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Abstract

The main objective of this work is to estimate the compliance contribution tensor of the concave pore inhomogeneity
surrounded by a transversely isotropic matrix. In this light, we make use of a recently developed adapted boundary
conditions based Finite Elements Method to incorporate the matrix anisotropy and the correction of the bias induced
by the bounded character of the mesh domain, which allows to accelerate the computation convergence without
sacrificing its accuracy. The correction of the boundary conditions is given as functions of the Green tensor and
its gradient as dependent on the anisotropic elasticity of the matrix material, which are rigorously calculated by
means of the Fourier transform based integral method in particular for regularizing the singularities on the symmetric
axis of the transverse isotropy. Simultaneously by complying with the numerical homogenization technique, the
compliance contribution tensor is computed for different forms of pores (e.g. superspheroidal and superspherical
ones, etc) embedded in an transversely isotropic matrix. The proposed numerical method is shown to be efficient and
accurate after several appropriate assessment and validation by comparing its predictions, in some particular cases,
with analytical results and some available numerical ones. Finally, the effect of the pore concavity on the compliance
contribution tensor is quantitatively illustrated.

Keywords: Pore inhomogeneity, Transversely isotropic matrix, Supersphere, Superspheroid, Concavity,
Contribution and concentration tensors, Numerical homogenization method

1. Introduction

This paper focuses on the analysis of the effect of a concave pore in a transversely-isotropic material on its overall
elastic properties. For this goal we calculate compliance contribution tensors of concave pores (superspherical and
superspheroidal) using adapted boundary conditions based Finite Elements Method and evaluate effect of the pore
concavity. The work is motivated by multiple experimental observations on irregular character of pores shape in vari-
ous natural and man-made materials. Particular attention could be payed on the SEM images of Grgic (2011) showing
the concave pores between the calcite grains in the oolitic limestone present (see also Emmanuel and Walderhaug
(2010) for sandstones and Wark et al. (2003) in the case of the harzburgites), which could be described by introducing
an concavity-convexity factor proposed by Sevostianov et al. (2008).
While the pores and inhomogeneities of irregular shape are typical for materials studied by various branches of nat-
ural science, analytical modeling of the properties of materials with microstructures formed by inhomogeneities of
non-ellipsoidal shape has not been well developed. The inhomogeneities are typically assumed to be ellipsoids of
identical aspect ratios and analytical micromechanical approximations of effective properties are based on the classi-
cal Eshelby solution for ellipsoidal inhomogeneities Eshelby (1957, 1961). This approximation is largely responsible
for the huge gap between methods of micromechanics and materials science applications. The reason for this lack

∗Corresponding author
Email address: Long.Cheng@univ-lorraine.fr (L. Cheng)

Preprint submitted to International Journal of Engineering Science April 21, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S002072252030094X
Manuscript_1f67c45a055f07b29bffa6ec770e1d7e

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S002072252030094X
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S002072252030094X


is quite obvious: while for 2-D non-elliptical inhomogeneities the technique for evaluation of elastic fields associ-
ated with a single inhomogeneity is well developed (see Kachanov et al. (1994); Tsukrov and Novak (2002, 2004);
Lanzoni et al. (2019)) only few analytical results are available for non-ellipsoidal 3-D shapes (see discussion in the
book Kachanov and Sevostianov (2018)). Argatov and Sevostianov (2011) calculated stiffness contribution tensor
of an absolutely rigid thin toroidal inhomogeneity, Kachanov and Sevostianov (2012) obtained analytical solutions
for compliance contribution tensors of a crack growing from a pore and a cracks with partial contact between the
faces, Krasnitskii et al. (2019) evaluated elastic fields associated with a rigid torus. Several results have been obtained
combining numerical and analytical techniques.Trofimov et al. (2017b) used finite element calculations to analyze
the effect of shape of several representative convex polyhedra on the overall elastic properties of particle-reinforced
composites. Trofimov et al. (2017a); Trofimov and Sevostianov (2017) quantified effect of waviness of a helical fiber
and its elastic properties on the property contribution tensors of such a fiber. In the context of inhomogeneities of
concave shape, analytical approximation of compliance contribution tensor of a superspherical pore was first obtained
by Sevostianov and Giraud (2012) using numerical results of Sevostianov et al. (2008). Their result was corrected by
Chen et al. (2015) using higher accuracy numerical estimates. Sevostianov et al. (2016a); Chen et al. (2018) consid-
ered other types of concave pores. Trofimov et al. (2018) analyzed elastic fields associated with an inhomogeneity of
superspherical pore. These results were used to calculate overall elastic properties of materials with multiple concave
pores: oolitic rock (Kalo et al. (2017); Giraud and Sevostianov (2013)) and 3 − D printed S i3N4 ceramics Lurie et al.
(2018). In all of the above mentioned works, it was assumed that the representative elementary volume is an infinite
domain (similarly to the Eshelby’s hypotheses), which induces in practice, especially for the numerical estimations,
some expensive time consuming cost due to the volume size and the mesh refinement. This can be overcame by a
recently proposed adapted boundary condition method (Adessina et al. (2017)) dedicated to the numerical resolution
of the arbitrary shaped inhomogeneity problem. Consequently, the resulting predictions can be found to converge for
a relatively small matrix domain and the process is shown to be less time consuming by holding a sufficiently accurate
precision. The corrected boundary conditions in this method depend on the elastic properties of the matrix and the
method, initially formulated for isotropic matrix only, is extended in the present paper to the case of a transversely
isotropic matrix.

This paper is organized as follows. In Section 2, the classical Eshelby problem is reformulated for an inhomogene-
ity embedded in a finite transversely isotropic matrix by introducing the Green tensor based correction of boundary
conditions. It is then applied in Section 3 to the numerical homogenization method for the computation of the con-
tribution tensors. Next, we assess and validate the proposed method in Section 4 by comparing its predictions with
the analytical and available numerical results to systematically justify its efficiency and accuracy with respect to the
material anisotropy and the pore concavity. The whole procedure leads to some numerical estimations, as presented
in Section 4, in the cases of the superspheroidal and superspherical voids planted in the transversely isotropic matrix.
Particular attention should be payed to the significant combined effect of the material anisotropy and the shape of pore
especially when it is concave. We finally present some concluding remarks in Section 6.

2. Green tensor based correction of boundary conditions

In Eshelby’s footsteps Eshelby (1957), let us consider an infinite domain Ω comprising a matrix surrounding an
inhomogeneity E of arbitrary shape. The matrix is linear elastic of homogeneous stiffness tensor denoted by C0 and
the inhomogeneity is also linear elastic but not necessarily homogeneous. Before specifying the work to a transversely
isotropic behavior of the matrix embedding a porous concave domain, it is worth noticing that the main results of this
section remain theoretically valid in the most general case of anisotropy of the matrix as well as arbitrary shape and
internal heterogeneity of E. The infinite domain Ω is submitted to the Hashin-type boundary condition:

ξ(x) ∼
‖x‖→∞

E.x (1)
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where ξ is the displacement field at the position x and E denotes the remote homogeneous strain. The above mentioned
problem is described as:

(P)unbounded



div (σ(x)) = 0 (x ∈ Ω)

σ(x) = C(x) : ε(x) (x ∈ Ω)

ε = 1
2

(
gradξ + tgradξ

)
(x ∈ Ω)

ξ(x) = E.x (x ∈ ∂Ω)

(2)

By introducing the polarization tensor
p = (C(x) − C0) : ε(x) (3)

which is non-zero only in the inhomogeneity E, one has the displacement solution of Eq.(2) Sevostianov and Kachanov
(2011); Adessina et al. (2017); Barthélémy et al. (2019):

ξ(x) = E.x +

∫
x′∈E

gradG0(x − x′) : p(x′) dΩx′ (4)

where G0 is the second-order Green tensor of the infinite matrix of elasticity C0. The first term in the r.h.s. of Eq.(4)
represents the remote displacement field and the second one corresponds to the disturbance caused by the inhomo-
geneity.

The idea then is to derive from Eq.(4) a Taylor expansion of the displacement for remote values of x that could be
eventually used at relatively large but finite distance (for instance at a mesh boundary in a Finite Element computation)
where the sole higher order of the asymptotic behavior (i.e. E.x) may lack of accuracy. For this purpose it can first be
noticed that the following approximation is relevant when ‖x‖ � ‖x′‖:

G0(x − x′) ∼
‖x‖→∞

G0(x) ∀x′ ∈ E (5)

Consequently, Eq.(4) can be recast into (see also Sevostianov and Kachanov (2011)):

ξ(x) = E.x+ | E | gradG0(x) : P (6)

where P defines the average polarisation tensor inside the inhomogeneity which is given as:

P = 〈σ〉E − C0 : 〈ε〉E (7)

with
〈ε〉E =

1
| E |

∫
x′∈E

ε(x′) dΩx′ (8)

being the average strain field of the inhomogeneity.

