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Abstract

In this paper, it is shown that a simple formulation of Economic Model Predictive Control can be used which possesses two
features that are generally viewed as mutually exclusive, namely, a rather short prediction horizon (reachability-compatible)
on one side, and the absence of final constraint on the other side. The result holds for discrete-time models that are originated
from continuous-time models by means of discretization. Practical stability at a small neighborhood of the optimal unknown
steady-state pair is shown when some parameters increase and sampling time decreases. A commonly used example is given
to illustrate the result.

1 Introduction

Economic Model Predictive Control (EMPC) formu-
lations are MPC formulations in which the cost func-
tion is not expressed as a distance to some beforehand
known targeted steady pairs. In a typical non economic
settings, such pairs are computed in a higher stage of a
two stage formulation in which the lower stage is a stan-
dard regulation-based MPC -with preassigned targeted
steady state- while the higher stage performs economic
static optimization in order to deliver an optimal steady
pair to the lower stage.

The advantage of EMPC stems from the fact that
sometimes, the computation of the static optimization
results is even harder than the MPC itself or because
one is interested in a non necessarily steady behavior as
far as this induces a higher performance in average. In
both cases however, it is necessary to be able to tune the
level of actuator dynamics on the long term for obvious
reasons with the possibility to force a quasi-optimal
steady regime as a limit case.

The discussion above suggests that penalizing the state
increment should be effective in deriving a tunable
EMPC that adresses the above concerns. Strangely
enough this simple and intuitive idea never showed up
in any of the yet developed provable EMPC schemes
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to the best of the authors’ knowledge. Instead, the
non intuitive concepts of (strict) passivity, stage cost
rotation and so, dominated the scene. This paper fills
this astonishing gap by giving a simple provably stable
formulation that does not need these counter intuitive
technicalities.

On the other hand, existing provably stable formula-
tions are exclusively of two kinds: in the first, a terminal
constraint on the state is added that is a distance to the
desired state which undermines one of the attractive
features of EMPC mentioned above (the non availabil-
ity of the steady-optimal pair) while in the second,
the stability argument relies on the prediction horizon
being sufficiently high which can be computationally
expensive. The framework proposed in the present con-
tribution gathers the nice properties of both, namely,
the possibility to use a moderate prediction horizon (the
one linked to the reachability assumption) while being
free of any final constraint to enforce the stability of the
resulting closed-loop system.

This paper is organized as follows: first of all, the prob-
lem is stated and notation is introduced in Section 2.
The working assumptions that are needed to derive the
main result are given in Section 3. Section 4 gives the
statement and the proofs of the main results before an
illustrative example is proposed in Section 5.
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2 Problem statement and notation

Consider general nonlinear systems governed by the
following discrete-time dynamics:

x+ = f(x, u) (x, u) ∈ Rn × Rm (1)

where x and u ∈ U ⊂ Rm stand for the state and the con-
trol input vectors respectively. U is a compact set of ad-
missible control values. The dynamics (1) is supposed to
be obtained by time discretization of some continuous-
time dynamics with a sampling period τ > 0. The dy-
namics is supposed to admit a set Z ⊂ Rn × U of equi-
librium pairs (x, u), namely:

Z :=
{

(x, u) ∈ Rn × U | ∆(x, u) = 0
}

(2)

where ∆(x, u) :=
1

τ
‖f(x, u)−x‖. Note that although ∆

depends on τ , the reference to τ is omitted for the sake
of simplification. This dependence will be recalled when
appropriate.

Finally, it is assumed that there exists at least a steady
optimal equilibrium pair zs = (xs, us) ∈ Z that mini-
mizes a given cost function ` over the set of steady pairs
Z, namely:

`s := `(zs) ≤ `(z) ∀z ∈ Z (3)

More generally the set of such zs is denoted by Zs ⊂ Z.

