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Introduction

This paper presents a technique for static magnetic field synthesis. Starting
from a desired field profile, it is a matter of finding the position or certain
characteristics of field sources. Since the equations used are those of the 1/R
field development, we can extend this technique to electrostatic fields. From
a numerical point of view, it is the search for the roots of these equations that
interests us and not an optimization of a cost function. We have therefore
followed the general heuristic that the number of equations must be equal to
the number of unknowns. The degrees of freedom of the system (number of
magnets, displacement in x,y of the conductors, value of the current, etc...)
are therefore in agreement with the number of equations to be solved. But
this is true in linear problems and in no case can we ensure a solution in
non-linear systems even if we increase the number of degrees of freedom and
then solve the problem by a least squares technique.. On this last point, it is
a functional that will be minimized and nothing can be said a priori about
the accuracy of the results.

We chose to search for the true roots of these equations. In this way, the
solving system is able to give which equations cannot be canceled (or equal
to a fixed value). By studying this problem in detail, some characteristics of
field generation structures are necessary, they are presented throughout the
document.

We will therefore start with the direct calculation of the magnetic field
generated by a permanent magnet. This calculation does not really pose any
difficulty, it is mainly a question of obtaining sufficient precision in relation
to the real field. This step makes it possible later on to check the validity
of a configuration without systematically needing to make a model. We will
see that only one parameter must be experimentally determined, this is the
remanent field of each magnet composing the correction structure. We will
then study the inverse problem that will provide the position of the magnets,
which is the very subject of the thesis

In practical cases, we can either check for field defects by measuring them
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beforehand and then generate a profile in adequacy with the field already
present, or generate a simple profile without taking into account possible
defects related to the environment. We treated the first case with a magnet
configuration and the second case with wires. The direct calculation of the
field generated by conductors is not presented because we use Biot-Savart’s
law. The experimental validity is easy because there is no approximation
and the current flowing in the conductors is easily controllable (as opposed
to the value of the remanent field of the magnets).

Low-field magnetic resonance imaging requires a field of 1010 Gauss for a
hydrogen resonance frequency at 4.3 MHz. In the context of imaging itself,
the homogeneity of the static magnetic field must be extreme.

The maximum error in the useful area is plus or minus 10mG (10−6T).
This represents a relative error for a low-field imager of 10 parts per million
(10 ppm per 1010 Gauss). In comparison, the Earth’s magnetic field in our
latitude is in the order of 500mG. Given the great homogeneity of this field,
this does not pose major difficulties. On the other hand, in the presence
of nearby metal structures (concrete iron for example) the Earth’s magnetic
field will be deflected locally. As a result, it alone will generate a very sig-
nificant error in the useful area. It is then a matter of properly mapping
these defects in order to have a reference when measuring a configuration.
It appears that a setting at 10mG close does not allow at all to move the
machine and especially not to turn it, once it is set.

In this study we will consider that the addition of magnets or conductors
cannot magnetize surrounding structures and that magnetic permeability is
constant in the correction area. It is slightly wrong with water contained in
the body. A slight diamagnetism (water repels the magnetic field) is seen
per a quantum mechanical effect in presence of very high magnetix fields.
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Chapter 1

Determination of the field ~B

We will study the validity of the direct calculation of the magnetic field gen-
erated by a permanent magnet. Although the magnets used are cylindrical,
we will justify the use of a simple formula derived from the calculation in
Cartesian coordinates. We will also study the demagnetization of the magnet
itself and the possibility of integrating it by experimentally determining the
value of the remanent field of each magnet.

1.1 Scalar potential

If in a given region there are no electrical sources (in movment) , we can
define a scalar potential ψ, such as:

~B(~r) = −~∇ψ(~r) (1.1)

In the presence of magnetic media[41, p.37], the potential is written:

ψ(~r) =
1

4π

∫
V

~∇′
~M(~r′)

|~ri − ~r′|
dv′ (1.2)

If the magnetization ~M is defined and localized, one integration per part
gives:

ψ(~r) =
1

4π

∫
V

~M(~r′). ~∇′ 1

|~ri − ~r′|
dv′ (1.3)

1.2 Generalized coordinates

The magnetic field ~B at a point i in space, determined from the field ~Bext

created by currents and the field produced by a magnetized body of volume
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V and magnetization ~M is given by the expression:

~B(~ri) = ~Bext(~ri)−
1

4π
~∇
∫
V

~M(~r′). ~∇′ 1

|~ri − ~r′|
dv′ (1.4)

where ~ri and ~r′ are respectively the coordinates of the point i and the
internal coordinates of the volume V .

I

M(r')

B

r'

ri

V

dv'

Figure 1.1: Magnetic field produced by a magnetic body and wired lines.

If we discretize the magnetized volume V into N elements Vi such that the
magnetization can be considered as homogeneous, the magnetic field created
at one point j of the volume V can be put in the following matrix form[41,
p.9]:

[Bj] = [B0,j] +
N∑
i=1
i6=j

[Fij] . [Mi]− [Dj] . [Mj] (1.5)

The F matrix is used to calculate the field created by the magnetization
Mi of a volume Vi at any point outside the said volume. Formally, the D
matrix is identical to the F matrix, it expresses the influence of the field gen-
erated by an elementary volume on itself. This translates into by a decrease
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in the magnetization of the material and thus the external excitation field ~B.
To simplify the calculations, the D row matrix is determined according to
the calculation point located in the center of the element and thus[39], the
matrix is made up of the diagonal terms of the F matrix. It is imperative to
take into account the demagnetization if we are looking for the magnetiza-
tion ~M(r′) induced in the material by an external field, ~M = f( ~H), because
the errors can be consequent and depend on the shape of the magnetized
volume. As we will see later, the field can decrease by 1% in the case of a
cubic magnetic volume. The matrix form of this last relation is written as
follows

[Mj] = [χj] . [Bj] (1.6)

The simultaneous resolution of the two equations (1.5) and (1.6) allows
to calculate the magnetizing field in each element. In the thesis[41] and the
article[39], the solution is based on an iterative calculation allowing at each
step to refine the magnetizations [Mj].

1.2.1 Matrix determination F

The calculation of the gradient of a scalar function f(u1, u2, u3) in orthogo-
nal curvilinear coordinates whose reference is supported by the normalized
vectors ~e1 , ~e2 , ~e3 is written [50, p.72]

~∇f(u1, u2, u3) =
3∑
l=1

1
√
gii

∂f

∂ui
~ei (1.7)

The magnetic field ~B is then determined by the equation

~B(~ri) = ~Bext(~ri)−
1

4π

×
3∑

k=1

3∑
l=1

M(r′)
√
gkk

∂

∂uk

(∫
V

1
√
gll

∂

∂ul
1

|~ri − ~r′|
dv′
)
~ek (1.8)
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1.3 Cylindrical coordinates

1.3.1 Matrix F in cylindrical coordinates

The metric tensor gij in cylindrical coordinates is written as follows

[gij] =

 1 0 0
0 ρ2 0
0 0 1

 (1.9)

We then identify the double-sum term in the equation (1.8) with the
matrix [Fij] of the equation (1.5). The matrix D is obtained when the com-
putation point r is inside the integration volume of the element. In cylindrical
coordinates (ρ, φ, z) Figure (1.2), the matrix F can be written:

[Fij] =
1

4π

 Fρρ′ Fρφ′ Fρz′
Fφρ′ Fφφ′ Fφz′
Fzρ′ Fzφ′ Fzz′

 (1.10)

Z

X

Y

z

ρφ

M

Figure 1.2: Variables used in cylindrical coordinates.

The identification of the elements of the matrix leads to the following
expressions:
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Fρρ′ =
∂

∂ρ

∫
V

∂
(

1
R

)
∂ρ′

ρ′dρ′dφ′dz′

Fρφ′ =
∂

∂ρ

∫
V

1

ρ′

∂
(

1
R

)
∂φ′

ρ′dρ′dφ′dz′

=
∂

∂ρ

∫
S

[
1

R

]φ2
φ1

dρ′dz′

Fρz′ =
∂

∂ρ

∫
V

∂
(

1
R

)
∂z′

ρ′dρ′dφ′dz′

=
∂

∂ρ

∫
S

[
1

R

]z2
z1

ρ′dρ′dφ′

Fφρ′ =
1

ρ

∂

∂φ

∫
V

∂
(

1
R

)
∂ρ′

ρ′dρ′dφ′dz′

= −1

ρ

∫
S

∂
(

1
R

)
∂ρ′

φ2
φ1

ρ′dρ′dz′

Fφφ′ =
1

ρ

∂

∂φ

∫
V

1

ρ′

∂
(

1
R

)
∂φ′

ρ′dρ′dφ′dz′

=
1

ρ

∂

∂φ

∫
S

[
1

R

]φ2
φ1

dρ′dz′

Fφz′ =
1

ρ

∂

∂φ

∫
V

∂
(

1
R

)
∂z′

ρ′dρ′dφ′dz′

= −1

ρ

∫
L

[
1

R

]φ2,z2
φ1,z1

ρ′dρ′

Fzρ′ =
∂

∂z

∫
V

∂
(

1
R

)
∂ρ′

ρ′dρ′dφ′dz′

= −
∫
S

∂
(

1
R

)
∂ρ′

z2
z1

ρ′dρ′dφ′

Fzφ′ =
∂

∂z

∫
V

1

ρ′

∂
(

1
R

)
∂φ′

ρ′dρ′dφ′dz′

= −
∫
L

[
1

R

]φ2,z2
φ1,z1

dρ′

Fzz′ =
∂

∂z

∫
V

∂
(

1
R

)
∂z′

ρ′dρ′dφ′dz′
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=
∂

∂z

∫
S

[
1

R

]z2
z1

ρ′dρ′dφ′

where R is the distance between the measuring point and the integration
point

R =
√
ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′)− (z − z′)2

After analytical integration, the following equations are obtained:

fρρ′ dφ
′ =

ρ ρ′ z − ρ ρ′ z′ − ρ′2 z cos(φ− φ′) + ρ′2 z′ cos(φ− φ′)(
ρ2 + ρ′2 − 2 ρ ρ′ cos(φ− φ′)

)
R

+ cos(φ− φ′) log(−z + z′ +R)

+ arctan(
(z − z′)

ρ sin(φ− φ′)
) sin(φ− φ′)

+ arctan(
(z − z′) (−ρ′ + ρ cos(φ− φ′)))

ρR sin(φ− φ′)
) sin(φ− φ′)

Fρφ′ = cos(φ− φ′) log(−z + z′ +R)

−1

2
arctan(

(z − z′)
ρ sin(φ− φ′)

) sin(φ− φ′)

− arctan(
(z − z′) (−ρ′ + ρ cos(φ− φ′))

ρR sin(φ− φ′)
) sin(φ− φ′)

fρz′ dφ
′ =

ρ− ρ′ cos(φ− φ′)
R

+
ρ cos(φ− φ′)

(
− cos(φ− φ′) + ρ−ρ′ cos(φ−φ′)

R

)
ρ′ − ρ cos(φ− φ′) +R

+

+ cos(φ− φ′) log(ρ′ − ρ cos(φ− φ′) +R)

fφρ′ dz
′ = −

ρ′

R
− log(ρ′ − ρ cos(φ− φ′) +R)

ρ

Fφφ′ = −
(

arctan(
(z − z′)

ρ sin(φ− φ′)
) cos(φ− φ′)

)
+

+
1

2
arctan(

(−z + z′) (−ρ′ + ρ cos(φ− φ′))
ρR sin(φ− φ′)

) cos(φ− φ′)

+ log(−z + z′ +R) sin(φ− φ′)

Fφz′ = −R + ρ cos(φ− φ′) log(ρ′ − ρ cos(φ− φ′) +R)

ρ

fzρ′ dφ
′ = −ρ

′

R
+ log(ρ′ − ρ cos(φ− φ′) +R)

Fzφ′ = − log(ρ′ − ρ cos(φ− φ′) +R)
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fzz′ dφ
′ =

z − z′

R
+

ρ (z − z′) cos(φ− φ′)
R (ρ′ − ρ cos(φ− φ′) +R)

We realize that it remains to be numerically integrated fρρ′ , fρz′ , fzρ′ , fzz′ as
φ′ and fφρ′ as z’. As these are primitives, the bounds should be applied before
any digital integration. For example, to obtain fρρ′ dφ

′ the 4 terms resulting
from the integration in ρ′ and z′ will be calculated beforehand.