2.1. Correction of boundary condition for a finite domain
We focus henceforward on a finite domainD with a matrix containing an inhomogeneity E. Note once again that

the following developments do not require any limitation on the material symmetry of the matrix nor on the shape
or content of the inhomogeneity By taking into account Eq.(6), one has the so called bounded problem expressed as
follows:

(P)bounded



div (σ(x)) = 0 (D)

σ(x) = C(x) : ε(x) (D)

ε = 1
2

(
gradξ + tgradξ

)
(D)

ξ(x) = E.x+ | E | gradG0(x) : P (∂D)

(9)
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It can be considered as the superposition of two elementary linear elastic problems with different boundary conditions,
which can be respectively described as:

(P)E
bounded



div (σ(x)) = 0 (D)

σ(x) = C(x) : ε(x) (D)

ε = 1
2

(
gradξ + tgradξ

)
(D)

ξ(x) = E.x (∂D)

(10)

and

(P)P
bounded



div (σ(x)) = 0 (D)

σ(x) = C(x) : ε(x) (D)

ε = 1
2

(
gradξ + tgradξ

)
(D)

ξ(x) =| E | gradG0(x) : P (∂D)

(11)

By separately solving the subproblems (P)E
bounded and (P)P

bounded, one has:

〈ε〉E = AE : E, 〈σ〉E = BE : E (12)

〈ε〉P = Ap : P, 〈σ〉P = Bp : P (13)

where AE , BE , Ap and Bp are the strain and stress concentration tensors in the (P)E
bounded and (P)P

bounded problems,
respectively.
Due to their linearity, the solution of the initial problem (P)bounded (i.e. Eq.(9)) can be obtained by the following
superposition:  〈ε〉E = AE : E + Ap : P

〈σ〉E = BE : E + Bp : P
(14)

Next, by inserting Eq.(14) into (7), one obtains:

P = D : E (15)

with

D =
(
I − Bp + C0 : Ap)−1 :

(
BE
− C0 : AE) (16)

Consequently, Eq.(14) can be rewritten as: 〈ε〉E = AE0 : E, AE0 = AE + Ap : D

〈σ〉E = BE0 : E, BE0 = BE + Bp : D
(17)

where AE0 and BE0 are respectively the average strain and stress concentration tensors of the bounded problem (P)bounded
(see also Eq.(9)).
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2.2. Determination of elastic compliance and stiffness contribution tensors

As recalled in Kachanov et al. (1994); Sevostianov and Kachanov (1999); Sevostianov and Giraud (2013), the
compliance and stiffness contribution tensors denoted respectively by HE0 and NE0 allow to calculate the extra strain
and stress induced by the presence of the inhomogeneity in a dilute situation such that

∆ε = f HE0 : Σ, ∆σ = f NE0 : E with f =
| E |

| Ω |
(18)

where Σ is the remotely applied stress and as aforementioned, E is the remotely applied strain. Moreover, by applying
the consistency laws ensuring that Σ and E are also the average stress and strain within a representative elementary
volume, it is useful to notice that the extra stress can be expressed by means of the averages of stress and strain within
the inhomogeneity phase in the second term of the r.h.s. of the following decomposition

Σ = C0 : E + f
(
〈σ〉E − C0 : 〈ε〉E

)
(19)

Eq.(19) casts a new light on the definition of the average polarisation tensor in (16) and consequently on the stiffness
contribution tensor NE0 which is approximated here by no other than D introduced in Eq.(15) and related to the partial
concentration tensors in Eq.(16)

NE0 = D =
(
I − Bp + C0 : Ap)−1 :

(
BE
− C0 : AE) (20)

In the general case of non ellipsoidal shapes, contribution and concentration tensors related to an inhomogeneity need
to be calculated numerically as it is presented in this paper (see also in Eroshkin and Tsukrov (2005) details on such
calculations). Here whereas the average concentration tensors AE0 and BE0 are estimated by Eq.(17), the contribution
ones HE0 and NE0 can be interrelated as:

HE0 = −S0 : NE0 : S0, NE0 = −C0 : HE0 : C0 (21)

2.3. Case of a transversely isotropic matrix

The practical implementation of the reasoning presented in the previous paragraphs relies on the calculation of the
Green tensor and its gradient in the problem of Eq.(11). In the sequel a transversely isotropic matrix is particularly
considered. It is worthy to point out that the three dimensional (3D) solution of G0 as well as its gradient gradG0 in
the case of transversely isotropy could be analytically calculated by using the results published in literatures Elliott
(1948); Yoo (1974); Pan and Chou (1976); Mura (1987); Karapetian and Kachanov (1998); Pouya (2007a, 2011);
Kachanov and Sevostianov (2018). However, some of them might present accuracy problems. The misprint and an
apparent degenerate case, as quoted by many authors, in Pan and Chou solution Pan and Chou (1976) were corrected
by Pouya (2007a, 2011). It can also be observed that the gradient gradG0 obtained by Pan and Chou (1976); Pouya
(2007a) are singular on the symmetry axis e3. In this paper, the Green functions G0

i j as well as their gradients G0
i j,k, are

calculated on the one hand by using the solution given in Pouya (2007a) that is also brievely recalled in Appendix B.3,
and on the other hand by applying a Fourier transform based integration in order to overcome the singularity problem
on the symmetry axis e3. The latter is described in Appendix B.2 and validated by comparison with Pouya’s solution
Pouya (2007a)1. Note that the Gaussian integration rule is adopted in the proposed Fourier transform integral based
method that is shown to be very efficient and robust in the corresponding numerical implementations and applications.
It must be emphasized that the Fourier transform based solution, for the Green tensor and its gradient is valid in the
general anisotropic case including all others classes of symmetry.

1This comparison is made except for the gradient G0
i j,k on the symmetry axis due to the singularity of the reference solution derived from Pouya

(2007a).
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2.4. Case of an homogeneous inhomogeneity

The previous developments, leading to the construction of concentration tensors in Eq.(17) and contribution ten-
sors in Eq.(20) and (21) from the partial tensors in Eq.(12) and (13), apply to an arbitrary inhomogeneity in terms
of shape or content that is possible made of heterogeneous material. However, it may be interesting for practical
implementation to examine how these tensors write in the case of an inhomogeneity of uniform stiffness tensor CE.
First it is clear that the partial concentration tensors are related by BE = CE : AE and Bp = CE : Ap. It follows that
Eq.(20) becomes:

NE0 = D =
(
(CE − C0)−1

− Ap)−1
: AE (22)

The relationships between the compliance and stiffness contribution tensors as expressed in Eq.(21) still hold as well
as the concentration tensors AE0 and BE0 in Eq.(17) with D = NE0 given by Eq.(22). However they can alternatively be
written here:

AE0 = (CE − C0)−1 : NE0 , BE0 = CE : AE0 (23)

2.5. Case of an ellipsoidal homogeneous inhomogeneity

The ellipsoidal homogeneous inhomogeneity is of particular interest in the present since analytical expressions of
contribution and concentration tensors are available and can then further be compared to the numerical ones to validate
the methodology in Section 4.1.In the particular case of an ellipsoidal inhomogeneity E embedded in an infinite matrix
0 of stiffness C0 and compliance S0 tensors, compliance HE0 and stiffness NE0 contribution tensors write (see Kachanov
et al. (2001); Kachanov and Sevostianov (2018) for details) :

HE0 =
[
(SE − S0)−1 + QE0

]−1
, NE0 =

[
(CE − C0)−1 + PE0

]−1 (24)

where PE0 and QE0 denote the fourth order Hill’s tensors Hill (1965) of the inhomogeneity. Strain concentration tensor
of the ellipsoidal inhomogeneity writes

AE0 =
[
I + PE0 : (CE − C0)

]−1
(25)

3. Numerical framework of the compliance contribution tensor estimate

This section deals with the numerical procedure for the computation of the compliance contribution tensors HE0 .
For the sake of keeping this work focused and concise, we especially consider the inhomogeneity in the case of pore
(denoted also by E) that is surrounded by a bounded domainD with a transversely isotropic matrixDM = D\E. Note
again that the matrix anisotropy is defined around the axis e3 in Cartesian system. Different shapes of the pore, in
particular the concave ones, will be considered in the present work whose 3D geometries are realized by adopting a
user-defined Matlab script. Moreover, as will be detailed in the following part of this section, the bounded domain
will be represented either by a spherical model or a cubic one. They are meshed by utilizing the Netgen software
(Schöberl, 1997) with quadratic 3D elements (C3D10) that are compatible with the Finite Elements computations via
Abaqus/Standard software (Smith, 2009). Furthermore, the boundary conditions on the external surface ∂D are given
by Eq.(9) that could be decoupled in Eqs.(10) and (11). As a consequence, the numerical procedure will be carried
out simultaneously in two parts and through 8 different numerical computations. More specifically,