In what follows the following notation is used:

• let N ∈ N be some finite prediction horizon
• boldfacedu denotes a sequence ofN+1 control actions

over a prediction horizon of length N , namely:

u := (u0, u1, . . . , uN−1, uN ) ∈ UN+1 (4)

• For any control sequence u given by (4), the following
notation is used to denote the corresponding warm
start sequence:

u+ = (u1, u2, . . . , uN , uN ) ∈ UN+1 (5)

• Given a control sequence u ∈ UN+1 and an initial
state x, xu(x) := {xuk (x)}Nk=0 denotes the sequence of
states on the system’s trajectory starting at x under
the control sequence u, namely 1 :

xu0 (x) = x , (∀k) xuk+1(x) = f(xuk (x), uk) (6)

1 Note that the subscript k in xuk (x) denotes time increment
and not state vector-related component index.

• Given any function h defined on Rn×U, the following
short notation is used:

huk (x) := h(xuk (x), uk) (7)

This holds in particular for ` and ∆ invoked earlier.
Moreover, when there is no ambiguity regarding the
initial state x, the argument x is omitted leading to
the notation xuk , h

u
k instead of xuk (x), huk (x).

• For any set V in some euclidian space, an ε-
neighborhood of V, denoted by Vε(V) is the set of all
points ξ such that d(ξ,V) := minη∈V ‖ξ − η‖ ≤ ε.

The following definition is used to express the main con-
vergence results:

Definition 1 (Quasi-steady optimal trajectory)
A trajectory (x,u) is said to be ε-quasi steady optimal if
and only if the following conditions hold for all k:

|`(xk, uk)− `s| ≤ ε , ∆(xk, uk) ≤ ε (8)

Using the above notation, the following open-loop cost
function is considered in the present paper for a given
initial state x and a candidate sequence of future actions
u over a prediction horizon of length N :

J(u, x) := γ
[
`uN + α∆u

N

]
︸ ︷︷ ︸

ΨN (u,x)

+

N∑
k=0

[
`uk + α∆u

k

]
︸ ︷︷ ︸

V (u,x)

(9)

where the notation huk := huk (x) is used for h ∈ {`,∆}.

This cost function is used to define the open-loop opti-
mal control problem given by:

P (x) : min
u∈U

J(u, x)→ (J∗(x),u∗(x)) (10)

leading to the MPC state feedback given by:

KMPC(x) := u∗0(x) (11)

We are interested in so called Economic-MPC formula-
tions, meaning that `(x, u) is not defined as a distance to
some desired steady pair (xs, us) ∈ Zs that minimizes `
as the latter is supposed to be unknown or its a priori
on-line computation is to be avoided. Consequently, no
reference to such pair is included in the cost function
nor in any terminal constraint.

This paper investigates the conditions under which
the resulting closed-loop behavior of (1) under (11) is
asymptotically ε-quasi steady optimal with an ε that can
be made as small as desired by conveniently choosing
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the design parameters (α, γ) and the sampling period τ .

In what follows, the following short notation is used:

h∗k(x) := h
u∗(x)
k (x) h ∈ {`,∆} (12)

Remark 1 Note that only control constraints are explic-
itly considered through the subset U. State constraints are
assumed to be softened through some exact penalty in the
definition of the map `. This greatly simplifies the exposi-
tion of the main ideas and avoid disturbing technicalities
regarding the recursive feasibility issue.

3 Working assumptions

Assumption 1 (Properties of f and `)

(1) f and ` are continuous.
(2) ∀¯̀> 0, the set B¯̀ := {x ∈ Rn s.t. ∃u ∈ U, `(x, u) ≤

¯̀} is compact.
(3) The minimal steady values invoked in (3) is `s = 0.

Assumption 1-(2) is typically enforced by the soft
constraints-related penalty [such as max{0, x − x, x −
x̄} ≤ 0] that is included in the definition of ` to ex-
press constraints on the state evolution. As for the last
assumption 1-(3), it is a standard assumption that is
commonly introduced without loss of generality in order
to simplify the discussion.

