crack front frequently oc-

curs during propagation: even if the crack is initially planar, propagation produces facets/segments rotated

toward the shear free direction. These facets induce some modifications in the local loading of the crack

tips that can be captured through the multi-scale cohesive zone model proposed by Leblond et al., 2015.

Assuming that the width of the facets is small in comparison to their length, the facets can be considered at

the microscale, as a bidimensional periodic array of tilted cracks perpendicularly to the direction of propa-

gation, and at the macroscale, as a growing Cohesive Zone. The model was developed initially supposing a

constant period, small tilt angles and non-overlapping facets. The first aim of this paper is to relax these

assumptions to deal with more realistic cases. For this, the microscale problem is solved using XFEM and

the outputs are further incorporated into the model to get some results on the macroscale, in particular the

effective fracture energy. The second objective is to introduce some experiments to show the relevance of

the assumptions made and to demonstrate the ability of the approach (i) to determine the inclination of the

facets and (ii) to quantify, in both fatigue and brittle fracture, the toughening due to the decrease of the

crack opening driven by the unbroken ligaments between the facets.

Keywords: Brittle fracture, Mode I+III, Tilted facets, Multiscale Cohesive Zone model, Effective Fracture11

Resistance12

In the context of Linear Elastic Fracture Mechanics (LEFM), the behaviour of a crack loaded in modes13

I and II is nowadays generally well understood (Erdogan and Sih, 1963; Leblond and Torlai, 1992; Flores14

and Xu, 2013; Pham et al., 2017). However, adding some mode III contribution greatly complicates the15

problem, since segmentation of the crack front (Fig. 1) frequently occurs during propagation (Sommer,16

1969; Hull, 1995; Lazarus et al., 2008): even if the crack is initially planar and its front straight, propagation17

produces segments rotated toward the shear free direction. Two situations may occur: either the segments18
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Figure 1: Segmentation, facet coarsening and overlap observed by transparency in fatigue bending experiments performed on

plexiglass (W = b = 10 mm, L = 50 mm, Γ0 = 300). The advance is driven by a given constant mean force and amplitude.

Each column corresponds to a given number of loading cycles, which increases from the left to the right. The first row are top

views (in the X−direction), the initial slit appears dark and blurred in the background and the facets clear and sharp in the

foreground. The second row are front views (in the Y−direction), the initial slit (black rectangle at the bottom) propagates

upwards. In all these pictures, β ≡ K
(0)
III/K

(0)
I ≃ 0.3 along the initial slit. The bar scales are all 1 mm. Rough estimates

deduced from these digital pictures give η ∼ 0.2, α ∼ 27 degrees (see Fig. 2 for notations).

(also termed facets) are formed by nucleation of new isolated cracks along the initial slit (Palaniswamy and19

Knauss, 1975; Chen et al., 2015; Pham and Ravi-Chandar, 2016), or their rotation is progressive (Sommer,20

1969). Coarsening of the facets (see Fig. 1), with merging of facets resulting in period doubling, is also21

a usual observation (Goldstein and Osipenko (2012); Chen et al. (2015); Pham and Ravi-Chandar (2016)22

for instance). Initially, the segments or facets are not linked to each other. The connection between them23

forms only in a second phase, through development of a saw-tooth factory roof pattern, with A−zones24

(Fig. 2) corresponding to the initial facets and B−zones between them forming steps or ’river lines’. Crack25

propagation is more energetically favoured along A−zones than along B−zones, whose propagation is thus26

delayed (Lazarus et al., 2001a). This segmentation phenomenon occurs from the millimeter (Lazarus et al.,27

2008) to the kilometer scales (Pollard et al., 1982), in many types of materials ranging from metals (Eberlein28

et al., 2017), to polymers (Wu, 2006; Lazarus et al., 2008; Lin et al., 2010; Chen et al., 2015), glass (Sommer,29

1969), cheese (Goldstein and Osipenko, 2012), soft matter (Ronsin et al., 2014) and rocks (Pollard et al.,30

1982). This suggests it must have a quite universal explanation at the continuum scale. Segmentation has31

implications on lifetime predictions in engineering: turbines (Flavien, 2012), railways (Bonniot et al., 2018)32

or on the shape of stick-slip faults (Cambonie et al., 2019).33

From a theoretical point of view, the geometry resulting from crack propagation is inherently 3D, which34

highly complicates the theoretical treatment (Lazarus et al., 2001a,b; Gravouil et al., 2002). Phase-field35

simulations have shown (Pons and Karma, 2010) that in the absence of mode II but presence of mode III,36

straight propagation is not the only solution satisfying both Griffith (1920)’s energetic condition and the37

Principle of Local Symmetry (PLS, stating thatKII = 0 during propagation (Goldstein and Salganik, 1974)):38

A bifurcated solution with a helical front is more likely to occur. This led us to perform a linear stability39
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Figure 2: Schematic view of the formation of facets (A-zones) in mode I+III and associated notations. Coalescence (or

coarsening) results in an increase of d with a (not represented on the figure for legibility).

analysis (Leblond et al., 2011) that evidenced a lower bound for the instability on the ratio K
(0)
III/K

(0)
I of the40

mode III to mode I initial stress intensity factors. Finally, a non-linear stability analysis using a phase-field41

method has highlighted the subcritical character of the bifurcation (Chen et al., 2015), meaning that even42

below the linear analysis threshold, the instability may be initiated by some imperfections of sufficiently large43

amplitude (Leblond and Lazarus, 2015). This rationalizes the fact that segmentation is generally observed44

below the linear stability threshold (Pham and Ravi-Chandar, 2014), with a few exceptions however (Ronsin45

et al., 2014; Eberlein et al., 2017). The question of the instability onset is not definitively settled, but may46

be correlated to the ’level’ of imperfections in the experiments (linked to the sharpness of the initial slit,47

material inhomogeneities, fluctuations in the loading...).48

The shape of the facets may be quantified through the evolution along the propagation direction X of

(i) the rotation angle of the facets α, (ii) the slenderness ratio η = d/a, (iii) the relative lateral extension

c/d (see Fig. 2). At initiation, α has been verified experimentally to correspond (Pham and Ravi-Chandar,

2016) to the shear free plane defined by the angle (Cooke and Pollard, 1996):

α0 =
1

2
arctan

[

K
(0)
III

(

1
2 − ν

)

K
(0)
I

]

(1)

Due to mutual interactions, further propagation of the facets leads to a different steady-state angle (Chen

et al., 2015)1. This angle can be determined by numerical means (Chen et al., 2015) or using a perturbation

approach, assuming the length of the facets to be much larger than their width (Leblond et al., 2019). This

approach leads to:

α =
K

(0)
III

K
(0)
I (1− 5ν/4)

, if
K

(0)
III

K
(0)
I

≪ 1 (2)

1still denoted α for the sake of simplicity.
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When coalescence of the facets occurs, the slenderness ratio η = d/a corresponds also to the coalescence49

rate. The values of η obtained by numerical simulations (Chen et al., 2015) has been verified to be in50

agreement with experiments via some ajustable parameter whose physical origin has not yet been studied.51

The evolution of the lateral extension c/d is complex since it results from the 3D propagation of the facets,52

including the most advanced and lateral parts, which moreover depends on the mutual interactions between53

the facets leading to the characteristic en-passant handshaking S-shape (see Melin (1983); Hull (1995);54

Ghelichi and Kamrin (2015) and supplemental material of Chen et al. (2015)).55
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Figure 3: Multiscale cohesive zone model: decomposition of the initial 3D problem (Fig. 2) in two 2D problems: at the

microscale, the facets appear as an array of parallel cracks subjected to remote stresses; at the macroscale, they are embedded

in a cohesive zone.