• for (P)E
bounded problem, different boundary strain fields are respectively defined for two simple tension loadings

in the directions of e1 (i.e. E = E0e1 ⊗ e1) and e3 (i.e. E = E0e3 ⊗ e3), and two simple shear loadings in the
planes of e1 − e2 (i.e. E = E0(e1 ⊗ e2 + e2 ⊗ e1)) and e1 − e3 (i.e. E = E0(e1 ⊗ e3 + e3 ⊗ e1)) with an arbitrary
small constant amplitude E0 = 10−5. The displacement field subjected on the external boundary is calculated
by

ξE
i = Ei j x j (26)
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• for (P)p
bounded problem, four analogical computations are realized: two simple tractions with polarization tensor

P = P0e1 ⊗ e1 and P = P0e3 ⊗ e3, and two simple shear loadings with P = P0(e1 ⊗ e2 + e2 ⊗ e1) and
P = P0(e1 ⊗ e3 + e3 ⊗ e1). A normalized value of P0 is taken as 1GPa in the numerical computations. The
displacements subjected on the external boundary are given by

ξP
i =| E |

∂Gi j

∂xk
Pk j (27)

It is important to emphasize that the proposed method can be applied to any form of the bounded media with trans-
versely isotropic matrix2. We display in Fig. 1(a) the spherical model comprising the ellipsoidal pore represented by
its 1/8 geometry, which is described as( x1

a

)2
+
( x2

a

)2
+
( x3

c

)2
= 1 s.t. x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 (28)

with a and c being the major and minor radii, respectively. It can be readily obtained that the aspect ratio γ = c/a.
Moreover, the superspherical and axisymmetrical superspheroidal shapes are considered as two promising can-

didates to comply with the benchmarking representation of the pore concavity, whose geometries are respectively
expressed as: ∣∣∣ x1

a

∣∣∣2p
+

∣∣∣ x2

a

∣∣∣2p
+

∣∣∣ x3

a

∣∣∣2p
= 1 (29)

and (
x2

1 + x2
2

a2

)p

+

∣∣∣ x3

a

∣∣∣2p
= 1 (30)

where p is the concavity parameter, a and c are the radii of the principal axes. Note that both the superspherical and
axisymmetrical superspheroidal pores are concave when p < 0.5 and convex if p > 0.5.
Note that for the sake of efficient mesh generation and convenient numerical homogenization that will be introduced
in next sections, we adopt the whole cubic model in the cases of concave pores (see Figs.1(b)-1(c)).

(a) (b) (c)

Figure 1: Geometries of different representative models: (a) the spherical model with ellipsoidal pore; (b) the cubic model comprising the super-
spherical pore; (c):the cubic model embedded with superspheroidal pore.

3.1. Numerical homogenization method
As the considered media being defined in a finite domain (i.e. porous media), the numerical homogenization

method is adopted in order to estimate the compliance contribution tensor H. Following Eq.(17), the strain concen-
tration tensor AE0 will be first computed. In the framework of homogenization, one has:

〈ε〉ED = E = (1 − f ) 〈ε〉EDM
+ f 〈ε〉EE

〈ε〉PD = (1 − f ) 〈ε〉PDM
+ f 〈ε〉PE

(31)

2Note also that the corrected boundary conditions can also be applied to any type of anisotropy. It probably requires supplementary simulations
and is not further pursued here.
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where f =| E | / | D | is the porosity, 〈ε〉ED and 〈ε〉PD denote the subjected macroscopic strain respectively for the
(P)E

bounded and (P)P
bounded problems, 〈ε〉EE , 〈ε〉PE, 〈ε〉EDM

and 〈ε〉PDM
are the corresponding average strains in the porous

phase and those in the matrix phase.
Following the Gauss theorem, 〈ε〉PDM

can be computed as an integral over the external boundary ∂D:

〈
εi j
〉P
D

=
1

2 | D |

M∑
m=1

(
ξP

i n j + niξ
P
j

)(m)
S (m) (32)

whereM is the total number of the surface elements and S (m) is the area of the m-th one.〈
εi j
〉E
DM

and
〈
εi j
〉P
DM

can be obtained, respectively for the (P)E
bounded and (P)P

bounded problems, by averaging the matrix
strains of the elements as: 〈

εi j
〉
DM

=
1

| DM |

N∑
n=1

εi jVn (33)

with N being the total number of the volume elements and V (m) giving the volume of the n-th one.
Having in hand the above computed quantities, the average strain field in the porous phase can be obtained as:

〈ε〉EE =
E − (1 − f ) 〈ε〉EDM

f

〈ε〉PE =
〈ε〉PD − (1 − f ) 〈ε〉PDM

f

(34)

3.2. Strain concentration tensor and compliance contribution tensor

In this section, the strain concentration tensor AE0 and the compliance contribution one H will be calculated based
on the numerical computation as described in Section 3.1. To this end, we aim first at computing the AE and Ap that
both have 7 independent non-zero components. More specifically, for each of them, the components denoted as A1111,
A3333, A1122, A1133 and A3311 are calculated from 2 tension and traction loadings and those of A1212 and A1313 can be
obtained from 2 shear ones. Note that the particular consideration of the pore inhomogeneity leads to the fact that
the stress concentration tensors BE and Bp both vanished. Consequently, the stiffness contribution tensor NE0 (see also
Eq.(22)) and the compliance contribution tensor HE0 can be simplified as:

NE0 = −
(
S0 + Ap)−1 : AE , HE0 = S0 :

(
S0 + Ap)−1 : AE : S0 (35)

4. Assessment and validation of the proposed numerical procedure

In this section, the estimations of compliance contribution tensor H obtained from the proposed numerical proce-
dure will be assessed and validated by comparison with the avalaible analytical and numerical results in literatures. In
this light, we systematically consider the spheroidal pores embedded in a transversely isotropic matrix as well as the
superspherical ones surrounded by an isotropic matrix to respectively justify its accuracy on the anisotropy of the ma-
trix material and that on the concavity of the pores. More specifically, in the spheroid case, comparison will be made
with respect to the analytical results proposed by (Mura, 1987). Whereas in the concave superspherical cases, due
to the lack of analytical results, we compare the numerical predictions with the available FEM simulations that were
recently obtained in Chen et al. (2017); Sevostianov et al. (2016b) (see also Trofimov et al. (2018)). The transverse
isotropy of the elastic matrix material is described by the parameters as shown in Table1.

Properties of material
E1(GPa) E3 (GPa) ν12 ν31 G13(GPa)

20.44 11.31 0.1027 0.1798 1.585

Table 1: Elastic parameters for the transversely isotropic matrix
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4.1. Ellipsoid pore in the spherically bounded matrix

We consider a spherically bounded model comprising an ellipsoidal pore, due to its symmetry, whose 1/8 geometry
and mesh are illustrated in Fig.2. The corrected boundary conditions (9) and the uncorrected ones (10) will be respec-
tively subjected to the same mesh to study the efficiency and the accuracy of the proposed numerical procedure. Note
that in order to evaluate the efficiency of the numerical method with corrected boundary conditions, the computations
will be carried out by adopting different spherical models with a fixed aspect ratio γ by varying the the scale ratio a/L
between the major radius of the ellipsoid a and the the radius of the spherical model L. Each independent components
of the compliance contribution tensor Hi jkl will be numerically computed and compared with the analytical solution
Withers (1989).

Figure 2: Geometry and mesh of 1/8 spherical inclusion in the center of spherical matrix

Fig.3 illustrates the numerical estimation for each independent component of H tensor in the case of the aspect
ratio γ = 1/5. A striking observation from this figure is that in the case of transversely isotropic host matrix, the
numerical predictions obtained by switching on the correction of the boundary conditions converge more quickly than
those obtained from the classical modeling. The convergence between them can observed when a/L ' 8 and that with
corrections of boundary conditions is shown to be more efficient.
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Figure 3: Numerical estimations of Hi jkl for the ellipsoidal pore embedded in a transversely isotropic matrix with fixed aspect ratio γ = 1/5 and
different scale ratio a/L ∈ [4, 18].

