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SMITH–TREUMANN THEORY AND THE LINKAGE PRINCIPLE

SIMON RICHE AND GEORDIE WILLIAMSON

Dedicated to Roman Bezrukavnikov,
in admiration.

Abstract. In this paper we apply Treumann’s “Smith theory for sheaves” in
the context of the Iwahori–Whittaker model of the Satake category. We deduce

two results in the representation theory of reductive algebraic groups over fields

of positive characteristic: (a) a geometric proof of the linkage principle; (b) a
character formula for tilting modules in terms of the p-canonical basis, valid

in all blocks and in all characteristics.

1. Introduction

1.1. Geometric representation theory of reductive algebraic groups. Let
G be a connected reductive algebraic group over an algebraically closed field k of
characteristic ` ą 0, and consider the category ReppGq of finite-dimensional alge-
braic representations of G. The study of this category has led to significant progress
in modular representation theory over the last fifty years; however several funda-
mental questions (e.g. dimensions and characters of simple and tilting modules)
remain only partially understood.

One tempting avenue of pursuit is to find relationships to D-modules or con-
structible sheaves, and hence bring sheaf theory into play. The archetypal example
of the success of such an approach is the Bĕılinson–Bernstein localization theorem,
which establishes such an link for modules over complex semi-simple Lie algebras.
Bĕılinson–Bernstein localization is an indispensable tool in modern Geometric Rep-
resentation Theory, leading to proofs of the Kazhdan–Lusztig conjectures, character
formulas for real reductive groups, etc.

Back in the setting of ReppGq, the geometric Satake equivalence provides such
a connection to constructible sheaves. To G we can associate the affine Grass-
mannian Gr of its complex Langlands dual group (an infinite-dimensional algebraic
variety), and one has an equivalence of tensor categories between ReppGq and a
certain category of perverse sheaves with k-coefficients on Gr. The geometric Sa-
take equivalence is central to modern approaches to the Langlands program, and
has become a cornerstone of Geometric Representation Theory.

However, in contrast to Bĕılinson–Bernstein localization, the geometric Satake
equivalence has been surprisingly ineffective at answering questions about ReppGq.
For example, several basic statements and constructions involving ReppGq (e.g. the
linkage principle, or Frobenius twist) have no geometric explanation. This is the
more surprising, as several known or conjectured formulas (e.g. Lusztig’s character
formula) involve Kazhdan–Lusztig polynomials or their `-counterparts, which en-
code dimensions of stalks of sheaves on the affine Grassmannian and flag variety.
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Nowadays we have several proofs of Lusztig’s character formula for large `, however
none of them pass through the geometric Satake equivalence!

1.2. Overview. The main result of the present paper is a proof of the linkage
principle via the geometric Satake equivalence. Our proof also explains that each
“block” in the linkage principle is controlled by a partial affine flag variety for the
Langlands dual group, which gives us new proofs of Lusztig’s conjecture on simple
characters (for large `) and of a conjecture of the authors on tilting characters (for
all `). The techniques of this paper provide a powerful new tool in the study of
representations of G.

Our argument is a simple application of two new tools in Geometric Repre-
sentation Theory. The first one is Smith–Treumann theory, which is a variant of
equivariant localization for tori. In this theory the circle action is replaced by the
action of a cyclic group of order `, and the coefficients must be of characterstic
`. We apply this theory to the loop rotation action on the affine Grassmannian.
Whilst the fixed points under the full loop rotation action are rather boring (infin-
itely many finite partial flag varieties), the fixed points under the subgroup of `-th
roots of unity are rich (finitely many partial affine flag varieties).

The second ingredient is the Iwahori–Whittaker realisation of the Satake cate-
gory. This replaces the category of perverse sheaves in the Satake equivalence with
an equivalent category satisfying a certain equivariance condition with respect to
the pro-unipotent radical of the Iwahori subgroup. (This condition is inspired by
“Whittaker conditions” in the representation theory of p-adic groups, hence the
name.) It turns out that in the Iwahori–Whittaker realisation, the components
of the fixed points discussed above match precisely the decomposition of ReppGq
given by the linkage principle. Our main theorem asserts that the Smith restriction
functor gives an equivalence between tilting sheaves in the Iwahori–Whittaker re-
alisation and a certain category of parity complexes on the fixed points. It is then
straightforward to deduce the linkage principle. The character formulas for simple
and tilting modules alluded to above are also an immediate consequence.

In the rest of the introduction, we give a more detailed overview of the techniques
and results of this paper.

1.3. The linkage principle. As above, let G be a connected reductive algebraic
group over an algebraically closed field k of characteristic ` ą 0, and let ReppGq
be its category of finite-dimensional algebraic representations. Fix a maximal torus
and Borel subgroup T Ă B Ă G, and let R` Ă R Ă X denote the (positive) roots
inside the lattice of characters of T.1 The simple objects in ReppGq are classified
by dominant weights X` Ă X; given λ P X` we denote by ∇pλq the induced
G-module of highest weight λ, and by Lpλq its simple socle.

Let Wf denote the Weyl group of pG,Tq, and consider the affine Weyl group

Waff :“Wf ¸ ZR

which acts naturally on X. The linkage principle [Ve, Hu, J1, A1] states that we
have a decomposition

(1.1) ReppGq “
à

γPX{pWaff ,‚`q

RepγpGq,

1We warn the reader that in the body of the paper we switch to a Langlands dual notation.
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where each summand is the Serre subcategory

Repγ G “ xLpλq : λ P γ XX`y.

Notice that we do not consider the standard action of Waff on X, but rather the
“dot” action (denoted ‚`); that is, if ρ :“ 1

2

ř

αPR` α, then

pwtµq ‚` λ :“ wpλ` `µ` ρq ´ ρ

for w PWf , µ P ZR and λ P X.

Remark 1.1. The subcategory RepγpGq will be called the block of γ. This is an
abuse since this subcategory might be decomposable, hence is not a “block” in the
strict sense, but is convenient. In fact the blocks of ReppGq in the strict sense
have been described by Donkin [Do]. We believe our methods should allow to shed
some light on this description, and hope to come back to this question in a future
publication.

1.4. The geometric Satake equivalence. Let H be the complex2 reductive
group which is Langlands dual to G, and denote its maximal torus by T (so that
X˚pT q “ X “ X˚pTq). Let LH and L`H denote the “loop” group (ind-)schemes
whose R points are HpRppzqqq and HpRrrzssq respectively, for any C-algebra R; and
let GrH :“ LH{L`H denote the affine Grassmannian. The affine Grassmannian
is an ind-projective ind-scheme whose T -fixed points (resp. L`H-orbits) are in
bijection with X (resp. X`).

The geometric Satake equivalence [L3, Gi, BD, MV1] gives an equivalence of
Tannakian categories

(1.2) pPervL`HpGrH ,kq, ‹q – pReppGq,bq

where PervL`HpGrH ,kq denotes the category of L`H-equivariant perverse sheaves
on GrH with coefficients in k, with its natural convolution product ‹.

1.5. Smith–Treumann theory. A fundamental role in our proof is played by
Treumann’s “Smith theory for sheaves” [Tr]. The basic idea is that, when dealing
with coefficients of characteristic `, one should be able localize to fixed points of
actions of cyclic groups of order `. (This theory should be compared with Borel’s
“localization theorem” for manifolds equipped with an action of the circle group;
in this analogy, finite cyclic groups become “discrete circles”. See [W2] for more
comments on this analogy)

More precisely, let X be a variety endowed with an action of the group µ` of
`-th roots of unity. One has two (Verdier dual) restriction functors

Db
µ`
pX,kq Db

µ`
pXµ` ,kq

i!

i˚

between the µ`-equivariant derived categories of constructible k-sheaves on X and
on Xµ` .

2In a few paragraphs we will instead assume that H is defined over a field of characteristic p
where p ‰ 0, `.
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A fundamental observation of Treumann is that the compositions of these func-
tors with the quotient functor to the Smith category

SmTreupX
µ` ,kq :“ Db

µ`
pXµ` ,kq{ xµ`-perfect complexesy

become canonically isomorphic. Here an object in Db
µ`
pXµ` ,kq is µ`-perfect if

its stalks (naturally complexes of µ`-modules) may be represented by a bounded
complex of free krµ`s-modules. The resulting Smith restriction functor

Db
µ`
pX,kq SmTreupX

µ` ,kqi!˚

has remarkable properties. For examples, it commutes with essentially all sheaf
theoretic functors [Tr]. It can be thought of as an analogue of hyperbolic localization
for µ`-actions.

For technical reasons (namely, to ensure that the Smith category of a point
satisfies appropriate parity vanishing properties), we use a variant of Treumann’s
construction, proposed by the second author in [W2]. Namely, we assume that the
action of µ` can be extended to an action of the multiplicative group Gm on X and
consider the equivariant Smith category

SmpXµ` ,kq :“ Db
Gm
pXµ` ,kq{

B

complexes whose restriction
to µ` Ă Gm are µ`-perfect

F

.

With this definition, the theory of parity complexes from [JMW] applies in the
Smith quotient, which will be crucial for our arguments.3

1.6. Fixed points. To apply this idea in our setting, note that GrH has a natural
action of Gm via “loop rotation,” induced by the action of Gm on Cppzqq which
“rescales” z. A beautiful fact (that we first learned from R. Bezrukavnikov) is
that, if µ` Ă Gm denotes (as above) the subgroup of `-th roots of unity, we have a
decomposition

(1.3) pGrHq
µ` “

ğ

γPX{pWaff ,˝`q

GrH,γ ,

where the action ˝` is defined by pwtµq ˝` λ “ wpλ ` `µq for w P Wf , µ P ZR and
λ P X. Moreover, each component on the right-hand side is a partial affine flag
variety for the loop group L`H representing R ÞÑ HpRppz`qqq, whose “partiality”
is governed by the stabilizer of an element in γ. For example, for γ “ Waff ˝` 0
we obtain the “thin affine Grassmannian” (defined as above for GrH , but now with
z replaced by z`); and if γ has trivial stabiliser under Waff then GrH,γ is the full
affine flag variety for H.

The similarity between (1.3) and (1.1) is rather striking; for example there are
as many components in the right-hand side of (1.3) as summands in the decom-
position (1.1). However there is a fundamental difference: (1.1) involves the dot
action (with Wf fixing ´ρ); whereas (1.3) involves the unshifted action (with Wf

fixing 0). Thus we do not expect the Smith restriction functor to realise the linkage
principle in this setting.4.

3The fact that Smith–Treumann theory can be made to accommodate the theory of parity
sheaves was first pointed out by Leslie–Lonergan [LL]. The version they use is however different,
and—from our point of view—technically more involved.

4The effect of Smith restriction in this setting is investigated in [LL]. The authors show that

it realises the “Frobenius contraction” functor of Gros–Kaneda [GK].
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1.7. The Iwahori-Whittaker model. To get around this issue, we replace the
“traditional” Satake category PervL`HpGrH ,kq with the “Iwahori–Whittaker mo-
del” considered in [BGMRR]. There it is proved that (under a mild assumption,
satisfied e.g. if H is of adjoint type, which we assume from now on for simplicity)
one has an equivalence of abelian categories

(1.4) PervL`HpGrH ,kq
„
ÝÑ PervIWpGrH ,kq

where the right-hand side denotes a category of perverse sheaves of GrH which
satisfy a certain equivariance condition with respect to the pro-unipotent radical
Iw`u of an Iwahori subgroup; such perverse sheaves are called “Iwahori–Whittaker.”5

A crucial point for us is that on simple objects the equivalence (1.4) sends the
intersection cohomology complex associated with the L`H-orbit parametrized by
λ P X` (which corresponds to Lpλq under (1.2)) to the Iwahori–Whittaker inter-
section cohomology complex associated with the Iw`u -orbit parametrized by λ` ρ.
Thus, after passage to the Iwahori–Whittaker model, our issue with the two dis-
tinct actions goes away, and the linkage principle is reflected perfectly in geometry of
the µ`-fixed points. In particular, two simple Iwahori–Whittaker perverse sheaves,
parametrized by some weights λ and µ, lie in the same summand in the linkage
principle if and only if the corresponding fixed points Lλ and Lµ lie in the same
component of the fixed points!

Another favorable property of the Iw`u -action on GrH is that each orbit is iso-
morphic to an affine space. This setting is known to imply nice properties for
categories of perverse sheaves (see e.g. [BGS]), and in particular that this category
admits a transparent structure of highest weight category. The situation is even
more favorable here in that the “relevant” orbits (i.e. those which support a nonzero
Iwahori–Whittaker local system) have dimensions of constant parity in each con-
nected component of GrH . This implies that the tilting objects in PervIWpGrH ,kq
are parity in the sense of [JMW]; in particular the indecomposable tilting perverse
sheaves coincide with the self-dual indecomposable parity objects.

1.8. Main theorems. Recall that we let Gm act on GrH via loop rotation. The
Iwahori–Whittaker condition and the loop rotation equivariance are compatible; we
thus obtain a Smith restriction functor

i!˚ : Db
IW,Gm

pGrH ,kq Ñ SmIWppGrHq
µ` ,kq.

We write ParityIW,Gm
pGrH ,kq (resp. SmParityIWppGrHq

µ` ,kq) for the additive cat-
egory of parity sheaves in the source (resp. target) of this functor. Our first main
result is the following.

Theorem 1.2. Smith restriction yields a fully faithful functor

i!˚ : ParityIW,Gm
pGrH ,kq

„
ÝÑ SmParityIWppGrHq

µ` ,kq.

Remarkably, the proof of this theorem is a few lines once one has the appropriate
technology in place. It is an easy consequence of Bĕılinson’s lemma, once one knows
that i!˚ preserves standard and costandard objects; this in turn follows because i!˚

commutes with ˚- and !-extension.

5One can make sense of this condition in various ways. In this work (following Bezrukavnikov)

we use étale sheaves and the Artin–Schreier covering, which necessitates passing to GrH defined
over a field of characteristic p ą 0 (with p ‰ `). The geometric Satake equivalence is also available

in this setting.
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Recall from §1.7 that the self-dual indecomposable Iwahori–Whittaker parity
complexes on GrH coincide with the indecomposable tilting perverse sheaves in
PervIWpGrGq (which in turn correspond to tilting modules under the geometric
Satake equivalence). Given λ P ρ ` X`, we denote by E IW

λ the corresponding
indecomposable parity complex.

By Theorem 1.2, the image of any E IW
λ under i!˚ has to be supported on a single

component. This has the following consequence, from which one easily obtains the
promised proof of the linkage principle.

Corollary 1.3. If HompE IW
λ ,E IW

µ q ‰ 0 then Waff ˝` λ “Waff ˝` µ.

Theorem 1.2 implies that many questions about tilting Iwahori–Whittaker per-
verse sheaves on GrG (and hence about tilting G-modules) may be answered after
applying Smith restriction. However, in order for this to be useful, one needs an-
other way of understanding the Smith parity complexes on pGrHq

µ` , which is the
subject of our second main result.

Consider the following diagram of quotient and forgetful functors:

SmIWppGrHq
µ` ,kq

Db
IW`,Gm

ppGrHq
µ` ,kq

Db
IW`

ppGrHq
µ` ,kq.

Q For

(Here the subscript in IW` indicates that the Iwahori–Whittaker condition is im-
posed with respect to the action of an Iwahori subgroup in L`H now.) Our second
main theorem is the following.

Theorem 1.4. The functors Q and For preserve indecomposable parity complexes.

The first step towards the proof of Theorem 1.4 is the observation that given
parity complexes E ,F P Db

IW`,Gm
ppGrHq

µ` ,kq of the same parity we have canonical
isomorphisms:

Hom‚pForpE q,ForpF qq “ Hom‚pE ,F q bx ÞÑ0 k.(1.5)

HompQpE q, QpF qq “ Hom‚pE ,F q bx ÞÑ1 k.(1.6)

(Here, x P H2
Gm
ppt,kq denotes the equivariant parameter, and Hom‚pE ,F q is

viewed as an H‚Gm
ppt,kq-module in the natural way. The tensor products are taken

over H‚Gm
ppt,kq, with the indicated module structure on k.) The isomorphism (1.5)

is simply the equivariant formality of homomorphisms between parity complexes,
which follows from a standard parity argument. The isomorphism (1.6) essentially
follows from the analysis of the Smith category of a point.

The statement for For in Theorem 1.4 is immediate from (1.5), and is a basic in-
gredient in the theory of parity complexes. The statement for Q is potentially more
surprising, as inverting the equivariant parameter rarely preserves indecomposabil-
ity. The key point is that the Gm-action on pGrHq

µ` factors through an action of
Gm{µ` “ Gm. As a consequence, this action is indistinguishable from the trivial
action when we take k-coefficients. Hence we obtain canonical isomorphisms:

Hom‚pE ,F q “ H‚Gm
ppt,kq bk Hom‚pForpE q,ForpF qq,(1.7)

HompQpE q, QpF qq “ Hom‚pForpE q,ForpF qq.(1.8)

Now the statement for Q in Theorem 1.4 follows from the statement for For, as a
finite-dimensional graded algebra is local if and only if its degree-0 part is.



SMITH–TREUMANN THEORY AND THE LINKAGE PRINCIPLE 7

Remark 1.5. The isomorphism (1.8) shows that “Q˝For´1” behaves like a degrading
functor. Degrading functors are ubiquitous in modern Geometric Representation
Theory. In algebra, they are often realised by forgetting the grading on a graded
module; in geometry they are often associated with forgetting a mixed structure.
The above shows that Smith–Treumann theory provides another possible geometric
realisation of degrading functors.

1.9. Tilting characters. A fundamental question in the representation theory of
G is to determine the characters of the indecomposable tilting modules. In [RW1]
we started advocating the idea that character formulas for G-modules should be
expressed in terms of the `-canonical basis of Waff , and illustrated this idea by a
conjectural formula for characters of indecomposable tilting modules in the principal
block, under the assumption that ` is bigger than the Coxeter number h of G. This
formula was proved in case G “ GLnpkq in [RW1], and then for a general reductive
group in a joint work with P. Achar and S. Makisumi, see [AMRW]. A simple
consequence of the results of §1.8 is a new and much simpler proof of this character
formula, along with an extension to a formula valid in all blocks of ReppGq, without
any restriction of `.