1.4 Cartesian coordinates

1.4.1 Matrix F in cartesian coordinates

The metric tensor gij is in this case very simple and is equal to the identity
matrix:

[gij] =

 1 0 0
0 1 0
0 0 1

 (1.11)

it shall be written that[51, p.59]

[Fij] =
1

4π

 Fxx′ Fxy′ Fxz′
Fyx′ Fyy′ Fyz′
Fzx′ Fzy′ Fzz′

 (1.12)

with

Fxx′ =
∂

∂x

∫
V

∂
(

1
R

)
∂x′

dx′dy′dz′

=
∂

∂x

∫
S

[
1

R

]x2
x1

dy′dz′

Fxy′ =
∂

∂x

∫
V

∂
(

1
R

)
∂y′

dx′dy′dz′

= −
∫
L

[
1

R

]x2,y2
x1,y1

dz′

Fxz′ =
∂

∂x

∫
V

∂
(

1
R

)
∂z′

dx′dy′dz′
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= −
∫
L

[
1

R

]x2,z2
x1,z1

dy′

Fyx′ =
∂

∂y

∫
V

∂
(

1
R

)
∂x′

dx′dy′dz′

= −
∫
L

[
1

R

]x2,y2
x1,y1

dz′

Fyy′ =
∂

∂y

∫
V

∂
(

1
R

)
∂y′

dx′dy′dz′

=
∂

∂y

∫
S

[
1

R

]y2
y1

dx′dz′

Fyz′ =
∂

∂y

∫
V

∂
(

1
R

)
∂z′

dx′dy′dz′

= −
∫
L

[
1

R

]y2,z2
y1,z1

dx′

Fzx′ =
∂

∂z

∫
V

∂
(

1
R

)
∂x′

dx′dy′dz′

= −
∫
L

[
1

R

]x2,z2
x1,z1

dy′

Fzy′ =
∂

∂z

∫
V

∂
(

1
R

)
∂y′

dx′dy′dz′

= −
∫
L

[
1

R

]y2,z2
y1,z1

dx′

Fzz′ =
∂

∂z

∫
V

∂
(

1
R

)
∂z′

dx′dy′dz′

=
∂

∂z

∫
S

[
1

R

]z2
z1

dx′dy′ (1.13)

The following analytical forms are obtained1 :

Fxx′ = arctan

(
(y − y′)(z − z′)

(x− x′)R

)
Fxy′ = − ln(−z + z′ +R)

Fxz′ = − ln(−y + y′ +R)

Fyx′ = − ln(−z + z′ +R)

1From these primitives we will integrate according to the bounds x1, x2, y1, y2, z1, z2,
that will thus make 8 terms to be calculated for each integral.
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Fyy′ = arctan

(
(x− x′)(z − z′)

(y − y′)R

)
Fyz′ = − ln(−x+ x′ +R)

Fzx′ = − ln(−y + y′ +R)

Fzy′ = − ln(−x+ x′ +R)

Fzz′ = arctan

(
(x− x′)(y − y′)

(z − z′)R

)

Formulas in Cartesian coordinates are of great use in our study. We can
quickly calculate the field generated by a small parallelepipedic magnet whose
internal magnetization ~M will be considered homogeneous and directed along
the ~z only. If we want to determine the z component of the external field
generated by this magnet, starting from Fzz′ we get:

Bz(x, y, z) =
Mz

4π

[
arctan

(
(x− x′)(y − y′)

(z − z′)R

)]x2,y2,z2
x1,y1,z1

(1.14)

with R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2

The figure (1.3) represents the profile of the Bz field generated by a small
magnet placed 10cm from the z axis. The cross section of this magnet is

square and its side size =
√

0.0042π/4. The following length z is 5mm and
the remanent magnetization is 1.2 Tesla.

1.5 Shape of the magnets

The problem consists in proving the validity of the formula (1.14) for a mag-
net with a cylindrical section. This formula is rigorous for a magnet having
the shape of a rectangular parallelepiped. It is much more economical in
computing time to use this analytical form that the formula Fzz′ page 13
where an integration according to φ′ remains to be performed. The geom-
etry of the correcting magnets we use is a bar of cylindrical section with a
diameter of 4mm and a length of 5mm. The magnetization is directed along
the length of the bar and is equal to 1.2 Tesla for neodymium-iron-boron.
The Figure (1.4) shows the relative difference between the field Bz calculated
by the integration in cylindrical coordinates and the approximation of this
field by the formula in cartesian coordinates. The cross-section and length
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Figure 1.3: field Bz generated by a correction magnet.

of the cylindrical bar and the rectangular bar must be equal, i.e. the same
volume of magnetized material which gives the same field at a great distance.

We notice that the maximum error is approximately one radius from the
magnet surface. Since this is essentially a length ratio, the dimensions can
be considered relative. The maximum error is 1%. However, the calculation
point will generally be located at least 5cm from the magnet, i.e. about
10 times its size. We then achieve an accuracy of less than 1 per 1000,
which is sufficient considering the dispersion of the remanent field of each
magnet. This dispersion at manufacture is 5 % compared to the nominal
value provided in the documentation. The maximum value of the residual
field is often given by the manufacturer and magnets can vary between 1.15
and 1.2 Tesla.

1.6 Influence of the demagnetizing field

Using the formula (1.14), we consider that the magnetization inside the mag-
net is rigid and equal to its maximum value i.e. 1.2 Tesla in our case. In
reality, we omit a very important term which is the demagnetization of the
magnet on itself. We therefore propose to quantify the calculation error when
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determining the far field by the arctangent analytical formula.

1.6.1 Calculation of the demagnetizing field

To determine the influence of the demagnetizing field, we will decompose the
parallelepiped magnet into n× n× n elements whose magnetization of each
will be considered constant throughout the volume. In order to examine the
result of the sampling, we will perform finer and finer decompositions.

We’ll compare the calculated field on the ~z axis by each of the decompo-
sitions with the magnet at the origin of the coordinates. The geometry and
magnetic characteristics of the magnet are those mentioned above.

The table 1.1 shows that the decomposition quickly converges to the
same field value, especially as we move away from the magnet. However,
there is a difference between using the analytical formula in column (2) and
the decomposed magnet involving the demagnetizing field. Column (7) is
much more accurate but the calculation time is considerably longer than
that needed to evaluate (1.14).

We notice in the table 1.2 that at great distance (> 10cm) the value given
by the formula (1.14) and the field obtained taking into account the demag-
netization differs by 1.018 % , Given the actual remanent field dispersion of
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(1) (2) (3) (4) (5) (6) (7) (8)

z mm formula(1.14) 1x1x1 2x2x2 3x3x3 4x4x4 5x5x5 (7)−(2)
(7)

%

2.51 5.54e-01 5.49e-01 5.51e-01 5.46e-01 5.38e-01 5.44e-01 -1.81
3.51 2.96e-01 2.93e-01 2.92e-01 2.91e-01 2.91e-01 2.91e-01 -1.78
4.51 1.50e-01 1.48e-01 1.48e-01 1.48e-01 1.47e-01 1.47e-01 -1.53
5.51 8.16e-02 8.09e-02 8.07e-02 8.06e-02 8.05e-02 8.05e-02 -1.37
6.51 4.84e-02 4.80e-02 4.79e-02 4.79e-02 4.78e-02 4.78e-02 -1.28
7.51 3.09e-02 3.07e-02 3.06e-02 3.06e-02 3.06e-02 3.05e-02 -1.21
8.51 2.09e-02 2.07e-02 2.07e-02 2.07e-02 2.07e-02 2.07e-02 -1.17
9.51 1.48e-02 1.47e-02 1.46e-02 1.46e-02 1.46e-02 1.46e-02 -1.14
10.51 1.08e-02 1.07e-02 1.07e-02 1.07e-02 1.07e-02 1.07e-02 -1.12
11.51 8.21e-03 8.14e-03 8.13e-03 8.13e-03 8.12e-03 8.12e-03 -1.10
12.51 6.36e-03 6.30e-03 6.29e-03 6.29e-03 6.29e-03 6.29e-03 -1.09
13.51 5.02e-03 4.98e-03 4.97e-03 4.97e-03 4.97e-03 4.97e-03 -1.08
14.51 4.04e-03 4.00e-03 4.00e-03 3.99e-03 3.99e-03 3.99e-03 -1.07
15.51 3.29e-03 3.26e-03 3.26e-03 3.26e-03 3.26e-03 3.26e-03 -1.06
16.51 2.72e-03 2.70e-03 2.69e-03 2.69e-03 2.69e-03 2.69e-03 -1.06
17.51 2.27e-03 2.26e-03 2.25e-03 2.25e-03 2.25e-03 2.25e-03 -1.05
18.51 1.92e-03 1.90e-03 1.90e-03 1.90e-03 1.90e-03 1.90e-03 -1.05
19.51 1.64e-03 1.62e-03 1.62e-03 1.62e-03 1.62e-03 1.62e-03 -1.04
20.51 1.41e-03 1.39e-03 1.39e-03 1.39e-03 1.39e-03 1.39e-03 -1.04
21.51 1.22e-03 1.21e-03 1.21e-03 1.20e-03 1.20e-03 1.20e-03 -1.04
22.51 1.06e-03 1.05e-03 1.05e-03 1.05e-03 1.05e-03 1.05e-03 -1.04
23.51 9.33e-04 9.25e-04 9.24e-04 9.24e-04 9.24e-04 9.24e-04 -1.03
24.51 8.23e-04 8.16e-04 8.15e-04 8.15e-04 8.14e-04 8.14e-04 -1.03
25.51 7.29e-04 7.23e-04 7.22e-04 7.22e-04 7.22e-04 7.22e-04 -1.03
26.51 6.49e-04 6.44e-04 6.43e-04 6.43e-04 6.43e-04 6.43e-04 -1.03
27.51 5.81e-04 5.76e-04 5.75e-04 5.75e-04 5.75e-04 5.75e-04 -1.03
28.51 5.21e-04 5.17e-04 5.16e-04 5.16e-04 5.16e-04 5.16e-04 -1.03
29.51 4.70e-04 4.66e-04 4.65e-04 4.65e-04 4.65e-04 4.65e-04 -1.03
30.51 4.25e-04 4.21e-04 4.21e-04 4.21e-04 4.21e-04 4.21e-04 -1.02

Table 1.1: Comparison between more or less fine meshes

18



Z

Y

X

Elementary Bz

Figure 1.5: Elementary decomposition of a magnet

1.2 Tesla ±5%, we must re-evaluate the remanent field using (1.14) and a
few measurement points located if possible more than 10cm or 20 times the
diameter of the magnet. Thanks to the regularity of column (4) at great dis-
tance, the demagnetization will be included in the evaluation of the residual
field and an accuracy of about one per thousand will be maintained .
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(1) (2) (3) (4)

z (mm) formula(1.14) T 5x5x5 (3)−(2)
(3)

%

10.00 1.269e-02 1.254e-02 -1.1327
20.00 1.523e-03 1.507e-03 -1.0464
30.00 4.475e-04 4.429e-04 -1.0302
40.00 1.882e-04 1.863e-04 -1.0245
50.00 9.624e-05 9.526e-05 -1.0218
60.00 5.565e-05 5.509e-05 -1.0204
70.00 3.503e-05 3.468e-05 -1.0195
80.00 2.346e-05 2.322e-05 -1.0190
90.00 1.647e-05 1.631e-05 -1.0186
100.00 1.201e-05 1.189e-05 -1.0183
110.00 9.020e-06 8.929e-06 -1.0181
120.00 6.947e-06 6.877e-06 -1.0179
130.00 5.464e-06 5.409e-06 -1.0178
140.00 4.375e-06 4.330e-06 -1.0177
150.00 3.557e-06 3.521e-06 -1.0176
160.00 2.930e-06 2.901e-06 -1.0176
170.00 2.443e-06 2.418e-06 -1.0175
180.00 2.058e-06 2.037e-06 -1.0175
190.00 1.750e-06 1.732e-06 -1.0174
200.00 1.500e-06 1.485e-06 -1.0174
210.00 1.296e-06 1.283e-06 -1.0174
220.00 1.127e-06 1.116e-06 -1.0173
230.00 9.864e-07 9.765e-07 -1.0173
240.00 8.681e-07 8.594e-07 -1.0173
250.00 7.681e-07 7.603e-07 -1.0173

Table 1.2: Error when using (1.14) from a great distance.
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Chapter 2

Field correction

After validating the direct calculation, the field overview can therefore be
checked numerically. Although we can start from the formula in arctangent
and use a standard inverse method, we must choose an error function and
especially determine how this error will be distributed. Moreover, this ap-
proach does not give any information on the number of magnets required
for a given accuracy. For the localization of the error, we chose to move it
as far as possible from the center and thus naturally to work on a Taylor
series-type function base, which leads us directly, in the case of potentials,
to the development of the field in Legendre polynomials.