Additionarilly, we show in Fig.4 the relative errors of the numerical estimations with respect to the analytical
solution Withers (1989) (recalled in appendix Appendix B). First of all, it can be readily observed that when a/L is
approximately in the range of [4, 8], the relative errors obtained from the corrected boundary conditions are shown
to be very small (as around the value of 10−4), whereas those obtained from the classical modeling is relatively
significant. It is logical and evident that the corrections of the boundary conditions allows to accelerate the numerical
convergence without degrading the computation accuracy. It may be noticed that non monotonous evolutions of

10



relative errors as function of ratio a/L may be observed for small values of a/L and components (H3333, H1122,
H1133), in the case of corrected boundary condition. In the paper Adessina et al. (2017), this aspect of the curve is
assumed to be probably due to the error compensations, and is interpreted as an compensation between the effect of
the mesh refinement and that of the boundary condition correction. By contrast, when a/L ∈ [8, 18] , the relative
errors asymptotically converge and attaining a value around 10−3. This can be interpreted as the fact that when the
scale ratio a/L is sufficiently big, the representative bounded model tends to be an infinite one such that the correction
of the boundary conditions is hence neither efficient nor useful in the numerical modeling.
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Figure 4: Relative errors of numerical computations of Hi jkl with respect to the analytical results Withers (1989) for the ellipsoidal pore embedded
in a transversely isotropic matrix with fixed aspect ratio γ = 1/5 and different scale ratios a/L ∈ [4, 18].

For completeness, we provide in Appendix D the computation results of the strain contribution tensor A in
the case of γ = 1/5 as well as some supplementary ones of the compliance contribution tensor H for some other
ellipsoidal pores such as γ = 1 (i.e. spherical pore), γ = 1/2 and γ = 1/10. By considering all of the above mentioned
computation results, the scale ratio a/L = 8 is supposed to be fixed in the next part of this work. This is of course an
approximation but will be shown as sufficiently accurate in the following numerical estimations even in the case of
cubically bounded matrix comprising a concave pore.

4.2. Superspherical pore in the cubically bounded model

This section deals with the assessment and validation of the numerical procedure by paying particular attention
to the concavity of the pore shape. In this light, we switch off the matrix anisotropy3 and consider that the pore is in
a superspherical form (see also Eq.(29)). As aforementioned, the bounded domain is represented by a cubic model
with the scale ratio a/L = 8 for the convenient mesh generation and numerical homogenization. Different geometries
and meshes are realized by varying the value of the concavity p. We show in Fig.5 an example in the case of p = 0.4
and its mesh that is sufficiently refined in the transition zone between the matrix and porous phases. Moreover, the
bounded cubic model is subjected only to the corrected boundary conditions. The predictions are compared with the
FEM results that have been published in Trofimov et al. (2018).

3In the case of isotropic elasticity of the matrix material, the Young modulus and coefficient of Poisson are respectively supposed as E = 1GPa,
ν = 0.3. Note that the computation result of the contribution tensr does not depend on their values.
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(a) (b)

Figure 5: Geometry and mesh for a cubic model comprising a superspherical pore with p = 0.4.

In Table.2, we display several numerical estimations computed with different values of the concavity p as well
as the comparisons with the available results obtained by Trofimov et al. (2018) via the classical numerical modeling
without corrections of boundary conditions. A very good agreement can be found and the relative errors are shown
to be minor especially by paying attention to the cases of p ≤ 1. In turn, it justifies that the accuracy of the proposed
numerical method is unaffected by the pore concavity.

p HFEM
1111 HFEM

1122 HFEM
1212 HRe f .

1111 HRe f .
1122 HRe f .

1212 HErr.
1111 HErr.

1122 HErr.
1212

0.2 8.066 -1.868 3.426 8.098 -1.848 3.337 0.40% 1.06% 2.66%

0.25 5.099 -1.186 2.214 5.108 -1.181 2.184 0.17% 0.42% 1.38%

0.3 3.821 -0.895 1.723 3.815 -0.893 1.712 0.16% 0.20% 0.64%

0.35 3.142 -0.742 1.493 3.136 -0.741 1.487 0.20% 0.19% 0.38%

1 2.004 -0.477 1.241 2.005 -0.477 1.241 0.03% 0.05% 0.02%

3 1.980 -0.418 1.369 2.024 -0.418 1.37 2.17% 0.04% 0.06%

Table 2: Numerical estimations for the independent components of H tensor in the case of isotropic host matrix embedded with a superspherical
pore and the comparison with the results obtained in Trofimov et al. (2018).

5. Numerical estimation in the case of concave pores

In this section, we propose to carry out the study of the compliance contribution tensor H in the case of transversely
isotropic matrix comprising concave pore to understand in more detail their combined effect. The superspheroidal and
superspherical shapes of the pores will be respectively considered by varying the concavity parameter p in a relatively
large interval such as [0.2, 5]. Again, we restrict the study, particularly in the superspheroidal case (i.e. shape verifying
the symmetry of revolution), to the assumption that the directions of the symmetry between the matrix anisotropy and
that of the pore are aligned on the same direction. In Figs.6 and 5 , we show the cubic geometries that comprising
the superspheroidal and superspherical pores as well as the corresponding surface meshes on internal boundaries.
Moreover, for the sake of prediction accuracy, the numerical computation will be carried out based on the sufficiently
refined meshes, for which the number of nodes and elements is detailed in Appendix C. Note that we keep the
material parameters fixed as previously introduced in Table.1.
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(a) (b)

Figure 6: Geometry and mesh of cubic model comprising a superspheroidal pore.

5.1. Superspheroidal pores

We provide in Table.4 the numerical estimations of each independent non-zero component of Hi jkl for the super-
spheroidal pores with different values of concavity parameter p. Since the transverse isotropy of the matrix material
and that of the superspheroidal pore are both around the e3, we can theoretically conclude that the overall response
such as the compliance contribution tensor must satisfy the equality (H1111 − H1122)/2 = H1212. This property is well
verified from the computation results that indirectly demonstrate their accuracy.
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p HFEM
1111 HFEM

1122 HFEM
1133 HFEM

3333 HFEM
1212 HFEM

1313
HFEM

1111 −HFEM
1122

2 Error1212
1

0.2 0.1004 -0.0192 -0.0520 3.6670 0.0597 0.8424 0.0598 0.16%

0.25 0.1026 -0.0212 -0.0442 1.5948 0.0619 0.4132 0.0619 0.04%

0.3 0.1068 -0.0232 -0.0395 0.9354 0.0650 0.2928 0.0650 0.01%

0.35 0.1102 -0.0248 -0.0359 0.6445 0.0675 0.2495 0.0675 0.00%

0.4 0.1128 -0.0260 -0.0331 0.4929 0.0694 0.2324 0.0694 0.00%

0.45 0.1147 -0.0270 -0.0310 0.4047 0.0708 0.2248 0.0708 0.00%

0.5 0.1159 -0.0276 -0.0293 0.3492 0.0718 0.2211 0.0718 0.00%

0.6 0.1175 -0.0284 -0.0271 0.2900 0.0730 0.2187 0.0730 0.01%

0.7 0.1182 -0.0288 -0.0258 0.2604 0.0735 0.2188 0.0735 0.01%

0.8 0.1186 -0.0291 -0.0249 0.2436 0.0738 0.2197 0.0738 0.01%

0.9 0.1187 -0.0292 -0.0243 0.2333 0.0739 0.2211 0.0739 0.01%

1 0.1187 -0.0293 -0.0239 0.2265 0.0740 0.2226 0.0740 0.01%

1.5 0.1184 -0.0293 -0.0225 0.2129 0.0739 0.2292 0.0739 0.01%

2 0.1182 -0.0294 -0.0219 0.2098 0.0738 0.2343 0.0738 0.02%

2.5 0.1181 -0.0294 -0.0214 0.2091 0.0737 0.2381 0.0738 0.01%

3 0.1180 -0.0295 -0.0211 0.2092 0.0738 0.2411 0.0738 0.02%

4 0.1180 -0.0296 -0.0207 0.2099 0.0738 0.2453 0.0738 0.02%

5 0.1181 -0.0297 -0.0204 0.2108 0.0739 0.2481 0.0739 0.02%
1 Relative error of HFEM

1111 −HFEM
1122

2 with respect to HFEM
1212

Table 3: Numerical estimation of Hi jkl for the superspheroidal pore embedded in a transversely isotropic corrected
model with different values of concavity p ∈ [0.2, 5].