To state this formula, recall that the summands on the right-hand side of (1.1)
can be parametrized by the weights in the intersection A of the weight lattice with
the closure of the fundamental alcove for the dot action of Waff . For λ P A we
denote by Wλ Ă Waff the stabilizer of λ for ‚` (a standard parabolic subgroup),

and by W
pλq
aff the subset of Waff consisting of elements w which are both maximal

in wWλ and minimal in Wfw. Then the indecomposable tilting G-modules in the

block of Waff ‚` λ are in a natural bijection with W
pλq
ext , and we denote by Tpw ‚` λq

the module of highest weight w ‚` λ.
The tilting character formula alluded to above can be stated as follows.

Theorem 1.6. For any λ P A and w PWλ
aff we have

chpTpw ‚` λqq “
ÿ

yPW
pλq
aff

`ny,wp1q ¨ χy‚`0,

where χµ is the Weyl character formula attached to the dominant weight µ, and
`ny,w is the antispherical `-Kazhdan–Lusztig polynomial attached to py, wq.

See [RW1] for a comparison of this formula with an earlier formula conjectured
by Andersen [A2], which was one of our sources of inspiration.

1.10. Simple characters. Using ideas of Andersen [A2] recently refined by Soba-
je [Sob], from the formula in Theorem 1.6 one can in theory deduce a character
formula for simple G-modules, in all blocks and all characteristics. This can be
done in at least two ways. The first possibility is to use a “reciprocity formula” due
to Andersen [A3] (based on earlier work of Jantzen) and which expresses multiplici-
ties of simple modules in Weyl modules in terms of multiplicities of induced modules
in indecomposable tilting modules. This method has the advantage of allowing to
deduce Lusztig’s conjectural formula [L1] in case the relevant `-Kazhdan–Lusztig
polynomials coincide with the corresponding standard Kazhdan–Lusztig polynomi-
als, but it requires the assumption that p ě 2h ´ 2, and does not produce a very
natural formula in general, since it involves a certain “twist” (denoted y ÞÑ ŷ below)
on indices.
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To explain this in more detail, let us assume that p ě 2h ´ 2 and that G is
quasi-simple, and denote by α_0 the highest coroot. We then set

Y :“ tw PWaff | w is minimal in Wfw and xw ˝` ρ, α
_
0 y ă pph´ 1qu.

This subset does not depend on p, and is an ideal in the Bruhat order on the set of
elements w minimal in Wfw; in fact, in terms of the notation of [RW2], it consists
of the elements w sending the fundamental alcove Afund inside the portion of the
dominant region delimited by the hyperplane orthogonal to α_0 and passing through

ρ. Consider also the operation y ÞÑ ŷ on Waff corresponding to the operation A ÞÑ Â
on alcoves considered in [Soe] or [RW2]. Then, in view of [RW1, Proposition 1.8.1],
from Theorem 1.6 we obtain that for any w P Y we have

r∇pw ‚` 0qs “
ÿ

yPY

`nw,ŷp1q ¨ rLpy ‚` 0qs

in the Grothendieck group of ReppGq. In order to compare this formula with that
in Lusztig’s conjecture, one needs to invert these equations. In general we do not
know how to do that explicitly. However, if we assume that each polynomial `nw,ŷ
in these formulas coincides with the corresponding “standard” Kazhdan–Lusztig
polynomial nw,ŷ (as considered e.g. in [Soe]), then the inverse matrix is computed
in [Soe, Theorem 5.1]; from this result we obtain that

rLpw ‚` 0qs “
ÿ

yPY

p´1q`pwq``pyqhy,wp1q ¨ r∇py ‚` 0qs

for any w P Y , as predicted by Lusztig in [L1]. This property is well known to hold in
large characteristic (without any explicit bound), which explains why Theorem 1.6
provides a new proof of Lusztig’s conjecture in large characteristics.

Remark 1.7. The condition on w considered above is not the same as in Lusztig’s
formulation of his conjecture. However, the two versions are known to be equivalent
under the present assumptions, due to results of Kato; see [W1, §§1.12–1.13] for
more details and references.

The other method to obtain a character formula for simple G-modules, which
works for all values of p thanks to the results of [Sob], is to express multiplicities
of the simple G-modules whose highest weight is restricted in the baby Verma
G1T-modules. In this way one obtains a formula that may be compared with the
“periodic” formulation of Lusztig’s conjecture, see [L2]. This formula was made
explicit in [RW2], under the assumption that p ě 2h ´ 1. The extension of the
tilting character formula in Theorem 1.6 makes it desirable to extend the validity
of these results to smaller values of p, and we plan to come back to this question
in a future publication.
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2. Preliminaries on equivariant sheaves

2.1. Equivariant sheaves. We start by recalling some generalities on étales shea-
ves on schemes endowed with an action of a finite group. We fix a coefficient ring
k (not necessarily assumed to be commutative).

Let X be a scheme, and let A be a finite group acting on X (by scheme auto-

morphisms). For any g P A, we denote by αg : X
„
ÝÑ X the action on X. Recall

that an A-equivariant (étale) sheaf of k-modules is the datum of an étale sheaf F
of k-modules on X together with a collection pϕgqgPA where, for any g P A,

ϕg : α˚gF
„
ÝÑ F

is an isomorphism of sheaves of k-modules, this collection satisfying the condition
that for g, h P A we have

(2.1) ϕh ˝ α
˚
hpϕgq “ ϕgh

as morphisms from α˚ghF to F . (We will often abuse notation, and omit the

isomorphisms pϕgqgPA from the notation.) Morphisms of A-equivariant sheaves
are defined as morphisms of sheaves compatible (in the natural way) with the
isomorphisms ϕg. The (abelian) category of A-equivariant sheaves of k-modules
will be denoted ShApX,kq. We have a natural “forgetful” exact functor

(2.2) ForA : ShApX,kq Ñ ShpX,kq

(which simply forgets the collection of isomorphisms pϕgqgPA), where ShpX,kq de-
notes the category of sheaves of k-modules on X. If A acts trivially on X, we have
a canonical identification

(2.3) ShApX,kq “ ShpX,krAsq.

If X,Y are two schemes with actions of A (with actions denoted αX´ and αY´
respectively), and f : X Ñ Y is an A-equivariant morphism, then for any g P A we
have a canonical isomorphism

pαXg q
˚ ˝ f˚ – f˚ ˝ pαYg q

˚.

As a consequence, the functor f˚ induces an exact functor

ShApY,kq Ñ ShApX,kq,

which will also be denoted f˚. Similarly, we have a canonical isomorphism

pαYg q
˚ ˝ f˚ – f˚ ˝ pα

X
g q
˚.

(Here we use the fact that pαZg q
˚ – pαZg´1q˚ for Z “ X or Y .) As a consequence,

f˚ induces a functor

f˚ : ShApX,kq Ñ ShApY, kq.
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2.2. Equivariant sheaves and injective resolutions. We consider again a sche-
me X endowed with an action of the finite group A. For any F in ShpX,kq we
set

AvApF q :“
à

gPA

α˚gF .

We endow AvApF q with the structure of an A-equivariant sheaf by defining, for
any g P A, the isomorphism

ϕg : α˚gAvApF q
„
ÝÑ AvApF q

as the canonical identification

α˚g

˜

à

hPA

α˚hF

¸

“
à

hPA

α˚hgF “
à

aPA

α˚aF .

This construction extends in a natural way to an exact functor

AvA : ShpX,kq Ñ ShApX,kq.

Lemma 2.1. The functor AvA is left and right adjoint to the forgetful functor (2.2).

Proof. To prove the lemma we have to define morphisms of functors

ForA ˝ AvA Ñ id, id Ñ ForA ˝ AvA, AvA ˝ ForA Ñ id, id Ñ AvA ˝ ForA,

and check the appropriate zigzag relations. Here we have

ForA ˝ AvA “
à

gPA

α˚g ,

and the first two morphisms are defined as the projection to and embedding of the
factor α˚e “ id. On the other hand, for pF , pϕgqgPAq in ShApXq, the morphisms

F Ñ AvA ˝ ForApF q Ñ F

are defined as
À

gPApϕgq
´1 and

À

gPA ϕg respectively. (These morphisms of sheaves

are morphisms of A-equivariant sheaves thanks to the cocyle condition (2.1).) The
zigzag relations are all trivial to check. �

Lemma 2.1 implies that the functor AvA sends injective objects of ShpX,kq to
injective objects of ShApX,kq. Since the category ShpX,kq has enough injectives
(see [SP, Tag 01DU]), it follows that the same property holds in ShApX,kq. In
fact, if F belongs to ShApX,kq, and if I is an injective object of ShpX,kq such
that we have an injection ForApF q ãÑ I , then the map F Ñ AvApI q deduced by
adjunction is injective, and AvApI q is injective in ShApX,kq.

In particular, if f : X Ñ Y is an A-equivariant morphism between schemes with
A-actions, recall that we have the (non derived) pushforward functor

f˚ : ShApX,kq Ñ ShApY,kq.

From the considerations on injective objects above we deduce that this functor
admits a derived functor

Rf˚ : D`ShApX,kq Ñ D`ShApY, kq,

which can be computed by means of injective resolutions.

Lemma 2.2. For any injective object I in ShApX,kq, the object ForApI q is in-
jective in ShpX,kq.

https://stacks.math.columbia.edu/tag/01DU
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Proof. If J is an injective object in ShApX,kq and ForApI q ãÑ J is an embed-
ding, the injection I ãÑ AvApJ q must be split since both objects are injective.
Hence I is a direct summand in AvApJ q, so that ForApI q is a direct summand
in the injective sheaf ForA ˝ AvApJ q “

À

gPA α
˚
gJ , hence is injective. �

From this lemma one obtains that for an equivariant morphism f : X Ñ Y as
above we have a natural commutative diagram

D`ShApX,kq
Rf˚ //

ForA

��

D`ShApY, kq

ForA

��
D`ShpX,kq

Rf˚ // D`ShpY,kq,

where the lower horizontal arrow is the standard pushforward functor. In particular,
in case X and Y are of finite type over some field F of finite cohomological dimension
(e.g. algebraically closed), and k is torsion (e.g. a field of positive characteristic),
it is known that the “standard” functor Rf˚ sends DbShpX,kq into DbShpY, kq,
see [SP, Tag 0F10]. It follows that the “equivariant” functor Rf˚ considered above
restricts to a functor

Rf˚ : DbShApX,kq Ñ DbShApY,kq.

Of course, since the functor

f˚ : ShApY, kq Ñ ShApX,kq

is exact, we have an induced functor

f˚ : DShApY, kq Ñ DShApX,kq

which maps D`ShApY,kq into D`ShApX,kq and DbShApY,kq into DbShApX,kq
(and is compatible with the usual pullback functor f˚ in the obvious way). It is
easily checked that the functor

f˚ : D`ShApY, kq Ñ D`ShApX,kq

is left adjoint to

Rf˚ : D`ShApX,kq Ñ D`ShApY,kq.

2.3. Equivariant sheaves and quotient map. From now on we assume that X
is of finite type over some base scheme S, and that each αg is an automorphism
of S-schemes. We assume furthermore that the action is admissible in the sense
of [SGA1, Exposé 5, Définition 1.7]. Then we have a quotient scheme X{A, and a fi-
nite quotient morphism q : X Ñ X{A, see [SGA1, Exposé V, Corollaire 1.5]. (Here,
by definition X{A is the scheme which represents the functor Z ÞÑ HompX,ZqA,
where A acts on HompX,Zq via its action on X. It can be constructed by gluing
affine schemes of the form SpecpRAq where SpecpRq Ă X is an A-stable affine open
subscheme of X.)

By finiteness the functor q˚ is then exact (see [SP, Tag 03QP]), and we therefore
obtain a functor

q˚ : ShApX,kq Ñ ShApX{A,kq
(2.3)
– ShpX{A,krAsq.

https://stacks.math.columbia.edu/tag/0F10
https://stacks.math.columbia.edu/tag/03QP
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Remark 2.3. As explained in [SGA1, Exposé V, Proposition 1.8], the action of A
on X is admissible iff each orbit of A is included in an affine open subset of X. This
condition is automatic if S “ SpecpFq for some field F and X is quasi-projective
over S, see e.g. [Se, p. 59, Exemple 1]. (This setting is the only one we will consider
in practice.)

Recall that a complex G P DShpX{A,krAsq is said to be of finite tor dimension
if there exist a, b P Z such that for any G 1 P ShpX{A,krAsopq we have

H npG 1
L
bkrAs G q “ 0 unless n P ra, bs,

see [SP, Tag 08FZ]. Recall also that G has finite tor dimension iff for any geometric
point x of X the complex of krAs-modules Gx has finite tor dimension, see [SP, Tag
0DJJ].

The action of A on X induces an action on geometric points. Namely, if

x : SpecpKq Ñ X

is a geometric point and g P A, then the geometric point g ¨ x is the composition

SpecpKq
x
ÝÑ X

αg
ÝÝÑ X.

We will say that the A-action on X is free if each geometric point of X has trivial
stabilizer for this action.

Lemma 2.4. Assume that k is a field, and that the A-action on X is free. Then
for any G in ShApX,kq, the sheaf q˚G P ShpX,krAsq has finite tor dimension.

Proof. By the comments above, to prove the lemma it suffices to prove that for any
geometric point y : SpecpKq Ñ X{A the krAs-module Gy has finite tor dimension.
Now by [SP, Tag 03QP] we have

pq˚G qy “
à

x

Gx,

where x runs over the set Xy of maps x : SpecpKq Ñ X such that q ˝ x “ y.
However q is surjective, and its fibers are the A-orbits (see [SGA1, Exposé V, §1]).
Hence Xy is nonempty, and A acts transitively on this set. Our assumption ensures
on the other hand that this action has trivial stabilizers. Therefore, if we fix some
x P Xy, we deduce a bijection A

„
ÝÑ Xy determined by g ÞÑ g ¨x. The A-equivariant

structure on G provides a canonical isomorphism

Gx
„
ÝÑ Gg¨x

for each g P A. Using these data we obtain an isomorphism

pq˚G qy “ krAs bk Gx,

which is easily seen to be A-equivariant. Hence pq˚G qy is free as a krAs-module,
hence of finite tor dimension. �

2.4. Stalks at fixed points. We continue with the assumptions of §2.3. The
closed subscheme XA Ă X is the scheme which represents the functor Z ÞÑ

HompZ,XqA, where A acts on HompZ,Xq via its action on X. (The representabil-
ity of this functor is easy in our setting: since our action is admissible it suffices
to treat the case X “ SpecpRq is affine; then XA is the spectrum of the maximal
quotient of R on which A acts trivially, i.e. the quotient of R by the ideal generated
by the elements x ´ g ¨ x for x P R and g P A.) As a set, the closed subscheme

https://stacks.math.columbia.edu/tag/08FZ
https://stacks.math.columbia.edu/tag/0DJJ
https://stacks.math.columbia.edu/tag/0DJJ
https://stacks.math.columbia.edu/tag/03QP
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XA Ă X consists of the points x P X which are fixed by A and such that the
induced action on the residue field kpxq is trivial.

By definition, any geometric point of X which is stable under the A-action
considered in §2.3 factors through a geometric point of XA. In particular, if A is a
simple group then the A-action on the open subset U :“ X rXA Ă X is free.

Lemma 2.5. The A-action on U is admissible.

Proof. Consider the closed subset XA Ă X. Since the quotient morphism q is finite,
hence closed, the subset qpXAq Ă X{A is closed. Now from the definition of the
subset XA Ă X given above and the fact that the fibers of q are the A-orbits in X,
one sees that

U “ q´1pX{Ar qpXAqq.

Hence the claim follows from [SGA1, Exposé V, Corollaire 1.4]. �

From this lemma we obtain in particular that the quotient U{A exists as a
scheme. In fact, in the proof of this lemma we have seen that the open embedding
j : U ãÑ X induces an open embedding  : U{AÑ X{A, with complement qpXAq,
and that the quotient morphism qU : U Ñ U{A is the restriction of q to U .

We now denote by i : XA Ñ X the closed embedding. Note that i is A-
equivariant for the trivial A-action on XA; we therefore have a functor

i˚ : DShApX,kq Ñ DShApX
A,kq

(2.3)
– DShpXA,krAsq.

In other words, if F belongs to DShApX,kq, then i˚pForApF qq admits a canonical
“lift” as a complex of sheaves of krAs-modules. In particular, for any geometric
point x of XA the complex

Fipxq “ pi
˚F qx

is in a natural way an object of DpkrAs´Modq.
From now on we assume that S “ SpecpFq for some field F of finite cohomological

dimension, and that X is of finite type over F. (This assumption implies that U
is also of finite type over F. By [SGA1, Corollaire 1.5] we deduce that X{A and
U{A also are of finite type.) We also assume that k is a field of characteristic ` ą 0
which is nonzero in F. The proof of the following proposition was explained to us
by L. Illusie and W. Zheng. (A different, longer and slightly less easy proof can
also be deduced from [DL, Proposition 3.7].)

Proposition 2.6. Assume that A is a simple group. If F P DbShApU,kq is such
that ForApF q has constructible cohomology sheaves (see [SP, Tag 03RW]), then for
any geometric point x of XA the complex of krAs-modules

pRj˚F qx

is perfect.

Proof. Recall that the morphism j has finite cohomological dimension by [SP, Tag
0F10]. As a consequence the complex Rj˚F is bounded, so that pRj˚F qx is
bounded. On the other hand, by [SGA4 1

2 , Th. finitude, Théorème 1.1], the complex
Rj˚F is constructible; hence its stalk pRj˚F qx has finite-dimensional cohomology.
By [SP, Tag 0658], we deduce that to prove that this complex is perfect it suffices
to prove that it has finite tor dimension. But since the image x of x is fixed by A
we have q´1pqpxqq “ txu, which implies that

pRj˚F qx “
`

q˚pRj˚F q
˘

qpxq

https://stacks.math.columbia.edu/tag/03RW
https://stacks.math.columbia.edu/tag/0F10
https://stacks.math.columbia.edu/tag/0F10
https://stacks.math.columbia.edu/tag/0658
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by [SP, Tag 03QP]. Now we have q ˝ j “  ˝ qU , so that

q˚pRj˚F q “ R˚ppqU q˚F q.

