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Abstract

Background

Leptospirosis, caused by pathogenic Leptospira, is a zoonosis of global distribution. This

infectious disease is mainly transmitted by indirect exposure to urine of asymptomatic ani-

mals via the environment. As human cases generally occur after heavy rain, an emerging

hypothesis suggests that rainfall re-suspend leptospires together with soil particles. Bacteria

are then carried to surface water, where humans get exposed. It is currently assumed that

pathogenic leptospires can survive in the environment but do not multiply. However, little is

known on their capacity to survive in a soil and freshwater environment.

Methods

We conducted a systematic review on Leptospira and leptospirosis in the environment in

order to collect current knowledge on the lifestyle of Leptospira in soil and water. In total, 86

scientific articles retrieved from online databases or institutional libraries were included in

this study.

Principals findings/significance

This work identified evidence of survival of Leptospira in the environment but major gaps

remain about the survival of virulent species associated with human and animal diseases.

Studies providing quantitative data on Leptospira in soil and water are a very recent trend,

but must be interpreted with caution because of the uncertainty in the species identification.

Several studies mentioned the presence of Leptospira in soils more frequently than in

waters, supporting the hypothesis of the soil habitat and dispersion of Leptospira with re-

suspended soil particles during heavy rain. In a near future, the growing use of high through-

put sequencing will offer new opportunities to improve our understanding of the habitat of

Leptospira in the environment. This better insight into the risk of leptospirosis will allow

implementing efficient control measures and prevention for the human and animal popula-

tions exposed.
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1 Introduction

Pathogenic Leptospira, the etiological agents of leptospirosis, occur worldwide. This infectious

disease affects people living in temperate and tropical climates in both rural and urban areas.

Previous studies have estimated that the disease is responsible for at least 1 million cases and

nearly 60,000 deaths annually [1]. This bacterial infection is frequently asymptomatic or ini-

tially presents as a flu-like febrile illness, making its clinical diagnosis challenging. Patients can

then develop severe illness as Weil’s disease (jaundice, bleeding and acute renal failure), and/

or severe pulmonary haemorrhage [2].

Pathogenic leptospires multiply in the renal tubules of chronically infected mammals [3].

Then, bacteria are shed via urine into the environment. Humans can be exposed directly or

indirectly: veterinarians, farmers and meat workers, for example, may be in contact with

infected kidneys or urine. However, indirect contamination through the environment is the

most frequent human exposure route. This complex epidemiology makes it a paradigm of a

One Health disease. Cases of leptospirosis occur after both occupational and recreational activ-

ities [4]. Transmission can occur by contact between wounded skin or mucosae and contami-

nated soil or water. Leptospirosis had long been known as an environment-borne infection,

even before its etiological agent could be identified [5] and the term of “environmental reser-

voir” of leptospirosis has been proposed for soils in endemic regions [5–15]. Consequently,

studies have focused on source investigations and on environmental risk factors to understand

interspecies contaminations [16]. Besides risk factors of global significance, there is evidence

that the risk assessment of leptospirosis transmission should take into account the geographi-

cal scale studied in order to evaluate locally relevant environmental and socioeconomic factors

of human contamination [17].

It is currently assumed that pathogenic virulent leptospires are unable to multiply in the

environment [18,19]. However, although the survival capacity of most species outside a host is

not questionable, little is known on the environmental factors and determinants conditioning

this survival [20]. The capacity of Leptospira to adapt to parameters such as osmolarity inside a

host or in nature was also shown to be species-specific and related to the size of the Leptospira
genome [21]. Knowledge on the lifestyle and the survival mechanisms of pathogenic leptospires

in the environment remains scarce. This contributes to our insufficient understanding of basic

aspects of leptospirosis epidemiology. More precisely, the capacity of different strains to survive

in environmental conditions remains largely unexplored. Yet, understanding Leptospira sur-

vival is of prime importance for a better control and prevention of human leptospirosis.

Generally, massive leptospirosis outbreaks occur after heavy rain or flooding, notably after

storms or hurricanes. Such outbreaks have been described in many tropical countries such as

Brazil [22], Nicaragua [23], Sri Lanka [24] or the Philippines [25] among others, but seasonal

peaks exist in most regions including tropical islands [26–30], illustrating the numerous envi-

ronmental drivers of this disease [31]. Consequently, global climate change is expected to have

an influence on the incidence and the distribution of leptospirosis [32–34].

This study aims to provide a systematic overview of the knowledge available on Leptospira
presence and persistence in soil and water environments, including isolation and detection

methods through a systematic literature review.

2 Materials & methods

2.1 Databases and search strategy

Articles were sought in April 2017 and the searches were further updated until December 2018

from three international databases: Medline (through PubMed), Scopus, and ScienceDirect.

Leptospirosis and the environment
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We used a combination of the following search terms: [Leptospir� AND (soil OR water OR

mud OR ecology OR hydric OR telluric OR environment OR paddy)]. The search terms were

chosen to account for the diversity of words used to describe the soil and water ecosystems. In

addition, the search term “ecology” was included to capture articles dealing with Leptospira
ecology more generally.

2.2 Article selection process

The stepwise selection of articles was based on the strategy presented in Fig 1. First, duplicate

articles were identified by sorting article titles in alphabetical and publication date order using

a custom formatting of the database on an Excel spreadsheet. An additional identification of

duplicates was made manually. Duplicates were discarded. Secondly, only articles in English

or French were kept for further consideration. The third step consisted in excluding references

that did not correspond to original scientific articles (e.g. indexes, abstracts, meeting

announcements, reviews, posters, course material). In addition, articles that were out of the

scope of this systematic review (e.g. about Leptospirillum, dealing with other viral or bacterial

diseases, toxicology) were also excluded. Similarly, articles dealing with leptospirosis but with-

out any link with the environmental aspect of the disease were removed. At this step, the avail-

ability of abstracts associated with articles was checked. Each abstract available was read by at

least 2 researchers to confirm its relevance to the scope of the review and further proceed to

the reading of the full length article. If a disagreement was observed, a third researcher was

involved to further include or exclude the article. The full texts of the articles included for con-

sideration in this systematic review were retrieved from various sources, including paper cop-

ies from institutional libraries. Articles whose abstract were not available were also read

independently by 2 or 3 researchers to decide on their inclusion in the final analysis. The pro-

cess is summarized in Fig 1.

2.3 Analysis of article content—Inclusion criteria

The full texts of all included articles were read independently by 2 or more researchers as

described above, who collected all relevant data. This included the methods used as well as

qualitative and/or quantitative results and taxonomic position of the strain as well as any other

information useful for the understanding of Leptospira environmental survival. In addition,

critical analysis of the articles allowed taking note of possible biases or limitations, including

taxonomic uncertainties. Data was collected on Microsoft Excel for each individual article by

one researcher and systematically checked by two other contributors.

3 Results

3.1 Studies selected

The initial search on databases retrieved 10,884 articles in total using Scopus, Medline and

ScienceDirect databases. After removing 1,401 duplicates, 9,021 articles, either in English or in

French, were submitted to inclusion criteria. Then 7,381 original scientific articles were sorted

according to the scope of our systematic review. Finally 410 articles dealt with Leptospira or

leptospirosis with mention of possible study in the environment. Of these, 75 were selected

based on the abstract and 11 based on their full text, leading to a total of 86 full-text articles

included for our analysis, as summarized in Fig 1.