Fig.7 illustrates the Hi jkl components as a function of the concavity parameter p. It can be observed that the
evolutions, in particular those of H3333 and H1313, are more important when p < 0.5. In other words, the concave form
of the porous heterogeneity has a significant effect on the compliance contribution tensor H. Whereas it becomes
qualitatively stabled when p > 0.5 (i.e. convex forms).
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Figure 7: Evolution of components Hi jkl for the superspheroidal pore embedded in a transversely isotropic matrix on the Logarithm value of the
concavity parameter log(p) such that p ∈ [0.2, 5]

5.2. Superspherical pores

We investigate the numerical estimation of Hi jkl for the superspherical pores surrounded by a cubically bounded
matrix whose geometry and mesh is illustrated in Fig.5(b). Detailed results for different values of concavity p ∈
[0.2, 5] are summarized in Table.4. First of all, it should be emphasized that the supersphere, as described in Eq.(29),
is obviously not transverse isotropic. As a consequence, the aforementioned equality in the case of superspheroidal
pores is no longer satisfied.
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p HFEM
1111 HFEM

3333 HFEM
1122 HFEM

1133 HFEM
1212 HFEM

1313

0.2 0.5401 0.9682 -0.1386 -0.1093 0.2043 0.4972

0.25 0.3391 0.6106 -0.0895 -0.0676 0.1288 0.3327

0.3 0.2521 0.4567 -0.0682 -0.0496 0.0984 0.2715

0.35 0.2052 0.3749 -0.0567 -0.0400 0.0844 0.2454

0.4 0.1770 0.3269 -0.0497 -0.0343 0.0779 0.2330

0.45 0.1589 0.2967 -0.0450 -0.0308 0.0749 0.2265

0.5 0.1460 0.2747 -0.0413 -0.0284 0.0735 0.2229

0.6 0.1337 0.2542 -0.0371 -0.0263 0.0727 0.2199

0.7 0.1269 0.2419 -0.0342 -0.0252 0.0728 0.2194

0.8 0.1229 0.2345 -0.0321 -0.0246 0.0731 0.2200

0.9 0.1204 0.2297 -0.0305 -0.0242 0.0735 0.2212

1 0.1188 0.2266 -0.0293 -0.0239 0.0740 0.2226

1.5 0.1155 0.2202 -0.0257 -0.0228 0.0764 0.2299

2 0.1149 0.2191 -0.0239 -0.0222 0.0783 0.2359

2.5 0.1150 0.2192 -0.0228 -0.0218 0.0799 0.2406

3 0.1152 0.2196 -0.0221 -0.0214 0.0811 0.2442

4 0.1158 0.2207 -0.0211 -0.0209 0.0829 0.2495

5 0.1162 0.2215 -0.0205 -0.0206 0.0841 0.2530

Table 4: Numerical estimation of Hi jkl for the superspheroidal pore embedded in a transversely isotropic corrected model with different values of
concavity p ∈ [0.2, 5].

Fig.8 shows the evolution of the Hi jkl components on the concavity parameter p. As same as the superspheroidal
cases, it can also be finally concluded that the concavity of the superspherical pore significantly affect its compliance
contribution tensor H.
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Figure 8: Evolution of components Hi jkl for the superspherical pore embedded in a transversely isotropic matrix on the Logarithm value of the
concavity parameter log(p) such that p ∈ [0.2, 5]

For completeness, the numerical evaluation of the strain concentration tensor A are reported in Appendix E.

6. Concluding remarks

In the present work, we have numerically evaluated the compliance contribution tensor of the concave pore inho-
mogeneity embedded in a transversely isotropic matrix. This has been realized by use of an original developed numer-
ical homogenization method complying with the adapted boundary conditions based method recently formulated by
Adessina et al. (2017). The proposed numerical procedure was carried out for an arbitrarily bounded representative el-
ementary volume and is shown to be efficient and accurate in the numerical modeling. By paying particular attentions
to the pore concavity and the matrix anisotropy, a major contribution of this work is found as the sufficiently exact
computation results and analysis that illustrate the significant effect of the pore concavity on the elastic properties of
the matrix.

Specifically, the adapted boundary conditions based method was extended in the context of the matrix anisotropy
thanks to the Green functions and their gradients applied in the correction of the boundary conditions, which have
been rigorously reformulated via the Fourier transform based integral method in particular by solving the singularity
problem on the axis of the transverse isotropy. Moreover, the numerical homogenization method has been utilized in
the proposed numerical procedure that has been firstly assessed and validated by comparing its predictions with the
analytical and existing numerical results in particular cases. It is then used to the investigate the effect of the concave
pore on the transversely isotropic matrix from the quantitative estimates of the compliance contribution tensor, which
was found to be of critical importance especially in the case of the concavity being less than 0.5.

Last but not least, the proposed numerical method is able to deal with any general anisotropy of the matrix material
but such a study has not been attempted here for the sake of keeping the work focused and concise. In the perspective
point of view, effective properties such as those predicted from semi-analytical homogenization models could be
developed based on the obtained numerical computations. Alternatively, new formulations of the “adapted boundary
conditions” as well as their applications in the context of non-linear homogenization may also constitute a challenging
extension.

17



Appendix A. Background

Appendix A.1. Notations
Barred letters A, C, D, Q refer to fourth order tensors, bold letters ε, σ, i refer to second order tensors, underlined

letters x, x refer to first order tensors. Einstein’s summation convention over repeated indices is used unless otherwise
indicated. ⊗, : and :: respectively represent tensor product, (dot product), contracted products on two and four indices.
i, I, J and K = I − J respectively represent the second-rank identity tensor, the fourth-rank symmetric identity tensor,
and fourth-rank spherical and deviatoric isotropic projectors (δi j denotes Kronecker delta symbol, δi j = 1 if i = j,
δi j = 0 otherwise).

a ⊗ b = ai b j ei ⊗ e j, a
s
⊗ b =

1
2
(
ai b j + a j bi

)
ei ⊗ e j, a ⊗ b = ai j bkl ei ⊗ e j ⊗ ek ⊗ el (A.1)

a : b = ai j b ji, A : B = Ai jop Bpoklei ⊗ e j ⊗ ek ⊗ el, A :: B = Ai jkl Blk ji (A.2)

a⊗b =
1
2
(
aik b jl + ail b jk

)
ei ⊗ e j ⊗ ek ⊗ el (A.3)

J =
1
3

i ⊗ i, I = i⊗i, i = δi jei ⊗ e j, Ji jkl =
1
3
δi j δkl, Ii jkl =

1
2
(
δik δ jl + δil δ jk

)
(A.4)

Appendix A.2. Fourth-order transversely isotropic tensors in Walpole tensor basis
We use in this paper the following fourth order tensor basis for transversely isotropic TI tensors (see Kunin

(1983); Walpole (1984)) and post of Sébastien Brisard on github, http://sbrisard.github.io/, entitled Decomposition
of transverse isotropic, fourth-rank tensors. By denoting n the unit vector of symmetry axis of the material, let us
introduce the second-order tensors

iN = n ⊗ n = ni n j ei ⊗ e j , iT = i − iN (A.5)

In the particular case of n = e3, (A.5) writes

iN = e3 ⊗ e3 , iT = e1 ⊗ e1 + e2 ⊗ e2 (A.6)

One introduces fourth-order tensors

E1 = iN ⊗ iN , E2 =
1
2

iT ⊗ iT , E3 =
1
√

2
iN ⊗ iT , E4 =

1
√

2
iT ⊗ iN (A.7)

E5 = iT⊗iT −
1
2

iT ⊗ iT , E6 = iT⊗iN + iN⊗iT (A.8)

It may be shown that any transversely isotropic fourth-order tensor H can be decomposed as

H =

6∑
i=1

hi Ei (A.9)

Considering symmetry axis equal to n = e3, corresponding relations with usual components write

H1111 =
h2 + h5

2
, H1122 =

h2 − h5

2
, H3333 = h1 (A.10)

H1133 =
h4
√

2
, H3311 =

h3
√

2
, H2323 =

h6

2
(A.11)
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Appendix B. Three dimensional static elastic Green function in infinite medium

Appendix B.1. Green tensor of the infinite medium and its gradient in the general anisotropic case

Appendix B.1.1. Green tensor
The general expression of the Green tensor derived from a reasoning based on the Fourier transform Mura (1987)

or plane-wave expansion Willis (1977) writes

G(x) =
1

8π2

∫
∥∥∥ξ∥∥∥=1

δ(ξ · x) K−1(ξ) dS ξ (B.1)

where δ is the scalar Dirac distribution and K(ξ) is the acoustic tensor defined from the fourth order elastic tensor C
by

K(ξ) = ξ · C · ξ (B.2)

The expression (B.1) can be further simplified by using the spherical coordinates associated to the pole x , 0 in
which the integration variable ξ writes with the variable change z = cos θ

ξ = cos θ e + sin θ uϕ = z e +
√

1 − z2 uϕ (B.3)

where e = x/ ‖x‖ and uϕ is the unit vector parametrized by ϕ describing the unit circle centered on 0 and orthogonal
to x.