By Lemma 2.4 the sheaf pqU q˚F has finite tor-dimension, hence by [SGA4, Exposé
XVII, Théorème 5.2.11] and [SP, Tag 0F10] the complex R˚ppqU q˚F q also does,
so that its stalk

`

R˚ppqU q˚F q
˘

qpxq

must have finite tor dimension, which finishes the proof. �

3. Smith theory for étale sheaves

3.1. $-equivariant derived categories. The formalism of “Smith theory” that
we will build will use the equivariant derived category of Bernstein–Lunts [BL].
This category is explicitly constructed only in a topological setting in [BL], but it
is well known that it applies also in the setting of étale sheaves under appropriate
assumptions, see [BL, §4.3]. In this subsection we briefly recall this construction in
the particular case that we require.

So, from now on we fix an algebraically closed field F of characteristic p, and a
finite field k of characteristic ` ‰ p. We will consider (admissible) actions of the
finite F-group scheme $ “ µ` of `-th roots of unity on F-schemes of finite type.
Here since F is algebraically closed, µ` is the constant group scheme associated
with the finite group µ`pFq, so that the constructions of Section 2 also apply in this
setting. For simplicity, we will not explicitly distinguish the group scheme µ` and
the finite group µ`pFq.

The construction of [BL] uses some “acyclic resolutions.” In this case these
resolutions can be constructed explicitly as follows: for any n ě 0 we set

Vn :“ Fn r t0u,

with the (admissible) action of $ induced by the dilation action of the multiplicative
group Gm. We have

HmpVn;kq “

#

k if m “ 0;

0 if 1 ď m ď 2n´ 2.

From this we see that for any F-scheme X of finite type the projection

pX,n : Vn ˆX Ñ X

is p2n´2q-acyclic, in the sense that for any X-scheme Y of finite type the morphism
pYX,n : Y ˆX pVn ˆXq Ñ Y is such that for any (étale) k-sheaf F the morphism

F Ñ τď2n´2ppp
Y
X,nq˚pp

Y
X,nq

˚F q

induced by adjunction is an isomorphism. (In fact, here by the Künneth for-
mula [SP, Tag 0F1N] we have ppYX,nq˚pp

Y
X,nq

˚F – H‚pVn,kq bk F .)
We now fix an F-scheme X of finite type endowed with an admissible action of

$. For any n ě 1 we set

PXn :“ Vn ˆX,

and consider the projection fXn : PXn Ñ X as above. Since the actions of $ on Vn
and X are admissible, this property also holds for the product Vn ˆX, so that we
can consider the quotient

P
X

n :“ PXn {$.

https://stacks.math.columbia.edu/tag/03QP
https://stacks.math.columbia.edu/tag/0F10
https://stacks.math.columbia.edu/tag/0F1N
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With the notation of §2.4, we have pPXn q
$ “ ∅; therefore, by [SGA1, Exposé V,

Corollaire 2.3] the quotient map qXn : PXn Ñ P
X

n is étale. In fact, in view of [SGA1,
Exposé V, Proposition 2.6] this map is an étale locally trivial principal homogeneous
space for $ in the sense of [SP, Tag 049A].

For any n, we will denote by

DbpX,$, n,kq

the category whose

‚ objects are triples pFn,FX , βq where Fn is an object of DbShpP
X

n ,kq, FX

is an object of DbShpX,kq, and

β : pqXn q
˚Fn

„
ÝÑ ppXn q

˚FX

is an isomorphism;
‚ morphisms from pFn,FX , βq to pGn,GX , γq are pairs pϕn, ϕXq with

ϕn : Fn Ñ Gn, ϕX : FX Ñ GX

such that γ ˝ ppqXn q
˚ϕnq “ ppp

X
n q
˚ϕXq ˝ β.

For any bounded interval I Ă Z we denote by DIpX,$, n, kq the full subcate-
gory of DbpX,$, n,kq whose objects are the triples pFn,FX , βq where H mpFXq

vanishes unless m P I. Then the category DIpX,$, n,kq does not depend (up to
canonical equivalence) on the choice of n, as long as 2n ´ 2 ě |I|, where |I| is the
length of I; in fact, by the same arguments as in [BL, §2.3.4], if n,m satisfy this
condition then the natural functors from DIpX,$, n,kq and DIpX,$,m,kq to the
category defined similarly with PXn and PXm replaced by

Vn ˆ Vm ˆX “ PXn ˆX PXm

(with the diagonal $-action) are equivalences of categories.
We can therefore define the $-equivariant derived category

Db
$pX,kq

as the direct limit of the categories DIpX,$, n,kq where I runs over the bounded
intervals of Z. This category admits a canonical structure of triangulated category,
see [BL, §§2.5.1–2.5.2]. By construction, we have a canonical triangulated forgetful
functor

(3.1) For$ : Db
$pX,kq Ñ DbShpX,kq

which sends a triple pFn,FX , βq to FX .

Remark 3.1. As explained in [BL, Lemma 2.3.2], if 2n´ 2 ě |I| the functor

DIpX,$, n, kq Ñ DbShpP
X

n ,kq

sending pFn,FX , βq to Fn is fully faithful. In particular, morphisms between
objects in Db

$pX,kq can always be computed as morphisms in derived categories
of quotients of “sufficiently acyclic” resolutions.

This construction is of course functorial in X. Namely, consider F-schemes of
finite type X,Y endowed with admissible actions of $, and a $-equivariant mor-
phism of F-schemes f : X Ñ Y . (Note that f is automatically quasi-compact since
X is Noetherian. It is also locally of finite type by [SP, Tag 01T8], hence of finite
type.)

https://stacks.math.columbia.edu/tag/049A
https://stacks.math.columbia.edu/tag/01T8
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(1) We have a (˚-)pullback functor

f˚ : Db
$pY,kq Ñ Db

$pX,kq,

which can be explicitly described in terms of the pullback functors associ-

ated with f and the induced morphism P
X

n Ñ P
Y

n .
(2) If f is quasi-separated we have a (˚-)pushforward functor

Rf˚ : Db
$pX,kq Ñ Db

$pY, kq.

(Here we use the fact that the usual pushforward functors respect the
bounded derived categories, see [SP, Tag 0F10], and also that the mor-

phisms pXn , pYn , qXn , qYn are smooth and that the induced morphism P
X

n Ñ

P
Y

n is quasi-compact and quasi-separated, which allows to use the smooth
base change theorem [SP, Tag 0EYU] to “transport” the isomorphism β.)

(3) If we assume that f is separated and that Y is quasi-separated, then we
also have a !-pushforward functor

Rf! : Db
$pX,kq Ñ Db

$pY,kq,

see [SGA4, Exposé XVII]. (Here, the fact that the !-pushforward functors re-
spect bounded derived categories follows from [SGA4, Exposé XVII, Corol-
laire 5.2.8.1], and we use the base change theorem [SGA4, Exposé XVII,
Théorème 5.2.6] to transport β.)

(4) Under these assumptions we also have a !-pullback functor

f ! : Db
$pY,kq Ñ Db

$pX,kq,

see [SGA4, Exposé XVIII]. (The fact that the !-pullback functors respect
bounded derived categories is explained in [SGA4 1

2 , Th. finitude, comments

after Corollaire 1.5]. And once again we use the smoothness of qXn , qYn , pXn ,
pYn , and the fact that for smooth maps the ˚- and !-pullback functors coin-
cide up to shift, see [SGA4, Exposé XVIII, Théorème 3.2.5], to transport
the isomorphisms β.)

By construction, all of these functors are compatible with the forgetful func-
tor (3.1) in the obvious way.

Remark 3.2. In practice all the schemes we will consider will be quasi-projective,
hence separated, so that any morphism between them will automatically be sepa-
rated.

3.2. Equivariant derived categories and equivariant sheaves. We continue
with the setting of §3.1. In Section 2 we have studied equivariant sheaves on
schemes, and in §3.1 we have considered the equivariant derived category. It is
now time to explain the relation between these two constructions. This relation is
based on the observation that (for any F-scheme X of finite type with an admissible
$-action, and any n ě 1) the natural pullback functor

ShpP
X

n ,kq Ñ Sh$pP
X
n ,kq

is an equivalence of categories, by the sheaf condition applied to the étale covering

qXn : PXn Ñ P
X

n . Therefore, for any $-equivariant sheaf F on X the pullback
ppXn q

˚F admits a natural structure of $-equivariant sheaf on PXn , hence descends

https://stacks.math.columbia.edu/tag/0F10
https://stacks.math.columbia.edu/tag/0EYU
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to a sheaf Fn on P
X

n . Using this construction we define a canonical triangulated
functor

(3.2) DbSh$pX,kq Ñ Db
$pX,kq.

Proposition 3.3. The functor (3.2) is an equivalence of categories.

Proof. Let us first show that our functor is fully faithful. For this we need to show
that for any $-equivariant sheaves F ,F 1 on X and any m P Zě0, for n " 0 the
natural map

HomDbSh$pX,kqpF ,F 1rmsq Ñ Hom
DbShpP

X
n ,kq

pFn,F
1
nrmsq

is an isomorphism, see Remark 3.1. By construction, this amounts to proving that
for n " 0 the pullback functor induces an isomorphism

HomDbSh$pX,kqpF ,F 1rmsq
„
ÝÑ HomDbSh$pPXn ,kqppp

X
n q
˚F , ppXn q

˚F 1rmsq.

However by adjunction we have

HomDbSh$pPXn ,kqppp
X
n q
˚F , ppXn q

˚F 1rmsq

– HomDbSh$pX,kqpF , RppXn q˚pp
X
n q
˚F 1rmsq.

Now the right-hand side can be replaced by

HomDbSh$pX,kqpF , τď0pRpp
X
n q˚pp

X
n q
˚F 1rmsqq

– HomDbSh$pX,kqpF , τďmpRpp
X
n q˚pp

X
n q
˚F 1qrmsq.

If 2n´ 2 ě m the morphism

F 1 Ñ τďmpRpp
X
n q˚pp

X
n q
˚F 1q

induced by adjunction is an isomorphism, which concludes the proof of fully faith-
fulness.

Once fully faithfulness is established, to conclude the proof it suffices to prove
that images of $-equivariant sheaves on X generate Db

$pX,kq as a triangulated
category. This is however clear from the construction of the “standard” t-structure
in [BL, §§2.5.1–2.5.2]. �

In particular, in the special case where the $-action on X is trivial, using Propo-
sition 3.3 combined with (2.3), we obtain a canonical equivalence of triangulated
categories

(3.3) Db
$pX,kq – DbShpX,kr$sq.

We now consider two F-schemesX and Y of finite type, with admissible actions of
$, and a quasi-separated $-equivariant morphism f : X Ñ Y . We have considered
functors

DbSh$pX,kq
Rf˚ //

DbSh$pY, kq
f˚
oo

in §2.2, and functors

Db
$pX,kq

Rf˚ //
Db
$pY,kq

f˚
oo

in §3.1. These functors are related in the natural way, as explained in the following
lemma.
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Lemma 3.4. The diagrams

DbSh$pY,kq
f˚ //

o
��

DbSh$pX,kq

o
��

Db
$pY,kq

f˚ // Db
$pX,kq

and

DbSh$pX,kq
Rf˚ //

o
��

DbSh$pY,kq

o
��

Db
$pX,kq

Rf˚ // Db
$pY,kq

are commutative, where the vertical arrows are the equivalences of Proposition 3.3.

Proof. The commutativity of the left diagram can be seen on the definitions; the
commutativity of the right diagram follows by adjunction. �

3.3. The crucial lemma. We can now prove the lemma that will allow us to
develop the “Smith theory for sheaves” from [Tr] in our setting of étale sheaves.

We consider again an F-scheme X of finite type, with an admissible action of $.
As in §2.4 we consider the fixed points subscheme X$ and the closed, resp. open,
embedding

i : X$ ãÑ X, resp. j : X rX$ ãÑ X.

(Here i and j are automatically separated, see [SP, Tag 01L7].) For any F in
Db
$pX,kq we have a canonical morphism

(3.4) i!F Ñ i˚F

in the category Db
$pX

$,kq, which can be obtained by applying the functor i˚ to
the adjunction morphism i!i

!F Ñ F .
From now on we will not consider the entire $-equivariant derived category

Db
$pX,kq, but only the full triangulated subcategory Db

$,cpX,kq whose objects are

those F P Db
$pX,kq such that the complex For$pF q has constructible cohomology

objects, where For$ is as in (3.1). For any F-scheme Y of finite type with trivial
action of $, we will say that an object F in Db

$,cpY, kq has perfect geometric stalks

if, denoting by F 1 the image of F under the equivalence Db
$pY, kq – DbShpY,kr$sq

from (3.3), for any geometric point y of Y the complex F 1
y is a perfect complex of

kr$s-modules.

Lemma 3.5. For any F in Db
$,cpX,kq, the cone of (3.4) has perfect geometric

stalks.

Proof. From the standard distinguished triangle in the “recollement” formalism we
see that the cone of (3.4) is isomorphic to i˚Rj˚j

˚pF q. The complex we want to
consider is therefore

`

Rj˚j
˚pF q

˘

x
,

where x is a geometric point of X$. In these terms, the desired claim follows from
Proposition 2.6 and Lemma 3.4. �

Later we will also need the following lemma, whose proof is close to that of
Lemma 3.5. Here we consider two F-schemes of finite type Z and Y with trivial
actions of $, and a quasi-separated morphism of F-schemes f : Z Ñ Y . Then
we have a derived functor Rf˚ : Db

$pZ,kq Ñ Db
$pY,kq, see §3.1, which sends the

subcategory Db
$,cpZ,kq into Db

$,cpY, kq by [SGA4 1
2 , Th. finitude, Théorème 1.1].

https://stacks.math.columbia.edu/tag/01L7
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Lemma 3.6. The functor

Rf˚ : Db
$,cpZ,kq Ñ Db

$,cpY,kq

transforms objects with perfect geometric stalks into objects with perfect geometric
stalks.

Proof. As in the proof of Proposition 2.6 it suffices to check that Rf˚ transforms
objects of finite tor dimension into objects of finite tor dimension, which follows
from [SGA4, Exposé XVII, Théorème 5.2.11] and [SP, Tag 0F10]. �

3.4. Gm-equivariant derived categories. Later we will also need to consider
equivariant derived categories for actions of the multiplicative group Gm over F.
The construction of this category is similar to, and in fact simpler than, the con-
struction in §3.1. Namely, for any n ě 1 the $-action on Vn is obtained by restric-
tion from a natural Gm-action, and moreover we have a canonical map Vn Ñ Pn´1

F
which is a Zariski locally trivial principal Gm-bundle. Therefore, given any F-
scheme X endowed with an action of Gm, we consider the diagonal action on VnˆX,
and we have a Zariski locally trivial principal Gm-bundle

Vn ˆX Ñ Vn ˆ
Gm X

for some scheme Vn ˆ
Gm X which can be constructed by (Zariski) gluing over the

natural cover which trivializes the map Vn Ñ Pn´1
F . If we assume X to be of finite

type, then as in §3.1 the map pX,n : Vn ˆX Ñ X is p2n´ 2q-acyclic, which allows
to define a category DbpX,Gm, n,kq in terms similar to those for Dbp´, $, n, kq,
and check that the subcategory DIpX,Gm, n,kq does not depend on the choice of
n as long as 2n ´ 2 ě |I|. We can finally define the equivariant derived category
Db

Gm
pX,kq as the direct limit of the categories DIpX,Gm, n,kq (with n " 0) over

the finite intervals I Ă Z. These categories have the same functoriality properties
as the categories Db

$pX,kq; in particular we have a natural (triangulated) forgetful
functor

ForGm
: Db

Gm
pX,kq Ñ DbShpX,kq.

As in the $-equivariant setting, we will denote by Db
Gm,c

pX,kq the full subcategory

of Db
Gm
pX,kq whose objects are those F such that ForGmpF q has constructible

cohomology sheaves.
The category Db

Gm
pX,kq has a canonical object whose image under ForGm

is the
constant sheaf kX ; it will also be denoted kX . In these terms, the Gm-equivariant
cohomology of a complex F in Db

Gm
pX,kq is defined as

H‚Gm
pX,F q “

à

nPZ
HomDb

Gm
pX,kqpkX ,F rnsq.

In the case X “ SpecpFq “: pt, it is well known (and easy to see) that we have a
graded algebra isomorphism6

(3.5) H‚Gm
ppt,kptq “ krxs,

where x has degree 2. If n is even, we will denote by

cannpt : kpt Ñ kptrns

6To be more precise, to get the isomorphism (3.5) one needs to fix a trivialization of the Tate
sheaf on pt, see e.g. the proof of Lemma 3.9 below. This is possible—though not canonical—since

F is algebraically closed; we fix such a trivialization once and for all.

https://stacks.math.columbia.edu/tag/0F10
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the morphism obtained as the inverse image of xn{2.
By definition we have an embedding $ Ă Gm, which provides a $-action on X

by restriction, and we have a canonical “restriction” triangulated functor

ResGm
$ : Db

Gm
pX,kq Ñ Db

$pX,kq.

This functor is compatible (in the obvious sense) with the pushforward and pullback
functors when they are defined, and moreover satisfies

For$ ˝ ResGm
$ – ForGm .

As a consequence, it must send Db
Gm,c

pX,kq into Db
$,cpX,kq.

3.5. The “Smith category” of a point. In this subsection we consider the spe-
cial case of the constructions of §3.4 where X “ pt. In this case, in view of (3.3)
we have an equivalence of triangulated categories

(3.6) Db
$ppt,kq – Dbpkr$s´Modq.

Under this equivalence, the full subcategory Db
$,cppt,kq corresponds to the full

subcategory of Dbpkr$s´Modq whose objects are the complexes whose cohomology
is finite dimensional (or equivalently finitely generated over kr$sq, which itself is
canonically equivalent to the category Dbpkr$s´Mofq, where kr$s´Mof is the
category of finite-dimensional kr$s-modules.

