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Abstract

In this paper, it is shown that a simple formulation of Economic Model Predictive Control can be used which possesses two features
that are generally viewed as mutually exclusive, namely, a rather short prediction horizon (reachability-compatible) on one side, and the
absence of final constraint on the other side. Practical stability at an arbitrarily small neighborhood of the optimal unknown steady-state
pair is shown when some design parameters increase. It is also shown that when the system is originated from the time discretization
of a continuous-time dynamics, the size of the terminal region can be reduced by decreasing the sampling period for the same design
parameter setting. A commonly used example is given to illustrate the results.

1 Introduction

Model Predictive Control (MPC) refers to a wide class of
optimization-based control methods in which a dynamic pro-
cess model and numerical optimization are exploited to eval-
uate, repeatedly online, an optimal sequence of state (output)
and input trajectories; in closed-loop operation the first por-
tion of the control sequence is actually implemented into the
plant, and the overall planning is repeated at the next sam-
ple time [14]. Economic Model Predictive Control (EMPC)
formulations [13,2,5] are MPC formulations in which the
cost function is not expressed as a distance to some be-
forehand known targeted steady pairs. In a typical non eco-
nomic settings, such pairs are computed in a higher stage
of a two stage formulation in which the lower stage is a
standard regulation-based MPC -with preassigned targeted
steady state- while the higher stage performs economic static
optimization in order to deliver an optimal steady pair to the
lower stage [12].

The advantage of EMPC stems from the fact that there exist
(non equilibrium) input/state pairs for which the economic
cost is lower than that corresponding to the equilibrium tar-
get, so that transient operation away from the optimal equi-
librium can be more remunerative than reaching the equilib-
rium target “quickly” as in conventional two-layer architec-
tures [13]. Moreover, the computation of steady-state targets
may be also time consuming, thus possibly avoidable. In
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some cases, it is even possible that a non necessarily steady
behavior induces a higher performance on average [4]. In
both cases however, it is necessary to be able to limit and
in the long term to suppress the movements of actuators in
order to achieve a quasi-optimal steady regime as a limit
case. As a matter of fact, some approaches include a modi-
fication of the economic cost function by adding a tracking
term (based on the presumably known optimal equilibrium)
[3,11]; this can also be interpreted within a multi-objective
framework [16].

The discussion above suggests that penalizing the state in-
crement should be effective in deriving a tunable EMPC that
addresses the above concerns, as this penalty induces conver-
gence towards an equilibrium. Strangely enough this simple
and intuitive idea never showed up in any of the yet devel-
oped provable EMPC schemes to the best of the authors’
knowledge. Instead, the less intuitive concepts of (strict) pas-
sivity, stage cost rotation and so, dominated the scene. This
paper aims to fill this gap by giving a simple provably stable
formulation that does not need these technicalities.

On the other hand, existing provably stable formulations are
mainly of two kinds. In the first, a terminal constraint and/or
terminal penalty, based on the distance between the terminal
state and the equilibrium target, is added [5,4], possibly with
an additional tracking term added to the cost function [9],
which undermines one of the attractive features of EMPC
mentioned above (the non-availability of the steady-optimal
pair). In the second, the stability argument relies on the
prediction horizon being sufficiently high [10] which can
be computationally expensive. Recent formulations [15,8]

Preprint submitted to Automatica 20 November 2020



are somehow in the middle field of these approaches, as
they avoid the use of terminal constraints by adding gradient
correcting end penalties, still requiring either a sufficiently
long prediction horizon or solving the steady-state optimal
problem.

The framework proposed in the present contribution gathers
the nice properties of both, namely, the possibility to use a
moderate prediction horizon (the one linked to the reach-
ability assumption) while being free of any terminal con-
straint or any knowledge of the optimal equilibrium state.
This paper is organized as follows: first of all, the problem
is stated and notation is introduced in Section 2. The work-
ing assumptions that are needed to derive the main result
are given in Section 3. Section 4 gives the statement and the
proofs of the main results before an illustrative example is
proposed in Section 5.

2 Problem statement and notation

Consider general nonlinear systems governed by the follow-
ing discrete-time dynamics:

x+ = f(x, u) (x, u) ∈ Rn × Rm (1)

where x and u ∈ U ⊂ Rm stand for the state and the control
input vectors respectively. U is a compact set of admissible
control values.