2.1 Potential development

To make a magnetic field homogeneous, one solution is to express the mea-
sured field in a simpler series that will approximate it and try to cancel as
many spurious terms as possible.

Solving the differential equation ∇2ψ = 0 in spherical coordinates gives
the following double series:

ψ(r, θ, φ) =
1

4π

∞∑
n=0

n∑
m=0

(Anm cos(mφ) +Bnm sin(mφ))

rn Pnm (cos θ) (2.1)

where Pnm are the associated Legrendre polynomials1.

1In the following calculations we will use the Abramowitz writing convention, Pnm =
(−1)mPm

n = (1− x2)m/2 dm

dxmPn(x).
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On the unit sphere we determine the Anm and Bnm by calculating the fol-
lowing integrals2:

Anm =

∫ 2π
0

∫ π
0 f(θ, φ)Pnm (cos(θ)) cos(mφ) sin(θ) dθdφ∫ 2π

0

∫ π
0 (Pnm (cos(θ)) cos(mφ))2 sin(θ) dθdφ

(2.2)

Bnm =

∫ 2π
0

∫ π
0 f(θ, φ)Pnm (cos(θ)) sin(mφ) sin(θ) dθdφ∫ 2π

0

∫ π
0 (Pnm (cos(θ)) sin(mφ))2 sin(θ) dθdφ

(2.3)

We show that we can replace the denominators[37, p.709] by Nn0 =

4π (n+m)!
(2n+1)(n−m)!

and for m > 0, Nnm = 2π (n+m)!
(2n+1)(n−m)!

. So there’s no need

to numerically integrate the denominators3.

The transformation of the integrands at the numerators of Anm and Bnm

into Cartesian coordinates makes it easy to visualize the contributions of
each coefficient, but it is important to use them with care in the case of
integration in a volume, because they are no longer orthogonal to each other
if they are not located on the sphere. Any point outside will have the effect
of coupling the coefficients together, thereby degrading the results.

We obtain the following coefficients by making the substitutions cos(θ) =

z/r and φ = arccos(x/
√

(x2 +y2)) then we’ll use the Chebycheff polynomials

cos [n arccos(ω)] = Tn(ω) and sin [n arccos(ω)] = Un(ω). However, during
these transformations, the following areas must be respected4 type shape
because the angles are often no longer in the correct quadrant[38].

a00 = 1

a10 = z

a11 = x

a20 =
−x2 − y2

2
+ z2

a21 = 3 x z

a22 = 3 x2 − 3 y2

2If measurements are made on a sphere of radius r, normalization (sphere of unit radius)
of the coefficients Anm and Bnm is provided by the term rn.

3The variable change x→ cos t mathematically implies (1−x2)m/2 → | sin t|m, however
we can remove the absolute value and use (1−x2)m/2 → sinm t. That way we get domain
problems and it is no longer [0, π].

4In complex cases such as the In the equations presented on page 60, we’ve chosen to
keep a cos [m arctan(y′, x′)]
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a30 =
−3 (x2 + y2) z

2
+ z3

a31 =
−3x (x2 + y2)

2
+ 6x z2

a32 = 15
(
x2 − y2

)
z

a33 = 15 x
(
x2 − 3 y2

)
a40 =

3 (x2 + y2)
2

8
− 3

(
x2 + y2

)
z2 + z4

a41 =
−15x (x2 + y2) z

2
+ 10x z3

a42 =
15 (−x4 + y4)

2
+ 45

(
x2 − y2

)
z2

a43 = 105x
(
x2 − 3 y2

)
z

a44 = 105x4 − 630x2 y2 + 105 y4

a50 =
15 (x2 + y2)

2
z

8
− 5

(
x2 + y2

)
z3 + z5

a51 =
15x (x2 + y2)

2

8
− 45x (x2 + y2) z2

2
+ 15x z4

a52 =
105 (−x4 + y4) z

2
+ 105

(
x2 − y2

)
z3

a53 =
105x (−x2 + 3 y2) (x2 + y2 − 8 z2)

2

a54 = 945
(
x4 − 6x2 y2 + y4

)
z

a55 = 945x
(
x4 − 10x2 y2 + 5 y4

)
b11 = y

b21 = 3 y z

b22 = 6 x y

b31 =
−3 y (x2 + y2)

2
+ 6 y z2

b32 = 30 x y z

b33 = 15 y
(
3x2 − y2

)
b41 =

−15 y (x2 + y2) z

2
+ 10 y z3

b42 = −15x y
(
x2 + y2

)
+ 90x y z2

b43 = 105 y
(
3x2 − y2

)
z
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b44 = 420x3 y − 420x y3

b51 =
15 y (x2 + y2)

2

8
− 45 y (x2 + y2) z2

2
+ 15 y z4

b52 = −105x y
(
x2 + y2

)
z + 210x y z3

b53 =
105 y (−3x2 + y2) (x2 + y2 − 8 z2)

2
b54 = 3780x (x− y) y (x+ y) z

b55 = 945 y
(
5x4 − 10x2 y2 + y4

)

2.2 Conditions on the calculation of coeffi-

cients

From field measurements made on the surface of a sphere, some conditions are
necessary to obtain a good accuracy in the determination of the coefficients
Anm and Bnm. A general method of calculation consists in integrating each
longitude of the sphere, i.e. the part:∫ π

0
f(θ, φ)Pnm (cos(θ)) sin(θ) dθ

then perform the Fourier transform of the previous integrations in order to
determine the integration in cos(mφ) and sin(mφ) (latitude). It is thus nec-
essary to avoid any folding (cf. FFT in signal processing) of higher orders[42].
We will choose a radius r of sphere for the measurement equal to half the
radius of placement of the generators. It is a compromise between the deter-
mination of lower orders that measure very well near the center and become
impossible to determine if r ≈ r′. It is exactly the opposite for higher orders.

The previous integration becomes tricky if the measuring points are not
placed on regularly spaced spindles as this requires a numerical intregation
per variable pitch. Similarly, the radius of the point must be normalized and
its value recalculated on the measuring sphere. During the measurement, it
is difficult to mechanically ensure a constant radius and angular positioning
at all measuring points5. It is therefore preferable to take equi-spacing points
in a parallelepiped volume and then choose as input the nearest points of a
sphere of a given radius. It is even possible, if the number of measured points

5There is a large number of points at the poles of the sphere if each latitude is composed
of the same number of points.
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is high, to independently calculate several spheres of different diameters and
compare the results. As shown in Figure (2.1), the field will be measured on
a cubic grid of h steps and we will choose the set of points whose distance to
the center is between R− h <

√
x2 + y2 + z2 < R + h

Figure 2.1: Measuring the field on a rough radius sphere R± h

Figures (2.1) and (2.2) are obtained by a 10x10x10 mesh of a cube tangent
to the measuring sphere. We thus obtain (n+ 1)3 nodes, i.e. 1331 measure-
ment points. By taking all the points located at ±h of the sphere, we obtain
a total of 350 points which will effectively intervene in the calculation of the
coefficients Anm and Bnm. The angular distribution is correct as can be seen
in the Figure (2.2). However a coupling in the calculation appears since the
terms in rn are involved and are not orthogonal. The table 2.1 summarizes
the accuracy of the algorithm following all the approximations and condi-
tions indicated above. To determine this table, we have numerically created
a field containing all the harmonics up to and including order 5 and with an
amplitude equal to 1. The inverse problem consists in finding the value 1
from the measurement points.

An accuracy of the order of 10−4 is sufficient in this study, so we can
consider this method of measurement satisfactory.
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A00 1.000047 - -
A10 1.000036 - -
A11 9.999906e-01 B11 1.000087
A20 9.998247e-01 - -
A21 1.000032 B21 1.000026
A22 9.999436e-01 B22 1.000008
A30 9.999918e-01 - -
A31 1.000009 B31 1.000042
A32 9.999989e-01 B32 9.999925e-01
A33 1.000030 B33 9.999934e-01
A40 1.000123 - -
A41 9.999818e-01 B41 9.999873e-01
A42 1.000000 B42 1.000002
A43 9.999972e-01 B43 9.999989e-01
A44 9.999971e-01 B44 9.999983e-01
A50 1.000039 - -
A51 9.999526e-01 B51 9.999725e-01
A52 9.999986e-01 B52 1.000000
A53 9.999994e-01 B53 9.999998e-01
A54 1.000000 B54 9.999999e-01
A55 1.000000 B55 1.000001

Table 2.1: Error on the coefficients for a sampling of 350 points.
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Figure 2.2: Angular distribution in A θ, φ of the measuring points

2.3 Algorithm for calculating coefficients

We will therefore determine the coefficients that minimize the difference be-
tween the set of measurement points and the linear combination of Legendre
functions. The general form of the model is

y(x) =
M∑
k=1

akXk(x) (2.4)

We are defining a merit function that we will seek to minimize:

χ2 =
N∑
i=1

[
yi −

M∑
k=1

akXk(xi)

]2
(2.5)

The minimum of this function is given by the M normal equations:

0 =
N∑
i=1

yi − M∑
j=1

ajXj(xi)

Xk(xi) k = 1 · · ·M (2.6)

We can rewrite this system in the form of

M∑
j=1

αkjaj = βk (2.7)
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with

αkj =
N∑
i=1

Xj(xi)Xk(xi) et βk =
N∑
i=1

yiXk(xi) (2.8)

The application of the previous general form is summarized in the al-
gorithm coefficients which calculates the terms up to and including order
8. The two subroutines indicate how to calculate the order of the coeffi-
cients as a function of the index used for the linear ordering of the variables.
The function lgndr is available in any literature dealing with the recurrence
calculation of the associated Legendre polynomials (ex:[13]).

coefficients()
1 nmax← 8
2 nbvara← 45
3 nbvarb← 36
4 nbvar ← nbvara+ nbvarb
5 nbpoints← 350
6 for i← 1 to nbpoints
7 do x[i]← measured
8 y[i]← measured
9 z[i]← measured

10 field[i]← measured
11
12 for k ← 1 to nbvar
13 do bet[k]← 0.
14 for l← 1 to nbvar
15 do u[k][l]← 0.
16
17 for i← 1 to nbpoints

18 do r ←
√
x[i]2 + y[i]2 + z[i]2

19 for k ← 1 to nbvara
20 do n,m← detanm(k)
21 a[k]← (−1)m rn lgndr(n,m, z[i]/r) cos(m arctan(y[i], x[i]))
22 bet[k]← bet[k] + field[i]× a[k]
23
24 for k ← 1 to nbvarb
25 do n,m← detbnm(k)
26 a[k + nbvara]← (−1)m rn lgndr(n,m, z[i]/r) sin(m arctan(y[i], x[i]))
27 bet[k + nbvara]← bet[k + nbvara] + field[i]× a[k + nbvara]
28
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29 for k ← 1 to nbvar
30 do for l← 1 to nbvar
31 do u[k][l]← u[k][l] + a[k]× a[l]
32
33
34
35 for l← 1 to nbvar
36 do sol[l]← ∑

k u
−1[k][l]× bet[k]