Recalling that δ(λ z) = δ(z)/λ for all λ > 0, it finally comes that Bonnet (2009)

G(x) =
1

8π2 ‖x‖

∫ 2π

ϕ=0

∫ 1

z=−1
δ(z) K−1(ze +

√
1 − z2uϕ) dz dϕ =

1
8π2 ‖x‖

∫ 2π

ϕ=0
K−1(uϕ) dϕ (B.4)

Appendix B.1.2. Gradient of the Green tensor
Taking the gradient of (B.1) provides the following third order tensor

grad G(x) =
1

8π2

∫
∥∥∥ξ∥∥∥=1

δ′(ξ · x) K−1(ξ) ⊗ ξ dS ξ (B.5)

Observing now that δ′(λ z) = δ′(z)/λ2 for all λ > 0, using the definition of the derivative in the sense of distributions
(Schwartz (1966); Gel’fand and Shilov (1964)) and still adopting the spherical coordinates associated to the pole x , 0
yield the following expression

grad G(x) =
−1

8π2 ‖x‖2

∫ 2π

ϕ=0

∫ 1

z=−1
δ(z)

(
K−1(ξ) ⊗

∂ξ

∂z
+
∂K−1(ξ)
∂z

⊗ ξ

)
dz dϕ (B.6)

and finally using (B.2), (B.3) and the derivative of the inverse ( ∂K−1

∂z = −K−1 · ∂K
∂z ·K

−1)

grad G(x) =
1

8π2 ‖x‖2

∫ 2π

ϕ=0

[
K−1(uϕ) ·

(
uϕ · C · e + e · C · uϕ

)
·K−1(uϕ) ⊗ uϕ −K−1(uϕ) ⊗ e

]
dϕ (B.7)

It may be noticed that B.7 corresponds to relation 5.58 given in Mura (1987), p. 33. Fourier transform based derivation
and change of variable on the unit sphere used in this paper are similar to the ones detailed in Mura (1987).
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Appendix B.2. Exact results on symmetry axis in transversely isotropic case obtained by using Fourier transform
solution

In the particular case of transversely isotropic matrix stiffness tensor with symmetry axis x3, see relations (A.7-
A.8-A.9)

C0 =

6∑
i=1

ci Ei (B.8)

One considers a position vector located on symmetry axis

x = x3e3, ‖x‖ = r = |x3|, v =
x
‖x‖

= e3, uψ = cosψe1 + sinψe2 (B.9)

Inverse of acoustic tensor writes

K−1 =


c2(1−cos(2ψ))+2c5

c5(c2+c5) −
c2 sin(2ψ)
c5(c2+c5) 0

−
c2 sin(2ψ)
c5(c2+c5)

c2(1+cos(2ψ))+2c5
c5(c2+c5) 0

0 0 2
c6

 (B.10)

and corresponding Green function

G0
i j (x = x3e3) =

1
8 π2 ‖x‖

∫ 2 π

0
K−1

i j (uψ) dψ (B.11)

Non zero components write

G0
11 (x = x3e3) = G0

22 (x = x3e3) =
1

4 π ‖x‖
c2 + 2c5

c5 (c2 + c5)
, G0

33 (x = x3e3) =
1

2 π ‖x‖ c6
, ‖x‖ = |x3| (B.12)

and it coincides with relations (B.33-B.34).

K−1.
(
v.C0.uψ + uψ.C0.v

)
.K−1 =

2
(√

2c3 + c6

)
(c2 + c5) c6


0 0 cos(ψ)

0 0 sin(ψ)

cos(ψ) sin(ψ) 0

 (B.13)

G0
i j,k (x = x3e3) =

1
8 π2 ‖x‖2

∫ 2 π

0

([
K−1.

(
v.C0.uψ + uψ.C0.v

)
.K−1]

i j uψk − K−1
i j vk

)
dψ, ‖x‖ = |x3| (B.14)

Non zero components write

G0
11,3 (x = x3e3) = G0

22,3 (x = x3e3) = −
1

4 π ‖x‖2
c2 + 2c5

c5 (c2 + c5)
, G0

33,3 (x = x3e3) = −
1

2 π ‖x‖2 c6
(B.15)

G0
32,2 (x = x3e3) = G0

31,1 (x = x3e3) = G0
13,1 (x = x3e3) = G0

23,2 (x = x3e3) =
1

4 π ‖x‖2

√
2c3 + c6

(c2 + c5) c6
(B.16)

or, in terms of usual components

G0
11 (x = x3e3) =

1
8 π ‖x‖

3C0
1111 −C0

1122

C0
1111

(
C0

1111 −C0
1122

) , G0
33 (x = x3e3) =

1
4 π ‖x‖ C0

2323
(B.17)

G0
11,3 (x = x3e3) = −

1
8 π ‖x‖2

3C0
1111 −C0

1122

C0
1111

(
C0

1111 −C0
1122

) , G0
33,3 (x = x3e3) = −

1
4 π ‖x‖2 C0

2323
(B.18)

G0
23,2 (x = x3e3) =

1
8 π ‖x‖2

C0
1133 + C0

2323

C0
1111C0

2323
(B.19)
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Appendix B.3. Exact 3D elastic Green function in the transversely isotropic case
We briefly recall exact Green function given in Pouya (2007b). We only consider non degenerate case c̃− c3√

2
−c6 ,

0 with n = e3 (n denotes unit vector on symmetry axis of transversely isotropic material). See Pouya (2007b) for
discussion on more general and non degenerate cases.

c̃ =

√
c1 (c2 + c5)

2
(B.20)

υ1 =


(

c̃ − c3√
2

)(
c̃ + c3√

2
+ c6

)
2c1c6

1/2

+


(

c̃ + c3√
2

)(
c̃ − c3√

2
− c6

)
2c1c6

1/2

(B.21)

υ1 =


(

c̃ − c3√
2

)(
c̃ + c3√

2
+ c6

)
2c1c6

1/2

−


(

c̃ + c3√
2

)(
c̃ − c3√

2
− c6

)
2c1c6

1/2

(B.22)

υ3 =

[
c5

c6

]1/2

, υ4 =

[
c2 + c5
√

2c3 + 2c6

]1/2

(B.23)

In the particular case investigated

ζ = x.n = x3, ρ =
√

x.x − ζ2 =

√
x2

1 + x2
2 (B.24)

One defines 6 functions Rα and R∗α (α = 1, 2, 3)

Rα =

√
ρ2 + υ2

αζ
2, R∗α = Rα + υαζ (B.25)

In the non degenerate case c̃ − c3√
2
− c6 , 0

w1 =

2∑
α=1

Aα

R∗α
, w2 =

2∑
α=1

−
Aα

RαR∗2α
, w3 =

2∑
α=1

−
υ2
αA

′

α

ρ2Rα
, w4 =

2∑
α=1

c2 + c5 − c6υ
2
α

√
2c3 + c6

A
′

α

Rα
(B.26)

Aα = (−1)α
c6 −

√
2c3υ

2
α

2c1
(
υ2

1 − υ
2
2

)
υα
, A

′

α = (−1)α
√

2c3 + c6

2c1
(
υ2

1 − υ
2
2

)
υα
, α = 1, 2 (B.27)

As indicated in Pouya (2007b), the singularity on x3 axis (ρ = 0) may be removed by using the following expression
for w3

w3 = −

√
2c3 + c6

2c1R1R2 (υ2R1 + υ1R2)
(B.28)

Green function’s for the infinite transversely isotropic medium writes

G0
i j (x) =

1
2 π c6

[
g1δi j + g2xix j + g3

(
xiδ3 j + x jδ3i

)
+ g4δ3iδ3 j

]
(B.29)

with

g1 = w1 +
ζ

R3R∗3
, g2 = w2 +

1
υ3R3R∗23

, g3 = (w3 − g2) ζ, g4 = w4 − g1 − g2ζ
2 − 2g3ζ (B.30)
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Table B.5: G0
i jk: numerical results at (x1 = −1, x2 = 0.8, x3 = 1.5)

k = 1 k = 2 k = 3

107 g11k 871.471 -2504.54 -24616.9

107 g22k 2910.25 -520.84 -24044.6

107 g33k 68988.8 -55191. -14305.5

107 g23k 5133.61 2897.27 -1858.36

107 g31k 587.147 5133.61 2322.95

107 g12k 413.858 -737.743 1271.82

Calculation of gradient G0
i j,k (x) is straightforward by using formal calculation tools.