When the dynamics (1) is obtained by time discretization
of some continuous-time dynamics, the corresponding sam-
pling period will be denoted by τ > 0. Otherwise, τ = 1
might be used every time τ is involved in the sequel.

The dynamics is supposed to admit a set Z ⊂ Rn × U of
equilibrium pairs (x, u), namely:

Z :=

(x, u) ∈ Rn × U | ∆(x, u) = 0


(2)

where ∆(x, u) :=
1

τ
f(x, u) − x. Note that although ∆

depends on τ , the reference to τ is omitted for the sake
of simplification. This dependence will be recalled when
appropriate.

Finally, it is assumed that there exists at least an optimal
equilibrium pair zs = (xs, us) ∈ Z that minimizes a given
cost function ℓ over the set of steady pairs Z , namely:

ℓs := ℓ(zs) ≤ ℓ(z) ∀z ∈ Z (3)

More generally the set of such zs is denoted by Zs ⊂ Z .

In what follows the following notation is used:

• let N ∈ Z+ be some finite prediction horizon

• boldfaced u denotes a sequence of N + 1 control ac-
tions over a prediction horizon of length N , namely:

u := (u0, u1, . . . , uN−1, uN ) ∈ UN+1 (4)

• For any control sequence u given by (4), the following
notation is used to denote the corresponding warm start
sequence:

u+ = (u1, u2, . . . , uN , uN ) ∈ UN+1 (5)

• Given a control sequence u ∈ UN+1 and an initial
state x, xu(x) := {xu

k (x)}Nk=0 denotes the sequence
of states on the system’s trajectory starting at x under
the control sequence u, namely 1 :

xu
0 (x) = x, xu

k+1(x) = f(xu
k (x), uk) ∀k (6)

• Given any function h defined on Rn×U, the following
short notation is used:

hu
k (x) := h(xu

k (x), uk) (7)

This holds in particular for ℓ and ∆ invoked earlier.
Moreover, when there is no ambiguity regarding the
initial state x, the argument x is omitted leading to the
notation xu

k , h
u
k instead of xu

k (x), h
u
k (x).

• For any set V in some euclidian space, an -
neighborhood of V, denoted by V(V) is the set
of all points ξ such that d(ξ,V) ≤ , in which
d(ξ,V) := minη∈V ξ−η is the distance of ξ from V.

The following definition is used to express the main conver-
gence results:

Definition 1 (Quasi-steady optimal trajectory) A trajec-
tory (x,u) is said to be -quasi steady optimal if and only
if the following conditions hold for all k:

|ℓ(xk, uk)− ℓs| ≤  , ∆(xk, uk) ≤  (8)

Using the above notation, the following open-loop cost func-
tion is considered in the present paper for a given initial
state x and a candidate sequence of future actions u over a
prediction horizon of length N :

J(u, x) := γ

ℓuN + α∆u

N



  
ΨN (u,x)

+

N−1

k=0


ℓuk + α∆u

k



  
V (u,x)

(9)

1 Note that the subscript k in xu
k (x) denotes time increment and

not state vector-related component index.
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where the notation hu
k := hu

k (x) is used for h ∈ {ℓ,∆}. We
note that:

∆u
k := ∆(xu

k , uk) =
1

τ
f(xu

k , uk)−xu
k  =

1

τ
xu

k+1−xu
k 

(10)
This cost function is used to define the open-loop optimal
control problem given by:

P (x) : min
u∈UN+1

J(u, x) → (J(x),u(x)) (11)

leading to the MPC state feedback given by:

κMPC(x) := u
0(x) (12)

We are interested in so called Economic-MPC formulations,
meaning that ℓ(x, u) is not defined as a distance to some
desired equilibrium pair (xs, us) ∈ Zs that minimizes ℓ as
the latter is supposed to be unknown or its a priori on-line
computation is to be avoided. Consequently, no reference
to such pair is included in the cost function nor in any ter-
minal constraint.

This paper investigates the conditions under which the
resulting closed-loop behavior of (1) under (12) is asymp-
totically -quasi steady optimal with an  that can be made
as small as desired by conveniently choosing the design
parameters (α, γ).

In what follows, the following short notation is used:

h
k(x) := h

u(x)
k (x) h ∈ {ℓ,∆} (13)

Remark 1 Note that only control constraints are explicitly
considered through the subset U. State constraints are as-
sumed to be softened through some exact penalty in the def-
inition of the map ℓ. This greatly simplifies the exposition of
the main ideas and avoid additional technicalities regard-
ing the recursive feasibility issue. Moreover, it is actually
the commonly used approach in real-life problems. A brief
discussion regarding the possible constraint violation issue
and the impact of the choice of the penalty on the exact con-
straint penalty is proposed in Section 4.1.