37

detanm(i)
1 indent← 0
2 for n← 0 to nmax
3 do for m← 0 to n
4 do indent← indent+ 1
5 if indent = i
6 then return n,m
7
8
9 error “i 6∈ [1, nbvara]”

detbnm(i)
1 indent← 0
2 for n← 1 to nmax
3 do for m← 1 to n
4 do indent← indent+ 1
5 if indent = i
6 then return n,m
7
8
9 error “i 6∈ [1, nbvarb]”

This computational technique is equivalent to the determination of the
pseudo-inverse matrix of Moore-Penrose which allows us to construct the
general solution of the problem of linear association functions. It consists
in finding a matrix X minimizing the Euclidean norm ||AX − B||, where A
and B are two given rectangular matrices. If the lines of the matrix A are
linearly independent, which is the case if the measuring points are on the
same sphere, the solution is
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X = (ATA)−1.AT .B (2.9)

2.4 Coefficients cancellation

In magnetic resonance imaging, the static magnetic field should be as ho-
mogeneous as possible. We will try to cancel up to a certain order all the
coefficients. We must then create a magnetic field whose orders will be oppo-
site to those of the main field. We have chosen for this study a device based
on permanent magnets whose dimensions are much smaller than those of the
machine. The correcting magnets will have a maximum volume of one cubic
centimeter. As we will see later, a minimum volume of magnetized material
is needed to generate a non-negligible field at the center, while respecting a
multipole development6 rather small.

2.5 Calculation of correction magnets

Several solutions for determining the magnetic field generated by a magnet
can be used. As we saw in the previous chapters, we can determine in a
complete analytical form the field produced by rectangular magnets. The
main advantage of this approach is a very short calculation time and a very
high accuracy. On the other hand, we do not have such practical formulas for
cylindrical magnets or sectors, as there is often still numerical integration to
be done. However, this type of analytical approach is no longer suitable for
generating a magnetic field a priori. The opposite problem consists in deter-
mining, for example, the position of magnets or the geometric characteristics
and magnetizations in order to generate this type of field. The problem can
be solved by a non-linear optimization with minimization of the error be-
tween the field to be obtained and the field generated by the magnets, the
variables being the position of each magnet or a geometric characteristic.

It turns out that this approach does not generally give good results. A
first finding is that the equations used in numerical computation are strongly
coupled, so it is very difficult to reverse the problem. A second finding is
that a large number of degrees of freedom is generally required (we have
evaluated them at least 30) which makes it particularly difficult to optimize
these parameters in a non-linear way. It is also necessary to think about the

6The area of interest will be limited to half the dimensions of the generator. The
multipole development becomes important if r/r′ > 1/2.
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form of the functional. For example, let us take a minimization of the norm
between the desired field and the field generated by the magnets, it would be
very annoying if the error were large at the center while keeping the average
error low.

The location of the error is therefore very important. Usually we try to
locate the error as far from the center as possible. A simple idea is to cancel
the successive derivatives of the magnetic field (origin of the function at the
center of the machine). In Cartesian coordinates, if we want to cancel up to
and including the fifth derivative:

∂f

∂x
,
∂f

∂y
,
∂f

∂z
,
∂2f

∂x2
, ...,

∂3f

∂x∂y∂z
, ...,

∂5f

∂x2∂y2∂z
, ...

we obtain 215 equations to be cancelled ((order+1)3−1), plus an additional
equation if we wish to control the value of the constant field. However, we are
in the presence of a magnetic field, and several combinations of derivatives
are null; this makes the problem much easier because the number of equations
to be cancelled will be less. To obtain directly a base of non-zero derivatives,
we will use the development of the scalar potential in Legendre polynomials.

In a volume where there is no moving electric charge and of constant
permeability, which is the case in the useful area of the machine, the magnetic
field is described by a law of the type ~B = −~∇ψ with

∇2ψ = 0 (2.10)

A laplacian solution is a potential 1
R

.

In polar coordinates the laplacian is written:

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
= 0 (2.11)

2.5.1 Legendre polynomial magnet development

The calculation will be made from a magnet whose magnetization ~M is di-
rected along the ~z and we will be interested for the moment only in the z
component of the ~B field generated by this magnet. We will use the formula
Fzz′ page 14 with the hypothesis that the magnetization is rigid and is there-
fore not influenced by the external field. However, it would be interesting
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to determine experimentally the influence of the external transverse compo-
nents Hx and Hy on the value of the Mz magnetization. According to these
hypotheses, the field produced by the magnet is

Bz =
Mz

4π

∂

∂z

∫
S

[
1

R

]z2
z1

dx′dy′ (2.12)

Using the development of 1
R

in spherical coordinates[31, p.1274], the devel-
opment of potential can be written7:

1

R
=

n=∞∑
n=0

m=n∑
m=0

εm
(n−m)!

(n+m)!
Pnm(cos θ)Pnm(cos θ′).

cos [m(φ− φ′)]
{

rn

r′n+1 si r′ > r
r′n

rn+1 si r > r′.
(2.13)

We can then enter the derivative with respect to z into the integral and
determine the integrand as follows[12, p.48][48]: for r′ > r (Correction mag-
nets are placed outside the useful area):

∂ 1
R

∂z
= −

n=∞∑
n=0

m=n∑
m=0

εm
(n−m+ 1)!

(n+m)!
Pnm(cos θ)Pn+1m(cos θ′).

cos [m(φ− φ′)] rn

r′n+2
(2.14)

We can see that the z derivation is not for the variables θ and r but for
the variables θ′ and r′. Using the fact that ∂1/R

∂z
= −∂1/R

∂z′
, the identification

between the coefficients Anm, Bnm measured and the development of the field
produced by the magnets is easier.

2.5.2 Approximate Surface Integration

The following x′ and y′ integration of the previous equation will be neglected
for the moment and we will replace this integration by the A cross section
of the magnet. This approximation must then be carefully evaluated so that
the error committed does not contradict the desired precision when cancelling
the coefficients. Anm and Bnm.

7εm = 1 if m = 0 and 2 if m > 0.
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We thus obtain the following development of the Bz field8:

Bz(ρ, θ, φ) = −Mz A

4π

n=∞∑
n=0

m=n∑
m=0

εm
(n−m+ 1)!

(n+m)!

[
Pn+1m(cos θ′)

r′n+2

]z2
z1

.

rn Pnm(cos θ) cos [m(φ− φ′)] (2.15)

This development is thus valid in the case where r < r′. Since the sum
ranges from n = 0 to∞, it is necessary to study the convergence of the series
as a function of n. Figure (2.3) shows the relative error between the exact
value of the field and the development (2.15) as a function of the value n.
Since the magnet is at r′ = 10cm, we clearly see that (2.15) is valid only in
the domain r ∈] − r′, r′[. The limits of the interval are the asymptotes at
∞. We also notice that the further we move from the source, the smaller the
error, due to the truncation of the series. The error increases as we get closer
to the source because we did not perform the x, y integration of the magnet
cross section.

2.5.3 Cancellation of coefficients

By developing cos [m(φ− φ′)] = cos(mφ) cos(mφ′) + sin(mφ) sin(mφ′), we
can identify the coefficients Anm and Bnm of the measured field with the
corresponding coefficients of the correction magnets. By adding the field
generated by the magnets to the measured field, we have the following equa-
tion:

1

4π

Nordres∑
n=0

n∑
m=0

(Anm cos(mφ) +Bnm sin(mφ)) rnmes Pnm (cos θ) +

−Mz A

4π

Nordre∑
n=0

m=n∑
m=0

εm
(n−m+ 1)!

(n+m)!

[
Pn+1m(cos θ′)

r′n+2

]z2
z1

.

rn Pnm(cos θ) [cos(mφ) cos(mφ′) + sin(mφ) sin(mφ′)] = 0 (2.16)

We can notice that this identification is quite valid because each compo-
nent of the magnetic field verifies the Laplace equation ∇2ψ = 0. Moreover

8We have chosen the convention that the indices numbered z1 and z2 represent the
start and end coordinates of the bar magnet. Strictly speaking, they should be called z′1
and z′2 but in order to lighten the formulation, there is no possible confusion with the
coordinates of the calculation point.
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Figure 2.3: Relative error between the formula (1.14) and the development
(2.15) as a function of n. The source is at r′ = 10cm.
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any integration or derivation following the spatial coordinates does not mod-
ify this property. We can therefore still approximate the field by the double
series Eq(2.1).

The terms rnmes and rn will be normalized to 1 to simplify the calculation.
Using the orthogonality property of Legendre’s development, we will group
and cancel the factor functions of the terms into Pnm(cos θ) cos(mφ) and
Pnm(cos θ) sin(mφ), we obtain a system of equations of the form:

{
Anm
4π
− Mz A

4π
εm

(n−m+ 1)!

(n+m)!

[
Pn+1m(cos θ′)

r′n+2

]z2
z1

cos(mφ′)

}
×

Pnm(cos θ) cos(mφ) = 0 (2.17)

and {
Bnm

4π
− Mz A

4π
εm

(n−m+ 1)!

(n+m)!

[
Pn+1m(cos θ′)

r′n+2

]z2
z1

sin(mφ′)

}
×

Pnm(cos θ) sin(mφ) = 0 (2.18)

To correct all the harmonics up to and including order 5, we have 35
such equations to solve simultaneously. We will only keep the part between
brackets because these equations must be verified whatever the calculation
point (θ, φ) is. We immediately notice that there are not enough variables to
cancel out the 35 equations above. We can then add N magnets to retrieve
the missing variables, so we write:


Anm

4π
−∑N

i=1
Mi Ai

4π
εm

(n−m+1)!
(n+m)!

[
Pn+1m(cos θ′i)

r′n+2
i

]zi2
zi1

cos(mφ′i) = 0

Bnm

4π
−∑N

i=1
Mi Ai

4π
εm

(n−m+1)!
(n+m)!

[
Pn+1m(cos θ′i)

r′n+2
i

]zi2
zi1

sin(mφ′i) = 0
(2.19)

2.5.4 Hardware configuration of the shims

We have placed the magnets on a cylinder with a radius of 10cm9. For a
simplicity of adjustment we have allowed ourselves to fix the phi′ angle of
each magnet, thus having only the z′ displacement for the adjustment10.

9In the whole document, r’ is equal to 10cm minimum and the measurements are made
at 5cm from the center. To generalize the results, we consider that the area of interest is
half the dimensions of the machine.

10the letters ’ are used simply to specify that these are the coordinates of the magnets
and not the calculation point.
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Having therefore only one degree of freedom per magnet, we have chosen to
uniformly distribute 35 identical magnets in phi′ around the cylinder and to
act on their displacement in z′.

z
y

x

moving
along z'

Figure 2.4: Magnet configuration

The principle of the adjustment is as follows; first, we measure the mag-
netic field with a Hall probe or an NMR gaussmeter. The measurement
points should preferably be located on the surface of a sphere. Then, with
the help of a software program, we precisely determine the coefficients of the
spherical harmonics. From these coefficients, we will determine the position
of the magnets which produce exactly the coefficients whose value will be
opposite to those of the measured field.

The software for determining Legendre coefficients is numerically stable,
the problem is almost linear. On the other hand, determining the position
of magnets from Legendre coefficients is a non-linear problem. The coupling
between the equations being very high, we have to use particular numerical
methods that allow us to invert the equations. A chapter will be devoted to
the numerical solution.