Segmentation leads to partial breaking of the material, hence to a decrease of the energy available56

to propagate the crack (Hull, 1993) and consequently to an increase of the apparent fracture toughness.57

Toughening due to segmentation can also be observed during transgranular fracture in bycristals where58

twisted segments are formed along the weakest interfaces (Wei et al., 2009), with the main difference that59

segmentation is not triggered here by any material anisotropy, but by the sole presence of mode III in an60

otherwise isotropic and homogeneous material.61

This toughening effect induced by the unbroken ligaments between the facets can be quantified by the62

multi-scale Cohesive Zone (CZ) model developed by Leblond et al. (2015). Assuming that the slenderness63

of the facets η is small, the facets can be considered as a bidimensional periodic array of tilted cracks at the64

microscale (internal problem, fig. 3(a)) and as a growing CZ at the macroscale (external problem, Fig. 3(b)).65

Both problems are linked through some scaling up of the CZ at the macroscale, via the small parameter η:66

the remote displacements and stresses in the internal problem are related to the displacements and stresses67

on the CZ in the external problem. Thus the relation between the remote displacements and stresses in the68

internal problem yields a similar relation between the components of the displacement discontinuity and the69
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stresses on the CZ in the external problem. This relation depends on the geometry of the facets, through70

the elastic compliance induced by the periodic array of cracks. From there, it is possible to determine some71

properties about the propagation (i) of the periodic array of cracks at the microscale (Fig. 3(a)); (ii) of the72

CZ at the macroscale (Fig. 3(b)).73

In our paper of 2015, the period d of the array of facets was supposed to be independent of the distance74

of propagation a. This led to a decrease of the effective energy release rate with the crack advance a,75

implying that the loading has to be increased in order to maintain propagation of the crack. This is in76

contradiction with experiments where (i) coalescence usually occurs (Chen et al., 2015; Pham and Ravi-77

Chandar, 2016) and (ii) self-sustained propagation under constant loading is observed. This led Leblond78

et al. (2015) to extend the CZ model to deal with a d growing proportionally to a, in order to model79

coalescence and coarsening of facets (see their Eq. 52). But at that time, the method was only sketched and80

neither solutions, nor applications were presented. Moreover, only small rotation angles or small c/d ratios81

were considered, relying on some approximate solution of the internal 2D problem provided by Leblond and82

Frelat (2014).83

In the present paper, we aim at solving the equations including coalescence of facets given in Leblond84

et al. (2015) (Eq. 52) for both large angles and large c/d ratios, including the possibility of crack overlaps85

(corresponding to c/d > 1). Such situations are currently observed in experiments as illustrated in Fig. 186

and in §1. For this purpose, it is necessary first to solve the internal problem for the case with overlaps,87

since it has not been done previously. Details about the method are given in Appendix A and the main88

results in §2. Second (§3), this new solution is incorporated into the model, in particular to compute the89

effective fracture energy at the macroscale. Finally, we will show how the model can be used to determine90

the steady-state angle of inclination of the facets (§4), and to quantify the toughening due to the presence91

of the facets (§5) in both fatigue (under cyclic loading), where it results in a decrease of the crack advance92

rate, and brittle fracture, where it results in an increase of Griffith’s fracture threshold; the assumptions of93

the approach being justified and the results being discussed in light of the bending experiments presented94

in §1.95

1. Four Points Bending (4PB) experiments96

The experiments of Fig. 1 will be used to show the relevance of the model’s assumptions and to illustrate97

the comparison with the theoretical results2. The samples are beams (dimensions 10 mm×10 mm×50 mm)98

made of cast3 plexiglass (ν ∼ 0.4, E ∼ 3 GPa), containing an inclined initial slit (depth ∼ 2−3 mm, Γ0 = 10,99

2The scope of this paper being rather theoretical, only rough results will be given here without error bars and discussions

of the tricky numerical and experimental methods involved, for instance to measure α (Cambonie and Lazarus, 2014). More

extensive and accurate comparisons will be the topic of a future, more experimentally oriented publication.
3Not extruded, to ensure isotropy of the material.
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20, 30◦) prepared as explained in Chen et al. (2015). Progressive crack propagation is achieved through100

cyclic fatigue loading in a 4 Points Bending (4PB) testing machine, varying the applied force P around a101

mean value P0, with a fixed amplitude ∆P . Both K
(0)
III and K

(0)
I are then proportional to P so that the102

mode mixity β ≡ K
(0)
III

K
(0)
I

is constant during the whole experiment. In these experiments, β is approximately103

linked to the angle Γ0 through the formula β = 1
2 tanΓ0 (Pook, 1995; Lazarus et al., 2008; Lin et al., 2010).104

The three columns of Fig. 1 correspond to three different similar specimens having Γ0 = 30◦, where the105

crack was stopped at different stages of the propagation. Several visual observations can be made on these106

pictures: while the front is initially straight, it segments into facets, that further coalesce and the shape of107

the facets is elongated.108

Figure 4: Top views of several partially broken fatigue samples. Each “line” (horizontal set of pictures) corresponds to different

stages of propagation, each “column” (vertical set of pictures) to different values of Γ0.

Fig. 4 gathers the top views of the crack obtained in some other experiments performed for Γ0 = 10◦109

and 20◦. Rough estimates of the coalescence rate η and the rotation angle α can be obtained from direct110

measurements on the pictures. The coalescence rate is estimated to be η ∼ 0.2 for all inclinations of the111

initial slit considered, in line with the model’s assumption of small η. The angle α is observed to be nearly

Γ0 10◦ 20◦ 30◦

α Experiments 12◦ 20◦ 27◦

α Eq. 2 10◦ 21◦ 33◦

α Eq. 1 20.7◦ 30.6◦ 35.4◦

Table 1: Experimental values of α and predictions of Eqs. 2 and 1 for ν = 0.4 and β = tan Γ0
2

.

112
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constant and its value is gathered in Table 1 for different values of Γ0 together with the predictions of Eqs. 2113

and 1 taking ν = 0.4. As anticipated in the introduction, Eq. 1, even if valid at initiation (Pham and114

Ravi-Chandar, 2016), overestimates the steady-state value of the angle measured here4. In contrast, Eq. 2115

which was derived for the steady-state situation assuming the facets to be shear-free (Leblond et al., 2019),116

is in excellent agreement with the experiments, especially in its domain of validity, that is for small values of117

β or Γ0. This nice result should however be taken with caution, since formulas (Eq. 2) and (Eq. 1) are very118

sensitive to the precise value of ν, and polymers like plexiglass (i) exhibit some viscoelastic behaviour which119

contradicts our hypothesis of pure elasticity, and sheds some doubts on the values of the elastic constants;120

and (ii) present crack morphologies which are sensitive to the cyclic load history (Pulos and Knauss, 1998).121