Despite the selection of relevant keywords and a rigorous selection process, our final selec-

tion included articles that did not provide any relevant information, mostly because Leptospira
was not sought in the ecosystem or the authors failed to evidence its presence [35–38]. Another

Leptospirosis and the environment

PLOS ONE | https://doi.org/10.1371/journal.pone.0227055 January 27, 2020 3 / 22

https://doi.org/10.1371/journal.pone.0227055


Leptospirosis and the environment

PLOS ONE | https://doi.org/10.1371/journal.pone.0227055 January 27, 2020 4 / 22

https://doi.org/10.1371/journal.pone.0227055


article fulfilling our selection process used former data to build a deterministic model, not pro-

viding original results [39]. In spite of these examples, our systematic review allowed collecting

the techniques used and the current knowledge on Leptospira in the environment.

Factors usually reported to influence the survival of Leptospira in water or soils such as pH,

salinity, temperature, moisture were not sufficiently reported in the studies selected to allow

meta-analysis. However, it should be noted that a number of studies demonstrated Leptospira
survival at low pH or low temperature in water or soils [11,40–45].

3.2 Methods used for the detection or isolation of Leptospira from the

environment

3.2.1 Molecular techniques to detect Leptospira in environmental samples and limita-

tions. Recent work suggests that some Leptospira within the “Pathogens” subclade have very

low virulence towards mammals [14]. Oppositely, an increasing number of human leptospiro-

sis cases have been reported as caused by Leptospira from the “Intermediate” subclade [46].

Together with comparative genomics data, this recently led to rename these subclades P1 and

P2, with poor correlation to virulence in mammals [47]. Within the P1 subclade (formerly

“pathogens”), another comparative genomics study separated 4 groups, namely Group I (L.

interrogans, L. kirschneri, L. noguchii), Group II (L. santarosai, L. borgpetersenii, L. weilii, L.

alexanderi as well as L.mayottensis), Group III (L. alstonii) and group IV (L. kmetyi) [48].

Within subclade P1 and to date, only species from Groups I and II have been isolated from

humans or mammals and are considered virulent. Therefore, most articles reporting the

molecular detection of “pathogenic” Leptospiramust be interpreted with caution as they may

not evidence the presence of virulent leptospires.

Techniques of leptospiral DNA amplification have been developed in order to detect lepto-

spires from environmental samples. Early studies used 16S rRNA primers to detect sapro-

phytic and pathogenic Leptospira [49,50] but most PCR techniques target genes only present

in pathogenic Leptospira species like lipL32 [51–55]. Other targets are sequences of flaB [10],

secY [56–58] or lfb1 genes [59,60] which display relevant polymorphisms; the PCR used and

their possible applications to epidemiological studies have been reviewed recently [61]. Some

studies combined two sets of primers to implement a multiplex PCR targeting both lipL32 (a

gene present only in species from the P1 and P2 subclades, but detected by most PCR only in

species from the P1 subclade) and genus-specific 16S rRNA (detecting all Leptospira spp.) to

detect pathogenic Leptospira in environmental samples. The advent of real-time PCR has facil-

itated the acquisition of quantitative PCR data from environmental samples. Of note, there is

also evidence that several targets for molecular detection of Leptospira in environmental sam-

ples can result in a high proportion of non-specific false-positive detections [62,63]. Even

when specific, the detection of leptospires by PCR-based techniques does not provide any

information concerning viability of cells in the environment. Yet, this point is of prime impor-

tance in the assessment of the risk of environmental transmission of the disease.

PCR methods have successfully been combined with the use of propidium monoazide to

dramatically reduce the detection of dead or membrane-compromised cells. This technique,

known as viability-PCR, provides indications about Leptospira viability in environmental sam-

ples [13,19]. Recently, some researchers have optimized procedures for the molecular detec-

tion of pathogenic leptospires from environmental waters [64], increasing possibilities for

Fig 1. Flow diagram of the systematic review and identification of the 78 articles included in our study.

https://doi.org/10.1371/journal.pone.0227055.g001
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further studies on environmental leptospirosis and opening avenues for real One Health stud-

ies of this complex zoonosis.

3.2.2 Isolation of Leptospira from environmental samples. Isolating pathogenic lepto-

spires from the environment is very challenging. However, some leptospires were historically

isolated from environmental samples. Since saprophyte species, which are common inhabi-

tants of the environment, are abundant and grow faster, they are the most frequently isolated

from soil and water samples [8,65,66]. They also constitute a major difficulty to isolate virulent

leptospires from Group I and II from surface water or soil by overgrowing these slow-growing

strains [11,56]. Leptospires are sensitive bacteria in the laboratory. Strains from the P1 sub-

clade are fastidious slow growing microorganisms with specific requirements [67]. The main

culture media developed for Leptospira are the Korthof medium and the Ellinghausen McCul-

lough Johnson Harris (EMJH) medium [68]. Different synthetic media have been developed

for the culture of Leptospira [69], but EMJH is the principal medium used for both routine cul-

ture and isolation [70,71]. Benacer and colleagues [56] used it with addition of 5-fluorouracil

to prevent contamination [72] while others used antibacterial and antifungal cocktails, the

most recent being named STAFF (for sulfamethoxazole, trimethoprim, amphotericin B, fosfo-

mycin and 5-fluorouracil) combination [6,10,11,14,73]. Another possibility to avoid contami-

nation from water sample is the prefiltration through 0.22μm-pore size filters to inoculate

culture media [10,74,75], although only a small proportion of leptospires pass through 0.22μm

filter membranes [76]. This classical detection method does not allow quantification

approaches because of a culture step. Likewise, this technique results in a loss of Leptospira
diversity, notably accounting for the very rare isolation of significant pathogens from the

groups I and II. Furthermore, isolation and culture techniques do not take into account possi-

ble viable but non-cultivable organisms, a physiological state never evidenced in Leptospira,

but known from a large number of bacterial genera [77].

One of the historical methods used to isolate virulent leptospires has been the in vivo inocu-

lation into susceptible animals. The strategy was to inoculate environmental samples (water or

soil washings) directly into a susceptible animal in order to recover infecting leptospires in

pure culture from blood. Still, this method does neither allow quantification, because patho-

gens are amplified or cleared by immune system of the host. Likewise, Leptospira infection can

be concealed by another infection that kills the animal, preventing to isolate the virulent

leptospires.

Lastly, Electron Microscopy studies provided evidence of Leptospira-shaped Spirochetes in

microbial mats from salt marshes, but did not provide unambiguous evidence that these

organism belong to the genus Leptospira [78].

3.3 Leptospira in water environments

3.3.1 Occurrence of Leptospira in water. Studies have identified DNA sequences of Lep-
tospira from the P1 subclade in drinking water (for human or for animals) samples [79–82].