Assumption 2 [N -reachability of steady optimal pair]
There exists a set X0 ⊂ Rn such that for any x ∈ X0,

∃u#(x) ∈ U s.t. (xu
#

N (x), u#
N (x)) ∈ Zs.

This is a standard assumption that is used in the conver-
gence proof of MPC schemes. Note that the knowledge
of the control sequence u#(x) is not required. Only its
existence is needed for the analysis of optimal solution
properties.

Assumption 3 [Optimal stationarity condition] There
exists a continuous strictly increasing map ψ such that:

ψ(0) = 0 and `s ≤ `(z) + ψ(∆(z)) (13)

Moreover, ψ is Lypschitz-continuous.

Note that this last assumption simply states that for any
stationary pair z (∆(z) = 0), `s ≤ `(z). This is nothing
but a simple technical rewriting of condition (3). It also
means that `(z) might be lower than `s provided that z
is not a stationary pair. Recall that since `s is supposed
to be 0 (Assumption 1), the inequality (13) becomes
0 ≤ `(z) + ψ(∆(z))

Assumption 4 [Local properties] There is a continuous
function Ks, vanishing at zero, such that the following
implication holds:{

d(z,Zs) ≤ ε
}
⇒ V (u#(x), x) ≤ Ks(ε) (14)

This is a rather weak technical assumption which can
be expressed in simple terms as follows: when the state
is in the neighborhood of Zs, it can be steered inside Zs
with low cost which vanishes with the distance to Zs.
Note that the knowledge of Ks(·) is not required, only
its existence is needed to prove the main result.

The last assumption that is needed to derive the main
result is the following:

Assumption 5 The map defined by

F (u, x) := [`+ α∆](xuN (x), uN ) ∈ R (15)

satisfies the following implication for sufficiently small
|η| and ‖δ‖:{

F (u, x) = η
}
⇒

{
∃u† | F (u†, x+ δ) = 0

}
(16)

Remark 2 This Assumption is obviously very difficult
to check. nevertheless, we believe that it is not so restric-
tive in practice. The following comments can shed some
light on the relevance and the restriction it implies:

(1) Note first of all that for differentiable setting and in
the absence of saturation on the control, Assumption
4 can be expressed in terms of the implicit function
theorem, namely, a slight modification of (x, η) into
(x + δ, 0) can be compensated by a corresponding
slight modification in the argument u. For this to
hold, it suffices that the rank of the sensitivity of F
to u at (x, η) be equal to 1 which is generically true.

(2) When constraints are involved, the satisfaction
of the condition is no more trivial. Still, assum-
ing that the sequence u := (u(a),u(na)) satisfying
F (u, x) = η can be split into saturated components
u(a) and non saturated components u(na). In this
context, Assumption 4 suggests that the sensitivity
of F to u(na) is of rank 1 so that one can always
perturb u(na), keeping unchanged u(a) in order to
compensate for the infinitesimal change on F in-
duced by infinitesimal η and δ.

(3) Note that the conditions of Assumption 5 could have
been required only on the optimal sequences u∗(x)
rather than on any sequence of control u. This is
because in the sequel, the implication in (16) is only
used for such optimal sequences.
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(4) Based on the above discussion, it comes out that As-
sumption 5 can be replaced by several other check-
able Assumptions of low level. But this might in-
duce non necessary conditions such as differentia-
bility while these conditions are only sufficient. It is
preferred here to keep the high level condition (16)
that might hold even for non differentiable settings.
The above discussion helps for better understanding
the underlying requirements.

4 Closed-loop analysis

We start by establishing a result that builds a first bridge
between the penalty `+α∆ used in the cost function (9)
and the property (` = 0 and ∆ = 0) of optimal steady
pairs.