A more systematic and extensive study is required to conclude.122

Meanwhile, guided by those experimental observations, our model is derived under the following as-123

sumptions: linear isotropic elasticity, initial straight crack under mode I+III loading, formation of straight124

elongated facets, yielding small values of η, which coalesce during propagation. An additional assumption125

is to focus on the propagation in the vicinity of the initial crack, in which the loading mixity β can be126

considered to be constant, and the shape of the facet to stay stationary perpendicularly to the propagation127

direction, so that α and η can be assumed to be constant. The assumption of small η permits to uncouple128

the nominally 3D problem (fig. 2) in two 2D ones (fig. 3): an internal one corresponding to an array of129

parallel inclined cracks in a plane orthogonal to the propagation direction (described in §2) and an external130

one where the facets are embedded in a straight Cohesive Zone extension (detailed in §3).131

2. Internal problem at the scale of the facets132

2.1. The equations133

Like in Fig. 3(a), consider an array of parallel tilted cracks, embedded in a linear elastic isotropic material

(E denotes Young’s modulus and ν Poisson’s coefficient), loaded by the remote stresses

σ∞

1 = σ∞

11 , σ∞

2 = σ∞

22 , σ∞

3 = σ∞

12

(with Voigt-like notations). This geometry is characterized by two dimensionless parameters: α, the tilt

angle of the facets and c/d, the overlap ratio5. Thanks to the linearity of the elasticity problem, the stress

4This conclusion unfortunately relies on two distinct experiments, since we are not able to measure α continuously from the

initiation to the steady-state in our experiments.
5Rigorously speaking, c and d designate the projected width of the facets and the period in the external problem. The

projected width and period in the internal problem, considered here, are deduced from those in the external problem through

multiplication by some large factor, and should be noted differently, for instance c̄ and d̄ as was done by Leblond et al. (2015).

They are renoted c and d here for simplicity, this slight inaccuracy of notation being tolerable since the overlap ratio may

indifferently be defined as c/d or c̄/d̄.
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intensity factors kp, p = I, II at the lateral crack tips can be expressed under the following form6:

kp ≡
√
2dFp

λ

( c

d
, α

)

σ∞

λ (3)

where Einstein’s implicit summation convention has been used for the index λ = 1, 2, 3. Noteworthy is the134

independence of the functions Fp
λ with E and ν; the first property is an obvious consequence of homogeneity135

considerations, and the second results from a general theorem of Muskhelishvili (1953).136

2.2. Some results137

The approximate expressions of the functions Fp
λ(c/d , α) proposed by Leblond and Frelat (2014) are as

follows:


























































FI
1
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d
, α
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≃
√

tan
(πc

2d

)1− cos(2α)

2
√
cosα
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2

( c

d
, α

)

≃
√

tan
(πc

2d

)1 + cos(2α)

2
√
cosα

;

FI
3

( c

d
, α

)

≃ −
√

tan
(πc

2d

)

[

3 +
πc/d

sin(πc/d)

]

sin(2α)

4
√
cosα

;

FII
1

( c

d
, α

)

≃ −
√

tan
(πc

2d

) sin(2α)

2
√
cosα

; FII
2

( c

d
, α

)

≃
√

tan
(πc

2d

)

[

3− πc/d

sin(πc/d)

]

sin(2α)

4
√
cosα

;

FII
3

( c

d
, α

)

≃
√

tan
(πc

2d

)cos(2α)√
cosα

.

(4)

Comparisons with the results of some finite element calculations (Leblond and Frelat, 2014) have shown138

that these formulae yield quite acceptable results except when α and c/d are simultaneously large. To139

extend them to larger values of α and c/d (including overlaps), we have used a XFEM method coupled140

with hierarchical mesh refinement whose application to non-linear fatigue crack propagation can be found141

in Gibert et al. (2019). Values of the functions Fp
λ are computed from α = 0 to α = 45◦ with a step of 2.5◦,142

and for c/d = 0.1 to 1.4 with a step of 0.2. To avoid intersecting cracks, the range of α is limited to α ≥ 5◦143

for c
d ≥ 1. Details about the method are given in Appendix A. The results are reported in Fig. 5 where the144

Fp
λ are plotted as functions of c/d for several values of α. As expected the numerical results (plotted with145

discrete dots) are in agreement with the approximate expressions (Eq. 4, plotted with full lines) as long as146

c/d is small enough, the validity range decreasing with increasing α.147

One also notices that |Fp
λ| increases with c/d in all cases, except for p = II and large enough values of148

c/d, so that stability of the straight lateral propagation, once the Griffith or Irwin propagation threshold149

is reached, is unlikely despite some foreseeable screening effect (Leblond et al., 2015): at some point, the150

facets will probably link up, forming the characteristic en-passant handshaking shape (Melin, 1983; Hull,151

1995). Another remarkable point is that the functions FII
2 and FII

3 providing the mode II stress intensity152

6Notice that the notations are slightly different from those in Leblond et al. (2015): the factor
√

tan
(

πc
2d

)

has been removed

here since it was limiting the possible range of the ratio c/d to values smaller than 1. Accordingly we have slightly changed

the notation, moving from F p
λ to F

p
λ .
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factor may be positive or negative, meaning that the branches may attract or repulse each other (Schwaab153

et al., 2018).154

3. External problem at the macroscale155

Now, zooming out, the internal problem (Fig. 3(a)) becomes the external problem (Fig. 3(b)) where

the array of facets is embedded in a cohesive zone. With regard to the dependence of the facet geometry

with X , we suppose that (i) c/d and α are independent of X , but (ii) as discussed in the Introduction, the

spacing d between the facets scales with X :

d(X) = ηX (5)

where η is a constant. This relation remains true at the tip X = a, so that η = d(a)/a. The parameter156

η is connected to the coalescence rate. We also assume that the mode mixity β remains constant during157

propagation, that is does not depend on X .158

Matched asymptotic expansions using the small parameter η are used to link the internal and external159

problems. Details of the method are rather complex and given in Leblond et al. (2015). Here, we just recall160

the general lines of the reasoning and main equations.161

3.1. The equations162

The solution of the internal problem yields the relations between the far displacements and stresses,163

accounting for the presence of the periodic array of cracks. But the matched asymptotic expansions permit164

to relate these quantities to the displacements and stresses on the cohesive zone in the external problem;165

whence the relation between the latter displacements and stresses.166

Denote U and Σ the displacement vector and stress tensor in the external problem. At a point X along

the cohesive zone, the displacement jump [[U]](X) and the stress Σ(X) ≡ Σ(X,Y = 0) are linked by:



































[[UX ]](X) = 0

[[UY ]](X) =
4(1− ν2)d

E
[A22ΣY Y (X) +A12ΣZZ(X)−A23ΣY Z(X)]

[[UZ ]](X) =
4(1− ν2)d

E
[−A23ΣY Y (X)−A13ΣZZ(X) +A33ΣY Z(X)] .

(6)

The quantities Aλµ and Σij here depend on the geometry of the array of facets. More precisely:167

• The quantities Aλµ are related to the functions Fp
λ and Fp

µ (defined by Eq. 3) through the relation:

Aλµ ≡ Aλµ(c/d, α) ≡
1

cosα

∫ c/d

0

Fp
λ (x, α)Fp

µ (x, α) dx. (7)
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• The stress tensor Σ(X) is linked to that in the vicinity of the initial crack tip without facets, that

is to the initial stress intensity factors K
(0)
I and K

(0)
III , reduced by some additional surface tractions

±[p(X) eY + q(X) eZ ] exerted on the faces of the cohesive zone, resulting from partial opening of this

zone (hindered by the unbroken ligaments between the facets):











































ΣY Y (X) = ΣXX(X) =
K

(0)
I√
2πX

− p(X)

ΣZZ(X) = ν [ΣXX(X) + ΣY Y (X)] = 2ν

[

K
(0)
I√
2πX

− p(X)

]

ΣY Z(X) =
K

(0)
III√
2πX

− q(X).