This suggested a significant health concern and opened the way to consider Leptospira in stud-

ies on the potential risks associated with drinking water [83,84]. In 2017, Zhang and colleagues

used metagenomics approaches to get insight into microbial communities of an urban drink-

ing water system. Different pathogenic bacteria genomes were found in their dataset. An

almost complete Leptospira genome was also retrieved; however, a Multi Locus Sequence Typ-

ing analysis shows that it corresponded to a saprophytic species [85]. A study in Colombia

investigated the presence of Leptospira from the pathogenic subclade in drinking water sys-

tems and detected DNA of Leptospira from the P1 subclade in 41% of water fountains in Cali

[86].

Leptospirosis and the environment
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Environmental freshwater is one of the main sources of leptospirosis for humans and ani-

mals. In this typical One Health context, early studies attempted to identify potential human

contamination sources [87–93]. Most often, isolation and identification of pathogenic Leptos-
pira from surface water were attempted after contamination events [94] and data on occur-

rence were analyzed to explain past outbreaks [95]. As discussed above, authors who used

culture-based methods mostly detected saprophytic strains [70,74,96–99]. When Leptospira
from the Pathogenic subclade P1 were successfully isolated, they were most frequently related

to the low-virulent Groups III & IV [8,65] or could not be further characterized [93]. In total,

only very few studies described successful isolation of pathogenic leptospires from Group I

and II, with proven virulence, from freshwater or soil [100–103]. Susceptible animal inocula-

tion works provided isolates of virulent leptospires from creek’s water samples in the USA

[100] and from soils and water samples in Malaysia [101]. This technique however is currently

unacceptable for ethical reasons because of the important number of susceptible animal used

(almost 14,000 in the study in Malaysia [101]). More recently, Leptospira interrogans was suc-

cessfully isolated from paddy water in Korea after inoculation into guinea pigs [102]. In Iowa

(USA) scientists found the pathogenic “Leptospira pomona” (obsolete nomenclature, a patho-

genic Leptospira from serogroup Pomona) during several years in surface waters used for rec-

reational activities in the 1960s [100,104]. Later, molecular detections have facilitated studies.

In Malaysia, where leptospirosis is endemic, leptospires from the P1 subclade have been found

in up to 23.1% of lakes and recreational areas [56,75,105]. Similarly, Tansuphasiri detected lep-

tospires from the P1 subclade in 23% of surface waters in Thailand [91]. These studies used

classical PCR detection so did not collect quantitative data.

Only few studies provided quantitative data of Leptospira in environmental samples, mostly

using quantitative real time PCR techniques. Estimations of concentrations of leptospires in

surface water samples in Peru have evidenced from 1 to 17,147 leptospires per mL [106]. These

authors demonstrated higher frequency but also higher concentrations in the urban area than

in the surrounding rural areas. However, the PCR used also detected Leptospira from the P2

subclade [12] and sequences mostly pointed to an unknown subclade of Leptospira spp. with

no known virulence [106]. Recently, quantitative detection of pathogenic Leptospira have been

conducted in France, a temperate region. From 47 water samples, 3 were positive with concen-

trations from 103 to 104 genome-equivalent per mL [51]. In subtropical climate, 98.8% of

Hawaiian streams revealed the presence of Leptospira (from the P2 subclade) with concentra-

tions between 5 and 1000 genomes per 100 mL; this study highlighted a strong correlation

between Leptospira concentration in water and the measured turbidity [15]. Other turbid

water sources are represented by sewage water, historically linked with human contamination

among sewage-workers [5,107,108]. A recent study in a Brazilian urban slum has shown that

pathogenic LeptospiraDNA was detected in 36% of sewage samples and even more frequently

during the rainy season, with a mean concentration of 152 bacteria per mL [7].

3.3.2 Survival and persistence of Leptospira in water. Table 1 presents findings of studies

on the persistence or survival of Leptospira spp. in water. Noguchi was the first to demonstrate

the survival of pathogenic Leptospira for up to one week in drinking water, already pointing to

environmental survival as an important clue in the epidemiology of leptospirosis, probably

pioneering the One Health concept for leptospirosis [109]. However, technical difficulties to

culture and identify leptospires from environmental samples restrict our knowledge of the

environmental survival of pathogenic leptospires.

Microcosms or larger mesocosms have been largely used to study the survival of virulent

Leptospira under different physicochemical conditions (See Table 1). Studies have demon-

strated their capacity to survive in soil and water for prolonged periods. In a study, the survival

and virulence was maintained for more than 40 days in soil and more than 20 days in water

Leptospirosis and the environment
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Table 1. Studies about persistence of pathogenic Leptospira in the environment [11,13,19,40–45,67,109,116,119,128–132].

Matrix Microorganism� Survival (Days unless stated

otherwise) or DNA persistence

Experimental Conditions Geographical Area of

Study, Country

Reference

East river water "Leptospira

icterohaemorrhagiae"

no survival survival observed in (1) sample without

treatment, (2) autoclaved sample and (3)

filtered sample

laboratory experiment,

USA

Noguchi 1918

sewage water

stagnant water

horse stool emulsion

sewer filtrate

drinking water one week (infectious) culture

non sterile distilled water with

few large motile bacilli

Pathogenic Leptospira strain

Flanders

3 days Flanders strain cultured 22 days in rabbit

serum+Ringer’s solution and then placed

in non sterile distilled water with few

large motile bacilli

Plain tap water with air

contamination

"Leptospira
icterohaemorrhagiae"

18–20 Inoculation 10^6 washed leptospires / mL

of fluid 190 ml of water seeded with 10 ml

of leptospiral suspension at 2.10^7 cells/

mL incubated at 25–27˚C

laboratory experiment,

USA

Chang et al.

1948

Sterile tap water From 28 hours to 32 days

depending on pH values

Sterile tap water with 1%

serum

98–102

Sterile tap water with 0.1%

tryptose

50–54

Tap water with bacterial flora 10–12

Tap water with bacterial flora

and 0.1% tryptose

36–40 hours

Charles River water 5–6

Sea water 18–20 hours

Domestic sewage undiluted 12–14 hours

Undiluted sewage aerated 2–3

10% sewage in tap water 3–4

1% sewage in tap water 7–8

Sterile tap water 5–6˚C 16–18 Inoculation 10^6 washed leptospires / mL

of fluid 190 ml of water seeded with 10 ml

of leptospiral suspension at 2.10^7 cells/

mL incubated at different temperatures

Sterile tap water 25–27˚C 30–32

Sterile tap water 31–33˚C 26–28

Charles River water 5–6˚C 8–9

Charles River water 25–27˚C 5–6

Charles River water 31–32˚C 3–4

10% sewage in tap water

5–6˚C

6–7

10% sewage in tap water 25–

27˚C

3–4

10% sewage in tap water 31–

34˚C

2–3

Soil from a sugarcane farm on

an alluvial flat bordering a

river with addition of

rainwater "to a fully moist

condition"

Soil pH reported to be 6.1–6.2

"L. australis A" 15 (2/2 replicates) to 43 (1/6) 15 (5/

5 replicates)

Soil inoculated with cultures, then

Soil inoculated with the urine of an

experimentally infected rat

Detection by re-isolation in guinea pigs

Laboratory experiment,

Queensland, Australia

Smith and Self

1955

(Continued)
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Table 1. (Continued)