Lemma 1 Given a compact set X × U, if α > Lψ the
(Lypschitz constant of ψ over X×U), then the following
implication hold:

`(z) + α∆(z) ≤ ε ⇒

{
∆(z) ≤ κ1ε

`(z) ∈ [−κ2ε, ε]
(17)

where κ1 = 1/(α− Lψ) and κ2 = α/(α− Lψ).

Proof. Using the inequality (13) of Assumption 3, it
comes that (recall that `s = 0 is used without loss of
generality):

`(z) ≥ −ψ(∆(z)) (18)

combining this with the left hand side of (17) leads to
the following inequality:

α∆(z)− ψ(∆(z)) ≤ ε (19)

and denoting by Lψ the Lypschitz-constant of ψ over
X× U, the last inequality implies:

(α− Lψ)∆(z) ≤ ε (20)

which proves the first inequality of (17) as soon as α >
Lψ with κ1 = 1/(α− Lψ). In order to prove the second
inequality in (17), it is sufficient to summarize the pre-
vious discussion in the following two inequalities:

0 ≤ (α− Lψ)∆(z) ≤ `(z) + α∆(z) ≤ ε (21)

since ∆(z) ≥ 0, this obviously gives:

− α∆(z) ≤ `(z) ≤ ε (22)

On the other hand, solving the inequality in ∆(z) gives:

∆(z) ≤ ε

α− Lψ
(23)

This together with (22) implies that:

− [
α

α− Lψ
]ε ≤ `(z) ≤ ε (24)

which proves the second inequality of (17) with
κ2 := α/(α− Lψ) 2

Corollary 1 Given a compact set Z := X×U, if α satis-
fies the condition of Lemma 1, there exists a continuous
map ϕs, vanishing at 0 such that for sufficiently small
ε > 0, the following implication holds for all z ∈ Z:{

`(z) + α∆(z) ≤ ε
}
⇒

{
d(z,Zs) ≤ ϕs(ε)

}
(25)

Proof. This is a straightforward consequence of Lemma
1 and Assumption 1. Indeed, if (25) does not hold then
one can construct a sequence of points z(j) ∈ Z such
that limj→∞ `(z(j)) = 0 and limj→∞∆(z(j)) = 0 while

limj→∞ d(z(j),Zs) > r > 0 which, by continuity and
compactness argument leads to the existence of some
z(∞) that is steady optimal while lying outside Zs which
is obviously a contradiction by definition of Zs. 2

Lemma 2 (Properties of terminal pairs) Given
any compact set X ⊂ X0 of initial states, there exist suffi-
ciently high α > 0 and two positive reals κ3, κ4 > 0 such
that for any x ∈ X, the optimal open-loop trajectory that
solves the optimization problem (10) satisfies the follow-
ing two terminal inequalities [see (12) for the notation]:

∆∗N (x) ≤ κ3

γ
and |`∗N (x)| ≤ κ4

γ
(26)

where κ3 and κ4 depend on X and U.

Proof. Let us consider the following definitions:

V ∗(x) :=

N∑
k=0

[
`∗k(x) + α∆∗k(x)

]
(27)

V #(x) :=

N∑
k=0

[
`#k (x) + α∆#

k (x)
]

(28)

corresponding to the integrals of the stage costs over the
trajectories starting from x under the optimal control
u∗(x) and the control u#(x) invoked in reachability As-
sumption 2. It comes by definition that:

J(u#, x) = V #(x) (vanishing terminal costs) (29)

J∗(x) := V ∗(x) + γ(`∗N (x) + α∆∗N (x)) (30)
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This gives by optimality of J∗(x):

`∗N (x) + α∆∗N (x) ≤ V #(x)− V ∗(x)

γ
≤ K0

γ
(31)

for some constant K0 := 2 max(x,u)∈UN+1×X V (u, x)
which exists by virtue of the continuity of the involved
maps (Assumption 1). Using inequality (31) together
with Lemma 1 obviously gives the results for with
κ3 := K0κ1 and κ4 = K0 max{1, κ2}. 2

The following straightforward corollary is used in the
proof of the main result:

Corollary 2 Under the Assumptions and notation of
Lemma 2, the following inequality holds for all x ∈ X:

V ∗(x) ≤ V #(x) + κ4 (32)

Proof. This is a direct consequence of the inequality:

V ∗(x) + γ(`∗N (x) + α∆∗N (x)) ≤ V #(x) (33)

which, by virtue of (26), obviously implies that:

V ∗(x) ≤ V #(x)− γ`∗N (x) ≤ V #(x) + κ4 (34)

which proves the corollary. 2

The following is another consequence of Lemma 2 that
is crucial in the proof of the main result:

Corollary 3 [Recursive satisfaction of terminal proper-
ties] For any state on the closed-loop trajectory starting
at X0, the inequalities (26) hold provided that α and γ are
taken sufficiently high and the sampling period is taken
sufficiently small.

Proof. Indeed since α is sufficiently high and the ini-
tial state lies in X0, the inequalities (26) hold for x0. On
the other hand, if γ is taken sufficiently high these in-
equalities imply that F (u∗(x0), x0) = η := (κ4 +ακ3)/γ
is satisfied for sufficiently small η. This means that if τ
is taken sufficiently small so that x∗1(x0) − x0 = O(τ)
becomes sufficiently small to make the implication (16)
valid, then it can be deduced that there is u# := u† that
steers the next state x1 on the closed loop trajectory to
Zs. This means that the arguments used in the proof of
Lemma 2 can be reused to show that (26) hold for the
next state. By induction, the argument can now be re-
iterated to prove that these inequalities hold for all the
states on the closed-loop trajectory. 2

Proposition 3 (Main result) For any desired preci-
sion ε > 0, provided that α is high enough, there exist suf-
ficiently high γ > 0 and sufficiently small sampling time

τ such that any resulting closed-loop trajectory starting
at x0 ∈ X0 asymptotically becomes quasi-steady optimal
in the sense of Definition 1.

Proof. Consider the following definition:

V̄ := sup
x0∈X0

V (u#(x0), x0) (35)

and the resulting set:

X :=
{
x ∈ Rn | V ∗(x) ≤ κ4 + max{V̄ ,Ks(1)}

}
(36)

where Ks(·) is the map invoked in Assumption 4. The
subset X is bounded below by virtue of (17). Now since
by Corollary 2, V ∗(x0) ≤ κ4 + V #(x0) ≤ κ4 + V̄ , it
comes out by induction that if it can be proved that
when the (xk, u

∗
0(xk)) lies inside Z := X × U so is the

next pair on the closed-loop trajectory, then the closed-
loop trajectory remains inside Z. Therefore, Z-related
Lypschitz constants can be invoked recursively.

Using a standard receding horizon argument together
with the definition of the warm start control sequence
(5), it comes that at any state xk on the closed-loop
trajectory

V ∗(xk+1) ≤V ∗(xk)− (`∗0(xk) + α∆∗0(xk))

+ [`+ α∆](f(x∗N , u
∗
N ), u∗N )+

+ γ
[
Ψ(u∗+, xk+1)−Ψ∗N (xk)

]
(37)

where

Ψ(u∗+, xk+1) := [`+ α∆](f(x∗N , u
∗
N ), u∗N )

≤ Ψ∗N (xk) + (L` + αL∆)[τ∆∗N (xk)]

where L` and L∆ are the lypschitz constants of ` and ∆
over X× U. Using the first inequality (26) of Lemma 2,
the last inequality can be rearranged to give:

Ψ(u∗+, xk+1) ≤ Ψ∗N (xk) + (L` + αL∆)
κ3τ

γ
(38)

Now using this last inequality in (37) gives:

V ∗(xk+1) ≤V ∗(xk)− (`∗0(xk) + α∆∗0(xk))

+ [`+ α∆](f(x∗N , u
∗
N ), u∗N ) + κ5τ (39)

where κ5 := (L` + αL∆)κ3.