(8)

But on the other hand these additional tractions generate a displacement discontinuity across the faces

of the CZ obeying the classical LEFM formulae



















d[[UY ]]

dX
(X) =

4(1− ν2)

πE
PV

∫ a

0

p(X ′)

√

a−X ′

a−X

dX ′

X ′ −X

d[[UZ ]]

dX
(X) =

4(1 + ν)

πE
PV

∫ a

0

q(X ′)

√

a−X ′

a−X

dX ′

X ′ −X
.

(9)

Differentiating Eqs. 6 with respect to X , eliminating d[[UY ]]
dX and d[[UZ ]]

dX between the result and Eqs. 9,

and accounting for the expressions of the stresses ΣY Y , ΣZZ , ΣY Z given by Eq. 8, one gets the following

integral equations on the unknown tractions p and q:



































































































(A22 + 2νA12)

(

dp

dX
+

p

X

)

− A23

(

dq

dX
+

q

X

)

+
1

πηX
PV

∫ a

0

p(X ′)

√

a−X ′

a−X

dX ′

X ′ −X

=
(A22 + 2νA12)K

(0)
I −A23K

(0)
III

2
√
2π X3/2

−(A23 + 2νA13)

(

dp

dX
+

p

X

)

+ A33

(

dq

dX
+

q

X

)

+
1

π(1− ν)ηX
PV

∫ a

0

q(X ′)

√

a−X ′

a−X

dX ′

X ′ −X

= − (A23 + 2νA13)K
(0)
I −A33K

(0)
III

2
√
2π X3/2

.

(10)

Moreover, the boundary conditions [[UY ]](a) = [[UZ ]](a) = 0 of closure at the tip of the cohesive zone yield,

with Eqs. 6 and 8:


















p(a) =
K

(0)
I√
2πa

q(a) =
K

(0)
III√
2πa

.

(11)
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Once the tractions p, q are known by solving Eq. 10 with the boundary conditions (Eq. 11), the macro-

scopic or effective stress intensity factors at the tip of the CZ (that is in fact on a line connecting the facet

tips) can be obtained through the formulae:



















KI =

√

2

π

∫ a

0

p(X)
dX√
a−X

KIII =

√

2

π

∫ a

0

q(X)
dX√
a−X

(12)

and from there, the macroscopic or effective energy release rate G through Irwin’s formula:

G =
1− ν2

E

(

K2
I +

1

1− ν
K2

III

)

. (13)

Let us introduce the following dimensionless quantities:

β =
K

(0)
III

K
(0)
I

, X∗ =
X

a
, p∗ =

p
√
2πa

K
(0)
I

, q∗ =
q
√
2πa

K
(0)
I

,Σ∗ =
Σ
√
2πa

K
(0)
I

,K∗
p =

Kp

K
(0)
I

, G∗ =
G

G(0)
, (14)

where

G(0) =
1− ν2

E

(

K
(0)
I

2
+

1

1− ν
K

(0)
III

2
)

. (15)

The preceding equations become:

K∗
I =

1

π

∫ 1

0

p∗(X∗)
dX∗

√
1−X∗

, K∗
III =

1

π

∫ 1

0

q∗(X∗)
dX∗

√
1−X∗

, G∗ =
(K∗

I)
2 + 1

1−ν (K
∗
III)

2

1 + β2

1−ν

. (16)

In practice, Eqs. 10 and 11 can be solved using the numerical procedure described in Leblond et al. (2015)

to obtain p(X) and q(X) for given values of Poisson’s ratio ν, the parameters of the facet geometry c/d,

α, η, and the mode mixity β. From there, thanks to Eq. 8, the stress tensor Σ(X) along the CZ in the

external problem may be obtained, and therefore also the remote stresses in the internal problem through

the relations

σ∞

1 = σ∞

11 = ΣZZ(X), σ∞

2 = σ∞

22 = ΣY Y (X), σ∞

3 = σ∞

12 = −ΣY Z(X). (17)

(These relations result from the different orientations of the frames (x1, x2, x3) and (X,Y, Z) of the internal168

and external problems respectively, see Fig. 3).169

3.2. Examples170

Eqs. 10, and 11 rewritten in dimensionless form using Eq. 14, are solved using the same procedure as in171

Leblond et al. (2015), using the values of the functions Fp
λ presented in Fig. 5 and spline interpolation of the172

tractions p and q between the available discrete values. We use 51 nodes (where discrete values of p and q are173

defined) and 50 collocation points (where the integral equations are written) along the segment X∗ ∈ [0, 1],174

which is checked to be sufficient for mesh independence. The mesh is refined near the points X∗ = 0 (origin175

of the CZ) and X∗ = 1 (tip of the CZ) since large variations of p∗(X∗) and q∗(X∗) may be expected there.176
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The dependence of p∗ and q∗ with the parameter η characterizing the coalescence rate (see Eq. 5 for its177

definition) is given in Fig. 6, where ν = 0.4, β = 0.3, c/d = 1.2, α = 27◦, corresponding to the experiments178

of Fig. 1, and the value of η is varied between 0.01 and 0.5. As expected, these tractions decrease to zero179

when η decreases to zero, since the facets then vanish and their effect disappears. Also noticeable is the180

divergence of the functions near X∗ = 0. (This divergence may be demonstrated analytically but the heavy181

and rather useless proof is omitted for lightness).182
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Figure 6: The additional tractions p∗(X∗) and shear forces q∗(X∗) acting on the CZ due to its partial opening (ν = 0.4,

K
(0)
III/K

(0)
I = 0.3, c/d = 1.2, α = 27◦ and η is varied around η = 0.2 corresponding to the experiments of Fig. 1).

The evolution of the normalized energy-release-rate G∗ = G/G(0) with η is given in Fig. 7; also given183

in the same figure is the dependence of G∗ versus c/d for η = 0.2, using either the approximate solution184

(Eqs. 4) for the functions Fp
λ, or those obtained in the XFEM calculations. Several remarks are in order:185

• In the experiments of Fig. 1, c/d ∼ 1.2 and η ∼ 0.2. In Fig. 7, the plots on the left show that for186

c/d ≥ 0.8, the approximate solution of Leblond and Frelat (2014) becomes inaccurate and use of the187

numerical solution including possible overlapping of the facets becomes mandatory. On the right, the188

dependence of G∗ versus η for c/d ∼ 1.2 obtained using the XFEM solution is given for several values189

of ν, evidencing an almost complete lack of dependence of G∗ upon ν.190

• G/G(0) < 1 in all cases which means that the body releases less elastic energy through propagation of191

tilted facets than through propagation of a planar crack. This is because in the case of tilted facets,192

the release of elastic energy is hindered by the permanence of unbroken ligaments between them.193

• The ratio G/G(0) decreases to zero when the ratio η ≡ d/a goes to zero, the ratio c/d remaining fixed,194

or when c/d goes to zero, the parameter η being fixed. This is because an increase of facet length a195

or a decrease of facet width c for fixed geometrical period d, induces a decrease of the displacement196

discontinuity across the cohesive zone, that is a closure of this zone unfavourable to the release of197
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elastic energy.198
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Figure 7: Left: Evolution of G/G(0) with c/d for η = 0.2. For c/d > 0.8, the approximate solution of Leblond and Frelat

(2014) becomes inaccurate. Right: Evolution of G/G(0) with η using the XFEM solution (c/d = 1.2). Values are independent

of ν. In both figures, K
(0)
III/K

(0)
I = 0.3, α = 27◦.