Matrix Microorganism� Survival (Days unless stated

otherwise) or DNA persistence

Experimental Conditions Geographical Area of

Study, Country

Reference

distilled water—pH 6–34 to

36˚C

"Leptospira pomona" motility 2 culture 1 water inoculated with 2.10^6 leptospires/

mL soil inoculated with 10^6 leptospires/

2 gram microcosm assessment motility by

observation on darkfield microscope and

0.1 mL for culturing

Laboratory experiment,

USA

Okazaki and

Ringen 1957

distilled water—pH 6–20 to

26˚C

motility 11.3 culture 4

distilled water—pH 6–7 to

10˚C

motility 12.2 culture 8

distilled water—pH 6–2 to

-2˚C

motility 0.23 culture 0.96

distilled water—pH 6 - -20˚C motility 0.08 culture 0.04

distilled water—pH 7.2–34 to

36˚C

motility 6.8 culture 6.5

distilled water—pH 7.2–20 to

26˚C

motility 34.8 culture 29

distilled water—pH 7.2–7 to

10˚C

motility 54 culture 44.5

distilled water—pH 7.2–2 to

-2˚C

motility 0.92 culture 1.35

distilled water—pH 7.2 -

-20˚C

motility 0.8 culture 0.8

distilled water—pH 8.4–34 to

36˚C

motility 2.4 culture 2.0

distilled water—pH 8.4–20 to

26˚C

motility 17 culture 15

distilled water—pH 8.4–7 to

10˚C

motility 2.6 culture 2

distilled water—pH 8.4–2 to

-2˚C

motility 0.42 culture 1.35

distilled water—pH 8.4 -

-20˚C

motility 0.08 culture 0.08

Palouse river water

(Washington, USA)

motility 8 infection 10

filtered Palouse river water motility 99 culture 94 infection>18

autoclaved Palouse river water motility 47 culture 27

double-distilled water motility 18 infection 9

Dry soil motility 0 culture 2 hours

Damp soil motility 3 culture 5

Water-supersaturated soil motility 193 culture 183

Phosphate-buffered distilled

water at varying pH

4 different pathogenic

Leptospira
Strain-dependent effect of pH.From

~10 days at low pH (<6.3) to >100

days.

Inoculation of phosphate-buffered

distilled water tubes with an unknown

number of leptospires. Survival assessed

by microscopic observation of motile

organisms.Of note, the cells are not

washed, so diluted culture medium is also

seeded in test tubes.

Laboratory experiment,

London, UK

Smith and

Turner 1961

Paddy field Water and

artificcially inoculated water

Pathogenic Leptospira
(serogroup Australis)

In paddy field: survived up to 7

days. In laboratory experiments:

survived 3h at 42˚C; 7 days at 0˚C

and 14 days at 30˚C

initial innoculum : 0.1 ml of one week old

culture Paddy water were autoclaved,

innoculated and distributed in 2mL

ampoules dropped back into the paddy

rice field or incubated into water baths/

incubators/refrigerated room at various

temperatures

Taiwan, 1965 Ryu and Liu

1966

Saprophytic Leptospira
(serogroup Semaranga)

in paddy field: survived up to 7

days. In laboratory experiments:

survived 6h at 42˚C; 7 days at 0˚C

and 14 days at 30˚C

(Continued)
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Table 1. (Continued)

Matrix Microorganism� Survival (Days unless stated

otherwise) or DNA persistence

Experimental Conditions Geographical Area of

Study, Country

Reference

Soil 1—pH 5.3—Dry matter

(DM) 9.5%

Pathogenic Leptospira
serogroups Grippotyphosa,

Hebdomadis, Sejroe

6 hours Soils inoculated with urine (0.5–0.8 mL)

of Leptospira-carrying voles at ~4.10^6

leptospires/mL. 19 tests : 11 soil samples

with different vegetation covers, pH and

moisture. Survival determined by

collecting twice a day, several mg of soil,

resuspending in saline and examinating

by dark field microscopy

Laboratory experiment,

Lake Nero, Yaroslav

region, Russie, June-

August 1970

Karaseva et al

1973

Soil 1—pH 5.5—DM 14.2% 8 hours

Soil 1—pH 6.2—DM 16.5% 12 hours

Soil 2—pH 7.1—DM 41.4% 3

Soil 2—pH 7.4—DM 49.7% 5

Soil 2—pH 6.8—DM 52.4% 5

Soil 2—pH 7.5—DM 65.4% 7

Soil 3—pH 6.9—DM 69.8% 14

Soil 3—pH7.4—DM 72.6% 14

Soil 3—pH 7.5—DM 74.3% 15

Soil 3—pH 6.5—DM 77.4% 15

Ringer’s solution at pH 7.15

and 20 C

"L. autumnalis"
Akiyami A

>30 hours 105 leptospires per ml : 1-ml of this

suspension added to 100 ml of a buffered-

test solution to obtain 990 leptospires/mL.

Incubation was at 30 C for up to 17 days.

Laboratory

experiments, North

Carolina

Schiemann

1973

buffered (5.33 mM phosphate)

thiosulfate (4.95 mM) solution

at pH 7.39 and 20˚C

>95 hours

buffered (5.33 mM phosphate)

thiosulfate (4.95 mM)

solutions at pH 7.40 and 25˚C

~120 hours

buffered (5.33 mM phosphate)

thiosulfate (4.95 mM)

solutions at pH 7.40 and 30˚C

75 hours

buffered (10 mm phosphate)

thiosulfate (4.95 mM)

solutions at 20˚C and pH

8.22/7.82

>80 hours

buffered (10 mm phosphate)

thiosulfate (4.95 mM)

solutions at 20˚C and pH

7.42/7.37

>80 hours

buffered (10 mm phosphate)

thiosulfate (4.95 mM)

solutions at 20˚C and pH

6.79/6.72

25 hours

EMJH medium at 37˚C 23 pathogenic Leptospira
and Leptospira biflexa

7–42 strain-dependent 1-mL inocula initially. Cells were cultured

in EMJH medium at 37˚C on successive

subculture at 7-days intervals.

Laboratory

experiments, USA

Ellinghausen

1973

phosphate-buffered solution

with / without 1% Bovine

Albumin

14 pathogenic Leptospira
strains

7 days for all strains and conditions.

Strain-dependent, but better

survival with 1% Bovine Albumin

compared to buffer alone.

1-mL inocula initially. Cells suspensions

were stored at 23–25˚C for 7 days before

assessment of viability of serial dilutions

Sandy loam acidic soil Pathogenic Leptospira
serogroup Pomona

Detection of live and virulent

Leptospira up to 42 days

Soil incubated with 5x10^8 organisms. 10

g dried soil (40˚C, 3 days) saturated at

75%, 100% and 125% water level

incubated for 1, 3, 6, 10, 15, 22, 31, 42, 49,

56, 63 and 70 days. Each sample is, then,

treated by added 20 mL sterile distilled

water and agitated 4 hours before being

centrifuged for 5 min at 3000 g. Soil

washed supernatant. Culture and hamster

inoculation.