We will denote by

Db
Gm,cppt,kq$´perf Ă Db

Gm,cppt,kq

the full triangulated subcategory whose objects are the complexes F such that
ResGm

$ pF q, considered as a complex of kr$s-modules through (3.6), is perfect
(i.e. isomorphic in Dbpkr$s´Modq to a bounded complex of finitely generated pro-
jective modules).

We then set

Smppt,kq :“ Db
Gm,cppt,kq{Db

Gm,cppt,kq$´perf ,

where we consider the Verdier quotient category.
The following lemma will be crucial for us below, in that it will allow to use

some parity vanishing arguments in various variants of the category Smppt,kq.

Lemma 3.7. For any n P Z we have

HomSmppt,kqpkpt,kptrnsq “

#

k if n is even;

0 otherwise,

where we omit the quotient functor Db
Gm,c

ppt,kq Ñ Smppt,kq.

The proof of Lemma 3.7 will require some preparation. We start with the fol-
lowing claim.

Lemma 3.8. For any F in Db
Gm,c

ppt,kq, there exists a canonical isomorphism of
graded k-vector spaces

à

mPZ
HomDb

$ppt,kq
`

kpt,ResGm
$ pF qrms

˘

– H‚Gm
ppt,F q ‘ H‚Gm

ppt,F qr1s.



SMITH–TREUMANN THEORY AND THE LINKAGE PRINCIPLE 21

Proof. We fix F in Db
Gm,c

ppt,kq and m P Z. Then for n " 0 the object F is

represented by a triple pFn,FX , βq in Dbppt,Gm, n,kq, and by an analogue of
Remark 3.1 we have

HmGm
ppt,F q “ HomDbpPn´1

F ,kqpkPn´1
F

,Fnrmsq,

and similarly for Hm`1
Gm

ppt,F q. If we denote by

πn : Vn{$ Ñ Pn´1
F

the natural map, then ResGm
$ pF q is represented by the object ppπnq

˚Fn,FX , βq in
Dbppt, $, n, kq, so that we have

HomDb
$ppt,kq

`

kpt,ResGm
$ pF qrms

˘

“ HomDbpVn{$,kqpkVn{$, pπnq
˚Fnrmsq.

To prove the lemma, it therefore suffices to prove that for any G in DbpPn´1
F ,kq we

have a canonical isomorphism

(3.7) HomDbpVn{$,kqpkVn{$, pπnq
˚G q –

HomDbpPn´1
F ,kqpkPn´1

F
,G q ‘HomDbpPn´1

F ,kqpkPn´1
F

,G r1sq.

We start by proving that

(3.8) pπnq˚kVn{$ “ kPn´1
F

‘ kPn´1
F
r´1s.

In fact, Vn{$ is the complement of the zero section in the line bundle π̃n : Op`q Ñ
Pn´1
F . If in : Pn´1

F ãÑ Op`q is the embedding of the zero section, and jn : Vn{$ ãÑ

Op`q is the complementary open embedding, then we have a distinguished triangle

pinq˚kPn´1
F
r´2s Ñ kOp`q Ñ j˚kVn{$

r1s
ÝÝÑ .

Applying the functor pπ̃nq˚ we deduce a distinguished triangle

kPn´1
F
r´2s Ñ kPn´1

F
Ñ pπnq˚kVn{$

r1s
ÝÝÑ,

in which is the first map is (by definition) the (shift by ´2 of the) Euler class of
Op`q. Since k has characteristic ` this Euler class vanishes, and we deduce the
desired isomorphism (3.8).

Next, we claim that for any G in DbShpPn´1
F ,kq we have a canonical isomorphism

(3.9) G bk pπnq˚kVn{$
„
ÝÑ pπnq˚pπnq

˚G .

In fact adjunction provides a canonical morphism from the left-hand side to the
right-hand side. To prove that this morphism is invertible it suffices to check this
property after pullback under the surjective morphism πn. However πn is a principal
Gm{$ “ Gm-bundle, so that we have a Cartesian diagram

Vn{$ ˆGm
//

��

Vn{$

πn

��
Vn{$

πn // Pn´1
F ,

hence the claim follows from the smooth base change theorem [SP, Tag 0EYU].
Combining (3.8) and (3.9) we obtain, for any G in DbShpPn´1

F ,kq, an isomor-
phism

pπnq˚pπnq
˚G – G ‘ G r´1s.

https://stacks.math.columbia.edu/tag/0EYU
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In view of the isomorphism

HomDbpVn{$,kqpkVn{$, pπnq
˚G q “ HomDbpVn{$,kqppπnq

˚kPn´1
F

, pπnq
˚G q

– HomDbpPn´1
F ,kqpkPn´1

F
, pπnq˚pπnq

˚G q,

this implies (3.7), hence finishes the proof of the lemma. �

Using Lemma 3.8 we will be able to give a more explicit description of the
category Db

Gm,c
ppt,kq$´perf , as follows.

Lemma 3.9. The full subcategory Db
Gm,c

ppt,kq$´perf Ă Db
Gm,c

ppt,kq consists of
the complexes F such that

dimk
`

H‚Gm
ppt,F q

˘

ă 8.

As a consequence, in Smppt,kq we have a canonical isomorphism of functors

id – r2s.

Proof. Recall from (3.5) that there exists a canonical morphism

can2
pt : kpt Ñ kptr2s

in Db
Gm
ppt,kq. More explicitly, this morphism can be constructed as follows: con-

sider the natural dilation action of Gm on A1
F. If we denote by i : pt “ t0u ãÑ A1

F
the embedding, then we have i!pkA1

F
q “ kptr´2s. Using adjunction, we deduce a

canonical map

i˚pkptr´2sq Ñ kA1
F
.

(Note that we have ignored a Tate twist here; see Footnote 6.) Applying i˚

and shifting by 2, we obtain the morphism can2
pt. Since pA1

Fq
$ “ t0u, from

this description and Lemma 3.5 we obtain that the cone C of can2
pt belongs to

Db
Gm,c

ppt,kq$´perf . In particular, since the tensor product of any bounded complex

with a perfect complex is perfect, this implies that for any F in Db
Gm
ppt,kq we

have a canonical isomorphism

F
„
ÝÑ F r2s,

providing the desired isomorphism of functors id – r2s.
Now we claim that the triangulated subcategory xCy∆ of Db

Gm,c
ppt,kq generated

by C is exactly the subcategory whose objects are the complexes F such that

dimk
`

H‚Gm
ppt,F q

˘

ă 8.

Indeed we have H‚Gm
ppt, Cq “ kr2s, so that C belongs to this subcategory. To

prove the opposite inclusion, we prove by induction that for any n P Zě0, any
complex F such that dimk

`

H‚Gm
ppt,F q

˘

“ n belongs to xCy∆. In fact, if n “
0 then using Lemma 3.8 we see that any object F such that H‚Gm

ppt,F q “ 0

satisfies ResGm
$ pF q “ 0, hence ForGm

pF q “ 0. From the definition, we see that
this implies that F “ 0. Fix now n ě 0, and assume the result is known for n. If
dimk

`

H‚Gm
ppt,F q

˘

“ n` 1, and if m is maximal such that

HmGm
ppt,F q ‰ 0,

then any choice of a nonzero vector in this space provides a morphism

kptr´ms Ñ F
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in Db
Gm
pX,kq. By maximality the composition of this map with can2

ptr´m ´ 2s
vanishes, so that this map must factor through a morphism

Cr´m´ 2s Ñ F .

From the long exact sequence in equivariant cohomology we see that the cone G of
this map satisfies dimk

`

H‚Gm
ppt,G q

˘

“ n, which allows to conclude by induction.
The two claims we have proved so far show that the subcategory with ob-

jects those complexes F such that H‚Gm
ppt,F q is finite dimensional is included

in Db
Gm,c

ppt,kq$´perf . On the other hand, if F is an object of Db
Gm,c

ppt,kq such

that ResGm
$ pF q is perfect, then

dimk

˜

à

nPZ
HomDb

$ppt,kqpkpt,ResGm
$ pF qrnsq

¸

ă 8.

From Lemma 3.8 we deduce that in this case H‚Gm
ppt,F q is finite dimensional,

which concludes the proof. �

We can finally give the proof of Lemma 3.7.

Proof of Lemma 3.7. Lemma 3.9 shows in particular that kpt does not belong to

Db
Gm,c

ppt,kq$´perf , hence has nonzero image in Smppt,kq. In view of the isomor-

phism id – r2s, this shows that HomSmppt,kqpkpt,kptrnsq ‰ 0 for any even n. Hence
to conclude it only remains to prove that

dim HomSmppt,kqpkpt,kptrnsq ď

#

1 if n is even;

0 otherwise

A morphism $ from kpt to kpt in Smppt,kq is represented by a diagram

kpt
f
ÐÝ F

g
ÝÑ kptrns

in which F belongs to Db
Gm,c

ppt,kq, f and g are morphisms in Db
Gm,c

ppt,kq, and the

cone of f belongs to Db
Gm,c

ppt,kq$´perf , i.e. has finite-dimensional cohomology (see

Lemma 3.9). In particular, from the long exact sequence in equivariant cohomology
and (3.5) we obtain that there exists N P 2Z (which, for later use, we will assume
to be at least ´n) such that for m ě N we have

HmGm
ppt,F q “

#

k if m is even;

0 otherwise.

If we choose a nonzero element in HNGm
ppt,F q, considered as a morphism h :

kptr´N s Ñ F in Db
Gm,c

ppt,kq, then the cone of h has finite-dimensional equivariant

cohomology, i.e. belongs to Db
Gm,c

ppt,kq$´perf by Lemma 3.9. As a consequence,
$ can also be represented by the diagram

kpt
f˝h
ÐÝÝ kptr´N s

g˝h
ÝÝÑ kptrns.

In case n is odd we have

HomDb
Gm,c

ppt,kqpkptr´N s,kptrnsq “ 0,

so that g ˝ h must be zero, which finishes the proof in this case.
On the other hand, if n is even both spaces HomDb

Gm,c
ppt,kqpkptr´N s,kptq and

HomDb
Gm,c

ppt,kqpkptr´N s,kptrnsq are 1-dimensional, with a basis given by canNptr´N s
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and cann`Npt r´N s respectively. Hence to conclude, it only remains to prove that
for M,M 1 ě n even, the diagrams

kpt

canMpt r´Ms
ÐÝÝÝÝÝÝÝ kptr´M s

cann`Mpt r´Ms
ÝÝÝÝÝÝÝÝÝÑ kptrns

and

kpt

canM
1

pt r´M
1
s

ÐÝÝÝÝÝÝÝÝ kptr´M
1s

cann`M
1

pt r´M 1
s

ÝÝÝÝÝÝÝÝÝÝÑ kptrns

represent the same morphism in Smppt,kq. However we can assume that M 1 ěM ;

then the morphism canM
1
´M

pt r´M 1s : kptr´M
1s Ñ kptr´M s has a cone which

belongs to Db
Gm,c

ppt,kq$´perf , and satisfies

canM
1

pt r´M
1s “ pcanMpt r´M sq ˝ pcanM

1
´M

pt r´M 1sq,

cann`M
1

pt r´M 1s “ pcann`Mpt r´M sq ˝ pcanM
1
´M

pt r´M 1sq.

The desired claim follows. �

4. Fixed points of roots of unity on the affine Grassmannian

As in Section 3 we let F be an algebraically closed field of characteristic p ą 0.

4.1. Affine Weyl group. Let G be a connected reductive algebraic group over F,
and choose a Borel subgroup B Ă G and a maximal torus T Ă B. The Weyl group
of pG,T q will be denoted Wf . (Here, the subscript stands for “finite,” and is here
to avoid any confusion with the affine Weyl group introduced below.) We will also
denote by U the unipotent radical of B, by B` the Borel subgroup opposite to B
with respect to T , and by U` the unipotent radical of B`.

We will denote by X :“ X˚pT q the character lattice of T , and by X_ :“ X˚pT q
its cocharacter lattice. Let R Ă X be the root system of pG,T q, and let R` Ă R
be the system of positive roots consisting of the T -weights in LiepU`q. Let also Rs

be the associated basis of R (the “simple roots”). These data define a set Sf of
Coxeter generators for Wf , consisting of the reflections sα with α P Rs.

The affine Weyl group is the semi-direct product

Waff :“Wf ˙ ZR_,

where R_ Ă X_ is the coroot system, and ZR_ is the coroot lattice. For λ P
ZR_ we will denote by tλ the image of λ in Waff . The group Waff admits a
natural structure of Coxeter group extending that of Wf ; the corresponding simple
reflections Saff Ă Waff consist of Sf together with the elements tβ_sβ with β a
maximal root in R.

Given n P Z, we will consider two actions of Waff on V :“ X_ bZ R defined, for
w PWf and λ P ZR_, by

pwtλq ¨n µ “ wpµ´ nλq, pwtλq ˝n µ “ wpµ` nλq

for µ P X_, where in the right-hand side we consider the natural action of Wf on
X_. (Here the action ¨n appears due to the sign conventions in Bruhat–Tits theory;
but the action ˝n is closer to the action which will be relevant when considering
Representation Theory.) Of course, these actions are related via

w ˝n µ “ ´pw ¨n p´µqq

for any w PWaff and µ P V .
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We set

an :“ tλ P V | @α P R`, ´n ă xλ, αy ă 0u.

Then the closure an of an is a fundamental domain for the action of Waff on V
via ¨n and via ˝n. These actions stabilize X_, and a fundamental domain for the
action of Waff on X_ (for each of these actions) is therefore an XX_.

The affine roots are the formal linear combinations α`m~ with α P R and m P Z.
To such a combination we attach an affine function fnα`m~ on V , determined by

fnα`m~pvq “ xα, vy ` nm,

and an element sα`m~ PWaff determined by

sα`m~ “ tmα_sα.

We then have

sα`m~ ¨n v “ v ´ fnα`m~pvqα
_

for any v P V .

Remark 4.1. In practice, when considering these constructions in later sections, the
integer n will be either 1 or a prime number different from p. As this assumption
does not simplify the discussion in any way, we will not impose any restriction on
n in this section.

4.2. Some Bruhat–Tits theory. For any positive integer n, we set Kn :“ Fppznqq.
We will consider K :“ K1 as a valued field with its natural valuation (such that
z has valuation 1), and endow each Kn with the valuation obtained by restriction.
(In this way, all the fields Kn are canonically isomorphic, but their valuations dif-
fer.) We will denote by On the valuation ring of Kn, so that On :“ Frrznss. For
any λ P X_ we have a point zλ P GpK q, defined as the image of z under the map
pK qˆ Ñ GpK q induced by λ. If λ P nX_, then zλ belongs to GpKnq.

The group scheme G ˆSpecpFq SpecpKnq is a (split) connected reductive group
scheme over Kn, so that one can consider the associated (enlarged) Bruhat–Tits
building Bn. Our choice of maximal torus in G provides a split maximal torus
T ˆSpecpFq SpecpKnq Ă GˆSpecpFq SpecpKnq, which itself defines an apartment An
in Bn. This apartment is an affine space with underlying vector space V , and
it is endowed with a canonical action of NGpT qpKnq whose vectorial part factors
through the natural action of NGpT qpKnq{T pKnq “ Wf on V , and such that for
λ P X_ the element znλ P T pKnq acts by translation by ´nλ. Let us choose, for
any w PWf , a lift 9w of w in NGpT q. Then we will consider the map

ιn : Waff Ñ NGpT qpKnq

defined by ιnptλwq “ znλ 9w for w PWf and λ P ZR_.
If we choose a Wf -fixed point in An, then the action of V on this point defines

an identification

(4.1) V
„
ÝÑ An,

under which the action of NGpT qpKnq on An identifies with the action of Waff on
V provided by ¨n. We will fix such an identification once and for all, and use it to
identify all the data considered above related to V as data related to An. (None of
our considerations below will depend on the choice of identification (4.1).)

The collection of fixed points of the reflections sα`m~ (or in other words of kernels
of the functions fnα`m~) defines a hyperplane arrangement in An, hence a collection
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of facets (whose closures are the nonempty intersections of such hyperplanes). In
particular, an is a facet of maximal dimension, i.e. an alcove. Another example
of facet is the intersection on of the reflection hyperplanes associated with all the
reflections sβ with β P R, i.e. the set of Wf -fixed points. The facets we will mainly
be interested in are those contained in the closure an of an.

To any facet f in An, Bruhat–Tits theory associates a “parahoric group scheme”
Pf over SpecpOnq, characterized as the unique (up to isomorphism) smooth affine
group scheme over SpecpOnq with connected geometric fibers such that

(4.2) Pf ˆSpecpOnq SpecpKnq “ GˆSpecpFq SpecpKnq,

and whose On-points identify (via this isomorphism) with the pointwise stabilizer
of f in GpKnq. In particular we have

Pon “ GˆSpecpFq SpecpOnq,

and Pan is an Iwahori group scheme, whose group of On-points is the inverse image
Iwn of B under the map GpOnq Ñ G of evaluation at zn “ 0. This construction is
compatible with inclusions of closures of facets in a natural way; in particular for
any facet f contained in an we have an inclusion

(4.3) Pan Ă Pf .

4.3. Loop groups and partial affine flag varieties. As above we fix a positive
integer n. The n-th loop group associated with G is the ind-affine group ind-scheme
LnG over F which represents the functor sending an F-algebra R to GpRppznqqq. The
associated arc group (or positive loop group) is the affine group scheme L`nG over
F which represents the functor sending R to GpRrrznssq.

The case we are mostly interested in is when n “ 1. In this case (here and in
later related notation), we will usually omit the subscript from the notation. The
case of a more general n however naturally appears when considering the action
of n-th roots of unity by loop rotation. Namely, we have a natural action of the
multiplicative group Gm over F on LG by loop rotation. This action stabilizes the
subgroup L`G. Denote now by µn Ă Gm the subgroup scheme of n-th roots of
unity; we can then consider the fixed-points ind-scheme pLGqµn and the fixed-points
scheme pL`Gqµn in the sense of §2.4.

Lemma 4.2. We have identifications

pLGqµn “ LnG, pL`Gqµn “ L`nG.