4. Determination of the rotation angle α199

We shall now discuss how the cohesive zone model can be used to predict the rotation angle α.200

4.1. Criteria201

Concerning the direction of propagation, two criteria are investigated: the Principle of Local Symmetry202

(PLS) stating that the propagation occurs in the direction corresponding to zero mode II (Goldstein and203

Salganik, 1974); (ii) energy minimization or Griffith’s principle, consisting in minimizing the total energy204

Wtot defined as the sum of elastic and fracture energies (Griffith, 1920; Francfort and Marigo, 1998).205

4.1.1. Criterion based on the Principle of Local Symmetry (PLS)206

A first possibility is to focus on the lateral propagation of the facets. As written in Leblond and Frelat

(2014): “The heuristic postulate made is that the 2D SIF kII is zero along the lateral sides of the facets (...)

if kII were not zero, lateral propagation of these facets would induce them to deviate out of their plane so

that the tilt angle would not be stationary”. Using Eq. 3 and equating kII to zero, an implicit equation on

α is obtained:

σ∞

1 FII
1

( c

d
, α

)

+ σ∞

2 FII
2

( c

d
, α

)

+ σ∞

3 FII
1

( c

d
, α

)

= 0. (18)

Depending on whether this equation is solved for fixed c/d or fixed ℓ/d using the relation ℓ = c/ cosα (ℓ207

is the half-width of a facet as shown in Fig. 3(a)), different values of α are obtained. We take the option208

to fix ℓ/d which seems more pertinent from a physical point of view, since ℓ is determined by the lateral209

propagation of the facets, whereas c combines the half-width of the facet ℓ and its orientation α.210
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4.1.2. Criterion based on energy minimisation (Wmin)211

Another possibility, focussing on the output of the facet propagation in the X−direction, is based on212

the minimization of Wtot. Strictly speaking, the minimization should be done step by step and look, at213

each load increment, for the crack path which minimizes Wtot. This task can only be done numerically and214

involves some cumbersome simulations (Pons and Karma, 2010; Chen et al., 2015; Henry, 2016; Pham and215

Ravi-Chandar, 2017; Lo et al., 2019; Mesgarnejad et al., 2019) based on approximate ways of regularizing the216

problem (Bourdin et al., 2000; Hakim and Karma, 2009; Miehe et al., 2010). Here, we simplify the problem217

by assuming that during its evolution, the crack has ’time’ to select, among several states, that corresponding218

to a minimum, with respect to the angle α, of the total energyW2D
tot of the 2D internal problem (illustrated in219

Fig. 3(a)). Such an argument has been used with success in other similar situations, for instance by Gauthier220

et al. (2010); Maurini et al. (2013) for star shape configurations obtained in experiments of directional drying221

of colloidal suspensions. The total energy W2D
tot per period splits into two terms:222

• the fracture energy, which is simply 2Gcℓ,223

• the elastic energy, which is equal to that without any crack (W0) reduced by the energy 2
∫ ℓ

0
g(ℓ′)dℓ′224

released by propagation of the cracks, where g is the energy-release-rate in the internal problem. This225

energy-release-rate is equal to 4(1−ν2)d2

E σ∞

λ σ
∞

µ Aλµ

(

ℓ
d cosα, α

)

(use Eqs. 5 and 17 of Leblond et al.,226

2015).227

Thus one must look for the minimum value with respect to α of the quantity:

Wtot =W0 −
4(1− ν2)d2

E
σ∞

λ σ
∞

µ Aλµ

(

ℓ

d
cosα, α

)

+ 2Gcℓ. (19)

Again it seems physically more pertinent to perform this minimization for a fixed value of ℓ/d rather than228

c/d. (Anyway one can check that there is no minimum for a constant c/d).229

4.2. Determination of the remote loading230

Eqs. 18 and 19 may be solved using the remote loading σ
∞ of the internal problem as an input. This231

gives α as a function of σ∞. This remote loading depends on the specimen and loading considered. Leblond232

and Frelat (2014) considered several special cases in which σ
∞ was related only to the mode mixity β. Here233

we shall consider, in coherence with our experimental setup (see Fig. 1), that the initial crack is loaded by234

a uniform remote stress field σ
∞ = σ∞j ⊗ j with j = cosΓ0eX + sinΓ0eZ = cosΓ0e2 − sinΓ0e1, so that235

σ∞

1 = σ∞ sin2 Γ0, σ
∞

2 = σ∞ cos2 Γ0, σ
∞

3 = −σ∞ sin Γ0 cos Γ0. The angle Γ0 here denotes the inclination of236

the crack in this stress field.237

The CZ model provides another way to obtain σ
∞ from knowledge of the mode mixity β using Eqs. 17238

and 8. The dependence on X of the stresses Σij given by Eqs. 8 is relatively weak far from the points239

X∗ = 0 and X∗ = 1 (where the solution is invalid anyway, see Leblond et al. (2015)). Accordingly we240
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choose to consider the values of these stresses at the middle of the CZ, that is σ∞

1 = ΣZZ(X = a/2),241

σ∞

2 = ΣY Y (X = a/2), σ∞

3 = −ΣY Z(X = a/2). Since p and q depend on c/d and α, equations Eqs. 18-19242

must be solved accounting for the fact that the σ∞

λ , similarly to the Σpq(X = a/2), themselves depend on243

ℓ/d and the unknown α. The output consists of the value of α, obtained as a function of ℓ/d for given values244

of η, β and ν.245

4.3. Some results246

4.3.1. Asymptotic versus XFEM, and PLS versus Wmin247
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Figure 8: Rotation α of the facets for a crack loaded initially by the stress σ
∞ = σ∞j⊗ j with j = cos Γ0e2 − sinΓ0e1. ’PLS’

denotes the predictions obtained by imposing kII = 0 at the lateral tips, ’Wmin’ by minimizing the energy. Solid lines are

obtained using the asymptotic values (Eqs. 4) of the functions F
p
λ , points using the numerical values obtained by XFEM. The

results deriving from asymptotic values are observed to quickly become inaccurate, especially for the Wmin criterion.