Regarding the term [` + α∆](f(x∗N , u
∗
N ), u∗N ), we have

by definition:

[`+ α∆](f(x∗N , u
∗
N ), u∗N ) ≤Ψ∗N (xk)+

+ (L` + αL∆)∆∗N (xk)
(40)
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but we have by virtue of Lemma 2:

Ψ∗N (xk) ≤ κ3 + ακ4

γ
; ∆∗N (xk) ≤ κ3

γ
(41)

Using this in (40) gives:

[`+ α∆](f(x∗N , u
∗
N ), u∗N ) ≤ κ6

γ
(42)

Therefore, inequality (39) becomes:

V ∗(xk+1) ≤ V ∗(xk)− (`∗0(xk) + α∆∗0(xk)) +

ϕ(γ,τ)︷ ︸︸ ︷
κ6

γ
+ κ5τ

(43)
Consider the following set:

A :=
{
x | `∗0(x) + α∆∗0(x) ≤ 2ϕ(γ, τ)

}
(44)

inequality (43) clearly shows that as long as the state
xk on the closed-loop trajectory remains outside A, V ∗

decreases at the next step keeping the closed loop tra-
jectory inside X. Now since V over the compact set X,
this cannot occur indefinitely. Therefore, there exists a
finite k̄ such that:

`∗0(xk̄) + α∆∗0(xk̄) ≤ 2ϕ(γ, τ) and xk̄−1 ∈ X (45)

and using Assumption 4, this simply means that for
sufficiently high γ and small τ , xk̄ satisfies V ∗(xk̄) ≤
κ4 +V #(xk̄) ≤ κ4 +Ks(ϕs ◦ϕ(γ, τ)) ≤ κ4 +Ks(1). This
means that xk̄ ∈ X [see (36)]. This clearly shows that
the closed-loop state trajectory lies constantly inside X
and the use of the Lypschitz constants is relevant and
hence the resulting inequality (41) always holds.

Now let us examine what happens for k ≥ k̄:

• Either xk+1 remains inA in which case we have by def-
inition of A and Lemma 1 that ∆(zk+1) ≤ 2κ1ϕ(γ, τ)
and |`(zk+1)| ≤ max{1, κ2}ϕ(γ, τ)

• Or xk̄+1 goes outside A but the resulting increase in
V ∗ is limited by the fact that ∆∗0(xk̄) ≤ 2κ1ϕ(γ, τ)
thanks to (17) of Lemma 1, before V ∗ decreases again
(since the state is outside A).

therefore, for all k ≥ k̄, the following inequalities hold:

|`(xk, u∗0(xk))| ≤
[
max{1, κ2}+ 2κ1L`

]
ϕ(γ, τ) (46)

∆(xk, u
∗(xk)) ≤ 2κ1(1 + L∆)ϕ(γ, τ) (47)

which obviously proves the result since the above in-
equality means that the closed-loop trajectory is asymp-
totically ε-quasi-steady optimal in the sense of Defini-
tion 1 with ε vanishing as γ and τ tend towards infinity
and 0 respectively. 2

5 Illustative examples

For the sake of illustration and to make an easy compar-
ison with literature, let us consider the commonly used
example of the nonlinear continuous flow stirred-tank
reactor with parallel reactions [3].

R→ P1

R→ P2

that can be described by the following dimensionless en-
ergy and material balances:

ẋ1 = 1− 104x2
1e
−1/x3 − 400x1e

−0.55/x3 − x1 (48a)

ẋ2 = 104x2
1e
−1/x3 − x2 (48b)

ẋ3 = u− x3 (48c)

where x1 and x2 stand for the concentrations of R and
P1 respectively while x3 represents the temperature
of the mixture in the reactor. P2 represents the waste
product. The control variable is given by the heat flow
u ∈ [0.049, 0.449]. The natural stage cost would be given
by `(x, u) = −x2 since the objective is to maximize the
amount of product P1.