Proof. For any F-algebra R, the R-points pLGqpRq consist of the F-schemes mor-
phisms SpecpRppzqqq Ñ G. Therefore, the R-points of pLGqµn consist of the µn-
invariant morphisms SpecpRppzqqq Ñ G, i.e. the morphisms which factor through
the quotient SpecpRppzqqq Ñ SpecpRppzqqq{µn “ SpecpRppznqqq. This proves the
first identification. The proof of the second one is similar. �

It is well known that the fppf sheafification of the functor

R ÞÑ pLGqpRq{pL`GqpRq

is represented by an ind-projective ind-scheme of ind-finite type over F, which is
called the affine Grassmannian of G, and will be denoted GrG. The main goal of
this section is to describe the ind-scheme pGrGq

µn , see Proposition 4.6 below. This
will require discussing more general “partial affine flag varieties” attached to LnG,
as follows.
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If f Ă an is a facet, we can consider the affine group scheme L`nPf over F
which represents the functor sending R to Pf pRrrz

nssq. In view of (4.2), L`nPf is a
subgroup of LnG. The partial affine flag variety

Flnf

associated with f is the ind-projective ind-scheme of ind-finite type over F which
represents the fppf sheafification of the presheaf

R ÞÑ LnGpRq{L
`
nPf pRq.

These ind-schemes are the main object of study of [PR]. In particular, the connected
components of Flnf are in a natural bijection with the algebraic fundamental group
of G (see [PR, Theorem 0.1]); the component corresponding to the neutral element
will be denoted Fln,˝f .

If α P R, we will denote by Uα the root subgroup of G attached to α. Then,
for an affine root α ` m~, we will denote by Uα`m~ the subgroup of LG which,
for any isomorphism uα : Ga

„
ÝÑ Uα, identifies with the image of the morphism

x ÞÑ uαpxz
mq.

The following statements are easily checked.

Lemma 4.3. Let α P R and m P Z.

(1) The subgroup Uα`m~ is stable under the action of µn, and we have

pUα`m~q
µn “

#

Uα`m~ if m P nZ;

t1u otherwise.

(2) If λ P X_, we have

zλ ¨ Uα`m~ ¨ z
´λ “ Uα`pm`xλ,αyq~.

(3) If f Ă an is a facet, we have Uα`mn~ Ă L`nPf iff fnα`m~ takes nonnegative
values on f .

4.4. Big cells in partial affine flag varieties. Our arguments below will make
use of the “big cell” in Flnf , whose construction we now recall following de Cataldo–

Haines–Li [dCHL]. We first consider the affine group ind-scheme L
p´1q
n G which

represents the functor sending R to the kernel of the morphism

GpRrz´nsq Ñ GpRq

of evaluation at z´n “ 0. Then L
p´1q
n G is a subgroup ind-scheme of LnG, and we

set

L´´n Pan “ Lp´1q
n G ¨ U`.

With this definition, it is well known (see e.g. [Fa, §2]) that the action on the base
point induces an open embedding

L´´n Pan Ñ Fln,˝an ,

and that from this one can obtain an open cover of Fln,˝an parametrized by Waff ,
where the open subset corresponding to w is the image of

ιnpwq ¨ L
´´
n Pan ¨ ιnpwq

´1

under the map g ÞÑ g ¨ rιnpwqs. (Here, rιnpwqs is the image of ιnpwq in Fln,˝an .)
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For a general facet f Ă an, we denote by W f
aff the pointwise stabilizer of f in

Waff (a finite parabolic subgroup) and set

L´´n Pf “
č

wPW f
aff

ιnpwq ¨ L
´´
n Pan ¨ ιnpwq

´1.

The following claim is easily checked.

Lemma 4.4. For α P R and m P Z, we have Uα`nm~ Ă L´´n Pf iff fnα`m~ takes
negative values on f .

With this definition, as explained in [dCHL, §3.8.1], the action on the base point
defines an open embedding

L´´n Pf Ñ Fln,˝f .

One can obtain from this an open cover of Fln,˝f parametrized by the quotient

Waff{W
f
aff , where the open subset attached to a coset wW f

aff is the image of the
subgroup

ιnpwq ¨ L
´´
n Pf ¨ ιnpwq

´1

under the morphism of action on the image of ιnpwq. (These data do not depend on
the choice of w in its coset, and this claim can be deduced from the corresponding
fact for an by using the morphism Fln,˝an Ñ Fln,˝f induced by (4.3).)

Note that in the special case n “ 1 and f “ o1, we have

L´´1 Po1
“ Lp´1qG.

For m P Zě1, we will also denote by Lp´1qGpmq, resp. L
p´1q
n Gpmq, the subgroup

of Lp´1qG, resp. L
p´1q
n G which represents the functor sending R to the preimage of

T pRrt´1s{t´mq under the composition

Lp´1qGpRq ãÑ GpRrt´1sq Ñ GpRrt´1s{t´mq,

resp. the preimage of T pRrt´ns{t´mnq under the composition

Lp´1q
n GpRq ãÑ GpRrt´nsq Ñ GpRrt´ns{t´nmq.

Below we will require the following properties of these subgroups:

(1) for fixed λ P X_ and m P Zą0, for m1 " 0 we have zλLp´1qGpm1qz´λ Ă
Lp´1qGpmq;

(2) for any facet f Ă an, for m " 0 we have L
p´1q
n Gpmq Ă L´´n Pf .

(Here, (2) follows from the fact that for any given w P Waff , for m " 0 we have

L
p´1q
n Gpmq Ă ιnpwq ¨ L

´´
n Pan ¨ ιnpwq

´1, see [dCHL]. For (1), we can use [dCHL,
Remark 3.1.1] to reduce the claim to the case G “ GLnpFq, which is clear from a
matrix calculation.)

Lemma 4.5. For any λ P p´anq XX_, we have

pzλ ¨ L´´1 Po1
¨ z´λqµn “ L´´n Pfλ ,

where fλ Ă an is the facet containing ´λ.

Proof. For any α P R, let us denote by iα the largest integer such that the function
fnα`iα~ takes negative values on fλ. In fact, since fλ Ă an we can describe this
integer very explicitly; namely:
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‚ if α P R` then xλ, αy P t0, ¨ ¨ ¨ , nu, and

(4.4) iα “

#

0 if xλ, αy ą 0;

´1 if xλ, αy “ 0;

‚ if α P ´R` then xλ, αy P t´n, ¨ ¨ ¨ , 0u, and

(4.5) iα “

#

´1 if xλ, αy ą ´n;

´2 if xλ, αy “ ´n.

Recall from (1)–(2) above that we can choose m large enough such that

Lp´1q
n Gpmq Ă L´´n Pfλ and z´λ ¨ Lp´1q

n Gpmq ¨ zλ Ă Lp´1qG.

Then the arguments in [dCHL, Proofs of Lemma 3.6.3 and Proposition 3.6.4] show
that we have a direct product decomposition

L´´n Pfλ “ Lp´1q
n Gpmq ¨

ź

αPR`

iα
ź

j“´m

Uα`jn~ ¨
ź

αP´R`

iα
ź

j“´m

Uα`jn~.

(Here we use an arbitrary order on R` and on ´R`.) Our choice of m guarantees

that z´λ ¨ L
p´1q
n Gpmq ¨ zλ Ă Lp´1qG, and in view of Lemma 4.3(2), for any affine

root α ` jn~ appearing in the decomposition above, the fact that fnα`j~p´λq ă 0
implies that

z´λ ¨ Uα`jn~ ¨ z
λ Ă Lp´1qG.

These considerations show that

L´´n Pfλ Ă zλ ¨ L´´1 Po1 ¨ z
´λ,

so that

L´´n Pfλ Ă pz
λ ¨ L´´1 Po1

¨ z´λqµn .

To prove the reverse inclusion, we continue with some m as above, and choose
m1 " 0 such that

zλLp´1qGpm1qz´λ Ă Lp´1qGpnmq

(see (1) above). We then have

pzλLp´1qGpm1qz´λqµn Ă pLp´1qGpnmqqµn “ Lp´1q
n Gpmq.

As above we have a direct product decomposition

Lp´1qG “ Lp´1qGpm1q ¨
ź

αPR`

´1
ź

j“´m1

Uα`j~ ¨
ź

αP´R`

´1
ź

j“´m1

Uα`j~,

where now (for notational convenience) we choose the order on R` such that all
the roots such that xλ, αy “ 0 are bigger than the other ones, and the order on
´R` such that all the roots such that xλ, αy “ ´n are bigger that the other
ones. From this decomposition we see that pzλ ¨ Lp´1qG ¨ z´λqµn is the product of
pzλLp´1qGpm1qz´λqµn , which is included in L´´n Pfλ by the choices of m and m1,
and of

¨

˝

ź

αPR`

´1`xλ,αy
ź

j“´m1`xλ,αy

Uα`j~ ¨
ź

αP´R`

´1`xλ,αy
ź

j“´m1`xλ,αy

Uα`j~

˛

‚

µn

,
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which by Lemma 4.3 is included in

ź

αPR`

xλ,αyą0

0
ź

j“´N

Uα`jn~ ¨
ź

αPR`

xλ,αy“0

´1
ź

j“´N

Uα`jn~¨

ź

αP´R`

xλ,αyą´n

´1
ź

j“´N

Uα`jn~ ¨
ź

αP´R`

xλ,αy“´n

´2
ź

j“´N

Uα`jn~

for N " 0. Here all the affine root subgroups are included in L´´n Pfλ by (4.4)–(4.5)
and Lemma 4.4, which finally proves that

pzλ ¨ Lp´1qG ¨ z´λqµn Ă L´´n Pfλ

and concludes the proof. �

4.5. Fixed points on the affine Grassmannian. The main result of the present
section is the following claim. (Here, for λ P X_ we denote by Lλ the coset of zλ

in GrG.)

Proposition 4.6. For any λ P p´anq XX_, the map g ÞÑ g ¨ Lλ factors through
an open and closed embedding

Fln,˝fλ
Ñ pGrGq

µn ,

where fλ is as in Lemma 4.5. Moreover, the induced map
ğ

λPp´anqXX_

Fln,˝fλ
Ñ pGrGq

µn

is an isomorphism of ind-schemes.

Proof. Arguments similar to those for Lemma 4.5 show that for λ P p´anq XX_,
the point Lλ is fixed under the action of L`nPan . Since this point is also stable

under the action of lifts of elements in W fλ
aff , it is stabilized by L`nPfλ . Since µn

acts trivially on LnG, our morphism therefore indeed factors through a morphism

Flnfλ Ñ pGrGq
µn ,

which we can then restrict to the wished-for morphism Fln,˝fλ
Ñ pGrGq

µn .
We will now prove that the induced morphism

(4.6)
ğ

λPp´anqXX_

Fln,˝fλ
Ñ pGrGq

µn

is an isomorphism, which will conclude the proof. For this we use the “big cell”
theory recalled in §4.4. Namely, recall that for ν P X_ the morphism g ÞÑ g ¨ Lν
defines an open embedding

zν ¨ L´´1 Po1
¨ z´ν Ñ GrG,

and that the images of these maps constitute an open cover of GrG. These open
subsets are stable under the Gm-action by loop rotation, hence also under the µn-
action we consider here; it follows that pGrGq

µn has an open cover parametrized by
X_, with the subset corresponding to ν naturally isomorphic to pzνL´´1 Po1

z´νqµn .

Similarly, for any λ P p´anq XX_ and any coset wW fλ
aff in Waff{W

fλ
aff , we have

considered in §4.4 an open subset of Fln,˝fλ
naturally isomorphic to ιnpwq ¨L

´´
n Pfλ ¨



SMITH–TREUMANN THEORY AND THE LINKAGE PRINCIPLE 31

ιnpwq
´1. Now since p´anqXX_ is a fundamental domain for the action of Waff on

X_ (via ˝n), we have a bijection
ğ

λPp´anqXX_

Waff{W
fλ
aff

„
ÝÑ X_

sending wW fλ
aff PWaff{W

fλ
aff to ´pw ¨n p´λqq “ w ˝n λ.

To conclude the proof, we will show that the map (4.6) identifies the open subset

of Fln,˝fλ
associated with the coset wW fλ

aff with the open subset of pGrGq
µn corre-

sponding to w ˝n λ. For this it suffices to prove the equality

(4.7) pzw˝nλ ¨ L´´1 Po1 ¨ z
´w˝nλqµn “ ιnpwq ¨ L

´´
n Pfλ ¨ ιnpwq

´1.

In case w “ 1, the equality (4.7) was checked in Lemma 4.5. The deduce the
general case, write w “ tµv with µ P X_ and v PWf . Then we have

pzw˝nλ ¨ L´´1 Po1
¨ z´w˝nλqµn “ pzvpλq`nµ ¨ L´´1 Po1

¨ z´vpλq´nµqµn

“ znµ 9v ¨ pzλ ¨ L´´1 Po1
¨ z´λqµn ¨ 9v´1z´nµ “ znµ 9v ¨ L´´n Pfλ ¨ 9v

´1z´nµ,

which concludes the proof. �

For λ P p´anq XX_, we will denote by GrG,pλq the image of Fln,˝fλ
in pGrGq

µn

under the map of Proposition 4.6. We then have

pGrGq
µn “

ğ

λPp´anqXX_

GrG,pλq,

which describes pGrGq
µn as the union of its connected components.

Remark 4.7. The action of LnG on L0 induces an embedding

LnG{L
`
nG ãÑ pGrGq

$.

Here LnG{L
`
nG is of course isomorphic to GrG. In terms of the decomposition in

Proposition 4.6, this embedding identifies LnG{L
`
nG with the union of the compo-

nents GrG,pλq where λ runs over p´anq X nX_.

4.6. Orbits on the affine Grassmannian. A crucial role in our discussion will be
played by the following Iwahori subgroups of L`G, for which we introduce special
notation:

Iw :“ L`1 Pa1
, Iw` :“ 9w0 ¨ Iw ¨ p 9w0q

´1.

(Here, w0 is the longest element in Wf .) More concretely, Iw, resp. Iw`, is the
inverse image of B, resp. B`, under the map ev0 : L`G Ñ G sending z to 0.
We also denote by Iwu and Iw`u the pro-unipotent radicals of Iw and Iw`, i.e. the
inverse images of U and U` under ev0.

The group scheme L`G acts on the affine Grassmannian GrG (see §4.3), and the
orbits of this action are parametrized by the subsemigroup X_

` Ă X_ of dominant
cocharacters. More precisely, we have

(4.8) pGrGqred “
ğ

λPX_
`

GrλG with GrλG :“ L`G ¨ Lλ,

where the left-hand side denotes the reduced ind-scheme associated with GrG.

Moreover, for any λ P X_
` the closure GrλG is a projective F-scheme of finite type,

on which the action of L`G factors through an action of a quotient group scheme
of finite type.
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The orbits of Iw and Iw` can be described similarly: we have

pGrGqred “
ğ

λPX_

GrG,λ with GrG,λ :“ Iw ¨ Lλ

and

pGrGqred “
ğ

λPX_

Gr`G,λ with Gr`G,λ :“ Iw` ¨ Lλ.

Moreover, each Iw-orbit (resp. Iw`-orbit) is also an Iwu-orbit (resp. Iw`u -orbit),
and for any µ P X_

` we have

GrµG “
ğ

λPWfµ

GrG,λ “
ğ

λPWfµ

Gr`G,λ.

For λ P X_, the embedding of Gr`G,λ in GrG will be denoted j`λ .

If n P Zą0, we can also consider the Iwahori subgroups Iwn, Iw
`
n Ă LnG defined

as above, and their pro-unipotent radicals Iwu,n, Iw
`
u,n.

Lemma 4.8. We have

Iwµn “ Iwn, pIw`qµn “ Iw`n , pIwuq
µn “ Iwu,n, pIw`u q

µn “ Iw`u,n.

For any λ P X_ we have

pGrG,λq
µn “ Iwn ¨ Lλ, pGr`G,λq

µn “ Iw`n ¨ Lλ.

Proof. The identifications in the first sentence are immediate consequences of Lem-
ma 4.2.

For the description of pGrG,λq
µn , for any α P R we set δα “ 1 if α P R`, and

δα “ 0 otherwise. Using the notation introduced in §4.3, we set

Iwλ
u :“

ź

αPR

¨

˝

ź

δαďmăxλ,αy

Uα`m~

˛

‚,

where the products are taken in any chosen order. Then it is well known that the
map u ÞÑ u ¨Lλ induces an isomorphism Iwλ

u
„
ÝÑ GrG,λ. We deduce an isomorphism

pIwλ
uq

µn
„
ÝÑ pGrG,λq

µn , and here by Lemma 4.3 we have

pIwλ
uq

µn “
ź

αPR

¨

˚

˚

˝

ź

δαďmăxλ,αy
n|m

Uα`m~

˛

‹

‹

‚

.

It follows that pGrG,λq
µn “ Iwn¨Lλ, as desired. The proof that pGr`G,λq

µn “ Iw`n ¨Lλ
is similar. �

Remark 4.9. Standard considerations show that for any facet f Ă an, the Iw`n -
orbits on Flnf are parametrized in a natural way by the quotient Waff{W

f
aff . On

the other hand, the Iw`-orbits on GrG are naturally parametrized by X_, so that
by Lemma 4.8 the Iw`n -orbits on pGrGq

µn are also parametrized by X_. Under
the identification of Proposition 4.6, for any λ P p´anq X X_ the orbit in Flnfλ
corresponding to the coset wW f

aff is mapped to the orbit in pGrGq
µn parametrized

by w ˝n λ.
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5. Iwahori–Whittaker sheaves on the affine Grassmannian

We continue with the setting of Section 4.

5.1. Iwahori–Whittaker sheaves. The category of sheaves on GrG we will study
is the Iwahori–Whittaker derived category, whose definition we briefly recall. (For
more details, see e.g. [AR1, Appendix A].)