3 Working assumptions

Assumption 1 (Properties of f and ℓ) The following con-
ditions hold true.

(i) f and ℓ are continuous.
(ii) ∀ℓ̄ > 0, the set Bℓ̄ := {x ∈ Rn s.t. ∃u ∈ U, ℓ(x, u) ≤

ℓ̄} is compact.
(iii) The minimal steady value invoked in (3) is ℓs = 0.

Assumption 1-(ii) is typically enforced by the soft
constraints-related penalty [such as max{0, x−x, x− x̄} ≤
0] that is included in the definition of ℓ to express constraints

on the state evolution. As for the last assumption 1-(iii), it is
a standard assumption that is commonly introduced without
loss of generality in order to simplify the discussion.

Assumption 2 (N -reachability of steady optimal pair)
There exists a set X0 ⊂ Rn such that for any x ∈ X0,
∃u#(x) ∈ UN+1 s.t. (xu#

N (x), u#
N (x)) ∈ Zs.

This is a standard assumption that is used in the convergence
proof of MPC schemes. Note that the knowledge of the
control sequence u#(x) is not required. Only its existence
is needed for the analysis of optimal solution properties.

Assumption 3 (Optimal stationarity condition) There
exists a class-K function ψ(·) such that:

0 = ℓs ≤ ℓ(z) + ψ(∆(z)) (14)

Moreover, ψ is Lipschitz-continuous.

Note that this last assumption simply states that for any
stationary pair z = (x, u), since ∆(z) = 0, there holds
ℓs ≤ ℓ(z). This statement includes a simple technical rewrit-
ing of condition (3) together with a Lipschitz continuity re-
quirement. It also means that ℓ(z) might be lower than ℓs
provided that z is not a stationary pair. Recall that since ℓs
is supposed to be 0 (Assumption 1), the inequality (14) be-
comes 0 ≤ ℓ(z) + ψ(∆(z)).

Assumption 4 (Local properties) There exists a continu-
ous function Ks, vanishing at zero, such that, for any z :=
(x, u) ∈ X0 × U, the following implication holds:


d(z,Zs) ≤ 


⇒ V (u#(x), x) ≤ Ks() (15)

where V is the integral cost defined in (9).

This is a rather weak technical assumption which can be
expressed in simple terms as follows: when the state is in
the neighborhood of Zs, it can be steered inside Zs with
low cost which vanishes with the initial distance to Zs.
Note that the knowledge of Ks(·) is not required, only its
existence is needed to prove the main result.

The last assumption that is needed to derive the main result
is the following:

Assumption 5 For each (x,u) ∈ X0 × UN+1, the scalar
map defined by

ΨN (u, x) := [ℓ+ α∆](xu
N (x), uN ) (16)

satisfies the following implication for sufficiently small |η|:

ΨN (u, x) = η


⇒


∃u† ∈ UN+1 | ΨN (u†, x) = 0



(17)
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Remark 2 Assumption 5 is obviously very difficult to check.
Nevertheless, we believe that it is not so restrictive in prac-
tice. The following comments can shed some light on the
relevance and the restriction it implies:

(1) Note first of all that for differentiable setting and in
the absence of saturation on the control, Assumption 5
can be expressed in terms of the implicit function the-
orem, namely, a slight modification of η into 0 can be
compensated by a corresponding slight modification
in the argument u. For this to hold, it suffices that the
rank of the sensitivity of ΨN to u at (x, η) be equal to
1 which is generically true.

(2) When constraints are involved, satisfaction of the
condition is no more trivial. Still, assuming that the
sequence u := (u(a),u(na)) satisfying ΨN (u, x) = η
can be split into saturated components u(a) and non
saturated components u(na). In this context, Assump-
tion 5 suggests that the sensitivity of ΨN to u(na) is of
rank 1 so that one can always perturb u(na), keeping
unchanged u(a) in order to compensate for the in-
finitesimal change on ΨN induced by infinitesimal η.

(3) Note that the conditions of Assumption 5 could have
been required only on the optimal sequences u(x)
rather than on any sequence of control u. This is
because in the sequel, the implication in (17) is only
used for such optimal sequences.