G0
i j,k (x) =

1
2 π c6

[
g1,kδi j + g2,k xix j + g3,k

(
xiδ3 j + x jδ3i

)
+ g4,kδ3iδ3 j + g2

(
δik x j + δ jk xi

)
+ g3

(
δikδ3 j + δ jkδ3i

)]
(B.31)

Considering the data given in table (1) and position vector (x1 = −1, x2 = 0.8, x3 = 1.5) one obtains

107 G0 =


39800.47 −903.6818 −7004.161

−903.6818 39393.815 5603.329

−7004.161 5603.329S 134599.77

 (B.32)

We recall that Green function is not singular on the axis x3, except at the origin x3 = 0. In the case ρ → 0 and
x3 , 0, it writes

G0
i j

(
x3e3

)
=

1
2 π c6 ‖x‖

[
g(ρ=0)

11

(
δ1iδ1 j + δ2iδ2 j

)
+ g(ρ=0)

33 δ3iδ3 j

]
(B.33)

g(ρ=0)
11 =

1
2

(
A1

υ1
+

A2

υ2
+

1
υ2

3

)
, g(ρ=0)

33 =
A
′

1

υ1

c2 + c5 − c6υ
2
1√

2c3 + c6
+

A
′

2

υ2

c2 + c5 − c6υ
2
2√

2c3 + c6
(B.34)

Appendix B.4. Strain Hill polarization tensor of a spheroidal inclusion aligned in a transversely isotropic host matrix
We only recall in this section the solution of strain Hill polarization tensor of a spheroidal inclusion aligned in a

transversely isotropic host matrix, in the non degenerate case (c̃ − c3√
2
− c6 , 0) with n = e3. We use constants c̃,

υi defined in section (Appendix B.3) and we present Withers solution Withers (1989) as in Parnell (2016). See also
Laws (1985); Sevostianov et al. (2005) for exact solutions derived from Fourier transfom integral. The function S(x)
(with limx→1 S(x) = 1

3 ) characterizes the influence of the shape of the spheroid)

S(x) =
1

1 − x2 −
x

1 − x2


1√

1−x2 arccos (x) , x < 1

1√
x2−1

arcosh (x) , x > 1
(B.35)

Functions I1, I3 (a misprint in relation 5.124 Parnell (2016) has been fixed) write:

I3 (υi) =
4π
υi
S(υiγ), I1 (υi) =

2π
υi
−

I3 (υi)
2

=
2π
υi

(1 − S(υiγ)) (B.36)
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Table B.6: G0
i j and G0

i jk: numerical results at (x1 = 0, x2 = 0, x3 = 1.)

k = 1 k = 2 k = 3

107 gkk (no summation) 60722.101 60722.101 502034.39

107 g11k 0. 0. -60722.101

107 g22k 0. 0. -60722.101

107 g33k 0. 0. -502034.39

107 g23k 0. 70648.848 0.

107 g31k 70648.848 0. 0.

107 g12k 0. 0. 0.

D =
1

2 πc6υ3
, Li =

(c2 + c5) /υ2
i − c6

√
2c3 + c6

, Mi = (−1)i c6 − 2c1υ
2
i

8 π c1c6
(
υ2

1 − υ
2
2

)
υ2

i
(B.37)

Components pi of strain Hill tensor PE0 in TI tensor basis write

p1 = −2
2∑

i=1

L2
i Miυ

5
i I3(υi), p2 = 2

2∑
i=1

MiυiI1(υi), p3 =
√

2
2∑

i=1

LiMiυ
3
i I3(υi), p4 = p3 (B.38)

p5 =

2∑
i=1

MiυiI1(υi) +
D I1(υ3)

2
, p6 =

1
2

2∑
i=1

(1 + Li)Miυ
3
i (I3(υi) − 2LiI1(υi)) +

Dυ2
3I3(υ3)
4

(B.39)

and then

P1111 =
p2 + p5

2
, P1122 =

p2 − p5

2
, P3333 = p1 (B.40)

P1133 =
p4
√

2
, P3311 =

p3
√

2
, P2323 =

p6

2
(B.41)

Numerical results are given in table (B.7).

Appendix C. Information of meshes for the FEM computations in the case of cubic model containing concave
pore

We provide in Tables C.8 and C.9 the mesh information during the FEM computation for cubically bounded repre-
sentative elementary volume containing respectively the superspheroidal and the superspherical pore. The displayed
numbers of nodes and those of 3D quadratic elements shows that each mesh is well refined for the corresponding
computations to obtain a precision of computation as accurate as possible.
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Table B.7: Reference transversely isotropic elastic parameters: C0
i components in TI tensor basis and components of Hill tensor related to an oblate

spheroid of aspect ratio γ = 0.5

c0
1111 (GPa) C0

3333 (GPa) C0
1122 (GPa) C0

1133 (GPa) C0
2323 (GPa)

22.3639 12.9994 3.8275 4.7092 1.5851

c1 (GPa) c2 (GPa) c3 = c4 (GPa) c5 (GPa) c6 (GPa)

12.9994 26.1914 6.65983 18.5363 3.1702

p1 (GPa−1) p2 (GPa−1) p3 = p4 (GPa−1) p5 (GPa−1) p6 (GPa−1)

0.0656356 0.0199043 −0.0100943 0.0292588 0.106492

p1111 (GPa−1) p3333 (GPa−1) p1122 (GPa−1) p1133 (GPa−1) p2323 (GPa−1)

0.0245816 0.0656356 −0.00467723 −0.00713773 0.0532462

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.6 0.7

Num. N.1 5580080 5062346 4246894 3412606 3777016 1965376 1272710 2049212 2125594

Num. E.2 3949744 3243744 2958504 2289744 2575736 1377480 843280 1361640 1419840

p 0.8 0.9 1 1.5 2 2.5 3 4 5

Num. N. 1047473 1716790 798157 2284278 2724190 2072024 2233528 2422684 2668330

Num. E. 1177376 1146672 545358 1531896 1823384 1395296 1501464 1629936 1801512
1 Number of nodes
2 Number of elements

Table C.8: Number of nodes and elements in the meshes of the cubic models comprising different superspheroid pores

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.6 0.7

Num. N. 4829072 2859018 3539342 3025846 3087712 2166076 1029954 1893940 2447226

Num. E. 3260176 1924360 2473320 2020488 2049608 1437104 762880 1309424 1716608

p 0.8 0.9 1 1.5 2 2.5 3 4 5

Num. N 2487370 2288388 682512 1079731 2769712 2789860 3094708 1281679 749678

Num. E. 1716568 1579872 481944 739903 1866728 1883248 2091464 889557 505988

Table C.9: Number of nodes and elements in the meshes of the cubic models comprising different superspherical pores

Appendix D. Complementary results concerning the strain concentration tensor in the case of γ = 1/5 and
the compliance contribution tensor for the ellipsoidal pores with γ = 1, 1/2, and 1/10

We aim at display some complementary results respectively in Appendix D.1 for the strain concentration tensor
A in the case of γ = 1/5 and in Appendix D.2 concerning some other shapes of the ellipsoidal pore, such as γ = 1
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(i.e. spherical pore), γ = 1/2 and 1/10.

Appendix D.1. Strain concentration tensors in the spherical case and spheroidal one with γ = 1/5
Fig.D.9 displays the numerical estimations of each independent component of the strain concentration tensor A

for the ellipsoidal pore with the aspect ratio γ = 1/5. As can be found in the computation results of H, similar
evolution trends in function of the scale ratio a/L, can be observed. It should be note here that, unlike the compliance
contribution tensor H, the strain concentration tensor A does not present the major symmetry between the components
A1133 and A3311. As a consequence, it has 7 non-zero independent components.

Additionally, we show in Fig.D.10 the relative errors of their numerical estimations with respect to the analytcial
solutions proposed by Mualem (1976) as well as those obtained from the classical numerical computations without
the correction of the boundary conditions. A very good precision can be found for the proposed numerical procedure
in the case of smaller scale ratios a/L ∈ [4, 8], whereas the correction of the boundary conditions is shown to be
useless when a/L is sufficiently important.

25



4 6 8 10 12 14 16 18
1.478

1.479

1.48

1.481

1.482

1.483

1.484

1.485

(a) A1111

4 6 8 10 12 14 16 18
10.2

10.3

10.4

10.5

10.6

10.7

10.8

(b) A3333

4 6 8 10 12 14 16 18
-0.135

-0.13

-0.125

-0.12

-0.115

(c) A1133

4 6 8 10 12 14 16 18
2.95

3

3.05

3.1

3.15

(d) A3311

4 6 8 10 12 14 16 18
-0.09

-0.088

-0.086

-0.084

-0.082

-0.08

(e) A1122

4 6 8 10 12 14 16 18

1.56

1.565

1.57

1.575

(f) A1212

4 6 8 10 12 14 16 18
2.06

2.065

2.07

2.075

2.08

2.085

(g) A1313

Figure D.9: Numerical estimations of Ai jkl for the ellipsoidal pore embedded in a transversely isotropic matrix with fixed aspect ratio γ = 1/5 and
different scale ratio a/L ∈ [4, 18].
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Figure D.10: Relative errors of numerical computations of Ai jkl with respect to the analytical results Withers (1989) for the ellipsoidal pore
embedded in a transversely isotropic matrix with fixed aspect ratio γ = 1/5 and different scale ratios a/L ∈ [4, 18].