From now on we let k be a finite field of positive characteristic ` ‰ p containing
a nontrivial p-th root of unity. After choosing such a root of unity ζ, we obtain an
Artin–Schreier local system LAS on Ga, defined as the direct summand of the local
system AS˚kGa

on which Fp acts via n ÞÑ ζn. (Here, AS : Ga Ñ Ga is the map
x ÞÑ xp´x, a Galois cover of group Fp.) We choose once and for all a morphism of
F-algebraic groups χ0 : U` Ñ Ga which is nontrivial on any root subgroup of U`

associated with a simple root, and denote by

χ : Iw`u Ñ Ga

the composition of χ0 with the morphism Iw`u Ñ U` induced by ev0.
For X Ă GrG a locally closed finite union of Iw`-orbits, we can choose a smooth

quotient J of Iw`u of finite type such that the Iw`u -action on X factors through
an action of J , and such that χ factors through a morphism χJ : J Ñ Ga. Then
the pJ, χ˚JLASq-equivariant derived category of k-sheaves on X is by definition the
full subcategory of DbShpX,kq whose objects are the complexes F whose pullback
under the action map J ˆX Ñ X is isomorphic to χ˚JLAS b F . It is well known
that this subcategory is triangulated, and that it does not depend on the choice of
J ; it will be denoted

Db
IWpX,kq.

It is known also that the perverse t-structure onDbShpX,kq restricts to a t-structure
on Db

IWpX,kq, which will also be called the perverse t-structure. (Here, “IW”
stands for “Iwahori–Whittaker.” We will use this expression as a replacement
for “pJ, χ˚JLASq-equivariant” where J is as above, in all circumstances where this
notion does not depend on the choice of J .)

One can also define the category

Db
IWpGrG,kq

of Iwahori–Whittaker sheaves on GrG as the direct limit of the categoriesDb
IWpX,kq

where X runs over the closed finite unions of Iw`-orbits, ordered by inclusion.
(Here, the transition functors are the—fully faithful—pushforward functors.) Since,
for X Ă Y , the pushforward functor Db

IWpX,kq Ñ Db
IWpY, kq is t-exact, from the

perverse t-structures on the categories Db
IWpX,kq we obtain a perverse t-structure

on Db
IWpGrG,kq, whose heart will be denoted PervIWpGrG,kq.

The considerations on stabilizers from the proof of Lemma 4.8 can be used to
see that for λ P X_, the orbit Gr`G,λ supports a nonzero Iwahori–Whittaker local
system iff λ belongs to the subset

X_
`` :“ tµ P X_ | @α P R`, xµ, αy ą 0u.

Moreover, in this case there exists (up to isomorphism) exactly one such local system
of rank 1; it will be denoted L λ

AS. This remark implies that for any µ P X_rX_
``

the category Db
IWpGr

`
G,µ,kq is 0; in particular, the restriction and co-restriction of

any object in Db
IWpX,kq (where X is any locally closed finite union of Iw`-orbits

containing Gr`G,µ) vanishes.
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Remark 5.1. If we assume that there exists an element ς P X_ such that xς, αy “ 1
for all α P Rs, then we have X_

`` “ ς `X_
`.

For λ P X_
``, we set

∆IW
λ :“ pj`λ q!L

λ
ASrdimpGr`G,λqs, ∇IW

λ :“ pj`λ q˚L
λ
ASrdimpGr`G,λqs.

Since j`λ is an affine embedding, these objects are perverse sheaves by [BBDG,
Corollaire 4.1.3]. Standard arguments (going back to [BGS]) show that the category
PervIWpGrG,kq admits a structure of highest weight category (in the sense of [Ri,
§7]) with weight set X_

``, standard objects the objects p∆IW
λ : λ P X_

``q, and

costandard objects the objects p∇IW
λ : λ P X_

``q. In particular, one can consider
the tilting objects in this category, i.e. the objects which admit both a filtration
with standard subquotients, and a filtration with costandard subquotients. Recall
that, as remarked in [BBM], this notion can also be characterized topologically:
a perverse sheaf F is tilting iff the complexes pj`λ q

˚F and pj`λ q
!F are perverse

(i.e. are direct sums of copies of L λ
ASrdimpGr`G,λqs) for any λ P X_

``.

The full subcategory of PervIWpGrG,kq whose objects are the tilting objects
will be denoted TiltIWpGrG,kq. The general theory of highest weight categories
(reviewed e.g. in [Ri]) guarantees that the indecomposable objects in this category
are parametrized in a natural way by X_

``. More precisely, for any λ P X_
`` there

exists a unique (up to isomorphism) indecomposable object T IW
λ in TiltIWpGrG,kq

which is supported on Gr`G,λ, and whose restriction to Gr`G,λ is L λ
ASrdimpGr`G,λqs;

then the assignment λ ÞÑ T IW
λ induces a bijection between X_

`` and the set of
isomorphism classes of indecomposable objects in TiltIWpGrG,kq.

5.2. Loop rotation equivariant Iwahori–Whittaker sheaves. We will need to
“add” the (loop rotation) Gm-equivariance in the construction of §5.1. We therefore
consider a locally closed finite union of Iw`-orbits X Ă GrG as above. The Gm-
action by loop rotation on GrG stabilizes each Iw`-orbit, hence also X, so that
we can consider the Gm-equivariant derived category of étale k-sheaves Db

Gm
pX,kq.

The quotient J of Iw`u as in §5.1 can be chosen in such a way that the Gm-action on
Iw`u induces an action on J . Since the morphism χ : Iw`u Ñ Ga is Gm-equivariant
(for the trivial Gm-action on Ga), so is χJ , and the local system χ˚JLAS is therefore
Gm-equivariant. We define the category

Db
IW,Gm

pX,kq

as the full subcategory of Db
Gm
pX,kq whose objects are the complexes F such that

a˚JF – χ˚JLAS b F in Db
Gm
pJ ˆX,kq,

where aJ : J ˆ X Ñ X is the action morphism. (Here, Gm acts diagonally on
J ˆ X.) Arguments similar to those for the case when the Gm-action is dropped
show that Db

IW,Gm
pX,kq is a triangulated subcategory of Db

Gm
pX,kq; in fact this

category is the essential image of the fully faithful functor

Db
Gm
pX,kq Ñ Db

IW,Gm
pX,kq

sending a complex F to paJq!
`

χ˚JLAS b F
˘

. It is also easily checked that this
category does not depend on the choice of J , and that the perverse t-structure on
Db

Gm
pX,kq restricts to a t-structure on Db

IW,Gm
pX,kq.
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Taking the direct limit of the categories Db
IW,Gm

pX,kq where X runs over the

closed finite unions of Iw`-orbits, we obtain a triangulated category

Db
IW,Gm

pGrG,kq

with a natural perverse t-structure, whose heart will be denoted PervIW,Gm
pGrG,kq.

We have a natural t-exact forgetful functor

(5.1) Db
IW,Gm

pGrG,kq Ñ Db
IWpGrG,kq.

5.3. Parity complexes. Let X Ă GrG be a locally closed finite union of Iw`-
orbits. Recall (see [JMW, RW1]) that an object F in Db

IWpX,kq is called ˚-

even, resp. !-even, if for any λ P X_
`` such that Gr`G,λ Ă X the complex pj`λ q

˚F ,

resp. pj`λ q
!F , is concentrated in even degrees, i.e. is a direct sum of objects of the

form L λ
ASrns with n P 2Z. (Here, by abuse we still denote by j`λ the embedding

of Gr`G,λ in X. Note also that if λ P X_ r X_
`` is such that Gr`G,λ Ă X, then as

explained in §5.1 we have pj`λ q
˚F “ pj`λ q

!F “ 0 for any F in Db
IWpX,kq, so that

no condition is required for these strata.) We define similarly the ˚-odd and !-odd
objects (requiring that n is odd in this case), and we say that F is even, resp. odd,
if it is both ˚-even and !-even, resp. ˚-odd and !-odd.

These notions can also be considered in Db
IW,Gm

pX,kq; more precisely an object

F in Db
IW,Gm

pX,kq is said to be ˚-even, resp. !-even, etc., if its image in Db
IWpX,kq

(under the forgetful functor) is ˚-even, resp. !-even, etc. If F P Db
IW,Gm

pX,kq is

˚-even, for any λ P X_
`` such that Gr`G,λ Ă X the complex pj`λ q

˚F is a direct

sum of objects of the form L λ
ASrns with n P 2Z in Db

IW,Gm
pGr`G,λ,kq. A similar

comment applies to !-even objects (with respect to !-restriction), and to ˚-odd and
!-odd objects.

By definition, the category Db
IWpGrG,kq, resp. Db

IW,Gm
pGrG,kq, is the direct

limit of the categories Db
IWpX,kq, resp. Db

IW,Gm
pX,kq, where X runs over the

closed finite unions of Iw`-orbits in GrG. Hence it makes sense to consider even
and odd complexes in these categories. The general theory of [JMW] (see also [RW1,
ACR] for some comments on the Iwahori–Whittaker case) guarantees that for any
λ P X_

`` there exists a unique (up to isomorphism) indecomposable object in

Db
IWpGrG,kq, resp. Db

IW,Gm
pGrG,kq, which has the same parity as dimpGr`G,λq,

which is supported on Gr`G,λ, and whose restriction to Gr`G,λ is L λ
ASrdimpGr`G,λqs.

This object will be denoted

E IW
λ , resp. E IW

λ,Gm
.

It is known also that the image of E IW
λ,Gm

under the forgetful functor (5.1) is E IW
λ ,

see e.g. [MR, Lemma 2.4].
As remarked already in [BGMRR], these objects have an alternative description,

as follows. It is known that the parity of dimpGr`G,λq (with λ P X_
``) is constant

on each connected component of GrG. As a consequence, a tilting object supported
on a component where these dimensions are even, resp. odd, is even, resp. odd. In
particular, by unicity, for any λ P X_

`` we must have

(5.2) T IW
λ – E IW

λ .

Using these considerations we prove the following lemma, to be used later.
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Lemma 5.2. The forgetful functor induces an equivalence of categories

PervIW,Gm
pGrG,kq

„
ÝÑ PervIWpGrG,kq.

Proof. It follows from the general theory of equivariant perverse sheaves (recalled
e.g. in [BR, §1.16]) that the forgetful functor PervGmpGrG,kq Ñ PervpGrG,kq is
fully-faithful; therefore, so is its restriction PervIW,GmpGrG,kq Ñ PervIWpGrG,kq.
This general theory also implies that the essential image of this functor is stable
under subquotients (see e.g. [J3, §12.19]). Now from (5.2) and the fact that each ob-
ject E IW

λ belongs to the essential image of the forgetful functor Db
IW,Gm

pGrG,kq Ñ
Db

IWpGrG,kq (see the remarks above), we see that the essential image of our functor
contains all the tilting objects. By the general theory of highest weight categories
(see [Ri, Proposition 7.17]), the canonical functor provides an equivalence of trian-
gulated categories

(5.3) KbTiltIWpGrG,kq
„
ÝÑ DbPervIWpGrG,kq.

In particular, it follows that any object of PervIWpGrG,kq is a subquotient of a
tilting object, hence that it belongs to this essential image, which finishes the
proof. �

6. Smith theory for Iwahori–Whittaker sheaves on GrG

We continue with the setting of Sections 4–5. Our goal in this section is build a
“Smith theory” for the category Db

IWpGrG,kq, following Treumann [Tr] and Leslie–
Lonergan [LL].

6.1. The Iwahori–Whittaker Smith category. As in Section 3 we consider the
subgroup scheme $ “ µ` Ă Gm, and the fixed points pGrGq

$ Ă GrG with respect
to the loop rotation action. This subscheme is described in §4.5; in particular since
pIw`q$ “ Iw`` (see Lemma 4.8), this group acts on pGrGq

$, and each Iw`` -orbit is

also an Iw`u,`-orbit.

The Gm-action on GrG stabilizes pGrGq
$, hence induces an action on this sub-

ind-scheme. On the other hand, as explained above we also have an action of
Iw`u,` on pGrGq

$. The analysis in §4.6 shows that the orbits of the latter action are
naturally parametrized by X_, and that each orbit is stable under the action of Gm.
Repeating the construction in §5.2, now with the morphism Iw`u,` Ñ Ga obtained

by restricting χ one can define for any locally closed finite union of Iw`` -orbits
Y Ă pGrGq

$ the Iwahori–Whittaker loop rotation equivariant derived category

Db
IW`,Gm

pY,kq.

We define Db
IW`,Gm

pY,kq$´perf as the full subcategory of Db
IW`,Gm

pY,kq whose

objects are the complexes F such that ResGm
$ pF q has perfect geometric stalks in

the sense of §3.3. We then define the Iwahori–Whittaker Smith category of Y as
the Verdier quotient

SmIWpY,kq :“ Db
IW`,Gm

pY,kq{Db
IW`,Gm

pY, kq$´perf .

This category has a natural structure of triangulated category; the (cohomological)
shift functor will be denoted r1s as usual.

We now check that this construction is functorial in the following sense.
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Lemma 6.1. Let Y, Z Ă pGrGq
$ be two locally closed finite unions of Iw`` -orbits

such that Z Ă Y . Denoting by f this inclusion, for ? P t˚, !u there exist canonical
functors

fSm? : SmIWpZ,kq Ñ SmIWpY,kq, f?
Sm : SmIWpY,kq Ñ SmIWpZ,kq

such that the diagrams

Db
IW`,Gm

pZ,kq
Rf? //

��

Db
IW`,Gm

pY, kq

��
SmIWpZ,kq

fSm
? // SmIWpY,kq

and

Db
IW`,Gm

pY,kq
f?

//

��

Db
IW`,Gm

pZ,kq

��
SmIWpY,kq

f?
Sm // SmIWpZ,kq

are commutative, where the vertical arrows are the quotient functors.

Proof. By the universal property of Verdier quotients, we need to show is that the
functorsRf˚, Rf!, resp. f˚, f !, sendDb

IW`,Gm
pZ,kq$´perf intoDb

IW`,Gm
pY, kq$´perf ,

resp. Db
IW`,Gm

pY,kq$´perf into Db
IW`,Gm

pZ,kq$´perf . For the functor f˚ this claim
is obvious from definition, and for Rf˚ it follows from Lemma 3.6. For the functor
Rf!, one can argue as follows. If y : SpecpKq Ñ Y is a geometric point of Y , then
by [SGA4, Exposé XVII, Proposition 5.2.8] we have

pRf!F qy – RΓpZ ˆY SpecpKq,F 1q,

where F 1 is the pullback of F . Now Z ˆY SpecpKq is a locally closed subscheme
of SpecpKq, hence is either ∅ or SpecpKq. Hence pRf!F qy is either equal to Fy or
to 0, which shows that Rf!F must belong to Db

IW`,Gm
pY, kq$´perf .

Finally we treat the case of f !. For this we can assume that f is either a closed
embedding or an open embedding. In the latter case we have f ! “ f˚, hence
the claim is known. In the former case, we denote by g the complementary open
embedding. Then, given F in Db

IW`,Gm
pY,kq$´perf we consider the distinguished

triangle

f˚f
!F Ñ F Ñ g˚g

˚F
r1s
ÝÝÑ .

Here F and g˚g
˚F belong to Db

IW`,Gm
pY, kq$´perf , hence so does f˚f

!F . This

implies that f !F belongs to Db
IW`,Gm

pZ,kq$´perf , which completes the proof. �

It is easily seen that pf˚Sm, f
Sm
˚ q and pfSm! , f !

Smq are adjoint pairs of functors.

In particular, if f is a closed embedding then the functor fSm˚ “ fSm! is fully
faithful, so that the category SmIWpZ,kq can (and will) be identified with a full
triangulated subcategory in SmIWpY, kq. It is also easily checked that, given a
decomposition of Y as a disjoint union of a closed (in Y ) finite union of Iw`` -
orbits and its open complement, we have canonical distinguished triangles as in the
“recollement” setting of [BBDG, §1.4].

The full faithfulness of pushforward under closed embeddings allows to define the
category SmIWppGr

`
Gq

$,kq as the direct limit of the categories SmIWpY, kq where
Y runs over the closed finite unions of Iw`` -orbits in pGr`Gq

$.

6.2. The Smith localization functor. We will be particularly interested in the
construction of §6.1 in the case Y “ X$ for some locally closed finite union of
Iw`-orbits X Ă GrG. In this case, we denote by iX : X$ Ñ X the embedding. For
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any F in Db
IW,Gm

pX,kq, we have objects i!XF and i˚XF in Db
IW`,Gm

pX$,kq, and
a canonical morphism

i!XF Ñ i˚XF ,

see (3.4). It follows from Lemma 3.5 that the cone of this morphism is killed by
the quotient functor

Db
IW`,Gm

pX$,kq Ñ SmIWpX
$,kq.

We can therefore define the functor

i!˚X : Db
IW,Gm

pX,kq Ñ SmIWpX
$,kq

as the composition of either i˚X or i!X with this quotient functor.
This functor is compatible with the push/pull functors associated with locally

closed embeddings, in the following sense.

Proposition 6.2. If X,Y Ă GrG are two locally closed finite unions of Iw`-orbits
such that X Ă Y , and if we denote by f : X Ñ Y the embedding and by f$ : X$ Ñ

Y $ its restriction to X$, then we have canonical isomorphisms of functors

i!˚Y ˝ f˚ – pf
$qSm˚ ˝ i!˚X , i!˚Y ˝ f! – pf

$qSm! ˝ i!˚X ,

i!˚X ˝ f
˚ – pf$q˚Sm ˝ i

!˚
Y , i!˚X ˝ f

! – pf$q!Sm ˝ i
!˚
Y .

Proof. The first, resp. second, isomorphism on the first line follows from the base
change theorem (see [SGA4, Exposé XVIII, Corollaire 3.1.12.3] and [SGA4, Ex-
posé XVII, Théorème 5.2.6] respectively) if we see i!˚Y and i!˚X as the compositions
of i!Y and i!X , resp. of i˚Y and i˚X , with the appropriate quotient functors. The
isomorphisms on the second line follow similarly from the compatibility of pullback
functors with composition. �

Taking the direct limit of the functors i!˚X for X a closed finite union of Iw`-orbits
in GrG, we also obtain a functor

i!˚GrG : Db
IW,Gm

pGrG,kq Ñ SmIWppGrGq
$,kq.

6.3. Some first properties of the Iwahori–Whittaker Smith category. Let
us fix some λ P X_

``, and consider the Iw`u,`-orbit pGr`G,λq
$ Ă pGrGq

$. (Once again,
the Iwahori–Whittaker category associated with an orbit labelled by a weight in
X_ r X_

`` vanishes; these coweights can therefore be ignored.) We set

L λ
Sm :“ i!˚

Gr`G,λ
pL λ

ASq.