(4) Based on the above discussion, it comes out that As-
sumption 5 can be replaced by several other checkable
Assumptions of low level. But this might induce unnec-
essary conditions such as differentiability while these
conditions are only sufficient. It is preferred here to
keep the high level condition (17) that might hold even
for non differentiable settings. The above discussion
helps for better understanding the underlying require-
ments.

4 Closed-loop analysis

We start by establishing a result that builds a first bridge
between the penalty ℓ + α∆ used in the cost function (9)
and the property (ℓ = 0 and ∆ = 0) of optimal steady pairs.

Lemma 1 Given a compact set X×U, let Lψ be the Lips-
chitz constant of ψ(∆(x, u)) over z := (x, u) ∈ X×U. For
any α > Lψ the following implication holds true:

ℓ(z) + α∆(z) ≤  ⇒


∆(z) ≤ κ1

ℓ(z) ∈ [−κ2, ]
(18)

where κ1 = 1/(α− Lψ) and κ2 = α/(α− Lψ).

PROOF. Using the inequality (14) of Assumption 3, and
recalling that ℓs = 0 is used without loss of generality, it

follows that:
ℓ(z) ≥ −ψ(∆(z)) (19)

combining this with the left hand side of (18) leads to the
following inequality:

α∆(z)− ψ(∆(z)) ≤  (20)

from which it follows:

(α− Lψ)∆(z) ≤  (21)

which proves the first inequality of (18) with κ1 = 1/(α−
Lψ), as α > Lψ . In order to prove the second inequality in
(18), we first rewrite 0 ≤ ℓ(z) + α∆(z) ≤  as follows:

−α∆(z) ≤ ℓ(z) ≤  (22)

Combining (21) together with (22) implies that:

−[
α

α− Lψ
] ≤ ℓ(z) ≤  (23)

which proves that ℓ(z) ∈∈ [−κ2, ]with κ2 := α/(α−Lψ).
✷

Corollary 1 Given a compact set Z := X×U, if α is suffi-
ciently high to meet the condition of Lemma 1, there exists a
continuous function ϕs(·), vanishing at 0 such that for suf-
ficiently small  > 0, the following implication holds for all
z ∈ Z:


ℓ(z) + α∆(z) ≤ 


⇒


d(z,Zs) ≤ ϕs()


(24)

PROOF. This is a straightforward consequence of Lemma
1 and Assumption 1. Indeed let us proceed by contradic-
tion, if (24) does not hold then it is possible to exhibit a se-
quence of points z(j) ∈ Z such that limj→∞ ℓ(z(j)) = 0 and
limj→∞ ∆(z(j)) = 0 while limj→∞ d(z(j),Zs) > r > 0
for some non-vanishing r, which, by continuity and com-
pactness argument leads to the existence of some z(∞) that
is steady optimal while lying outside Zs which is obviously
a contradiction by definition of Zs. ✷

Lemma 2 (Properties of terminal pairs) Given any com-
pact set X ⊂ X0 of initial states and any α > Lψ , there
exist two positive reals κ3,κ4 > 0 such that for any x ∈ X,
the optimal open-loop trajectory that solves the optimization
problem (11) satisfies the following two terminal inequali-
ties 2 :

∆
N (x) ≤ κ3(α)

γ
and |ℓN (x)| ≤ κ4

γ
(25)

2 Recall (13) for the notation.
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where κ3(α) and κ4 depend on X and U. Moreover, the
following asymptotic property holds true:

lim
α→∞

κ3(α) = 0 (26)

PROOF. Let us consider the following definitions:

V (x) :=

N−1

k=0


ℓk(x) + α∆

k(x)


(27)

V #(x) :=

N−1

k=0


ℓ#k (x) + α∆#

k (x)


(28)

corresponding to the sums of the stage costs over the trajec-
tories starting from x under the optimal control u(x) and
the control u#(x) invoked in reachability Assumption 2. It
comes by definition that:

J(u#, x) = V (u#, x) (vanishing terminal costs) (29)
J(x) := V (u, x) + γ(ℓN (x) + α∆

N (x)) (30)

This gives by optimality of J(x):

ℓN (x) + α∆
N (x) ≤ V #(x)− V (x)