2.6 First problem solved

To validate the method, we tried to correct the homogeneity defects of
the Bz field created by a small ferrite placed on a radius of 11cm and a
z-displacement of 2.5cm with respect to the origin of the axes. Then we ar-
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ranged the 35 magnets in the configuration explained previously (placed on
a cylinder with a radius of 10cm and uniformly distributed in φ). The ferrite
is deliberately placed on a slightly larger radius in order to avoid a possible
conflict of position. In a first step, the field generated by the ferrite on the
surface of a sphere must be measured. 350 points are needed to calculate the
spherical harmonics with sufficient precision (see Tab 2.1) while respecting
the fact that the uncalculated higher harmonics are not too high in the mea-
surement zone. There would be, in the manner of the Fourier Transform, a
folding of the higher harmonics on the lower harmonics. In our case on a
measurement sphere of 5cm diameter this was not the case.

As an example, the figures (2.5) and (2.6) show a main field before cor-
rection (high curve in each figure) and after adding the correction magnets
(low curve) for two axes Oz and Ox.

-0.04 -0.02 0.02 0.04
z (cm)

-0.00008

-0.00006

-0.00004

-0.00002

Bz (T)

Figure 2.5: ~z axis field correction

These figures clearly show an improvement in the field strength between
the first curve and the second, which is much more homogeneous.
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-0.00004

-0.00002
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Figure 2.6: ~x axis field correction

2.7 Discussion on the direction of magnetiza-

tion of the magnets relative to the main

field

2.7.1 All magnets in the same direction:

If we orientate all the correction magnets in the same direction we obtain
a distribution of the values of the coefficients Anm and Bnm centred on 0.
However, up to and including order 5, the coefficient A20 escapes this rule.
This is not centred on zero and one of the limits of the spread is approximately
zero. To be more precise the value zero can be reached but with a very low
probability. It is thus necessary to generate a field defect with a A20

11. So the
sign of that coefficient will determine the general orientation of the correction
magnets.

11This coefficient expresses the difference of curvature along the ~z and the average of
the curvatures along the ~x and ~y.
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Figure 2.7: Initial field level curve

2.7.2 One every two magnets in the same direction

This time, all the coefficients are approximately centered, so we can choose
the direction of variation of the main field. However, the maximum values
reached by the coefficients of this configuration are 25% lower, so we have a
lower power of correction.

2.7.3 One hemisphere one way and vice versa

We can also use the fact that by orienting one hemisphere in one direction
and the other in the opposite direction we can shift the distribution of the
corresponding gradient from the −alpha to the +alpha interval towards 0 to
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Figure 2.8: Corrected field level curve (apparent 6th order - quod erat demon-
strandum)

2α12, this can possibly be used to correct an important gradient. Neverthe-
less we will recall that the power of correction on the other coefficients will
be further decreased by 25%.

2.8 Influence on transverse components

In magnetic resonance imaging, we have hypothesized that we are only inter-
ested in the longitudinal component of the field because the radiofrequency
field only captures along this axis. However, there are a contribution from

12For example let us orient the upper hemisphere of our configuration in the direction
of the field and the lower hemisphere in the opposite direction, the distribution of the
coefficient B11, i.e. the following gradient y, will be shifted.
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the transverse components. In rotational symmetry, conventional helmohtz
coil-type configurations essentially generate a field in one direction. But
our correction system does not have, except in special cases, a symmetry of
revolution. It is therefore interesting to know if this system does not am-
plify the transverse errors, no control equation being integrated. The Figure
(2.9) shows that on the contrary the field lines tend towards the direction ~z.

The divergence ∇. ~B = 0 is verified because each of the derivatives ∂Bx/∂x,
∂By/∂y and ∂Bz/∂z is null. The most important parasite term is a ∂By/∂z
gradient.

Z

Y

X

B initial

B final

Figure 2.9: Behaviour of the ~B field before and after the correction. The
transverse components Bx and By are globally weaker.
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2.9 Bessel field development

An alternative to the previous approach in cylindrical coordinates is the
use of Bessel functions. We will always assume that the replacement of the
integral in x′ and y′ by the simple surface of the magnet is accurate enough
for a computation point far away from the correcting magnet.

Let’s start from the development of the potential in cylindrical coordinates[24,
p.118]:

1

|x− x′|
=

4

π

∫ ∞
0

cos[k(z − z′)]× {1

2
I0(kρ<)K0(kρ>)+

∞∑
m=0

cos[m(φ− φ′)]I0(kρ<)K0(kρ>)} dk (2.20)

where I0 and K0 are the modified Bessel functions.

Then an interesting identification can be used:

K0

(
k
√
ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′)

)
= I0(kρ<)K0(kρ>)+

2
∞∑
m=0

cos[m(φ− φ′)]I0(kρ<)K0(kρ>) (2.21)

Using as before the formula Fzz′ page 14 and deriving the integrand with
respect to z, we obtain the field equation Bz generated by a corrector magnet
whose magnetization is Mz, the cross-section is A and the length is z2 − z1:

Bz(ρ, φ, z) =
Mz A

2π2

∫ ∞
0

[
∂ cos[k(z − z′)]

∂z

]z2
z1

×

K0

(
k
√
ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′)

)
dk

= −Mz A

2π2

∫ ∞
0

k (sin[k(z − z2)]− sin[k(z − z1)])×

K0

(
k
√
ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′)

)
dk (2.22)

There are therefore other possible developments in the field. By studying
the convergence of the series resulting from the previous formula, we can
extract the various terms from the series and form a system of equations.
The next series starts at order 1 because the calculation of order 0 obliges
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the use of the limits. We are in the presence of an indetermination and this
indetermination is lifted, the term at order 0 is equal to zero.

Bz(ρ, φ, z) = −Mz A

2π2

N∑
1

k (sin[k(z − z2)]− sin[k(z − z1)])×

K0

(
k
√
ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′)

)
(2.23)

The Figure (2.10) shows, in the same way as the Figure (2.3), the relative
error between the exact value of the field and the development (2.23) for
N = 36 and N = 64. Note that the error in the useful zone is larger than the
Legendre development, but there is no longer a radius of convergence. This
has the advantage of creating large useful zones if a larger average error is
allowed. However, it is necessary not to get too close to the source, because
the higher harmonics become, like the Legendre development, predominant.
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Figure 2.10: Relative error between exact field and Bessel functions approx-
imation
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Chapter 3

Non-linear resolution

The numerical resolution of Legendre’s system of equations is essential. From
a field expressed as Legendre coefficients, the program determines the posi-
tion of the magnets that will generate this field. The main difficulty is that
the different equations are strongly coupled. When we linearize the equa-
tions at each iteration, the Jacobian matrix is not invertible. It is therefore
impossible to solve this system by a classical Newton-Raphson-type method.
However, the method of decomposing a matrix into singular values partially
solves this problem. We then created our own solution system based on this
method and on the analysis of the behavior of this type of equations. This
technique can be useful for inverse problems deriving from a potential in 1

R
.

3.1 General Newton method

We want to solve the following system by Newton’s method.

f1(x1, x2, x3, · · · , xn) = 0
f2(x1, x2, x3, · · · , xn) = 0

...
...

fn(x1, x2, x3, · · · , xn) = 0

(3.1)

Having an initial vector x = (x1, x2, x3, · · · , xn), we will determine a dis-
placement vector δ by expanding each function into a Taylor series and keep-
ing only the linear terms.

f1(x) +
∂f1
∂x1

(x)δ1 +
∂f1
∂x2

(x)δ2 + · · ·+ ∂f1
∂xn

(x)δn = 0
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f2(x) +
∂f2
∂x1

(x)δ1 +
∂f2
∂x2

(x)δ2 + · · ·+ ∂f2
∂xn

(x)δn = 0

...

fn(x) +
∂fn
∂x1

(x)δ1 +
∂fn
∂x2

(x)δ2 + · · ·+ ∂fn
∂xn

(x)δn = 0 (3.2)

In matrix notation, the system of equation (3.2) is written as follows

F (x + δx) = F (x) + J.δx +O(δx2) = 0 (3.3)

we calculate δx by

J.δx = −F ≡ δx = −J−1.F (3.4)

δx represents the deviation to be applied to the initial vector x and if
there is no singularity at the point considered[2, p.373], x + δx will be the
new approximation of the root of the system of equations (3.1). We will
repeat the calculation until we obtain a sufficiently precise root.

3.2 Roots of Legendre’s equations

To determine the position of the correction magnets, we use the system of
equations (2.19) determined in the previous chapter:


Anm

4π
−∑N

i=1
Mi Ai

4π
εm

(n−m+1)!
(n+m)!

[
Pn+1m(cos θ′i)

r′n+2
i

]zi2
zi1

cos(mφ′i) = 0

Bnm

4π
−∑N

i=1
Mi Ai

4π
εm

(n−m+1)!
(n+m)!

[
Pn+1m(cos θ′i)

r′n+2
i

]zi2
zi1

sin(mφ′i) = 0

We have chosen to move the magnets only in z. Thus each magnet will
move in one of the 35 grooves evenly distributed around the generating cylin-
der.

To make the variables zi appear, the bracketed part of (2.19) will be
rewritten in Cartesian coordinates, and we will determine φ′ for each magnet
i.
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Figure 3.1: Variables used
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Anm

4π
−∑N

i=1
Mi Ai

4π
εm

(n−m+1)!
(n+m)!

Pn+1m(
z′
i

r′
i

)

r′n+2
i

zi2
zi1

cos
[
m(i− 1)2π

35

]
= 0

Bnm

4π
−∑N

i=1
Mi Ai

4π
εm

(n−m+1)!
(n+m)!

Pn+1m(
z′
i

r′
i

)

r′n+2
i

zi2
zi1

sin
[
m(i− 1)2π

35

]
= 0

(3.5)

Now that the main equations have been set, we must determine the roots.
We will calculate the Jacobian of the system (3.5) in relation to the variables
zi. Each element of the matrix is written as follows

∂f

∂zi
=
MiAi

4π
εm

(n−m+ 2)!

(n+m)!

Pn+2m(
z′i
r′i

)

r′n+3
i


zi2

zi1

cos
sin

[
m(i− 1)

2π

35

]
(3.6)

3.3 Inversion of the Jacobian matrix

An important step is the calculation of J−1 in (3.4) because the main dif-
ficulty is there. Let us suppose that we are very close to a solution vector,
a difference of 10% on only one of the coordinates of the vector is enough
to make the system non-invertible. The equations composing the system are
thus decoupled in a region very close to the solution. The difficulty remains
the choice of an initial vector. An ad-hoc method consists in randomly draw-
ing each position of a correcting magnet within a reasonable interval1. The
probability of being close to the solution vector(s), assumption not verified is
particularly low, we can consider after a rough calculation to have a chance
on 1035. It is thus almost impossible to find a root in an acceptable time.
However the calculation time can be greatly reduced by using the method of
decomposition in singular values of a square matrix.

The generic idea of the root search is based on the following hypothesis,
let us take any initial vector and a number of equations much lower than the
number of the general system and we will assume that the solution vector
found must be close to the real solution. If we decrease the number of
equations to be solved to n, the program can only provide us with the n
most significant variations on the coordinates of the initial vector. The other
coordinates of the vector are not affected (i.e. some magnets do not move at

1The limits of the gap are approximately equal to the radius of the generating cylinder,
beyond which the magnet no longer has any significant influence.
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all), so it seems clear that the accuracy achieved will be insufficient. But in
our problem, a remarkable fact is that the found vector can be used efficiently
in the search for a new solution to the system on which we increase the
number of equations to be solved. The process ends when we have reached
the full number of equations and found the solution vector.

3.4 Singular value decomposition of a square

matrix

This very powerful technique is used for inversion of singular matrices. Gaus-
sian elimination or LU decomposition2 cannot be used because of their sen-
sitivity to rounding errors. Singular value decomposition is often used in
linear least squares calculations, matrices are generally poorly conditioned
because the aim is to minimise the difference between a model and a set
of points greater than the number of variables needed to fully determine a
solution. The problem in this case is oversized. In this study, we will not
use least squares but a root search, because the equations already generate
a non-invertible matrix when the number of unknowns equals the number
of equations. Using a greater number of variables does not provide better
results.