Laboratory experiment,

New Zealand

Hellstrom and

Marshall 1978

Sensitivity to UV in diluted

culture broth

L. biflexa serovar patoc

Patoc I

L. biflexamore resistant to UV than

L. interrogans serovar Pomona

2.10^6 leptospires/mL initially. 3-mL of

cell suspension were exposed to UV

radiation under red light. The UV

radiation dose was varied by changing the

time of exposure with an intensity of 2 J/

m2/s. Survival assessed by culture

Laboratory

experiments, North

Carolina

Stamm and

Charon 1988

L. interrogans serovar

Pomona

(Continued)
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Table 1. (Continued)

Matrix Microorganism� Survival (Days unless stated

otherwise) or DNA persistence

Experimental Conditions Geographical Area of

Study, Country

Reference

pH-buffered solutions (2.2–

7.9)at different temperatures

(25–50˚C)

L. interrogans
Icterohaemorrhagiae M-20

Survival assessed over 4

daysSurvival depends on both pH

and temperature (modelled in the

article)Leptospira total mortality at

temperatures �45˚C

~3x105 leptospires / 100μL initially.final

survival assessed by re-culture factorial

design investigating the combined effects

of temperature and pH on survival.

Analysis with a logistic regression model

Laboratory experiment,

USA

Parker and

Walker 2011

Rain puddle Pathogenic and

Intermediate Leptospira
~150 Of note, a real field study, new

Leptospira contaminations may

have occurred

soil sample 3-cm deep (7.8% moisture

content) in a rain puddle Re-detection of

the same isolate 5 months after the first

sampling (same PFGE profile)

Fukuoka, Japan Saito et al. 2013

pH 5.65; 25˚C pathogenic Leptospira spp L.

interrogans and L. kirschneri
12 weeks Rice field water and pond water were

autoclaved. 12 ml at 0.5 McFarland

standard of a logarithmic phase culture

Spiking was performed by centrifuging 12

mL of the adjusted culture, discarding the

supernatant, and then resuspending with

12 mL of Rice field water and pond water

Laboratory experiment,

Thailand, 2001–2006

Stoddard et al,

2014pH 5.65; 30˚C 12 weeks

pH 5.65; 37˚C 12 weeks

pH unajusted (6.95 to 7.79);

25˚C

12 weeks

pH unajusted (6.95 to 7.79);

30˚C

12 weeks

pH unajusted (6.95 to 7.79);

37˚C

10 / 12 weeks

pH 8.65; 25˚C 12 weeks

pH 8.65; 30˚C 12 weeks

pH 8.65; 37˚C 8 / 12 weeks

Mineral bottled waters (5

different)

L. interrogans
Icterohaemorrhagiae Nantes

564

Survival 28–593 days depending on

water and temperature. Of note,

survival observed at low pH and low

temperature

Non-sterilized mineral bottled water

inoculated with a virulent Leptospira
interrogans isolate (6.6x10^5 /mL).

Waters incubated at 4˚C, 20˚C or 30˚C

for up to 20 months. Survival was assessed

by re-culturing in EMJH after filtration

through 0.45μm filters. Temperature, pH,

salinity and water composition

considered independently. Microbial flora

of the waters not considered. Of note, the

cells are not washed, so diluted culture

medium is also seeded in test tubes.

Laboratory experiment,

France

Andre-

Fontaine et al.

2015

River soils in tropical island L. interrogans Pyrogenes >63 Of note, a real field study, new
Leptospira contaminations may

have occurred

Re-detection of the same isolate 4 months

after infection. Virulent leptospires were

viable in soil up to 9 weeks

Soil samples were submitted to DNA

extraction using the PowerSoil DNA

Isolation kit and viability was assessed by

viability qPCR from soil washings

Field experiments, New

Caledonia

Thibeaux et al.

2017

Mineral water pH 7.2 L. interrogans serovar

Manilae strain L495

>42 2x10^9 at Day 0 / 2x10^7 at day 42 Late-

logarithmic phase Leptospira grown in

EMJH are harvested by centrifugation and

resuspended in the same volume of

mineral water, pH 7.2. Concentration is

determined daily by direct count of

mobile leptospires in Petroff-Hausser

counting chamber, viability is determined

by growth in standard EMJH.

Laboratory experiment,

Paris, France

Hu et al. 2017

sewage from New Haven,

USA

L. interrogans serovar

Copenhageni L. biflexa
Patoc

DNA persistence L. interrogans 8

days L. biflexa >28 days

Spiking 40g or mL of matrix by 106 cells/g

or mL incuvated under dark condition at

29˚C 1g or 1mL harvest at each time point

Use of viability-PCR to assess survival

Laboratory

experiments, USA

Casanovas-

Massana et al.

2018bottle spring water Cell survival L. interrogans 28 days

sandy loam soil from Brazil L. interrogans DNA persitence 21

days—cell survival 28 days L. biflexa
28 days

loam soil from New Haven,

USA

DNA persistence L. interrogans 8

days L. biflexa >28 days

� Taxonomy as presented by the authors, may be obsolete for old articles

https://doi.org/10.1371/journal.pone.0227055.t001
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[41]. This study, with others, confirmed that pathogenic leptospires can survive and remain

virulent for several weeks in the water and soil environment. Environmental survival capacities

depend on the species and strains [44]. Despite their increased recognition in human infec-

tions, little is known on the epidemiology of Leptospira from the P2 subclade [46]. Within the

P1 subclade, the paradigm L. interrogans has been the model species to describe the well-

known One Health epidemiology. However, other species are most likely unable to survive

outside a host for prolonged periods, as was shown for Leptospira borgpetersenii [110]. Lastly,

other species from the P1 subclade described more recently were only found in the environ-

ment, mostly soils, as is the case for Leptospira kmetyi [111]. Some of these novel P1 Leptospira
species were also unable to cause infection in animal models, even questioning their real need

of an animal reservoir [14]. Recent studies have shown survival and conservation of virulence

ability of Leptospira interrogans for around 20 months in mineral bottled water [40]. However,

in this latter study, the bacteria were inoculated with their EMJH culture medium (10 mL into

1.5 liters), rather mimicking highly diluted culture medium. This data remains the longest sur-

vival reported in such conditions like cold, acidic and nutrient-poor conditions.

3.4 Leptospira in the soil environment

3.4.1 Occurrence of Leptospira in soils. Again pioneering, Noguchi appears to be one of

the first to consider, one century ago, soils as a possible environment where Leptospira could

survive [109]. Culture methods have allowed isolation from only 1.1% of lake Nero soil sam-

ples in Russia [112]. Kingscote has revealed in 1970 a correlation between the bedrock of

Southern Ontario and animal leptospirosis, but did not assess the presence of pathogenic Lep-
tospira in situ [113]. Because of the technical challenges of studying delicate slow-growing

organisms in soils, this environmental compartment remains poorly studied.