γ
≤ K0

γ
(31)

for some positive constantK0 ≤ 2max(x,u)∈X×UN+1 V (u, x)
which exists by virtue of the continuity of the involved
maps (Assumption 1). Using inequality (31) together with
Lemma 1 obviously gives the results for with κ3 := K0κ1

and κ4 = K0 max{1,κ2}. As for the asymptotic property
(26), it comes directly from the fact that κ3 = K0κ1 and the
result of Lemma 1 according to which κ1 = 1/(α−Lψ). ✷

The following straightforward corollary is used in the proof
of the main result:

Corollary 2 Under the Assumptions and notation of Lemma
2, the following inequality holds for all x ∈ X:

V (x) ≤ V (u#, x) + κ4 (32)

PROOF. This is a direct consequence of the inequality:

V (x) + γ(ℓN (x) + α∆
N (x)) ≤ V (u#, x) (33)

which, by virtue of (25), obviously implies that:

V (x) ≤ V (u#, x)− γℓN (x) ≤ V (u#, x) + κ4 (34)

which proves the corollary. ✷

The following is another consequence of Lemma 2 that is
crucial in the proof of the main result:

Corollary 3 (Recursive satisfaction of terminal properties)
For any state on the closed-loop trajectory starting at X0,
the inequalities (25) hold provided that α and γ

α are taken
sufficiently high.

PROOF. Indeed since α is sufficiently high and the initial
state lies in X0, the inequalities (25) hold for x0. On the
other hand, if γ is taken sufficiently high these inequali-
ties imply that ΨN (u(x0), x0) = η with sufficiently small
|η| ≤ (κ4 +ακ3)/γ. This makes the implication (17) valid,
then it can be deduced that there is u# := u† that steers
the next state x1 on the closed loop trajectory to Zs, that is
x1 ∈ X0. This means that the arguments used in the proof
of Lemma 2 can be reused to show that (25) hold for the
next state. By induction, the argument can now be reiterated
to prove that these inequalities hold for all the states on the
closed-loop trajectory. ✷

By now, we have all results we need to prove the main result
of this paper.

Proposition 3 (Main result) For any desired  > 0, pro-
vided that α is high enough, there exists sufficiently high
γ > 0 such that any resulting closed-loop trajectory starting
at x0 ∈ X0 asymptotically becomes -quasi steady optimal
in the sense of Definition 1. Moreover, for dynamics that are
obtained by time sampling, the size of the terminal region
might be further reduced by reducing the sampling period τ .

PROOF. Consider the following definition:

V̄ := sup
x0∈X0

V (u#(x0), x0) (35)

and the resulting set:

X :=

x ∈ Rn | V (x) ≤ κ4 +max{V̄ ,Ks(1)}


(36)

where Ks(·) is the map invoked in Assumption 4. The
subset X is bounded below by virtue of (18). Now since by
Corollary 2, V (x0) ≤ κ4 + V #(x0) ≤ κ4 + V̄ , it comes
out by induction that if it can be proved that when the
(xk, u


0(xk)) lies inside Z := X × U so is the next pair on

the closed-loop trajectory, then the closed-loop trajectory
remains inside Z. Therefore, Z-related Lipschitz constants
can be invoked recursively.

Using a standard receding horizon argument, the warm
start sequence defined by (5) can be used as a candidate
sequence for the optimization problem defined at xk+1 and
since the optimal solution has a lower cost than any admis-
sible candidate solution, it follows that at any state xk on
the closed-loop trajectory

V (xk+1) ≤V (xk)− (ℓ0(xk) + α∆
0(xk)) +Ψ∗

N (xk)+

+ γ

Ψ(u∗+, xk+1)−Ψ

N (xk)


(37)
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where

Ψ(u∗+, xk+1) := [ℓ+ α∆](f(x
N , u

N ), u
N )

≤ Ψ
N (xk) + (Lℓ + αL∆)[τ∆


N (xk)]

where Lℓ and L∆ are the Lipschitz constants of ℓ and ∆
over X×U. Using the first inequality (25) of Lemma 2, the
last inequality can be rearranged to give:

Ψ(u∗+, xk+1) ≤ Ψ
N (xk) + (Lℓ + αL∆)

κ3(α)τ

γ
(38)

Now using this last inequality in (37) gives:

V (xk+1) ≤V (xk)− (ℓ0(xk) + α∆
0(xk))+

+Ψ∗
N (xk) + κ5(α)τ (39)

where κ5(α) := (Lℓ + αL∆)κ3(α). Moreover, we have by
virtue of Lemma 2:

Ψ
N (xk) ≤

κ3(α) + ακ4

γ
=:

κ6(α)

γ
(40)

Therefore, inequality (39) becomes:

V (xk+1) ≤ V (xk)− (ℓ0(xk) + α∆
0(xk)) + ϕ(α, γ, τ)

(41)
where

ϕ(α, γ, τ) :=
κ6(α)

γ
+ κ5(α)τ (42)

Consider the following set:

A :=

x | ℓ0(x) + α∆

0(x) ≤ 2ϕ(α, γ, τ)


(43)

inequality (41) clearly shows that as long as the state xk on
the closed-loop trajectory remains outside A, V  decreases
at the next step keeping the closed loop trajectory inside X.
The amount of decrease is not vanishing since its amplitude
is greater than ϕ(α, γ, τ). Now since V is bounded below
over the compact set X for sufficiently high α and γ/α, this
cannot occur indefinitely. Therefore, there exists a finite k̄
such that:

ℓ0(xk̄) + α∆
0(xk̄) ≤ 2ϕ(α, γ, τ) and xk̄−1 ∈ X (44)

and using Assumption 4, this simply means that for suffi-
ciently high α and γ, xk̄ satisfies V (xk̄) ≤ κ4+V #(xk̄) ≤
κ4 +Ks(ϕs(2ϕ(α, γ, τ))) ≤ κ4 +Ks(1). This means that
xk̄ ∈ X [see (36)]. This clearly shows that the closed-loop
state trajectory lies constantly inside X and the use of the
Lipschitz constants is relevant and hence the resulting in-
equality (40) always holds.

Now let us examine what happens for k ≥ k̄:

• Either xk+1 remains in A in which case we have
by definition of A and Lemma 1 that ∆(zk+1) ≤
2κ1ϕ(α, γ, τ) and |ℓ(zk+1)| ≤ 2max{1,κ2}ϕ(α, γ, τ)

• Or xk̄+1 goes outside A but the resulting increase in
V  is limited by the fact that ∆

0(xk̄) ≤ 2κ1ϕ(α, γ, τ)
thanks to (18) of Lemma 1, before V  decreases again
(since the state is outside A).

therefore, for all k ≥ k̄, the following inequalities hold:

|ℓ(xk, u

0(xk))| ≤ 2


max{1,κ2}+ κ1Lℓ


ϕ(α, γ, τ) (45)

∆(xk, u
(xk)) ≤ 2κ1(1 + L∆)ϕ(α, γ, τ) (46)

which proves the result since the above inequality means that
the closed-loop trajectory is asymptotically -quasi steady
optimal in the sense of Definition 1 with  vanishing as α and
γ/α tend towards infinity. As for the role of decreasing τ
inequality (41) clearly shows that smaller values of τ induce
smaller terminal set A given by (43). ✷

4.1 Discussion on state constraints

In this section, the soft constraint issue is discussed in more
details having in mind the facts that have been just proved
regarding the behavior of the closed-loop system. This dis-
cussion is not meant to be a rigorous proof. Rather, it gives
hints regarding possible theoretical argumentation that we
avoided for the sake of brevity and in order to convey the
main ideas.

We assume that an exact penalty of the form ρmax{0, g(x)}
is included in the stage cost to soften the constraints
g(x) ≤ 0. We assume that the optimal steady pair lies in
the interior of the admissible set. Moreover, we assume that
the definition of the set X0 is now restricted to those initial
states for which an admissible reachability trajectory exists.

Based on these assumptions, it can be easily proved (as it
has been done in Lemma 2) that for any such initial state,
the total cost is bounded by an upper bound that does not
depend on ρ since the admissible trajectory has no constraint
violation cost. This means that the amount by which the
initial optimal trajectory violates the constraint is bounded
by a term that behaves as O(1/ρ). On the other hand, if
α and γ are high enough, the open-loop optimal trajectory
ends inside the admissible region meaning that the recursive
feasibility argument holds. Then, the decreasing properties
of the cost function established in the proof of Proposition
3 are valid until the closed-loop trajectory reaches the small
-neighborhood of the steady pair which is inside the admis-
sible region. This simply means that over the closed-loop
trajectory, the violation of the constraints will be constantly
lower than an amount that tends to 0 as ρ increases.

5 Illustative example

For the sake of illustration and to make an easy comparison
with literature, let us consider the commonly used example
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of the nonlinear continuous flow stirred-tank reactor with
parallel reactions [7].