Lemma 6.3. For any n P Z, we have

HomSmIWppGr
`
G,λq

$,kqpL
λ
Sm,L

λ
Smrnsq “

#

k if n is even;

0 if n is odd.

Proof. Since Iw`u,` acts transitively on pGr`G,λq
$ (see Lemma 4.8), we have an equiv-

alence of triangulated categories

Db
IW`,Gm

ppGr`G,λq
$,kq – Db

Gm,cppt,kq

which matches L λ
AS with kpt. This equivalence induces an equivalence

SmIWppGr
`
G,λq

$,kq – Smppt,kq,
where the right-hand side is defined in §3.5. The claim then follows from Lemma 3.7.

�
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We consider once again a general locally closed finite union of Iw`` -orbits Y Ă

pGrGq
$.

Lemma 6.4. There exists a canonical isomorphism of endofunctors of SmIWpY,kq

id
„
ÝÑ r2s.

Proof. As explained in Lemma 3.7, there exists a canonical map kpt Ñ kptr2s in

Db
Gm,c

ppt,kq whose cone has perfect geometric stalks. Pulling back to Y we deduce

a canonical morphism kY Ñ kY r2s whose cone has perfect geometric stalks. Since
the tensor product with kY , resp. kY r2s, defines an endofunctor of Db

IW`,Gm
pY,kq

which is isomorphic to id, resp. to r2s, the desired claim follows. �

Proposition 6.5. For any F ,G in SmIWpY, kq, the k-vector space

HomSmIWpY,kqpF ,G q

is finite-dimensional.

Proof. The proof proceeds by induction on the number of Iw`` -orbits in Y . In
fact the distinguished triangles from the “recollement” setting (see §6.1) reduce the
proof to the case Y consists of one orbit, which follows from Lemma 6.3. �

7. Parity objects in Smith categories

We continue with the setting of Sections 4–6.

7.1. Definition. As remarked already in [LL] (using slightly different definitions),
the theory of parity complexes from [JMW] adapts easily to the Smith category
SmIWpY,kq, where Y Ă pGrGq

$ is any locally closed union of Iw`` -orbits. Namely,
we will say that an object F in SmIWpY,kq is ˚-even, resp. !-even, if for any λ P

X_
`` such that pGr`G,λq

$ Ă Y , denoting by j`,$λ : pGr`G,λq
$ Ñ Y the embedding,

the object pj`,$λ q˚SmF , resp. pj`,$λ q!SmF , is isomorphic to a direct sum of copies of

L λ
Sm. (In this case we do not need to consider even shifts because of Lemma 6.4.) We

will then say that F is even if it is both ˚-even and !-even, and define similarly the
notions of ˚-odd, !-odd, and odd objects (replacing L λ

Sm by its shift by 1). We will

denote by Sm0
IWpY,kq, resp. Sm1

IWpY, kq, resp. Smpar
IWpY,kq, the full subcategory

of SmIWpY, kq whose objects are the even objects, resp. the odd objects, resp. the
objects which are isomorphic to a direct sum of an even and an odd object.

Recall that an additive category is called Krull–Schmidt if any object can be
written as a direct of indecomposable objects whose endomorphism rings are local.

Lemma 7.1. The categories Sm0
IWpY,kq, Sm

1
IWpY,kq and Smpar

IWpY, kq are Krull–
Schmidt.

Proof. By Proposition 6.5 and [CYZ, Corollary A.2], to prove the lemma it suffices
to prove that any idempotent in the category Smpar

IWpY, kq splits. We do this by

induction on the number of Iw`` -orbits in Y . If Y “ pGr`G,λq
$ for some λ P X_,

and if F belongs to Smpar
IWpY,kq then either F “ 0 (in which case there is nothing

to prove) or λ P X_
`` and F “ pL λ

Smq
‘n‘pL λ

Smq
mr1s for some n,m P Zě0. In this

case, by Lemma 6.3 we have

EndSmIWpY,kqpF q – Mnpkq ˆMmpkq,

so that any idempotent in EndSmIWpY,kqpF q indeed splits.
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To treat the induction step, we choose a closed Iw`` -orbit Z Ă X, and denote by

i : Z ãÑ X, j : X r Z ãÑ X

the embeddings. For any F in Smpar
IWpY, kq we then have a distinguished triangle

iSm! i!SmF Ñ F Ñ jSm˚ j˚SmF
r1s
ÝÝÑ,

and the objects i!SmF and j˚SmF belong to Smpar
IWpZ,kq and to Smpar

IWpY r Z,kq
respectively. If e P EndSmIWpY,kqpF q is an idempotent, then i!Smpeq and j˚Smpeq are
idempotents too, hence they split by the induction hypothesis. By [LC, Proposi-
tion 2.3], this implies that e splits. �

We will also define the categories

Sm0
IWppGrGq

$,kq, Sm1
IWppGrGq

$,kq and Smpar
IWppGrGq

$,kq

as the direct limit of their counterparts for X, where X runs over closed finite unions
of Iw`` -orbits in pGrGq

$. (Equivalently, these categories can be defined in terms of

restrictions and corestrictions to Iw`` -orbits, as for their counterparts above.) Of
course, Lemma 7.1 implies that these categories are Krull–Schmidt.

7.2. Basic properties. The study of parity objects in SmIWpY,kq is very similar
to its counterpart in ordinary derived categories of sheaves performed in [JMW];
its essential ingredients are the parity vanishing property for one stratum proved in
Lemma 6.3, and standard distinguished triangles associated with a decomposition
of a space into a closed part and its open complement. For this reason we will not
give any proof in this subsection; these can be obtained by repeating the proofs
of [JMW] essentially word-for-word.

The following is the analogue of [JMW, Corollary 2.8 and Proposition 2.11].

Lemma 7.2. If F ,G P SmIWpY, kq are such that F is ˚-even and G is !-odd, then
we have

HomSmIWpY,kqpF ,G q “ 0.

As a consequence, if Z Ă Y is an open union of Iw`` -orbits, the restriction of an
indecomposable even (resp. odd) object of SmIWpY, kq to Z is either indecomposable
or zero.

Next, we define the support of an object F P SmIWpY, kq as the closure of
the union of the strata pGr`G,λq

$ where λ P X_
`` is such that Gr`G,λ Ă Y and

pj`,$λ q˚SmF or pj`,$λ q!SmF is nonzero. The following claim is the analogue of [JMW,
Theorem 2.12].

Proposition 7.3. If F P SmIWpY,kq is even (resp. odd), nonzero, and indecom-
posable, then there exists exactly one λ P X_

`` such that pGr`G,λq
$ is open in the

support of F .
Moreover, for any λ P X_

`` such that pGr`G,λq
$ Ă Y , there exists at most one

indecomposable even, resp. odd, object F in SmIWpY,kq such that pGr`G,λq
$ is open

in the support of F and pj`,$λ q˚F – L λ
Sm, resp. pj`,$λ q˚F – L λ

Smr1s.
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7.3. Comparison of parity objects in Db
IWpGrG,kq and SmIWppGrGq

$,kq.
Proposition 7.3 implies that for any λ P X_

`` there exists at most one indecompos-

able even, resp. odd, object in SmIWppGrGq
$,kq in the support of which pGr`G,λq

$

is open, and whose restriction to pGr`G,λq
$ is L λ

Sm, resp. L λ
Smr1s. If it exists (which,

as we shall see very soon, is always the case), this object will be denoted E Sm,0
λ ,

resp. E Sm,1
λ . (Of course, as soon as one of these objects exists the other one ex-

ists also, and we have E Sm,1
λ – E Sm,0

λ r1s.) Then any indecomposable object in

Smpar
IWppGrGq

$,kq is isomorphic to an object E Sm,0
λ or E Sm,1

λ , and Lemma 7.1 im-
plies that any object of Smpar

IWppGrGq
$,kq is a direct sum of such objects (in an

essentially unique way).
Recall that the connected components of pGrGq

$ are the subvarieties GrG,pλq with
λ P p´a`q XX_, see Proposition 4.6. Of course, each such connected component is
contained in a connected component of GrG. Recall also (see §5.3) that the dimen-
sions of the orbits Gr`G,µ with µ P X_

`` contained in a given connected component
of GrG are of constant parity. We set ppλq “ 0, resp. ppλq “ 1, if all these orbits
contained in the connected component containing GrG,pλq are even dimensional,

resp. odd dimensional. We then denote by Sm6IWppGrGq
$,kq the full subcategory

of SmIWppGrGq
$,kq whose objects are those whose restriction to GrG,pλq is even if

ppλq “ 0, and odd if ppλq “ 1.
The following statement is the crux of this paper.

Theorem 7.4. The composition

PervIWpGrG,kq
Lemma 5.2
ÝÝÝÝÝÝÝÑ

„
PervIW,Gm

pGrG,kq
i!˚
GrG
ÝÝÝÑ SmIWppGrGq

$,kq

restricts to an equivalence of categories

TiltIWpGrG,kq Ñ Sm6IWppGrGq
$,kq.

Moreover, the objects E Sm,0
λ and E Sm,1

λ exist for any λ P X_
``.

Proof. It easily follows from Proposition 6.2 and the considerations above that the
functor i!˚GrG sends even, resp. odd, objects to even, resp. odd, objects. Therefore,

since any indecomposable object in TiltIWpGrG,kq is either even or odd (see (5.2)),
our functor restricts to a functor

TiltIWpGrG,kq Ñ Sm6IWppGrGq
$,kq.

Next, standard arguments allow to prove by induction on the length of the filtrations
that, for any F ,G in PervIWpGrG,kq such that F admits a standard filtration and
G admits a costandard filtration, this functor induces an isomorphism

HomPervIWpGrG,kqpF ,G q
„
ÝÑ HomSmIWppGrGq$,kqpi

!˚
GrG
pF q, i!˚GrGpG qq.

(Here, the crucial case when F “ ∆IW
λ and G “ ∇IW

λ for some λ P X_
`` is given

by Lemma 6.3.) Full faithfulness of our functor follows.
For any λ P X_

``, the object i!˚GrGpE
IW
λ,Gm

q is indecomposable (by full faithfulness)

and either even or odd. Moreover, since Gr`G,λ is open in the support of E IW
λ,Gm

we

see that pGr`G,λq
$ is open in the support of i!˚GrGpE

IW
λ,Gm

q. Therefore the objects
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E Sm,0
λ and E Sm,1

λ exist, and we have

(7.1) i!˚GrGpE
IW
λ,Gm

q –

#

E Sm,0
λ if dimpGr`G,λq is even;

E Sm,1
λ if dimpGr`G,λq is odd.

These considerations show that our functor is essentially surjective, hence an equiv-
alence of categories. �

7.4. Comparison of parity objects on pGrGq
$ and in the Smith category.

Now we consider the Iwahori–Whittaker categories

Db
IW`

ppGrGq
$,kq and Db

IW`,Gm
ppGrGq

$,kq,
and the quotient functor

Q : Db
IW`,Gm

ppGrGq
$,kq Ñ SmIWppGrGq

$,kq.
The theory of parity complexes (as in §5.3) of course also applies in the categories
Db

IW`
ppGrGq

$,kq and Db
IW`,Gm

ppGrGq
$,kq; once again the indecomposable parity

objects in these categories are classified (up to cohomological shift) by the Iw`` -
orbits in pGrGq

$ which support a nonzero Iwahori–Whittaker local system, and
the forgetful functor

ForGm : Db
IW`,Gm

ppGrGq
$,kq Ñ Db

IW`
ppGrGq

$,kq
sends indecomposable parity complexes to indecomposable parity complexes. In
particular, this functor induces a bijection between the sets of isomorphism classes
of objects in Db

IW`,Gm
ppGrGq

$,kq and in Db
IW`

ppGrGq
$,kq; up to replacing the

category Db
IW`

ppGrGq
$,kq by an equivalent category (which we will omit from

notation), one can therefore consider whenever convenient that the objects in these
categories are the same.

The situation in this setting is even more favorable than in that of §5.3, due to
the following property. (Here, if D is a triangulated category, we write Hom‚Dp´,´q
for

À

nPZ HomDp´,´rnsq.)

Lemma 7.5. For any parity complexes E ,E 1 in Db
IW`,Gm

ppGrGq
$,kq, there exists

a canonical isomorphism of graded k-vector spaces

Hom‚Db
IW`,Gm

ppGrGq$,kqpE ,E
1q

– H‚Gm
ppt;kq bk Hom‚Db

IW`
ppGrGq$,kqpFor

GmpE q,ForGmpE 1qq.

Moreover, these isomorphisms are compatible with composition in the obvious way.

Proof. By definition, the Gm-action on pGrGq
$ through the quotient

Gm Ñ Gm{$ “ Gm, t ÞÑ t`.

In other words, if we denote by G1m another copy of Gm, then there exists an
action of G1m on pGrGq

$ from which the Gm-action we want to consider is de-
duced via the morphism Gm Ñ G1m defined by t ÞÑ t`. The Gm-action on Iw`u,`
is similarly obtained from an action of G1m, so that one can consider the category
Db

IW`,G1mppGrGq
$,kq defined in the obvious way. With this notation introduced,

the same considerations as in [MR, Lemma 2.2] show that for any parity complexes
F ,F 1 in Db

IW`,G1mppGrGq
$,kq, the forgetful functor

(7.2) Res
G1m
Gm

: Db
IW`,G1mppGrGq

$,kq Ñ Db
IW`,Gm

ppGrGq
$,kq
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induces an isomorphism of graded k-vector spaces

H‚Gm
ppt;kq bH‚G1m

ppt;kq Hom‚Db
IW`,G1m

ppGrGq$,kqpF ,F 1q

„
ÝÑ Hom‚Db

IW`,Gm
ppGrGq$,kqpRes

G1m
Gm
pF q,Res

G1m
Gm
pF 1qq.

Now since k has characteristic `, the morphism H‚G1mppt;kq Ñ H‚Gm
ppt;kq induced

by our morphism Gm Ñ G1m vanishes, so that we have

H‚Gm
ppt;kq bH‚G1m

ppt;kq Hom‚Db
IW`,G1m

ppGrGq$,kqpF ,F 1q

– H‚Gm
ppt;kq bk

ˆ

kbH‚G1m
ppt;kq Hom‚Db

IW`,G1m
ppGrGq$,kqpF ,F 1q

˙

.

As in [MR, Lemma 2.2] the forgetful functor ForG
1
m induces an isomorphism

kbH‚G1m
ppt;kq Hom‚Db

IW`,G1m
ppGrGq$,kqpF ,F 1q

„
ÝÑ Hom‚Db

IW`
ppGrGq$,kqpFor

G1mpF q,ForG
1
mpF 1qq,

so that we finally obtain a canonical isomorphism

H‚Gm
ppt;kq bk Hom‚Db

IW`
ppGrGq$,kqpFor

G1mpF q,ForG
1
mpF 1qq

„
ÝÑ Hom‚Db

IW`,Gm
ppGrGq$,kqpRes

G1m
Gm
pF q,Res

G1m
Gm
pF 1qq.

To conclude it suffices to remark that the functor Res
G1m
Gm

from (7.2) induces a
(canonical) bijection between the isomorphism classes of parity complexes in the
categories Db

IW`,G1mppGrGq
$,kq and Db

IW`,Gm
ppGrGq

$,kq; one can therefore replace

ForG
1
mpF q and ForG

1
mpF 1q in these isomorphisms by general parity complexes in

Db
IW`,Gm

ppGrGq
$,kq. �

It is clear from definitions that the functor Q sends parity complexes to parity
complexes. In fact this functor (when restricted to parity complexes) is close to
being an equivalence, as explained in the following statement.

Proposition 7.6. For any complexes E ,E 1 in Db
IW`,Gm

ppGrGq
$,kq which are ei-

ther both even or both odd, there exists a canonical isomorphism of k-vector spaces

Hom‚Db
IW`

ppGrGq$,kqpFor
GmpE q,ForGmpE 1qq – HomSmIWppGrGq$,kqpQpE q,QpE

1qq.

Moreover, these isomorphisms are compatible with composition in the obvious way.

Proof. Recall from [JMW] that since E ,E 1 are either both even or both odd, the
graded k-vector space Hom‚Db

IW`,Gm
ppGrGq$,kqpE ,E

1q is concentrated in even degrees.

Using Lemma 6.4, we see that the functor Q induces a canonical morphism

Hom‚Db
IW`,Gm

ppGrGq$,kqpE ,E
1q Ñ HomSmIWppGrGq$,kqpQpE q,QpE

1qq

which factors through a morphism

k1 bH‚Gm
ppt,kq Hom‚Db

IW`,Gm
ppGrGq$,kqpE ,E

1rnsq

Ñ HomSmIWppGrGq$,kqpQpE q,QpE
1qq,
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where k1 means k seen as an H‚Gm
ppt,kq-module where x acts by multiplication by

1 under the identification (3.5). Standard arguments based on Lemma 6.3 and the
distinguished triangles in the “recollement” setting show that the latter morphism
is an isomorphism. The desired isomorphism follows, in view of Lemma 7.5. �

If E is an indecomposable parity complex in Db
IW`,Gm

ppGrGq
$,kq, then as ex-

plained above the complex ForGmpE q is indecomposable, so that the ring

HomDb
IW`

ppGrGq$,kqpFor
GmpE q,ForGmpE qq

is local. Since a finite dimensional graded ring whose degree-0 part is local is itself
local (see [GG, Theorem 3.1]), it follows that the ring

à

nPZ
HomDb

IW`
ppGrGq$,kqpFor

GmpE q,ForGmpE qrnsq

is also local. In view of Proposition 7.6, this implies that QpE q is indecomposable.
In other words, we have proved that Q sends indecomposable parity complexes to
indecomposable parity complexes.

8. Applications in representation theory of reductive algebraic
groups

In this section, we finally use the constructions of Sections 4–7 to derive con-
sequences on categories of representations of split connected reductive algebraic
groups over k.