As discussed above, the advent of molecular techniques has allowed detection of Leptospira
from soil samples. In Taiwan, 30.6% of farm soils that have been flooded sheltered pathogenic

(P1) and non-pathogenic Leptospira [114]. The same proportion (31%) of Leptospira from the

P1 subclade were found in soils of an urban slum in Brazil using lipL32 qPCR [12]. In New

Caledonia, the biodiversity of Leptospira isolated from soil has been revealed recently by iden-

tifying 12 novel species using MALDI-ToF mass spectrum and whole-genome sequencing

analysis [6]. Using culture techniques and DNA detection, Leptospira has also been found in

environmental samples from Malaysia [111,115]. In the same country, pathogenic Leptospira
were recovered from soil washings in the early 1960s using animal inoculation. Interestingly,

authors noted a higher isolation frequency from soil washings than from waters [101]. Quite

similarly, a study in Minnesota showed a higher isolation frequency of saprophytic leptospires

from soils than from adjacent waters [9]. Once again, in Hawaii, leptospires were isolated from

7 of 13 water samples, but from all 16 soil samples examined [99].

3.4.2 Survival and persistence of Leptospira in soils. Table 1 also includes findings of

studies on the persistence or survival of Leptospira spp. in soils. Okazaki and Ringen probably

pioneered the field of soil microcosms to study Leptospira survival and evidenced a 6-month

survival of a virulent Leptospira in water-saturated soil [116] (See Table 1). Another study con-

firmed survival and virulence after 6 weeks in soil microcosms [42]. Recent work has studied

DNA persistence and viability of virulent leptospires in soil and water using microcosms [19]

(see Table 1). In this work, the authors have used viability-PCR and shown a rapid decay of

DNA in soil and sewage, allowing to assume viability from a direct qPCR from these matrices,

contrasting with their findings in water where DNA detection does not demonstrate survival

due to longer persistence of free DNA in water [19]. In this study, the authors built a model of

Leptospira (both L. interrogans and L. biflexa) persistence in the soils, waters and sewage
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PLOS ONE | https://doi.org/10.1371/journal.pone.0227055 January 27, 2020 12 / 22

https://doi.org/10.1371/journal.pone.0227055


studied, notably showing survival of L. interrogans up to 3 weeks in one soil together with a

stronger survival capacity of the saprophyte L. biflexa [19].

In field conditions in New Caledonia, data have shown the capacity of Leptospira interro-
gans to survive and remain virulent in riverbank soils and sediments up to 9 weeks after

human infection events [13]. Similarly, the putative same L. alstonii strain (identical PFGE

profile) was isolated twice five months apart from the same soil in Fukuoka, Japan [11]. How-

ever, these findings can also be explained by repeated contaminations from animals or the sur-

rounding environment and the persistence of virulent leptospires in real environmental

conditions deserves further studies.

Together with survival studies, the increasing number of novel Leptospira isolated from the

environment raises the question of their lifestyle. Recent studies have developed an interest in

soil compositions affecting survival of Leptospira. Lall and collaborators have highlighted posi-

tive correlation between the presence of pathogenic leptospires and soil nutrients such as

nitrate but also with metals as iron, manganese and copper. This work may help the compre-

hension of environmental transmission of the human and animal disease in a One Health

approach [117] but it remains crucial to better understand the survival of pathogenic Leptos-
pira in soil.

4 Discussion

Our systematic review used a rigorous process to identify the published literature on Leptos-
pira survival and persistence in the environment in relation to leptospirosis. There is strong

and convergent evidence that virulent leptospires can survive and remain infectious in the

environment for months, notably in soils. However, no definitive proof could be obtained

from field studies in open environments, where water and soils could possibly be exposed to

repeated contamination from animals or the surrounding ecosystem. In addition, the current

molecular tools hardly predict the true virulence of Leptospira upon molecular detection in the

context of our changing comprehension of virulence in this complex bacterial genus [47].

Mesocosms and microcosms studies have been used in the past and have recently attracted

renewed interest. Complementary approaches linking field studies and lab-controlled experi-

mental evidence can help gain further insights into Leptospira environmental ecology and lep-

tospirosis epidemiology.

Numerous studies have shown the consequences of heavy rain triggering massive outbreaks

of leptospirosis. An emerging hypothetical mechanism is that virulent leptospires survive in

soils and that rains wash soil surfaces, putting particles, including leptospires in suspension

into surface water [12,13]. Thereby, leptospires would reach streams and freshwater bodies

where humans get exposed. This hypothetical mechanism is depicted in Fig 2 and biblio-

graphic data supporting this hypothesis are summarized in Table 2.

Studies have revealed higher isolation rates of Leptospira from soil than from freshwater

samples [9,99,101]. These findings support the hypothesis that soils may be the original habitat

of the genus Leptospira and a possible environmental reservoir or at least a temporary carrier

of pathogenic strains [6,14,19]. This mechanism hypothesis is also supported by other findings,

notably the positive correlation between Leptospira concentration in water and turbidity

shown in Hawaiian streams [15]. The epidemiological records also suggest that human expo-

sure occurs during the heavy rain events, or shortly after during floods, also supporting this

hypothesis [118].

Little is known on survival strategies and physiological mechanisms used by leptospires

[119]. However, strategies of positive interactions with environmental microbiota and biofilm

formation are now well-known for other bacteria. Pathogenic leptospires have capabilities to
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Fig 2. Figure summarizing the hypothetical mechanisms of Leptospira environmental survival and dispersion upon

heavy rainfall. Table 2 identifies data supporting this hypothesis.

https://doi.org/10.1371/journal.pone.0227055.g002

Table 2. Significant findings supporting the hypothesis of the leptospiral dispersion from soil to water depicted in Fig 2.

Evidence supporting the hypothetical model Geographical areas,

Countries

Type of samples (% positive

samples)

Reference

More frequent detection or isolation of Leptospira spp. from soils or sediment than from

water

New Caledonia Stream water vs sediment or bank

soil (0% vs 57%)

[13]

Malaysia Stagnant water vs soil (19% vs

67%)

[115]

Minesotta, USA Lake shore water vs soil (65% vs

75%)

[9]

Bog water vs soil (5% vs 44%)

Spring water vs soil (28% vs 59%)

Malaysia Water vs soil (5% vs 18%) [75]

Hawaii Water vs soil (54% vs 100%) [99]

Leptospira concentration (log) has a significant positive correlation with turbidity (log) Hawaii Coastal stream water [15]

Higher Leptospira concentration upon rainfall Brazil Surface waters [7]

High concentration and genetic diversity of Leptospira spp. in soils, supporting the

hypothesis of soils being a natural habitat of Leptospira spp.

New Caledonia Soils [6]

Japan, New Caledonia,

Malaysia

Water and soils [47]

Japan Soils [65]

Philippines Soils [10]

Brazil Soils [12]

Soils apparently protect Leptospira from seawater toxicity Philippines Soils [10]

Leptospira survive in wet soil on dry days and appear in surface water on rainy days Philippines, Japan Soils and water [11]

Leptospira concentration in surface waters correlates with rainfall intensity Japan River water [127]

suggest that disturbance of river sediments increase the Leptospira concentration in water

https://doi.org/10.1371/journal.pone.0227055.t002
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form a biofilm in vitro as well as to survive in biofilms in natura, even in nutrient-free environ-

ments [120,121]. Genetic mechanisms underlying biofilm formation of Leptospira have been

studied recently [122]. Furthermore, Vinod Kumar and collaborators highlighted cell coaggre-

gation of pathogenic leptospires with other environmental bacteria within biofilms [53,123].