R → P1

R → P2

that can be described by the following dimensionless energy
and material balances:

ẋ1 = 1− 104x2
1e

−1/x3 − 400x1e
−0.55/x3 − x1 (47a)

ẋ2 = 104x2
1e

−1/x3 − x2 (47b)
ẋ3 = u− x3 (47c)

where x1 and x2 stand for the concentrations of R and
P1 respectively while x3 represents the temperature of the
mixture in the reactor. P2 represents the waste product. The
control variable is given by the heat flow u ∈ [0.049, 0.449].
The natural stage cost would be given by ℓ(x, u) = −x2

since the objective is to maximize the amount of product P1.

Different aspects of using EMPC to address this problem
have been considered in [1] where it has been recalled
that without any particular care, there is a non stationary
optimal solution to the purely economic formulation that
would include only the stage cost ℓ = −x2 while the use of
average constraint enable to reduce the level of oscillations
in the closed-loop behavior. It has been also shown that the
system possesses an optimal steady pair denoted hereafter
by xs = (0.0832, 0.0846, 0.149) and us = 0.149.

In the present section, the behavior of the closed-loop un-
der the EMPC associated to the proposed formulation is
analyzed for different choices of the design parameters in
order to assess the underlying theoretical development. In
all the forthcoming simulations, the economic MPC design
uses a prediction horizon length of N = 20 for a prediction
time-horizon of 2 (this corresponds to a dimensionless sam-
pling period of 0.1 used inside the predictor which is to be
distinguished from the closed-loop control updating which
is taken in {0.1, 0.02}) depending on the control settings.
The optimization was done using the CasADi-Python soft-
ware running the IPOpt solver [6] with a single shooting
implementation. The maximum number of iterations has
been fixed to 1000. mEight control settings are investigated
in this section in order to illustrate the impact of the pa-
rameters choice. They are split into two subsets that are
investigated in Figures 1 and 2 respectively.

Figure 1 shows the non-stationary behavior of the pure
economic MPC formulation (black line) which corresponds
to γ = α = 0. It also shows that if α is not high enough
(α = 0.001), the stationarity is not achieved (red line) while
for sufficiently high value of α = 0.01, a stationary final
regime is obtained even for small values of γ = 0.001.

Figure 2 investigates different settings for which only the
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Fig. 1. Impact of α in stabilising the trajectories near the steady
optimal value.
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Fig. 2. Illustration of the increasing precision of the terminal
regime with increasing values of (γ,α) and decreasing of values
of τ

tail of the closed-loop trajectory is shown in order to focus
on the terminal precision being achieved. The first two plots
(blue and brown) correspond to the same sampling period
(τ = 0.1) so that it can be clearly shown that higher values
of γ and α (here γ = α = 1) induce higher precision than
the lower values setting (here γ = α = 0.01).
The other remaining curves (green and orange) represent
the results for the previous two settings for which a smaller
sampling period τ = 0.02 is considered in order to illustrate
the impact predicted by Proposition 3.

Finally, Figure 3 investigates the impact of taking γ = 0
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Fig. 3. Impact of γ.

in the formulation. The result confirms what is partially
suggested by the results of Figure 2, namely that for this
specific example, it is mainly α that plays the major role
despite the fact that γ is needed in the proof of closed-loop
stability. Nonetheless, note that, as in all provably stable
MPC frameworks, the underlying conditions are only suffi-
cient but not necessary. It can be noticed, however, that the
convergence is very slightly accelerated by the use of γ = 1
but the effect is probably too small to be solidly assessed.

6 Conclusion

In this paper, a new formulation of economic MPC is pro-
posed for discrete-time dynamics. The formulation needs
no terminal constraints on the state and is based on the pe-
nalization of the state increments between two successive
states. Convergence to a quasi optimal steady regime has
been derived using rather mild technical conditions, and the
distance to the optimal equilibrium can be made as small
as desired by changing the design parameters for fixed pre-
diction horizon, which only needs to be compatible with a
reachability assumption.
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[10] L. Grüne. Economic receding horizon control without terminal
constraints. Automatica, 49(3):725–734, 2013.

[11] Johannes Philippus Maree and Lars Imsland. Combined economic
and regulatory predictive control. Automatica, 69:342–347, 2016.

[12] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive
control technology. Control Engineering Practice, 11:733–764, 2003.

[13] J. B. Rawlings and R. Amrit. Optimizing process economic
performance using model predictive control. In L. Magni,
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