The singular value decomposition is based on the following linear algebra
theorem: Any matrix A whose number of rows is greater than or equal to the
number of columns can be decomposed into a product of three matrices U ,
W , V T . The matrix U is the same size as the matrix A and its column vectors
are orthogonal to each other. The W matrix is a diagonal matrix composed
of positive or zero values, its size is equal to the number of columns of A.
Finally the V T matrix is an orthogonal square matrix, so we have:

A = U. [diag(wi)] .V
T (3.7)

The numerical routines used are derived from an algorithm proposed by
Forsythe[15] originally created by Golub and Reinsch[18].

In our case, the matrix A is square, so the three matrices will be as
square and of the same size as A. Since U and V are orthogonal matrices,
the transpose of each of these matrices is equal to their inverse. The inverse
of the matrix A is written as follows

2Lower Upper triangular matrix.
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A−1 = V. [diag(1/wi)] .U
T (3.8)

In the case of the search for roots of a system deriving from a potential
in 1/R, the equations (represented by the main equation of the field a00 and
successive derivatives) cancel each other at infinity. Given the size of our
system (radius of the generating cylinder equal to 10cm), at more than 30cm
from the center we can consider that the magnets are placed at infinity. As
the matrix to be inverted is precisely the Jacobian of these equations with
respect to the spatial coordinates, the system will be made non-invertible
in the case where magnets are ejected far from the area of interest. Many
elements of this matrix will be cancelled and thus the row or column vectors
of the matrix A−1 become linearly dependent. The classical consequence of
a divergent system is to provide no result. This general tendency is more-
over the main difficulty encountered in the inverse problems related to the
positioning of sources.

The coefficients of the diagonal matrix W−1 indicate whether the matrix
is well conditioned. If the ratio wmax/wmin > 106 in the case of 4-byte floats
and wmax/wmin > 1012 in the case of 8-byte floats, rounding errors become
very large when inverting the matrix A by a Gauss pivot method.

By setting a limit value where any lower value wi will be replaced by zero3,
we remove some lines from the matrix A. They are either coupled together
or close to zero. Calculating the inverse by this method will solve AX = B
by a method of least squares, it will then be a matter of determining X such
that ||AX −B| is minimum.

3.5 Software flowchart

The positions of magnets generating the field opposite to the field determined
by the coefficients Anm, Bnm, themselves derived from the measurements, are
given by the algorithm in the Figure (3.5).

The 5 following procedures consist in repeating the initial procedure and
reusing the solution vectors found previously by dividing by 10 in each pro-
cedure the coupling coefficient limwi. The random draw will be centered on
the previous solution vector ±1cm.

Iteration 2 is therefore written by taking the initial algorithm and replac-
ing step 2 by the Figure below (3.2).

3We will transgress a mathematical rule wi = 0 → 1/wi = ∞ = 0, an infinity that we
have replaced by zero!
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Inputs:
- geometrical and magnetic characteristics of the material
- cage radius
- values of the 35 Legendre coefficients Anm, Bnm to be obtained

Step1

- limwi=0.01 (out of 35 equations, half of the equations will be removed)
- random drawing of the magnets position over the entire interval -0.1,0.1
- initial error = sum of the 35 coefficients Anm, Bnm

Step 2

~z is the displacement of magnets by decomposition into singular values:

δz =

[
∂F

∂z

]−1
.z = V. [diag(1/wi)] .U

T .z

znew = z + δz

Step 3

is δz <
10−6 ?

Visual analysis
of the errors on

each equation and
possible detection
of an impossibility

- current error = initial error - sum of current Anm, Bnm coefficients generated
by the magnets
- retention of the lowest current error with the associated magnet position

Step 4

1000
iterations

?

End
Calculation time per procedure (6)
4 minutes at 10MFlops (total 24 mn)

yes

no

yes

no
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- limwi=0.001 (out of 35 equations, 40% of the equations will be removed)
- random drawing of the magnets position over the entire interval -0.01,0.01

Step 2

Figure 3.2: Modification of Step 2 to refine the ~z magnets positioning
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Chapter 4

Bivariates application

To illustrate the algorithm of the previous chapter by a graphical method, we
will determine the position of two magnets that will generate a homogeneous
field on the ~z axis. These 2 magnets are in the first configuration Figure (4.1)
and the characteristics of the magnets are given in chapter 1.5. As we are
only interested in the Bz field on the axis, their position in φ′ is unimportant.
This study is instructive because we can transpose this two-dimensional case
to the more complicated n-dimensional examples.

φ
π

' = n

2

3

x

y

z

x

y

z

z1

z2

z1

z2

z3

Two magnets generation Three magnets generation

Figure 4.1: Two and three magnets configuration

53



4.1 Curve appearance a00, a10, a20

The curve a00 = cste is represented in 2 and 3 dimensions (2 and 3 magnets),
the coordinates of the axes are the positions of the magnets. We notice that
the transposition is easy because the curve f(z1, z2) = cste ≡ f(z1, z2, z3 =
0) = cste. We find the curve with 2 magnets by a section of the curve with
3 magnets. The curve a00 = 0 is subtle, the axes~x and ~y are asymptotes
to infinity, there is also a virtual curve when z1 = z2 = ∞. However these
remote solutions do not interest us, so we will limit the study to ±20cm1.

The Figure (4.3) shows the two curves a10 = 0 and a20 = 0. It is a mat-
ter of finding the points of intersection of the simultaneous solutions. The
particularity of the first equation is that it consists of a z2 = −z1 line and
curves tangent to the solution points of a20. Algorithms of the multidimen-
sional Newton type will fail because the next solution vector is determined
by the intersection of the hyperplanes, themselves tangent to the curves at
the current point. It is therefore imagined that a solution determined by two
tangent curves cannot be found. In this case, the solution is not in doubt
because the second curve is automatically intersected by the line. The dotted
polyline represents the path followed in the search for solutions. We notice
that the 4th segment is very close to the solution but is subsequently ejected.
The second approach is made using the SVD algorithm, as a hyperplane is
suppressed if it is parallel to another2. The solution is then found. However,
if the initial vector answers z2 = −z1, a solution will be found very quickly,
even with a Newton-Raphson method.

4.2 Selection of initial vectors

During a simple field generation, many Legendre development coefficients
are null. We often find a line3 of the type z1 ± z2 ± · · · ± zn = 0, it is
well indicated to choose an initial vector whose components are made up
of the same absolute value chosen randomly and of sign in accordance with
the equation of this line. In this way the vector clings to the plane, and is
thus less subject to the phenomenon of tangent curves. In physical terms
we can relate this to the different symmetries, but the mental effort becomes

1We remind that throughout the document, we have normalized the dimensions of the
generator to r′ = 10cm. This is absolutely not restrictive because it is a dimensional ratio
between r and r′, so we have chosen that the magnets could move a maximum of ±2r′.

2Two lines of the Jacobian are identical, so the singular value decomposition will remove
one of the lines and continue as a least squares resolution.

3Some equations even contain several lines such as a31 = 0.
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important when the number of orders to be corrected is large. It would
then be interesting to review the different equations of the straight lines
and test different initial vectors. A rough method consists in trying all the
combinations of signs, but for 35 equations we get 234 = 17 179 869 184 initial
vectors.

However, these considerations are valid only in the case of cancelling the
coefficients, otherwise the lines disappear as we can see in the Figure (4.4).
Therefore, there is only no pure symmetry if the coefficient considered is not
zero.

However, it seems difficult to search for solutions cancelling some of the
coefficients because the function is not derivable everywhere4. Experience
shows that it is simpler to correct a magnetic field where none of its coeffi-
cients is zero than to generate a particular field profile with a priori many
zero coefficients.

We have thus demonstrated the interest of eliminating one of the tangent
planes by our algorithm. By side effect, we also avoid getting too close to
the solution in order to avoid an erroneous calculation of the jacobian, as
some functions are not derivable at these points. It is thus the approach of
the solution in the sense of least squares that eliminates this difficulty.

4It is precisely at solution points 1,2,3,4 of the figure (4.3) that one of the functions is
not derivable.
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Chapter 5

Field generation by means of
current wires.

The initial hypothesis is that we can generate a large number of configu-
rations from straight current lines. We have initially chosen the simplest
possible conductor shape and tried to generate arbitrary fields. If this is
not possible, as the functions from the potential development may not be
independent in the case of a line segment, we will choose another form of
current line. Passing from line segments to B-splines for example does not
pose any difficulty because the equations of the current elements are defined
in the parametric form x′ = f(t), y′ = f(t) and z′ = f(t). This allows later

numerical integration of the infinitesimal elements ~dl between the starting
point and the end point of the current arcs.

Generally speaking, the potential vector ~A created by an element of cur-
rent ~dl and intensity I is written:

~A =
µ0

4π
I
∫
l

~dl

R
(5.1)

and the magnetic field ~B is written:

~B = ~rot ~A (5.2)

These equations allow us to directly use Legendre’s polynomial development.
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5.1 Field development of a wire segment

5.1.1 Calculation of component Bz (see Fig 5.1)

Let’s first consider a line segment carried by a z = cste plane and let’s look
at the only one z component of the field generated by this coordinate wire
(x1, y1;x2, y2) :

Bz =
∫
l
(y2 − y1)

∂ 1
R

∂x
− (x2 − x1)

∂ 1
R

∂y
(5.3)

Taking up the development of 1/R (2.13), the integration along the wire
relates to the coordinates x′ and y′. The various coefficients out of integration
are written1:

anm =
1

√
x′2 + y′2 + z′2

n+2 εm−1
(n−m+ 2)!

(n+m)!
(1 + δm−1)

(−(y2 − y1) cos [(m− 1) arctan(y′, x′)]− (x2 − x1) sin [(m− 1) arctan(y′, x′)])

Pn+1m−1[
z′√

x′2 + y′2 + z′2
] + εm+1

(n−m)!

(n+m)!
(1− δm+1)

((y2 − y1) cos [(m+ 1) arctan(y′, x′)]− (x2 − x1) sin [(m+ 1) arctan(y′, x′)])

Pn+1m+1[
z′√

x′2 + y′2 + z′2
]

bnm =
1

√
x′2 + y′2 + z′2

n+2 εm−1
(n−m+ 2)!

(n+m)!
(1 + δm−1)

(−(y2 − y1) sin [(m− 1) arctan(y′, x′)] + (x2 − x1) cos [(m− 1) arctan(y′, x′)])

Pn+1m−1[
z′√

x′2 + y′2 + z′2
] + εm+1

(n−m)!

(n+m)!
(1− δm+1)

((y2 − y1) sin [(m+ 1) arctan(y′, x′)] + (x2 − x1) cos [(m+ 1) arctan(y′, x′)])

Pn+1m+1[
z′√

x′2 + y′2 + z′2
]

with

εm =


0 si m < 0
1 si m = 0
2 si m > 0

1We voluntarily wrote arctan(y′, x′) which returns the angle in all four quadrants, this

syntax is similar to the form arctan( y′

x′ ) defined only on the interval [−π/2, π/2].
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et

δm =

{
1 si m = 0
0 si m 6= 0

To calculate the different coefficients, we perform the following substitu-
tion x′ = x1+(x2−x1)×t, y′ = y1+(y2−y1)×t. We recognize the parametric
equations of a line segment. We then integrate Bz following t varying from
[0.1]. This step can therefore be modified by replacing the parametric equa-
tions in the program by other equations in the numerical integration routine
and by taking care to modify the terms in (x2 − x1), (y2 − y1), (z2 − z1) by
the local derivative of the integration path. The above-mentioned terms are
obtained in this way by deriving the two parametric equations with respect
to t.

Analytical integration is possible for all coefficients, however a coefficient
of order 4 requires 20 million characters to be represented. Order 5 cannot
be reasonably written analytically, so we will choose numerical integration,
which is much faster.

5.1.2 Calculation of the Bx component (see Fig 5.1)

After considering the z component of the field generated by the wires, we will
determine the x component of the field. Currently, many publications[8][22][23][32]
dealt with the control of the field components parallel to the plates (in our
reference the x and y components). It is essentially about the generation of
field gradients.