Different aspects of using EMPC to address this problem
have been considered in [1] where it has been recalled
that without any particular care, there is a periodic op-
timal solution to the purely economic formulation that
would include only the stage cost ` = −x2 while the
use of average constraint enable to reduce the level of
oscillations in the closed-loop behavior. It has been also
shown that the system possesses an optimal steady pair
denoted hereafter by xs = (0.0832, 0.0846, 0.149) and
us = 0.149. All the Figures in the present section are
centered around these values in order to better appreci-
ate the distance to the steady-optimal unknown target.

In the present section, the behavior of the closed-loop
under the EMPC associated to the proposed formu-
lation is analyzed for different choices of the design
parameters in order to assess the underlying theoretical
development. In all the forthcoming simulations, the
economic MPC design uses a prediction horizon length
of N = 20 for a prediction horizon of 2 time units (this
corresponds to a dimensionless sampling period of 0.1
used inside the predictor which is to be distinguished
from the closed-loop control updating which is taken in
{0.1, 0.02}) depending on the control settings (see Table
1). The optimization was done using the Casadi-Python
module [2] with a single shooting implementation. The
maximum number of iterations has been fixed to 100.

Four control settings are investigated in this section
which are defined through the parameter sets depicted
in Table 1.
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Parameters Nominal # 1 #2 # 3

α 0 0.1 1.0 1.0

γ 0 0.1 1.0 1.0

τ 0.1 0.1 0.1 0.02

Table 1
Definition of he different investigated control settings.

0 2 4 6 8 10

−0.1

−5 · 10−2

0

5 · 10−2

time

Evolution of x2 − xs2

Nominal
α=0.1, γ=1.0, τ=0.1
α=1.0, γ=1.0, τ=0.1
α=1.0, γ=1.0, τ=0.02

Fig. 1. Evolution of the difference x2−x2s = x2−0.0846 for
the different controller settings.

Figure 1 shows the closed-loop evolution of the targeted
variable x2 = P1. It can be seen that the nominal settings
leads to a periodic behavior as expected as this leads to
higher averaged value of the product P1. It also shows
that the proposed formulation leads to quasi-steady op-
timal asymptotic behavior with an error that becomes
smaller as the penalty coefficients α and γ increase as
well as the sampling updating period decreases as ex-
pected by the above theoretical investigation.

The effect of increasing α and γ and decreasing the sam-
pling control period τ can be better observed on Figure 2
where the closed-loop trajectories of x1 and x2 are shown
in the (x1, x2) plane (see also Figure 3 for a zoom around
the terminal region). Finally, Figure 4 shows the evo-
lution of the closed-loop feedback control for the differ-
ent settings. Note that the sudden bursts in the control
might be linked to the maximum number of iterations
that is set arbitrarily to 100 which leads sometimes to
the control delivered being not totally optimal although
a warm start has been systematically used.
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Fig. 2. Phase portrait in the (x1, x2) centered around the
steady optimal pairs zs = (xs1 , xs2) = (0.0832, 0.0846)

Fig. 3. Zoom on Figure 2 to underline the final error for the
different controller settings. Coordinates are centered so that
the (0, 0) corresponds to the optimal steady pair xs.

0 2 4 6 8 10

0

0.2

0.4

0.6

time

Evolution of u− us

Nominal
α=0.1, γ=1.0, τ=0.1
α=1.0, γ=1.0, τ=0.1
α=1.0, γ=1.0, τ=0.02

Fig. 4. Evolution of the control input u for the different
control settings. The y-scale is shifted so that 0 corresponds
to u = us = 0.149.
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6 Conclusion

In this paper, a new formulation of economic MPC is
proposed for discrete-time dynamics that are originated
from the discretization of continuous dynamics. The for-
mulation needs no terminal constraints on the state and
is based on the penalization of the state increments be-
tween two successive states. Convergence to a quasi op-
timal steady regime has been derived using rather mild
technical conditions.
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