As discussed above, we consider that the initial crack is loaded by a uniform remote stress field σ
∞ =248

σ∞j ⊗ j. Figures 8 provides the values of α as a function of ℓ/d for several values of Γ0, obtained from249
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Eqs. 18 and 19. Note that since Fp
λ and thus Aλµ (Eqn. 7) are independent of ν (§2.1), it is also the case250

for these plots. The results are shown using either the approximate values (Eqs. 4) of the functions Fp
λ or251

those obtained by XFEM. Several observations can be made:252

• Numerical artefacts in the Wmin criterion. A small perturbation around ℓ/d = 0.15 in the values of α253

can be noticed. It is a numerical artefact due to the transition from use of the asymptotic values of the254

functions Fp
λ (formula 4) to the numerical values (Fig. 5). It shows the sensitivity of the minimization255

with respect to the values of Fp
λ: the perturbation in α around ℓ/d = 0.15 is large although the256

approximate and numerical values of the functions Fp
λ are close (see Fig. 5). Also, the fluctuations257

appearing for ℓ/d > 0.5 are probably linked to increasing numerical errors with higher values of ℓ/d.258

Besides, we have also noticed that using linear instead of spline interpolation for the functions Fp
λ, we259

get unphysical oscillating solutions α(ℓ/d). Accurate predictions in the region ℓ/d > 0.5 would require260

additional numerical efforts.261

• Accuracy of the asymptotic formulas. For small values of ℓ/d, it can be checked that α derived from262

the XFEM values of Fp
λ are in agreement with those obtained using their asymptotic formulas. The263

discrepancy for larger values is due to the inaccuracy of the asymptotic values which are derived in264

the limit ℓ/d→ 0.265

• Equivalence of the PLS and Wmin criteria. In the limit ℓ/d → 0 both criteria give the same result.266

This can be explained by the fact that then, each facet behaves like an isolated crack in an infinite 2D267

body, inclined by an angle α and loaded remotely by σ
∞. The lateral SIFs kI , kII are proportional268

to N and T respectively, the far normal and tangential stresses to the facet, and the term depending269

on α in Wtot is negatively proportional to N2 + T 2. Thus the minimum of Wtot corresponds to the270

maximum of N2 + T 2, which is achieved for T = 0 by Mohr’s construction. This implies that the271

Wmin criterion is equivalent to the PLS in this limit.272

For larger values, the predictions of both criteria can be noticed to be similar, although the criteria273

have no reason to coincide under such conditions.274

• Facet shape. As long as the facet width remains small enough, the facets behave independently and275

the variation of α with ℓ/d itself remains small. This explains why their shape observed experimentally276

is straight near the middle (Fig. 1 and 4). Their orientation is observed to remain close to the shear277

free direction α = Γ0.278

The angle α slightly increases or decreases when ℓ/d increases, depending on the value of Γ0. This279

variation may be seen as an early sign of a repulsion or attraction of the en-passant S-shape (Schwaab280

et al., 2018).281
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Finally, as awaited since Eqs. 4 are valid only for small values of α or c/d, the evolution of α with ℓ/d is282

different according to whether the approximate or numerical values of the functions Fp
λ are used. The error283

made using asymptotic values instead of the more accurate numerical one is huge specially for Wmin where284

a notable difference is observed as soon as ℓ/d > 0.2. This justifies the numerical effort made to obtain the285

values of the functions Fp
λ for larger values. In the sequel, all results will be presented using these numerical286

values.287

4.3.2. Comparison with the experiments288
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Figure 9: α as a function of ℓ/d for several values of Γ0. Solid lines are obtained using the remote loading from the CZ

model using β = 1
2
tan Γ0, ν = 0.4, η = 0.2. Solid lines with points correspond to σ∞

1 = σ∞ sin2 Γ0, σ∞

2 = σ∞ cos2 Γ0,

σ∞

3 = −σ∞ sinΓ0 cos Γ0 like in Fig. 8. The horizontal red dotted line corresponds to a rough estimation of the inclination of

the facets in their straight portion. The line is stopped at ℓ/d = 0.7 since above the facets can be observed to bend significantly

(see Fig. 4).

In Fig. 9, the predictions from the PLS and Wmin criteria are given, using the remote loading defined289

by σ
∞ = σ∞j ⊗ j, with j = cosΓ0e2 − sin Γ0e1 like in Fig. 8, or that obtained from the CZ model using290
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β = 1
2 tanΓ0, ν = 0.4, η = 0.2 corresponding to our 4PB experiments of section 1. The corresponding291

experimental values are also plotted in this figure. It is the slope of the facets in their straight section (where292

the angle α is thus constant). The lines are stopped at the point ℓ/d where the facets start to bend. The293

measures are made directly on Fig. 1 and 4, hence are rough estimations.294

Using σ
∞ = σ∞j ⊗ j, a good agreement is found in the range ℓ/d ∈ [0.2; 0.6]: the predicted values are295

closed to the average experimental one in the whole range and their variation with ℓ/d is weak in accordance296

with the straightness of the crack in this zone (Fig. 4). Precise modulations of α with ℓ/d are difficult to297

detect experimentally. And anyway, such variations can not be caught by our approach which considers the298

segments as invariant in the propagation direction.299

Using σ
∞ derived from the CZ model fails to predict the values of α obtained in the experiments. One300

reason may be that the CZ model assumes an infinite body and can thus only be used to obtain the remote301

loading if the effect of the lateral boundary conditions can be neglected. This may not be the case in these302

experiments. The better agreement with σ
∞ = σ∞j ⊗ j can be rationalized by the fact that in the 4 PB303

experiments the far field is indeed of this form (see Fig. 1), especially for slight inclinations of the crack304

(small values of Γ0). Another source of discrepancies may come from the sensitivity of the results to Poisson’305

ratio, as will be highlighted below.306

307

4.3.3. Parametric study308

The similarity between the results obtained with the PLS and Wmin criteria, already noted in Fig. 8, is309

also observed when the remote stress field is deduced from the CZ model. Hence, for the parametric study310

of the dependence of α upon η, ν and β, we plot only, as a representative case, the results obtained with311

the PLS criterion. In Fig. 10, the parameters are varied around the values η = 0.2, ν = 0.4, β = 0.2,312

corresponding to the experiment of Fig. 1. Several points are noteworthy:313

• the results are nearly independent of η meaning that the dependence of the stresses σ∞

11 = ΣZZ(X =314

a/2), σ∞

22 = ΣY Y (X = a/2), σ∞

12 = −ΣY Z(X = a/2) with η cancels out in Eq. 18;315

• as expected, α increases with the mode mixity ratio β;316

• the results are highly sensitive to the value of Poisson’s ratio ν, to the point that taking ν = 0.3317

instead of ν = 0.4 permits to retrieve the experimental value of α. This means that the study of α is318

a difficult issue, in which the dependence upon ν has to be considered with care.319
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Figure 10: Dependence of α(ℓ/d) upon η, β and ν. The PLS criterion is used with the remote loading from the CZ model. The

black solid line corresponds to η = 0.2, β = 0.3, ν = 0.4 in all the graphs. The experimental red line is the same than in Fig.

9c.
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5. Toughening due to the presence of the facets320

5.1. In fatigue321

Assume that the propagation of the tips of the facets is ruled by Paris’s law:

da

dN
= C

(

E

1− ν2
∆G

)n/2

(20)

where da
dN denotes the crack advance per cycle, ∆G the amplitude of the variation of the energy-release-rate322

during one cycle. Thanks to Irwin’s formula (Eq. 13), this formula reduces to da(s)
dN = C (∆KI(s))

n
in pure323

mode I so that the constants C and n are the classical Paris exponents, which are known for a wide range324

of materials (Fleck et al., 1994).325

The energy-release-rate G at the tip of the CZ can be obtained using Eqs. 13 and 12. The result reads,

using the notations of Eqs. 15 and 16:

da

dN
= Ceff

(

E

1− ν2
∆G(0)

)n/2

(21)

where the effective Paris’ coefficient Ceff can be determined by:

(

Ceff

C

)2/n

= G∗. (22)

This permits to extend Paris’s classical law in mode I to mixed-mode situations without introducing326

additional material constants. In this view the influence of mode mixity on crack propagation arises only327

from its effect on the facet geometry.328

5.2. In brittle fracture329

Assume now that crack propagation becomes possible only once Griffith’s threshold is reached:

G = Gc (23)

where Gc = 1−ν2

E K2
c , Gc and Kc denoting the classical fracture energy and toughness respectively. These330

quantitites are classical material constants which are known for a wide range of materials (Ashby, 1989).331

The loading C0 needed for coplanar propagation of the crack is given by G(0) = Gc, and the effective

energy-release-rate for the same loading in the presence of facets is G∗G(0). Denote λ C0 the loading needed

to propagate the facets tips. For this loading, the effective energy release rate is G = λ2G∗G(0) (use the

linearity of Kp with λ and Irwin’s formula (Eq. 13)). Over a period of dimension 2d, the energy released

per unit distance of propagation is 2dG = 2dλ2G∗G(0), and this energy must balance a fracture energy of

2ℓGc. It follows that

λ =

√

ℓ

d

1

G∗
(24)
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This factor λ depends, like G∗ defined in Eqs. 14 and 16, on the facet geometry (α, ℓ/d, η), Poisson’s ratio ν332

and the mixity factor β. Since G∗ ≤ 1 (Fig. 7), while ℓ
d is generally observed to be close to or greater than333

1, λ is larger than 1. This factor thus appears as a toughening factor for fracture under mixed mode I+III334

loading.335

5.3. Some results336
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Figure 11: Dependence of the effective Paris rate Ceff with η and Γ0 (independence with ν is verified through G∗ evidenced in

Fig. 7). In all the figures, β = 1
2
tanΓ0 and α = Γ0.

In Fig. 11, the effective Paris propagation rate Ceff is given in the form of the quantity
(

Ceff

C

)2/n
= G∗,337

independent of Paris’ coefficients C and n, as a function of ℓ/d for different values of η and Γ0; Γ0 here refers338

to the experiments described in section 1 for which the values β = 1
2 tanΓ0 and α = Γ0 can be considered339

as good approximations. These plots are almost independent of Poisson’ ratio ν (see Fig. 7). One notices340

that:341

• Ceff < C, which means that the facets lower the propagation rate at fixed loading amplitude. In other342

words, the facets enhance the fracture resistance or have a toughening effect on fatigue propagation.343

This effect is due to the existence of ligaments between the facets which hinder their opening.344

• Ceff/C, which characterizes the propagation rate da
dN at fixed ∆G(0), decreases to zero together with345

the facet width ℓ for a given wavelength d and coalescence rate η. This is linked to the fact that the346

opening of the facets decreases with the facet width ℓ (for fixed loading).347

• At fixed Γ0 and ℓ/d, Ceff decreases together with the coalescence rate η. Like before, this is because348

the opening of the facets is more difficult for smaller values of η.349
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• The influence of Γ0 on Ceff is weak as long as ℓ/d < 0.8, that is when the interactions between the350

facets remain low. This can be linked to the fact that with α = Γ0, the facet orientation relative351

to the remote loading is the same for all values of Γ0 so that the effective loading at the facet tip is352

nearly the same. When ℓ/d > 0.8, interactions between facets start to have an impact which lowers353

the propagation rate when Γ0 increases.354

• Enhanced fracture resistance has been observed by Eberlein et al. (2017) in agreement with our model.355

Quantitative comparison with experiments necessitates however in-situ observations of crack propaga-356

tion to get an estimate of ℓ/d. Final crack profiles such as those measured in Cambonie and Lazarus357

(2014) or Eberlein et al. (2017) are not sufficient since the ligaments are then broken, erasing any trace358

of their former shape.359
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Figure 12: Dependence of the effective critical loading for fracture λ upon ℓ/d for several values of η and Γ0 (independence

with respect to ν is verified through G∗, see Fig. 7). In all the figures, β = 1
2
tanΓ0 and α = Γ0.

While Fig. 11 concerns fatigue propagation, Fig. 12 relates to brittle fracture and gives the factor λ as360

a function of ℓ/d for the same values of β and α. One can draw similar conclusions:361

• The presence of facets and the existence of unbroken ligaments enhance the fracture threshold yielding362

λ > 1.363

• As the opening of the facets decreases at fixed loading when the facet width decreases, one gets for a364

given value of Γ0, an increase of λ when η decreases at fixed ℓ/d, or when ℓ/d decreases at fixed η.365

• The influence of Γ0 on λ becomes significant only when ℓ/d > 0.8, that is when the interactions366

between the facets are stronger.367
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• Quantitative comparison with experiments necessitates in-situ observations of crack propagation to get368

an estimate of ℓ/d. This requires quasistatic propagation, that is a setup allowing stable propagation369

of the crack, which cannot be achieved straightforwardly using the 4PB setup of section 1.370

6. Perspectives371

Let us draw some perspectives by scrolling back the story from the end. We have seen that the above372

method permits to quantify the toughening effect by providing Ceff and λ, knowing the facet geometry373

though the constants α, c/d and η and the classical fracture constants Gc, n and C. To be fully efficient374

and avoid the introduction of additional material constants, the facet geometry must be determined from375

knowledge of the fracture constants. The determination of α has been discussed in §4 and deserves further376

studies. The determination of η remains an unresolved issue but fortunately, it is less crucial since Ceff and377

λ depend weakly on this parameter (at least in the limit of our model, that assumes η ≪ 1).378

The determination of the c/d relies on consideration of propagation of the lateral tips under the same

classical rules as the front tip. That is to say, dc
dN = C

(

E
1−ν2∆g

)n/2

in fatigue and g = Gc for brittle

fracture, where g is the energy-release-rate at the lateral tips. The value of g can be obtained from the

solution of the internal problem by accounting for Eq. 3 in Eq. 13:

g = 2d
1− ν2

E

[

FI
λ

( c

d
, α

)2

σ∞

λ
2 + FII

λ

( c

d
, α

)2

σ∞

λ
2

]

(25)

However the use of this formula is legitimate only if: (i) the lateral extension of the facets is independent of379

the propagation in the X−direction (see Fig. 2) so that the 2D propagations in the internal and external380

problems are uncoupled; (ii) facets remain straight as they propagate, without any en-passant S-shape.381

If these hypotheses are not satisfied, numerical simulations (Chen et al., 2015; Henry, 2016; Pham and382

Ravi-Chandar, 2017; Lo et al., 2019) may be used.383

7. Conclusion384

Segmentation of the crack front frequently occurs during the propagation of a mode III loaded crack.385

The unbroken ligaments between the segments/facets by hindering the crack opening, reduce the effective386

load of the crack tips hence induce an apparent toughening. Using a multiscale cohesive zone model, we387

achieved to quantify this effect by providing two toughening factors Ceff and λ, in fatigue and brittle fracture388

respectively, as a function of the facet geometry. The model involves some functions Fp
λ related to an array389

of tilted parallel cracks loaded remotely. Herein, the corresponding elasticity problem has been solved using390

XFEM calculations, extending previous results (Leblond and Frelat, 2014) to overlapping facets and larger391

tilt angles, in order to deal with more realistic cases.392
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This approach derived in the framework of linear elastic fracture mechanics, is valid at any length scales393

above the size of the material heterogeneities and of the process zone. It thus covers a wide range of394

observations going basically from the millimeter to any larger scale provided that (i) no ligaments have395

formed between the facets, (ii) the bending of the facets can be neglected, (iii) the facets are slender enough396

to separate the initial 3D problem using asymptotic expansion into two 2D problems: one at the microscale,397

the other at the macroscale.398

This approach deserves extensive comparison with experiments specifically designed for this purpose.399