8.1. The geometric Satake equivalence and its Iwahori–Whittaker vari-
ant. The Satake category is the category

PervsphpGrG,kq
of étale L`G-equivariant perverse sheaves on GrG. (By definition, this category
is the inductive limit of the categories PervsphpX,kq where X runs over the closed
finite unions of L`G-orbits in GrG. And given such X, the category PervsphpX,kq
is defined as PervHpX,kq, where H is a smooth quotient of L`G of finite type
such that the L`G-action on X factors through H, and such that the kernel of
the surjection L`G Ñ H is contained in kerpev0q; the resulting category does not
depend on the choice of H up to canonical equivalence.) The natural convolution
product ‹ on the equivariant derived category Db

L`GpGrG,kq restricts to an exact
monoidal product on the category PervsphpGrG,kq, see [MV1].

The classification of the simple objects in PervsphpGrG,kq is given by the general
theory of perverse sheaves from [BBDG]. Namely, in view of the description of the
L`G-orbits on GrG (see (4.8)) and since each of these orbits is simply connected,
for any λ P X_

` there exists a unique simple perverse sheaf IC λ in PervsphpGrG,kq
which is supported on GrλG, and whose restriction to GrλG is kGrλGrdimpGrλGqs. More-

over, the assignment λ ÞÑ IC λ induces a bijection between X_
` and the set of

isomorphism classes of simple objects in PervsphpGrG,kq.
On the other hand, we denote by G_Z the unique split reductive group scheme

over Z whose base change to C has root datum pX_,X,R_,Rq, and then set

G_k :“ Specpkq ˆSpecpZq G
_
Z .

We will denote by ReppG_k q the category of finite-dimensional algebraic represen-
tations of the group scheme G_k .
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The following theorem is due (in this generality) to Mirković–Vilonen [MV1,
MV2].

Theorem 8.1. There exists an equivalence of monoidal categories

S : pPervsphpGrG,kq, ‹q – pReppG_k q,bkq.

Remark 8.2. (1) In fact, the proof of [MV1] gives slightly more than what is
stated in Theorem 8.1: the authors construct a canonical k-group scheme
out of the category PervsphpGrG,kq, and then check that this group scheme
is isomorphic to G_k .

(2) In addition to the category PervsphpGrG,kq, one can also consider the cat-
egory PervpL`GqpGrG,kq of k-perverse sheaves on GrG whose restriction

to each GrλG (λ P X_
`) has constant cohomology sheaves. We then have

a canonical forgetful functor PervsphpGrG,kq Ñ PervpL`GqpGrG,kq, which
by [MV1, Proposition 2.1] is an equivalence of categories.

Once an equivalence as in Theorem 8.1 is fixed, the constructions in [MV1]
provide a canonical embedding T_k ãÑ G_k , where T_k is the split k-torus which
is Langlands dual to T (i.e. whose character lattice is X_). We will denote by
B_k the Borel subgroup of G_k containing (the image of) T_k and whose roots are
the negative coroots of G. For any λ P X_

` we can then consider the “induced
representation”

Npλq :“ Ind
G_k
B_k
pλq.

It is well known that Npλq contains a unique simple submodule, denoted Lpλq,
and that the assignment λ ÞÑ Lpλq induces a bijection between X_

` and the set
of isomorphism classes of simple G_k -modules. It is well known also that for any
λ P X_

` we have

(8.1) SpIC λq – Lpλq.

Below we will use an alternative geometric realization of ReppG_k q, in terms of
the Iwahori–Whittaker derived category of §5.1, which was found in [BGMRR].
The same construction as for the convolution product on Db

L`GpGrG,kq defines a

right action of the latter monoidal category on Db
IWpGrG,kq. The corresponding

bifunctor will also be denoted ‹.
We will assume that there exists (and fix) an element ς P X_ such that xς, αy “ 1

for any α P Rs. Then there exists no orbit in Gr`G,ςrGr`G,ς which supports a nonzero

Iwahori–Whittaker local system. Therefore, the canonical map ∆IW
ς Ñ ∇IW

ς is an
isomorphism, and this object is a simple perverse sheaf.

The following theorem is the main result of [BGMRR].

Theorem 8.3. The functor sending F to ∆IW
ς ‹ F induces an equivalence of

abelian categories

PervsphpGrG,kq
„
ÝÑ PervIWpGrG,kq.

Remark 8.4. Theorem 8.3 can also be used to give an alternative proof of Lem-
ma 5.2. Namely, we see as in the proof of this lemma that our functor is fully
faithful. If F belongs to PervIWpGrG,kq, by Theorem 8.3 there exists an object
F 1 in PervsphpGrG,kq and an isomorphism

F – ∆IW
ς ‹F 1.
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By [MV1, Proposition 2.2], the perverse sheaf F 1 is equivariant for the group
Gm ˙ L`G. Therefore the perverse sheaf ∆IW

ς ‹F 1 is the image of an object in
PervIW,GmpGrG,kq, and we deduce the same property for F .

8.2. The linkage principle. We now come back to the setting where G is an
arbitrary connected reductive algebraic group over F. Recall the actions ¨` and ˝`

of Waff on X_ defined in §4.1. The action which is relevant in representation theory
is the “dot action” defined by

ptλvq ‚` µ “ vpµ` ρ_q ´ ρ_ ` `λ

for λ P ZR_, v P Wf and µ P X_, where ρ_ is the halfsum of the positive coroots.
It is clear that for any w PWaff and µ P X_ we have

(8.2) w ‚` µ “ w ˝` pµ` ρ
_q ´ ρ_ “ w˚ ¨` pµ` ρ

_q ´ ρ_,

where ptλvq
˚ :“ t´λv for λ P ZR_ and v PWf .

The following statement is the first main result of this paper.

Theorem 8.5. For λ, µ P X_
`, if ExtnPervsphpGrG,kqpIC λ,IC µq ‰ 0 for some n,

then Waff ‚` λ “Waff ‚` µ.

Proof. Note that if ExtnPervsphpGrG,kqpIC λ,IC µq ‰ 0 for some n, then the orbits

GrλG and GrµG are contained in the same connected component of GrG. If Z denotes
the center of G, then the natural morphism pGrGqred Ñ pGrG{Zqred restricts, on each
connected component X of pGrGqred, to an embedding of a connected component of
pGrG{Zqred. The associated functor PervsphpX,kq Ñ PervpG{ZqO pGrG{Z ,kq is then
fully faithful by Remark 8.2(2), which reduces the proof to the case G is semisimple
of adjoint type, which we assume from now on.

In particular, under this assumption we can take ς “ ρ_, and apply Theorem 8.3.
This result implies that the simple objects in PervIWpGrG,kq are the perverse
sheaves

IC IW
λ :“ ∆IW

ς ‹IC λ´ς

for λ P X_
`` “ ς ` X_

`. In view of (8.2), this shows that to prove the lemma it

suffices to prove that for λ, µ P X_
``, if ExtnPervIWpGrG,kqpIC IW

λ ,IC IW
µ q ‰ 0 for

some n, then Waff ¨` λ “Waff ¨` µ.
In view of Theorem 7.4 (see also (7.1)) and the decomposition of pGrGq

$ into its
connected components (see Proposition 4.6), if λ, µ P X_

`` satisfyWaff ¨`λ ‰Waff ¨`µ
then we have

HomPervIWpGrG,kqpT
IW
λ ,T IW

µ q “ 0.

It follows that any M in TiltIWpGrG,kq admits a canonical decomposition

M “
à

λPp´a`qXX_

Mpλq

where each Mpλq is a direct sum of objects T IW
µ with µ P Waff ¨` λ; in fact the

assignment M ÞÑ Mpλq defines an endofunctor Πpλq of TiltIWpGrG,kq, and we have
a canonical isomorphism of functors

id –
à

λPp´a`qXX_

Πpλq.
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Let us still denote by Πpλq the endofunctor of DbPervIWpGrG,kq obtained by

conjugating KbpΠpλqq by the equivalence (5.3). Then we have

idDbPervIWpGrG,kq –
à

λPp´a`qXX_

Πpλq,

and for λ ‰ µ in p´a`q XX_ there exists no nonzero morphism between objects in
the essential images of Πpλq and Πpµq. In particular, given µ P X_

``, there exists a

unique λ P p´a`q XX_ such that ΠpλqpIC IW
µ q ‰ 0, and this element satisfies

ΠpλqpIC IW
µ q “ IC IW

µ .

The existence of the nonzero maps

IC IW
µ � ∆IW

µ ãÑ T IW
µ

shows that in fact λ is the unique element in p´a`q X X_ such that Waff ¨` λ “
Waff ¨` µ.

Finally, if λ, µ P X_
`` satisfy Waff ¨` λ ‰ Waff ¨` µ, we denote by ν, η the only

elements in p´a`q XX_ such that

Waff ¨` λ “Waff ¨` ν, Waff ¨` µ “Waff ¨` η,

and observe that for any n P Z we have

HomDbPervIWpGrG,kqpIC IW
λ ,IC IW

µ rnsq “

HomDbPervIWpGrG,kqpΠpνqpIC IW
λ q,ΠpηqpIC IW

µ rnsqq “ 0

since ν ‰ η. �

In view of Theorem 8.1 and (8.1), Theorem 8.5 is equivalent to the statement
that if ExtnReppG_k q

pLpλq, Lpµqq ‰ 0 for some n P Z, then Waff ‚` λ “Waff ‚` µ. This

property is of course well known, and called the Linkage Principle, see [J2, §II.6].
(This statement was first conjectured by Verma, and proved by Andersen in full
generality, after partial results of Humphreys, Kac–Weisfeiler and Carter–Lusztig;
see [A1] for more details.)

The same considerations as in §4.1 show that a fundamental domain for the
action of Waff on X_ via ‚` is given by the subset

C` :“ tλ P X_ | @α P R`, 0 ď xλ` ρ_, αy ď `u.

Below we will need to describe the subset pWaff ‚` λq X X_
` more explicitly for

λ P C`. For this we set Iλ :“ ts P Saff | s ‚` λ “ λu, so that the stabilizer in Waff

of λ (for ‚`) is the parabolic subgroup Wλ of Waff generated by Iλ. We set

W
pλq
aff :“ tw PWaff | w is maximal in wWλ and minimal in Wfwu.

Then it is known that the assignment w ÞÑ w ‚` λ induces a bijection

(8.3) W
pλq
aff

„
ÝÑ pWaff ‚` λq XX_

`;

see [AR2, §10.1] for similar considerations.
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8.3. The tilting character formula. Let Haff be the Hecke algebra of pWaff , Saffq,
and let Masph be its antispherical module, with “standard” basis pNw : w P fWaffq

parametrized by the subset fWaff ĂWaff of elements w which are minimal in Wfw.
(Here we follow the conventions of [Soe].) Let us consider

Fl˝G :“ Fl1,˝a1
,

the connected component of the base point in the affine flag variety associated
with LG. We can then define, as for GrG, the Iwahori–Whittaker derived category
Db

IWpFl
˝
G,kq, and its full subcategory ParityIWpFl

˝
G,kq of parity complexes. The

Iw`u -orbits on Fl˝G are naturally parametrized by Waff , and those which support
a nonzero Iwahori–Whittaker local system are the ones corresponding to elements
in fWaff ; we will denote by ∇IW

w and E IW
w the costandard perverse sheaf and

indecomposable parity complex attached to w P fWaff , respectively. We then have
a canonical isomorphism

ch : rParityIWpFl
˝
G,kqs

„
ÝÑMasph

determined by

chprF sq “
ÿ

wPfWaff

dimk HomDb
IWpFl

˝
G,kqpF ,∇IW

w rnsq ¨ vnNw,

where rParityIWpFl
˝
G,kqs is the split Grothendieck group of the additive category

ParityIWpFl
˝
G,kq.

In terms of this isomorphism, the `-canonical basis p`Nw : w P fWaffq of Masph

(see [RW1, AR3]) can be characterized by

(8.4) `Nw :“ chpE IW
w q.

The associated `-Kazhdan–Lusztig polynomials p`ny,w : y, w P fWaffq are character-
ized by the equality

`Nw “
ÿ

yPfWaff

`ny,w ¨Ny.

Remark 8.6. It is easily seen that the computation of the `-canonical basis and
`-Kazhdan–Lusztig polynomials can be reduced to the case G is quasi-simple. In
this case, the results of [RW1, Part III] show that this basis coincides with the basis
with the same name studied in [JW], for the Coxeter system pWaff , Saffq and the
realization considered in [RW1, Remark 10.7.2(2)]. In particular, these data can be
computed algorithmically using the procedure described in [JW].

These considerations have been stated for the ind-variety Fl1,˝a1
, but in practice

we will rather use them for the isomorphic variety Fl`,˝a` , with respect to the action

of Iw`u,`. More generally we can consider a facet f Ă a`, and the basic component

in the associated partial affine flag variety Fl`,˝f ; see §4.3. Here again the Iwahori–

Whittaker derived category (with respect to the action of Iw`u,`) makes sense, and
so does the notion of parity complexes. The indecomposable such objects can be
described in terms of those on Fl`,˝a` as follows.

As usual, the general theory of parity complexes ensures that there exists at most

one indecomposable parity complex on Fl`,˝f associated with each Iw`u,`-orbit which
supports a nonzero Iwahori–Whittaker local system, and that each indecomposable
parity complex is isomorphic (up to cohomological shift) to such an object. Now

as usual also the Iw`u,`-orbits on Fl`,˝f are parametrized in the natural way by the
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quotient Waff{W
f
aff , or in other words by the elements w PWaff which are maximal

in wW f
aff .

In the following statement, the morphism

Fl`,˝a` Ñ Fl`,˝f

induced by (4.3) will be denoted πf . We will also denote by Nf the length of the
longest element in W f

aff .

Lemma 8.7. If w PWaff is maximal in wW f
aff , then the Iw`u,`-orbit on Fl`,˝f associ-

ated with w supports a nonzero Iwahori–Whittaker local system iff w is minimal in
Wfw. Moreover, in this case the indecomposable Iwahori–Whittaker parity complex

on Fl`,˝f associated with w exists, and its image under π˚f rNf s coincides with the

indecomposable Iwahori–Whittaker parity complex on Fl`,˝a` associated with w.

Proof. The proof is similar to that of its counterpart in the setting of Kac–Moody
flag varieties considered in [ACR, Appendix A]. �

Now we return to Representation Theory. Recall that a G_k -module M in
ReppG_k q is called tilting if both M and M˚ admit filtrations with subquotients
of the form Npλq with λ P X_

`. It is well known (see [J2, §II.E]) that the inde-
composable tilting G_k -modules are classified by their highest weight (a dominant
weight), and that any tilting module is a direct sum of indecomposable tilting mod-
ules. The indecomposable tilting module of highest weight λ P X_

` will be denoted
Tpλq.

In view of the comments at the end of §8.2 (see in particular the bijection (8.3)),
the following result gives a complete answer to the question of describing characters
of indecomposable tilting G_k -modules.

Theorem 8.8. Let λ P C`. Then for any w PW
pλq
aff we have

rTpw ‚` λqs “
ÿ

yPW
pλq
aff

`ny,wp1q ¨ rNpy ‚` λqs

in the Grothendieck group of ReppG_k q.

Proof. Recall that if we denote (as in the proof of Theorem 8.5) by Z the center of
G, then the group pG{Zq_k identifies with the simply-connected cover of the derived
subgroup of G_k . In view of the results recalled in [J2, §II.E.7], this reduces the
proof to the case G is semisimple of adjoint type, which we will assume from now
on. In this case we can take ς “ ρ_ and apply Theorem 8.3.

Standard arguments show that the formula will follow provided we prove that

for any w,w1 PW
pλq
aff we have

(8.5) dimk HomReppG_k q

`

Tpw ‚` λq,Tpw
1 ‚` λq

˘

“
ÿ

yPW
pλq
aff

`ny,wp1q ¨
`ny,w1p1q.

Let µ :“ λ`ς, so that µ P p´a`qXX_ in the notation of §4.1. Since the composition

ReppG_k q
Thm. 8.1
ÝÝÝÝÝÝÑ

„
PervsphpGrG,kq

Thm. 8.3
ÝÝÝÝÝÝÑ

„
PervIWpGrG,kq

is an equivalence of highest weight categories, for any w P W
pλq
aff it sends the G_k -

module Tpw ‚` λq to T IW
w˝`µ

. Therefore, to prove (8.5) it suffices to prove that for
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any w,w1 PW
pλq
aff we have

dimk HomPervIWpGrG,kq
`

T IW
w˝`µ

,T IW
w1˝`µ

˘

“
ÿ

yPW
pλq
aff

`ny,wp1q ¨
`ny,w1p1q.

Then, using Theorem 7.4 and (7.1), this equality is reduced to proving that for any

w,w1 PW
pλq
aff we have

dimk HomSmIWppGrGq$,kq
`

E Sm,0
w˝`µ

,E Sm,0
w1˝`µ

˘

“
ÿ

yPW
pλq
aff

`ny,wp1q ¨
`ny,w1p1q.

Now by Proposition 7.6 the Hom-space in the left-hand side can be computed in
Db

IW`
ppGrGq

$,kq, where its dimension can be expressed in terms of the (co)stalks
of the parity complexes using [JMW, Proposition 2.6]. The fixed points pGrGq

$ are
a union of partial affine flag varieties by Proposition 4.6, so that these dimensions
can be computed using Lemma 8.7 and (8.4). This provides the desired formula,

in view of Remark 4.9 and the fact that Wλ “W
fµ
aff (see (8.2)). �

Remark 8.9. In the special case when ` is bigger than the Coxeter number h of
G, we have W0 “ t1u. In this case, the formula in Theorem 8.8 was conjectured,
and proved in the case of the group G “ GLpnq, in [RW1]. A proof of this formula
(again for ` ą h and λ “ 0, but for a general reductive group) was later given
in [AMRW]. It was noticed in [RW1] that a similar formula could be stated for any
block of ReppG_k q, see [RW1, Conjecture 1.4.3]. Theorem 8.8 confirms this formula
in full generality.
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[BBDG] A. Bĕılinson, J. Bernstein, P. Deligne, and O. Gabber, Faisceaux pervers, in Analyse et

topologie sur les espaces singuliers, I (Luminy, 1981), 5–171, Astérisque 100 (1982).
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ans, and the Mirković–Vilonen conjecture, J. Eur. Math. Soc. 20 (2018), 2259–2332.

35, 42, 43
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Société Mathématique de France, 2003. 11, 12, 13, 15
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