Appendix D.2. Complementary results of the compliance contribution tensor H for the spheroidal pores with γ = 1,
γ = 1/2 and γ = 1/10

In Figs.D.11 - D.16, we show some supplementary results of the compliance contribution tensor H for the ellip-
soidal pores respectively with the aspect ratio γ = 1, 1/2 and 1/10. By simultaneously considering those of γ = 1/5
(see Section 4.1), we focus on the value of a/L at the starting point of the convergence between the related evolution
respectively obtained from the proposed numerical procedure and the classical one. Finally, we fix a/L = 8 for the
numerical computations in the cases of the concave pores.

• Spherical pore: γ = 1
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Figure D.11: Numerical estimations of Hi jkl for the spherical pore γ = 1 embedded in a transversely isotropic matrix with different scale ratio
a/L ∈ [4, 18].
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Figure D.12: Relative errors of numerical computations of Hi jkl with respect to the analytical results Withers (1989) for the spherical pore γ = 1
embedded in a transversely isotropic matrix with different scale ratios a/L ∈ [4, 18].

• Oblate pore: γ = 1/2
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Figure D.13: Numerical estimations of Hi jkl for the ellipsoidal pore embedded in a transversely isotropic matrix with fixed aspect ratio γ = 1/2
and different scale ratio a/L ∈ [4, 18].
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Figure D.14: Relative errors of numerical computations of Hi jkl with respect to the analytical results Withers (1989) for the ellipsoidal pore
embedded in a transversely isotropic matrix with fixed aspect ratio γ = 1/2 and different scale ratios a/L ∈ [4, 18].

• Oblate pore: γ = 1/10

31



4 6 8 10 12 14 16 18
0.06315

0.0632

0.06325

0.0633

0.06335

0.0634

(a) H1111

4 6 8 10 12 14 16 18
1.56

1.58

1.6

1.62

1.64

(b) H3333

4 6 8 10 12 14 16 18
-6.96

-6.95

-6.94

-6.93

-6.92

-6.91

-6.9
10

-3

(c) H1122

4 6 8 10 12 14 16 18
-0.0365

-0.036

-0.0355

-0.035

(d) H1133

4 6 8 10 12 14 16 18

0.03505

0.0351

0.03515

0.0352

(e) H1212

4 6 8 10 12 14 16 18
0.493

0.4935

0.494

0.4945

0.495

0.4955

0.496

0.4965

(f) H1313

Figure D.15: Numerical estimations of Hi jkl for the ellipsoidal pore embedded in a transversely isotropic matrix with fixed aspect ratio γ = 1/10
and different scale ratio a/L ∈ [4, 18].

32



4 6 8 10 12 14 16 18
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

R
e
la

ti
v
e
 e

rr
o
r

(a)

4 6 8 10 12 14 16 18
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

R
e
la

ti
v
e
 e

rr
o
r

(b)

Figure D.16: Relative errors of numerical computations of Hi jkl with respect to the analytical results Withers (1989) for the ellipsoidal pore
embedded in a transversely isotropic matrix with fixed aspect ratio γ = 1/10 and different scale ratios a/L ∈ [4, 18].

Appendix E. Complementary results of the strain concentration tensor A for the superspheroidal and super-
spherical pores

In this section, we report respectively in E.10 and E.11 the numerical computation of the strain concentration
tensor of the superspheroidal and superspherical pores as described in Section 5. The corresponding evolution of their
components in function of the concavity parameter p ∈ [0.2, 5] are also illustrated in Figs.

• Superspheroidal pores

33



p AFEM
1111 AFEM

1122 AFEM
1133 AFEM

3311 AFEM
3333 AFEM

1212 AFEM
1313

0.2 1.9275 -0.2891 -0.2936 15.9062 47.1787 2.2130 5.3414

0.25 2.0047 -0.2903 -0.1911 6.3536 20.3159 2.2940 2.6196

0.3 2.1128 -0.2966 -0.1204 3.3695 11.7872 2.4092 1.8562

0.35 2.2013 -0.3019 -0.0646 2.0944 8.0402 2.5032 1.5821

0.4 2.2674 -0.3064 -0.0218 1.4539 6.0956 2.5737 1.4733

0.45 2.3159 -0.3101 0.0106 1.0948 4.9690 2.6259 1.4255

0.5 2.3494 -0.3117 0.0355 0.8777 4.2632 2.6610 1.4019

0.6 2.3910 -0.3139 0.0670 0.6557 3.5146 2.7046 1.3865

0.7 2.4121 -0.3140 0.0856 0.5505 3.1416 2.7258 1.3870

0.8 2.4228 -0.3134 0.0974 0.4942 2.9321 2.7358 1.3933

0.9 2.4281 -0.3126 0.1054 0.4616 2.8035 2.7403 1.4018

1 2.4312 -0.3122 0.1112 0.4417 2.7200 2.7431 1.4112

1.5 2.4300 -0.3090 0.1265 0.4123 2.5554 2.7386 1.4534

2 2.4281 -0.3081 0.1340 0.4152 2.5211 2.7356 1.4858

2.5 2.4267 -0.3074 0.1388 0.4234 2.5159 2.7338 1.5098

3 2.4272 -0.3075 0.1425 0.4321 2.5203 2.7342 1.5285

4 2.4290 -0.3075 0.1476 0.4470 2.5342 2.7361 1.5551

5 2.4314 -0.3078 0.1512 0.4584 2.5478 2.7385 1.5731

Table E.10: Evolution of components Ai jkl for the superspheroidal pore embedded in a transversely isotropic matrix on the Logarithm value of the
concavity parameter log(p) such that p ∈ [0.2, 5]
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Figure E.17: Evolution of components Ai jkl for the superspheroidal pore embedded in a transversely isotropic matrix on the concavity parameter p
such that p ∈ [0.2, 5]

• Superspherical pores
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p AFEM
1111 AFEM

1122 AFEM
1133 AFEM

3311 AFEM
3333 AFEM

1212 AFEM
1313

0.2 11.0342 -1.5470 0.4701 1.6971 11.5571 7.5756 3.1521

0.25 6.9234 -1.0207 0.2974 1.1060 7.3017 4.7760 2.1095

0.3 5.1440 -0.7928 0.2216 0.8517 5.4701 3.6464 1.7214

0.35 4.1841 -0.6706 0.1799 0.7189 4.4972 3.1302 1.5559

0.4 3.6067 -0.5955 0.1537 0.6410 3.9260 2.8884 1.4771

0.45 3.2362 -0.5423 0.1364 0.5910 3.5668 2.7761 1.4360

0.5 2.9741 -0.4975 0.1243 0.5499 3.3036 2.7236 1.4132

0.6 2.7249 -0.4420 0.1130 0.5078 3.0561 2.6957 1.3944

0.7 2.5883 -0.3976 0.1086 0.4781 2.9065 2.6973 1.3912

0.8 2.5102 -0.3629 0.1078 0.4595 2.8163 2.7094 1.3951

0.9 2.4623 -0.3351 0.1089 0.4482 2.7586 2.7256 1.4024

1 2.4314 -0.3123 0.1111 0.4417 2.7202 2.7435 1.4113

1.5 2.3776 -0.2394 0.1262 0.4389 2.6479 2.8318 1.4578

2 2.3733 -0.1983 0.1402 0.4500 2.6375 2.9019 1.4953

2.5 2.3816 -0.1723 0.1513 0.4623 2.6441 2.9613 1.5252

3 2.3911 -0.1535 0.1602 0.4734 2.6531 3.0068 1.5483

4 2.4095 -0.1283 0.1735 0.4912 2.6718 3.0745 1.5817

5 2.4230 -0.1114 0.1829 0.5042 2.6860 3.1190 1.6040

Table E.11: Numerical estimation of Ai jkl for the superspherical pore embedded in a transversely isotropic corrected model with different values of
concavity p ∈ [0.2, 5].
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Figure E.18: Evolution of components Ai jkl for the superspherical pore embedded in a transversely isotropic matrix on the Logarithm value of the
concavity parameter log(p) such that p ∈ [0.2, 5]
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