Supporting the protective role of biofilm [124], antibiotics tolerance was increased 5 to 6-fold

by biofilm formation [125]. Altogether, these results support the hypothesis that Leptospira
survival in the environment might be favored by biofilm formation or protection within a mul-

tispecies natural biofilm, but the precise interactions of virulent Leptospira in complex envi-

ronmental microbiota remains to be determined.

Leptospiramay also interact with other members of soil communities such as Free-Living

Amoebas. Amoebas, which are one of the main colonizers of drinking water networks, are

known to be possible reservoirs of potentially pathogenic bacteria. Diversity of cultivable

amoebas and their bacterial community were analyzed by sampling a large drinking water net-

work; Leptospira was found to be part of the bacterial community associated with Amoebas

from surface water samples [79]. However, our review did not identify any study of the possi-

ble interaction of virulent leptospires with free-living Amoeba. This hypothesis would deserve

to be considered through both field investigations and laboratory studies.

High throughput sequencing techniques are increasingly used in microbial ecology studies.

These technologies allow identifying the diversity of bacterial communities. For instance,

using modern molecular techniques, Leptospira reads were detected in Chinese river sedi-

ments receiving rural domestic wastewater [126]. Using shotgun sequencing (that offers higher

sequencing depth) an almost complete genome of a saprophytic Leptospira sp. was retrieved

from a drinking water network [85]. More recently, a study used environmental DNA meta-

barcoding and ecological techniques targeting Leptospira spp. and Vertebrates in Japan, suc-

cessfully evidencing Group I Leptospira in the environment and providing an unprecedented

insight into animal / Leptospira / weather ecological associations in a very elegant One Health

approach [127]. These technologies and the corresponding datasets offer unique opportunities

to gain new knowledge on Leptospira habitat in the water and soil environments.

Although the role of the environment in leptospirosis epidemiology was suspected more

than a century ago [109], major knowledge gaps remain in our understanding of the survival

and persistence of virulent Leptospira in the environment. The advent of environmental meta-

genomics and the combination of field studies with laboratory-controlled experiments are

gaining renewed interest. This will offer new opportunities to better understand the environ-

mental risk of leptospirosis and allow the implementation of efficient control measures.
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mental source of Leptospirosis reveals durable bacterial viability in river soils. PLoS Negl Trop Dis 11:

e0005414. https://doi.org/10.1371/journal.pntd.0005414 PMID: 28241042

Leptospirosis and the environment

PLOS ONE | https://doi.org/10.1371/journal.pone.0227055 January 27, 2020 16 / 22

https://doi.org/10.1371/journal.pntd.0003898
https://doi.org/10.1371/journal.pntd.0003898
http://www.ncbi.nlm.nih.gov/pubmed/26379143
https://doi.org/10.1007/978-3-662-45059-8_5
http://www.ncbi.nlm.nih.gov/pubmed/25388133
https://doi.org/10.1128/CMR.14.2.296-326.2001
https://doi.org/10.1128/CMR.14.2.296-326.2001
http://www.ncbi.nlm.nih.gov/pubmed/11292640
https://doi.org/10.1038/nrmicro2208
http://www.ncbi.nlm.nih.gov/pubmed/19756012
https://doi.org/10.4269/ajtmh.18-0629
http://www.ncbi.nlm.nih.gov/pubmed/30298813
https://doi.org/10.3389/fmicb.2018.00816
https://doi.org/10.3389/fmicb.2018.00816
http://www.ncbi.nlm.nih.gov/pubmed/29765361
https://doi.org/10.1016/j.watres.2017.11.068
http://www.ncbi.nlm.nih.gov/pubmed/29220718
https://doi.org/10.7883/yoken.JJID.2017.363
http://www.ncbi.nlm.nih.gov/pubmed/29093324
http://www.ncbi.nlm.nih.gov/pubmed/637546
https://doi.org/10.1128/AEM.02568-14
https://doi.org/10.1128/AEM.02568-14
http://www.ncbi.nlm.nih.gov/pubmed/25172869
https://doi.org/10.1128/AEM.02728-12
http://www.ncbi.nlm.nih.gov/pubmed/23144130
https://doi.org/10.1371/journal.pntd.0006415
http://www.ncbi.nlm.nih.gov/pubmed/29624576
https://doi.org/10.1371/journal.pntd.0005414
http://www.ncbi.nlm.nih.gov/pubmed/28241042
https://doi.org/10.1371/journal.pone.0227055


14. Thibeaux R, Iraola G, Ferrés I, Bierque E, Girault D, et al. (2018) Deciphering the unexplored Leptos-

pira diversity from soils uncovers genomic evolution to virulence. Microb Genom 4: 000144.

15. Viau EJ, Boehm AB (2011) Quantitative PCR-based detection of pathogenic Leptospira in Hawai’ian

coastal streams. J Water Health 9: 637–646. https://doi.org/10.2166/wh.2011.064 PMID: 22048423

16. Day TD, Waas JR, O’Connor CE, Carey PW, Matthews LR, et al. (1997) Leptospirosis in brushtail pos-

sums: is Leptospira interrogans serovar balcanica environmentally transmitted? J Wildl Dis 33: 254–

260. https://doi.org/10.7589/0090-3558-33.2.254 PMID: 9131555

17. Gracie R, Barcellos C, Magalhães M, Souza-Santos R, Guimarães Barrocas PR (2014) Geographical

Scale Effects on the Analysis of Leptospirosis Determinants. Int J Environ Res Public Health 11:

10366–10383. https://doi.org/10.3390/ijerph111010366 PMID: 25310536

18. Faine S, Adler B, Bolin C, Perolat P (1999) Leptospira and Leptospirosis, Second Edition; MedSci,

editor. Melbourne, Australia: MedSci, Melbourne, Vic. Australia. 272 p.

19. Casanovas-Massana A, Pedra GG, Wunder EA Jr., Diggle PJ, Begon M, et al. (2018) Quantification of

Leptospira interrogans Survival in Soil and Water Microcosms. Appl Environ Microbiol 84: e00507–

00518. https://doi.org/10.1128/AEM.00507-18 PMID: 29703737

20. Barragan V, Olivas S, Keim P, Pearson T (2017) Critical knowledge gaps in our understanding about

environmental cycling and transmission of Leptospira. Appl Environ Microbiol 83: e01190–01117.

https://doi.org/10.1128/AEM.01190-17 PMID: 28754706

21. Matsunaga J, Lo M, Bulach DM, Zuerner RL, Adler B, et al. (2007) Response of Leptospira interrogans

to Physiologic Osmolarity: Relevance in Signaling the Environment-to-Host Transition. Infect Immun

75: 2864–2874. https://doi.org/10.1128/IAI.01619-06 PMID: 17371863

22. Ko AI, Galvao Reis M, Ribeiro Dourado CM, Johnson WD Jr., Riley LW (1999) Urban epidemic of

severe leptospirosis in Brazil. Salvador Leptospirosis Study Group. Lancet 354: 820–825. https://doi.