Bx =
∫
l
(z2 − z1)

∂ 1
R

∂y︸ ︷︷ ︸
=0

−(y2 − y1)
∂ 1
R

∂z
(5.4)

Since the wire segments of coordinates (x1, y1;x2, y2) are all at z′ = cste,
the first term of the integral is null. Writing the Bx field is similar to that
used for correction magnets:

anm =
1

√
x′2 + y′2 + z′2

n+2 εm
(n−m+ 1)!

(n+m)!
×−(y2 − y1) cos [m arctan(y′, x′)]

Pn+1m[
z′√

x′2 + y′2 + z′2
]

bnm =
1

√
x′2 + y′2 + z′2

n+2 εm
(n−m+ 1)!

(n+m)!
×−(y2 − y1) sin [m arctan(y′, x′)]
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Pn+1m[
z′√

x′2 + y′2 + z′2
]

with x′ = x1 + (x2 − x1)× t, y′ = y1 + (y2 − y1)× t et z′ = cste.

The Figure (5.1) shows the dimensions we have chosen for the field gen-
erator. In this study, only the wires generating a Bx field are represented,
so there are no transverse arcs drawn in the drawings. However, to measure
the By and Bz fields, they will actually be used in the calculation.

Physically the current lines are closed and we consider that the return
arcs are far from the area of interest. This point can be criticized because it
forces a plate of important dimension. However this omission is not essential
at first, because it is a question of showing the possibility of generating field
configurations from rectilinear wires. If it proves possible, the inventoried
cases can be studied for practical realization knowing that in the case of a
gradient ∂Bx/∂x there are no return arcs. We can form coils on the same
plate, the directions of the currents being opposite by symmetry along the ~y

5.1.3 Calculation of the By component (see Fig 5.1)

This component does not interest us because it is parallel to the active con-
ducting wires. However, when calculating the vector ~B, it is necessary to
take into account the transverse arcs which generate a By component. To
calculate the coefficients anm and bnm relative to this component, we permute
the x′, y′ from the coefficients relative to the Bx component.

anm =
1

√
x′2 + y′2 + z′2

n+2 εm
(n−m+ 1)!

(n+m)!
×−(x2 − x1) cos [m arctan(x′, y′)]

Pn+1m[
z′√

x′2 + y′2 + z′2
]

bnm =
1

√
x′2 + y′2 + z′2

n+2 εm
(n−m+ 1)!

(n+m)!
×−(x2 − x1) sin [m arctan(x′, y′)]

Pn+1m[
z′√

x′2 + y′2 + z′2
]

with x′ = x1 + (x2 − x1)× t, y′ = y1 + (y2 − y1)× t and z′ = cste.
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Figure 5.1: Generation of aBx field profile (the sphere of radius 5cm indicates
the area of interest).
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5.2 Uniform field generator

We are going to compute a uniform Bx field configuration in a sphere of 10cm
diameter. This case is interesting from a numerical point of view, because the
values of the coordinates of the table 5.1 cancel perfectly all the coefficients
up to order 5 included. For this reason we have kept a very high precision
for the values of the table. However this case is only of theoretical interest
because the dimension of the plates in the y direction is important.

In the case of a very homogeneous field as shown in the field map Fig(5.2),
we always obtained this configuration with a current ratio of 4. We cannot
conclude on the uniqueness of this solution, but after several tests, we did
not find other configurations. The ratio of 4 is a condition we imposed, the
system already finding a solution from a current ratio of 3.2. However, it is
simpler to have whole ratios in order to make turns with the same current, so
we chose the value 4. Higher values work but the size of the plates becomes
prohibitive, because the outer conductors must be kept away from the central
area.

Analyzing the Figure (5.3) and the coordinates of the table 5.1, the config-
uration is relatively astonishing because there is no axial symmetry. There
is simply a point symmetry at the origin between the two plates. There
are also conductors placed outside carrying important currents compared to
those in the center. If we ask the system to find a position with a lower
current ratio, the coefficient a20 = −r2/2 + z2 cannot be cancelled. Referring
to the study of correction by a cage of permanent magnets, this coefficient
was already proving to be crucial for the realization of the correction system.
This coefficient expresses the lack of uniformly distributed sources around
the area of interest. Remember that inside a sphere of magnetized material,
for example, the field is perfectly uniform. But for the sake of accessibility
we cannot place sources all around the useful area. How then can we simu-
late the uniform distribution of charges that can only be distributed on two
parallel planes? The system has chosen to increase the distance of the outer
wires from the origin, and therefore the angle of incidence of these conductors
becomes smaller. However, the wire must carry a higher current in order to
simulate a nearby wire, virtually placed between the two planes. This be-
haviour is preponderant, and keeping it in mind allows us to develop initial
configurations more quickly. From the point of view of feasibility, we must
therefore seek to distribute the sources uniformly around the area and when
this is not possible, simulate the missing sources by other sources that are
stronger because they are further away. Each of them will be positioned at
the θ and φ angles of the replaced source and at a mechanically permissible
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Figure 5.2: Homogeneity of the Bx field. Relative error with respect to the
central field.
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Figure 5.3: Top view of the upper and lower plates. Bx directed upwards
and homogeneous up to and including order 5.
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distance.

ref plane (z=±0.1m) x (m) y (m) relative current
1 down 0.120873 -0.211988 4
2 down 0.0387396 -0.0140289 1
3 down 0. -0.213914 1
4 down -0.0376243 -0.0137464 1
5 down 0.091118 0.169644 4
6 down -0.105396 -0.357483 4
7 down -0.124105 -0.202016 4
8 up 0.124105 0.00201545 -4
9 up 0.105396 0.157481 -4
10 up 0.0911151 -0.369644 -4
11 up 0.0376243 -0.186254 -1
12 up 0. 0.0139139 -1
13 up -0.0387396 -0.185971 -1
14 up -0.120873 0.0119882 -4

Table 5.1: Wire position and intensity for an homogeneous Bx

5.3 Field gradient generation ∂Bx
∂x

We will now study a series of gradients, the first of which will be along the
~x axis. These configurations are proving harder to find for a reason that
we have been able to elucidate. The calculation consists of cancelling all
coefficients except A11. However, the program cannot undo the coefficient
a31 = 3x(−r2/2 + 2z2). However, we have already encountered this diffi-
culty with the coefficient A20 for homogeneous fields. It is the same problem
because we can recognize a form of the type a31 ∼ xa20 knowing that the
coefficient x cannot cancel because it is the value of the gradient. It is thus
the second term very close by its form to a20 but with a coefficient 2 applied
to z2. The problem of the lack of sources placed around the useful area be-
comes even more troublesome. We have not been able to completely cancel
this coefficient with current ratios below 6, which is already very detrimental
to the energy efficiency of the system2.

The following configuration is determined for external wires carrying twice
as much current. As we will see, this is not sufficient to make up for the lack

2Given the strong currents they’re carrying, they’re moving away from the area.
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of current at the periphery of the useful zone.

-0.1-0.05 0.05 0.1

-0.2

-0.1

0.1

0.2

1

1 1

1

22

Figure 5.4: Field gradient configuration (II) ∂Bx

∂x

The field map (5.5) clearly shows that the external conductors should
carry a higher current. After trying with a current ratio of 3 and obtaining
unsatisfactory results, the configuration Fig(5.6) very clearly improves the
linearity of the gradient. However, the first configuration can be retained if
an energy constraint exists while accepting a gradient of this precision.

The software provided the solution Figure (5.6). The coordinates on the
~y axis are strictly zero, but for the sake of clarity we have slightly moved the
wires away from the axis. It is obvious that at the realization the symmetrical
wires with respect to the ~y axis will be joined. We can then isolate 3 param-
eters on the 36 starting variables, the internal conductors at x = ±0.038m
and the external conductors at x = ±0.1159m carrying a current 4 times
more important.
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Figure 5.5: Plot (II) of the gradient ∂Bx

∂x
for a current of 1 A. Obvious problem

of a lack of current in the corners of the figure.
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Figure 5.7: Gradient plot ∂Bx

∂x
= 17. 10−5Tesla/m for a current of 1 A.
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ref plane (z=±0.1m) x (m) y (m) relative current
1 down -0.123 -0.154 -1
2 down -0.105 -0.22 -2
3 down -0.036 -0.018 -1
4 down 0.036 -0.018 1
5 down 0.105 -0.22 2
6 down 0.123 -0.154 1
7 up -0.123 -0.046 1
8 up -0.105 0.02 2
9 up -0.036 -0.182 1
10 up 0.036 -0.182 -1
11 up 0.105 0.02 -2
12 up 0.123 -0.046 -1

Table 5.2: Wire position and intensity for configuration Fig(5.4)

5.4 Generation of a field gradient ∂Bx
∂y

As in the previous examples, the coefficient b31 = 3y(−r2/2 + 2z2) will be
difficult to undo. It represents the lack of sources placed in the preferred y
direction and away from the center3. However, we refused to increase the
dimensions of the plates in order to respect a minimum space requirement.
Considering that the program can give one end of a conductor at 10cm, you
have to add 20cm of wire length following ~y. Since the configurations are
always symmetrical in the direction of the gradient, the total dimension of
the plate along the ~y axis can reach 60cm.

To illustrate the problem of the lack of sources following the y direction,
the configuration Fig(5.8) is a solution generating the coefficients B11 =
12. 10−5 and B31 = 5. 10−4. The other 34 coefficients are cancelled.

The Figure field map (5.9) clearly shows a barrel shape of the gradient in
the y direction. To decrease the phenomenon, we can add lines of currents
in this area. Practically, we will try to decrease the current in the center
and increase it towards the edges. In the Fig(5.10) configuration, eight con-
ductors have been added, each carrying a unit current. The gradient profile
is clearly improved. However, the software has not found any configuration
that strictly cancels the 35 coefficients. The Figure (5.10) is very close to

3This is the same for the coefficient a31, with the sources coming mainly in the x
direction and away from the center.
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Figure 5.9: Plot (I) of the uncompensated gradient ∂Bx

∂y
for a current of 1 A.

B31 6= 0, which explains this barrel-shaped defect.
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the gradient ∂Bx

∂x
. The direction of the currents are simply modified and the

conductors placed at x = 0 are added.
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Figure 5.10: Gradient configuration (II) ∂Bx

∂y

5.5 Field gradient generation ∂Bx
∂z

Numerically, the search for this configuration posed no problem. The coef-
ficient a30 ∼ za20 is easier to undo than a20 in the case of the homogeneous
field due to the factor 3 applied to the term in r2. It is therefore not neces-
sary to increase the current density at the periphery of the plate. However,
it seems that the number of wires cannot be decreased, therefore the number
of degrees of freedom is equal to the number of equations. The linearity of
the gradient is excellent because the residual error made on the cancellation
of the coefficients is less than 10−12.

This gradient can be considered as a reference and we can see its quality
on the field map.
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Figure 5.11: Plot (II) of the ∂Bx

∂y
gradient for a current of 1 A. Even after

compensation, this is the hardest gradient to get.

ref plane (z=±0.1m) x (m) y (m) relative intensity
1/12 up/down 2.327160e-02 -2.162440e-01 1
2/15 up/down 1.028740e-03 -1.020940e-02 1
3/14 up/down 1.025250e-01 3.133280e-02 1
4/18 up/down 7.939740e-02 -1.931820e-01 1
5/16 up/down -1.035660e-01 -1.312850e-02 1
6/13 up/down -3.520900e-02 -2.014650e-01 1
7/10 up/down 6.240620e-02 -1.876790e-02 1
8/17 up/down -9.102770e-02 -2.062440e-01 1
9/11 up/down -6.046200e-02 2.825180e-03 1

Table 5.3: Wires position for gradient ∂Bx

∂z
.
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Figure 5.12: Gradient configuration ∂Bx

∂z
. The top and bottom wires are

perfectly superimposed and the currents are in the same direction. The
gradient is 8.10−5 Tesla/m for a current of 1 A.
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Figure 5.13: Gradient plot ∂Bx

∂z
for a current of 1 A. The possible defects

on the figure are due to the printing format. The linearity is in this case
particularly good.
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5.6 Return arcs

Return arcs do not pose any difficulties from a numerical point of view,
but they substantially increase the dimensions of the generators and the
inductance of the system. In any case, they are annoying.