This will be the goal of a companion paper on the 4PB experiments described in section 1.400
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Appendix A. Computation of periodic cracks distribution using XFEM coupled with hierar-508

chical mesh refinement509

Appendix A.1. 2-Dimensional Linear Elastic Fracture Mechanical problem510

Like in the paper of Leblond and Frelat (2014), a 2D infinite periodic array of inclined cracks is considered511

(Fig. 3(a)). The two geometric parameters characterizing the problem are:512

• the tilt angle: α,513

• the ratio of crack length along x1 to the period: c
d .514

Three elementary loadings (σ∞

1 , σ∞

2 and σ∞

3 ) may be considered, and then, thanks to linearity of the

problem, the stress intensity factors kI and kII can be expressed as functions of these three loadings:

kp =
√
2d

∑

i

Fp
i

(

α,
c

d

)

σ∞

i (A.1)

for p = I, II and i = 1, 2, 3.515

The factor
√
2d is chosen instead of the factor

√

2d tan(πc/2d) of Leblond and Frelat (2014) because it516

is limiting the possible range of c/d to values less than 1.517

Appendix A.2. Finite Element computations518

Periodicity enables to limit the spatial domain to x1 ∈ [0 − 2d] (with the (x1, x2)-frame depicted on519

Fig. 3(a)). Along x2, the domain is limited at ±10d, which has been found sufficiently large to be considered520

as an quasi-infinite boundary.521

The aim of finite element computations is to determine accurately the six functions Fp
i (α,

c
d ). To this522

end, a parametric study is performed for α ∈ [0◦ − 45◦] and c
d ∈ [0− 1.4]. To avoid intersecting cracks, the523

range of α is limited to [5◦ − 45◦] for c
d ≥ 1.524

A ”classical” Finite Element approach for parametric study would be to create a procedure enable to525

generate a parametric mesh conforming the cracks location for every combination of α and c
d . However526

creating such a procedure is a burden if one wish to verify at the same time:527

• a sufficiently rough mesh size away from crack tip to maintain the computational time reasonable,528

• a sufficiently fine mesh size at crack tips vicinity to ensure an accurate solution,529

• a regular mesh around crack tip enabling an accurate computation of interaction integrals (necessary530

to determine the stress intensity factors),531

• and a symmetric mesh to facilitate the imposition of periodic boundary conditions and the interpre-532

tation of results,533
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for all considered situations.534

Conversely, the XFEM combined with a hierarchical mesh refinement is found to be a very easy way535

to perform the present parametric study at the condition to elaborate the numerical model rigorously. In536

parallel to the present work, such an approach has been followed to compute mixed-mode crack propagation537

in Gibert et al. (2019). The procedure describes hereafter has been implemented in Cast3M CEA (French538

Atomic Commission) (2017) software and tends to prove its efficiency.539

1. First a regular mesh composed of quadrilateral elements is generated for the sane structure and a540

line-mesh defining the cracks location is also created (Fig. 13(a))541

2. A hierarchical mesh refinement procedure is performed in order to get a suitable mesh size at the542

crack tip. Figures 13(b), 13(c) and 13(d) represent three levels of mesh refinement adopted to check543

convergence of computations. The mesh size vary between d
8 to d

64 for the first one, between d
20 to544

d
160 for the second one, and between d

40 to d
640 for the finest one. This last mesh is the one used as545

reference and to plot the curves representing the F -functions.546

3. Level sets function φ(x) and ψ(x) are computed at nodes sufficiently close to the crack geometry and

define the local frame at the crack tip. This explicit/implicit crack description is presented in Prabel

et al. (2011) The XFEM approximation of displacement is adopted to include the presence of cracks:

u(x) =
∑

i

Ni(x)U i +
∑

i∈IA

Ni(x)H(x)Ai +
∑

i∈IB

∑

j

Ni(x)Fj(x)Bij (A.2)

with the enrichment functions H = sign(φ), F1 =
√
r sin(θ/2), F2 =

√
r sin(θ/2) sin(θ), F3 =547

√
r cos(θ/2) and F4 =

√
r cos(θ/2) sin(θ), and where I is the set of all nodes, and IA and IB de-548

notes two well-chosen sets of nodes to be enriched.549

4. Stiffness matrix, conformity relations and boundary conditions are created.550

As the enrichment lays only in the finest zone, conformity relations only concern the ”standard”

degree-of-freedom of hanging nodes:

UHanging =
1

2
U1 +

1

2
U2 (A.3)

where the hanging node is at the center of the segment constituted of nodes 1 and 2.551

Periodicity of the solution have to be written carefully because of XFEM enrichment. Defining as I0

and I2d the set of nodes lying respectively at x1 = 0 and x1 = 2d, it can be shown that the kinematic

relations involving only U and A degrees-of-freedom to be imposed for this particular problem are:

u(x1 = 0, x2)− u(x1 = d, x2) = −ǫ∞ · 2de1 (A.4a)
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U i − U j = −ǫ∞ · 2de1
for i ∈ (I \ IA) ∩ I0

and j ∈ (I \ IA) ∩ I2d

U i + sign(φi)Ai − U j − sign(φj)Aj = −ǫ∞ · 2de1
for i ∈ IA ∩ (I0 \ {xi : xi 2 = 0})

and j ∈ IA ∩ (I2d \
{

xj : xj 2 = 0
}

)










U i − U j = −ǫ∞ · 2de1

Ai −Aj = 0

for i ∈ I0 ∩ {xi : xi 2 = 0}

and j ∈ I2d ∩
{

xj : xj 2 = 0
}

(A.4b)

5. Defining the homogeneous boundary strain loading vector {ǫ} =
{

ǫ∞1 ǫ∞2 ǫ∞3

}T

(see Fig. 14(a)552

for orientation), three elementary loadings are constituted: {ǫ}1 =
{

1 0 0
}T

, {ǫ}2 =
{

0 1 0
}T

553

and {ǫ}3 =
{

0 0 1
}T

.554

Linear elastic problems are solved (Fig. 14(b)) and equivalent homogeneous boundary stress loadings555

{σ} =
{

σ∞

1 σ∞

2 σ∞

3

}T

are deduced for the three loadings.556

6. The two interaction integrals are computed to evaluate the two stress intensity factors. G-θ method557

is applied for five domains of integration to check its consistency. The range of variation is found to558

be less than 0.025% in average for the finest mesh studied.559

7. Value of the six functions Fp
i , i = 1, 2, 3, p = I, II are finally deduced by solving the two linear

systems:
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K1
p

K2
p

K3
p











for p = {I, II} (A.5)

Appendix A.3. Numerical results560

Evolution with angle α of functions Fp
i taken for equally spaced values of c

d are given Fig. A.14561

Evolutions are difficult to predict with analytical model in the whole range considered. This is particularly562

true for c
d between 0.8 and 1.0 and small value of α, because the two crack tip interact strongly and change563

deeply the nature of the solution.564

Compared to Leblond and Frelat (2014), computations have been led for a wide range of parameters and565

enables an accurate implementation in the cohesive zone model.566
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(a) Initial mesh of the struc-

ture and of the crack

(b) Refined mesh (c) very Refined mesh (d) very very Refined mesh

Figure A.13: Combination of XFEM and hierarchical mesh refinement

(a) Elementary homogeneous boundary strain

loadings

(b) Deformed mesh resulting

from the the first loading ǫ∞1
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)
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