org/10.1016/s0140-6736(99)80012-9 PMID: 10485724

23. Trevejo RT, Rigau-Perez JG, Ashford DA, McClure EM, Jarquin-Gonzalez C, et al. (1998) Epidemic

leptospirosis associated with pulmonary hemorrhage-Nicaragua, 1995. J Infect Dis 178: 1457–1463.

https://doi.org/10.1086/314424 PMID: 9780268

24. Agampodi SB, Nugegoda DB, Thevanesam V, Vinetz JM (2015) Characteristics of Rural Leptospirosis

Patients Admitted to Referral Hospitals during the 2008 Leptospirosis Outbreak in Sri Lanka: Implica-

tions for Developing Public Health Control Measures. Am J Trop Med Hyg 92: 139–144. https://doi.

org/10.4269/ajtmh.14-0465 PMID: 25331809

25. Amilasan AT, Ujiie M, Suzuki M, Salva E, Belo MCP, et al. (2012) Outbreak of Leptospirosis after

Flood, the Philippines, 2009. Emerg Infect Dis 18: 91–94. https://doi.org/10.3201/eid1801.101892

PMID: 22257492

26. Goarant C, Laumond-Barny S, Perez J, Vernel-Pauillac F, Chanteau S, et al. (2009) Outbreak of lepto-

spirosis in New Caledonia: diagnosis issues and burden of disease. Trop Med Int Health 14: 926–929.

https://doi.org/10.1111/j.1365-3156.2009.02310.x PMID: 19552660

27. Desvars A, Jego S, Chiroleu F, Bourhy P, Cardinale E, et al. (2011) Seasonality of human leptospirosis

in Reunion Island (Indian Ocean) and its association with meteorological data. PLoS One 6: e20377.

https://doi.org/10.1371/journal.pone.0020377 PMID: 21655257

28. Ghizzo Filho J, Nazario NO, Freitas PF, Pinto GA, Schlindwein AD (2018) Temporal analysis of the

relationship between leptospirosis, rainfall levels and seasonality, Santa Catarina, Brazil, 2005–2015.

Rev Inst Med Trop Sao Paulo 60: e39. https://doi.org/10.1590/S1678-9946201860039 PMID:

30066807

29. Katz AR, Buchholz AE, Hinson K, Park SY, Effler PV (2011) Leptospirosis in Hawaii, USA, 1999–

2008. Emerg Infect Dis 17: 221–226. https://doi.org/10.3201/eid1702.101109 PMID: 21291592

30. Baranton G, Postic D (2006) Trends in leptospirosis epidemiology in France. Sixty-six years of passive

serological surveillance from 1920 to 2003. Int J Infect Dis 10: 162–170. https://doi.org/10.1016/j.ijid.

2005.02.010 PMID: 16298537

31. Mwachui MA, Crump L, Hartskeerl R, Zinsstag J, Hattendorf J (2015) Environmental and Behavioural

Determinants of Leptospirosis Transmission: A Systematic Review. PLoS Negl Trop Dis 9: e0003843.

https://doi.org/10.1371/journal.pntd.0003843 PMID: 26379035

32. Lau CL, Smythe LD, Craig SB, Weinstein P (2010) Climate change, flooding, urbanisation and lepto-

spirosis: fuelling the fire? Trans R Soc Trop Med Hyg 104: 631–638. https://doi.org/10.1016/j.trstmh.

2010.07.002 PMID: 20813388

33. Weinberger D, Baroux N, Grangeon J-P, Ko AI, Goarant C (2014) El Niño Southern Oscillation and

leptospirosis outbreaks in New Caledonia. PLoS Negl Trop Dis 8: e2798. https://doi.org/10.1371/

journal.pntd.0002798 PMID: 24743322

Leptospirosis and the environment

PLOS ONE | https://doi.org/10.1371/journal.pone.0227055 January 27, 2020 17 / 22

https://doi.org/10.2166/wh.2011.064
http://www.ncbi.nlm.nih.gov/pubmed/22048423
https://doi.org/10.7589/0090-3558-33.2.254
http://www.ncbi.nlm.nih.gov/pubmed/9131555
https://doi.org/10.3390/ijerph111010366
http://www.ncbi.nlm.nih.gov/pubmed/25310536
https://doi.org/10.1128/AEM.00507-18
http://www.ncbi.nlm.nih.gov/pubmed/29703737
https://doi.org/10.1128/AEM.01190-17
http://www.ncbi.nlm.nih.gov/pubmed/28754706
https://doi.org/10.1128/IAI.01619-06
http://www.ncbi.nlm.nih.gov/pubmed/17371863
https://doi.org/10.1016/s0140-6736(99)80012-9
https://doi.org/10.1016/s0140-6736(99)80012-9
http://www.ncbi.nlm.nih.gov/pubmed/10485724
https://doi.org/10.1086/314424
http://www.ncbi.nlm.nih.gov/pubmed/9780268
https://doi.org/10.4269/ajtmh.14-0465
https://doi.org/10.4269/ajtmh.14-0465
http://www.ncbi.nlm.nih.gov/pubmed/25331809
https://doi.org/10.3201/eid1801.101892
http://www.ncbi.nlm.nih.gov/pubmed/22257492
https://doi.org/10.1111/j.1365-3156.2009.02310.x
http://www.ncbi.nlm.nih.gov/pubmed/19552660
https://doi.org/10.1371/journal.pone.0020377
http://www.ncbi.nlm.nih.gov/pubmed/21655257
https://doi.org/10.1590/S1678-9946201860039
http://www.ncbi.nlm.nih.gov/pubmed/30066807
https://doi.org/10.3201/eid1702.101109
http://www.ncbi.nlm.nih.gov/pubmed/21291592
https://doi.org/10.1016/j.ijid.2005.02.010
https://doi.org/10.1016/j.ijid.2005.02.010
http://www.ncbi.nlm.nih.gov/pubmed/16298537
https://doi.org/10.1371/journal.pntd.0003843
http://www.ncbi.nlm.nih.gov/pubmed/26379035
https://doi.org/10.1016/j.trstmh.2010.07.002
https://doi.org/10.1016/j.trstmh.2010.07.002
http://www.ncbi.nlm.nih.gov/pubmed/20813388
https://doi.org/10.1371/journal.pntd.0002798
https://doi.org/10.1371/journal.pntd.0002798
http://www.ncbi.nlm.nih.gov/pubmed/24743322
https://doi.org/10.1371/journal.pone.0227055


34. Dufour B, Moutou F, Hattenberger AM, Rodhain F (2008) Global change: impact, management, risk

approach and health measures—the case of Europe. Rev Sci Tech 27: 529–550. PMID: 18819676

35. Derne BT, Weinstein P, Lau CL (2015) Wetlands as sites of exposure to water-borne infectious dis-

eases. Wetlands and Human Health. pp. 45–74.

36. Guelain J, Le Gonidec G, Bouchard E, Peghini M (1983) [Leptospiroses in New Caledonia]. Med Trop

43: 137–143.

37. Lambrecht FL (1982) Health Hazards Associated with Development of Water Resources and Other

Changes in the Environment in the Tropics. Canadian Journal of Development Studies/Revue canadi-
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