In order to demonstrate the possibility of generating field profiles from
straight line segments, we have considered a single straight conductor. The
evaluation of the contribution of the return arc is nevertheless necessary as
the current lines are closed. It is always possible to move the return arc away
infinitely and neglect its effect, but in this case the inductance of the circuit
increases. On the other hand, if the return arc is too close to the area of
interest, the energy efficiency of the system may be degraded.

The initial program does not calculate the contributions of the return
arcs because according to the profiles (see the gradient ∂Bx

∂x
), we can connect

symmetrical and opposite current direction wires together. Rather, it is
during a particular study that it will be necessary to add them or not.

To illustrate the feasibility of calculating return arcs, we have chosen to
integrate them into the gradient configuration. ∂Bx

∂z
. On the one hand they

are mechanically necessary because the currents are all in the same direction.
On the other hand this configuration is very precise, so it’s easy to compare
the contribution of the arcs.

At first we added the return arcs without modifying the position of the
conductors. It appears that the error committed on the profile is of the order
of 1%. However this is not checked on all the profiles because the error of the
homogeneous field becomes completely false. On the other hand to respect
the very high precision of the profiles, we recalculated a new configuration
taking into account the return arcs.

We have formed rectangular turns, while keeping the outer edge along
the ~x at ±20cm. This arbitrary value was chosen because, in this way, the
plates are roughly square. In the Figure (5.14), we have only mentioned a few
return arcs for the sake of clarity. The value of the gradient is 8.10−5 Tesla/m
for a current of 1 A and the other coefficients are perfectly cancelled out, so
we can refer to the previous field map Figure (5.13). The return arcs move
along the ordinate corresponding to their active arc. We can thus underline
the fact that we do not have additional variables because the return arcs are
an integral part of the active arc since we have voluntarily decided to freeze
the abscissa.
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plane (z=±0.1m) x (m) y (m) relative intensity
up/down 2.181870e-02 -2.095720e-01 1
up/down 8.933420e-03 -4.407990e-03 1
up/down 9.891050e-02 3.627250e-02 1
up/down 9.164390e-02 -1.735700e-01 1
up/down -9.325290e-02 3.971330e-02 1
up/down -4.403900e-02 -1.918690e-01 1
up/down 9.319660e-02 -2.408020e-02 1
up/down -1.015300e-01 -2.298690e-01 1
up/down -6.335610e-02 -3.737180e-03 1

Table 5.4: Wire position for a gradient ∂Bx

∂z
with return arcs.

5.7 Generation of a sinusoidal field

To prove the versatility of the method, it is interesting to study less standard
profiles. Following the 4 previous configurations, we will create a field whose
variation will be sinusoidal along the ~x axis and if possible homogeneous along
the different planes Y Z. This profile is often found in travelling wave tubes
and free electron lasers. The spatial period then determines the frequency
of the emitted wave. In our case, we have chosen a spatial period equal to
20cm (= at the distance between plates). The software has provided the
configuration Fig(5.15), the currents are all unitary. We can notice that
there are no return arcs since we can connect the symmetrical and opposite
current wires.

Theoretically, we cannot control the profile of a field outside the sphere
of radius 5cm (half the radius of the generators). However, we have been
able to extend the zone along the ~x axis up to ±10cm. Harmonics greater
than 5 remain weak if we do not approach the wires. However, along the ~y
and ~z axes, the constraints remain identical to the previous configurations.
The useful zone is therefore approximately cylindrical.

It appears on this example that the coefficient A33 cannot be perfectly
mastered just like the coefficient A20 for the realization of the homogeneous
field. This is identified by the slight curve along the ~y axis at x = ±10cm,
Figure(5.16). This case is certainly more intended for Bessel functions. As
this is a spatial sinusoidal field with a priori several periods on concrete
examples, it is preferable to control the quality of the field over the whole
area rather than moving the error from the center to the edges.
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Figure 5.15: Configuration for a sinusoidal field.
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plane (z=±0.1m) x (m) y (m) relative intensity
down 0.025 0. 1
down -0.025 0. -1
down 0.025 -0.2 1
down -0.025 -0.2 -1
down -0.0116 -0.1 1
down 0.0116 -0.1 -1

up 0.0883 -0.1 1
up -0.0883 -0.1 -1
up -0.0639 -0.2 1
up 0.0639 -0.2 -1
up -0.0639 0. 1
up 0.0639 0. -1

Table 5.5: Position of the wires for a sinusoidal field. Return arcs are not
necessary due to the symmetry and direction of the currents.
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Figure 5.16: Sinusoidal field plot for a current of 100 A.

82



Chapter 6

Experimentation

In order to prove the validity of the field generation method, we have exper-
imented with some field configurations. It is mainly a question of checking
the direct field calculations and their accuracy, because the inverse method
cannot be questioned. The only error of the inverse calculation as we have
presented it is to provide no result if the physical arrangement does not allow
to realize the requested field. If the result is given, it is particularly simple to
check the direct chain. The behavior is almost binary, the solution exists or
not and in the last case what are the compromises to be made. However, for
the mechanical aspect, it is interesting to evaluate the positional tolerances.
If, for example, a tolerance in the micron range is required, this correction
(or generation) system will be more difficult to achieve.

6.1 Measuring environment

Chronologically, we have verified the field generation by conductors, as this
turns out to be experimentally very simple. Obviously, we have chosen two
non-conductive and non-magnetic plates (wood) spaced 20cm apart and brass
screws. The presence of the latter is not annoying in static calculations, but
in the case of field switching, the eddy currents in the body of the screws are
no longer negligible. We pointed out in the introduction that the magnetic
or ferromagnetic environment was the most delicate point, so we chose a
location for the measurements with a high homogeneity of the Earth’s field
and placed the probe perpendicular to this field. After moving the probe in
a 10x10x10cm cube and checking that the variation did not exceed the mG,
we measured the field generated by our configurations.

To set a few orders of magnitude, the Earth’s field strength is approxi-
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mately 450mG. The perpendicularity of the probe is therefore critical. Mov-
ing a car 50 meters from the zone generates a variation of 0.1mG. A set
of keys placed at 1 meter produces a variation of 5mG and a small cor-
rection magnet produces the same variation at 40cm. In Paris and as of
October 1, 1997, the Earth’s magnetic field has as components 210.59mG
North, -8.45mG East, 422.44mG vertical and the annual variation is 0.4mG
(according to the National Geophysical Center Boulder, Colorado USA). If
we analyse these values, the largest field value is in the vertical direction. We
have encountered the following mechanical problem: the Hall probe at the
end of an arm does not remain perpendicular to the Earth’s vertical field,
because depending on the position of the probe, the mechanical deflection
varies and leads to a variation of 5mG. A more robust measurement setup is
therefore required.

6.2 Gradient measurement a11 version I

The coefficient a11 represents the gradient ∂Bx

∂x
. We applied a current of

350 mA so that the wire would not heat up. Since the ohmic resistance of
copper varies with temperature, we recorded a field drift using a stabilized
voltage supply and a high current. This is not inconvenient with the use of a
stabilized power supply, but we do not have one available for currents below
one ampere. We have therefore chosen to limit the joule effect.

We think we have respected a positional tolerance of about 1 mm. We
have also moved the threads by playing on their elasticity and we have not
recorded any significant variation. This is therefore a reassuring statement
about the feasibility of the system in accordance with the numerical calcula-
tion of the positional tolerance estimated at ±1mm.

We therefore measured a gradient corresponding to the chosen charac-
teristics, but there are still some measurement errors of the order of mG,
mainly due to magnetic pollution. The homogeneity along the other axes is
excellent, the gaussmeter did not provide us with any significant deviation.
The measured inductance is 13µH for a gradient value of 677mG/m/A. The
dimensions of the system are given on page 71.

6.3 Gradient measurement a11 version II

The ratio of the external to internal currents is 4, so we can expect an
increase in inductance compared to the first gradient (ratio of 2), however
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Figure 6.1: Actual and theoretical dotted gradient curve a11 version I. Errors
are due to the imperfect rigidity of the measuring system. Homogeneity along
the other axes is excellent.
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the efficiency will also increase. We will analyse more closely the advantages
and disadvantages of these two structures.

This gradient has been measured and we noticed its very high linearity.
We were unable to detect the slightest defect compared to the theoretical
curves. It is therefore a gradient that deserves to be retained for future
applications.

We have measured an inductance of 48µH for a gradient value of 1710mG/m/A,
which is very interesting because the inductance is low. To compare with the
first gradient configuration a11, the gradient II is 2.5 times higher. So we
have to at least double the first configuration to get the same field value, the
inductance will then increase1 at the minimum of n and at the maximum of
n2.

6.4 Magnet cage validation

We first measured the value of the remanent field of each magnet according
to the conditions cited on page 19. Then we compared a field map generated
by the magnet cage and its theoretical model. The differences found are in
agreement with the necessary precision. The direct calculation is therefore
sufficient proof when validating a configuration found by the inverse calcu-
lation. We remind that in the case of the cage, the direct calculation is not
expensive because it is based on formulas in arctan and in the case of wire
sections, the calculation is derived from Biot and Savart’s law and is fully
analytical.

We have made two configurations, the first where all the magnets are in
the same direction and placed at z = 0 and the second where every other
magnet is reversed. As the number of magnets is odd, and given the disparity
in remanent field values, on the ~z axis, we must find a shape equivalent to
a single magnet placed at z = 0. The first configuration gives a central
field strength of 2.2 Gauss, so the Earth’s field is not disturbing in the case
of a perpendicularity defect of the probe. On the other hand, the second
configuration is more difficult to measure because the value of the central
field is 50mG. We then see in the Figure (6.2) a defect in the positioning of
the probe at z = 0.05m.

1This consideration is empirical, the calculation of inductances is always very difficult
to perform. However if we double a structure, the inductance will be at least multiplied
by two because the flow is twice as strong. But at the maximum it will reach a factor of
4, the coupling between turns is not equal to unity because each turn sees only a part of
the flow of the other turns.
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Figure 6.2: Physical and theoretical dotted curve of the magnet cage. The
measurement errors are of the same type as those seen on the gradients, the
low rigidity of the measuring system is certainly to blame.
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Conclusion

We have presented an alternative using Bessel functions, and there is also
an approximate method, the use of Fourier-Bessel development of the mag-
netic field. For a given field profile, it is a question of finding a surface
current distribution carried by a cylinder or a plane[46]. On this principle,
the publications[53][7][47] show achievements in gradients, homogeneous field
generators, etc...

For the purpose of comparison the article[32] shows a series of gradients
and isovalent profiles (supposed to represent a sequence of parallel lines in
the case of gradients). In addition to the complexity of the current lines, we
have gained a factor of 100 in gradient accuracy for a lower inductance than
the one presented in the article, so we have not found any drawback to our
structure.

we pointed out at the beginning of the paper, it is a matter of choosing
the location of the error. Methods derived from Taylor series development
are very precise at the center but if the truncation of the series is at n, the
error is in rn+1. Deviating from the center, the error suddenly becomes very
large. On the other hand, articles using Fourier-Bessel functions provide a
larger useful area but the error is larger in this region.

The concept of a current density seems to us to be rather risky in the
case of precise profiles, because at the time of realization, it is necessary to
approximate this density by a series of wires. If the sampling step is small,
the precision will be higher but the number of wires will also be higher.
The inductance can then reach prohibitive values. The reverse approach is
not precise. As it happens, articles using this technique are faced with the
problem of sampling and apodization[32][8].

There are also very interesting methods based on neural networks and
genetic algorithms. The application to the inverse calculation of electromag-
netic fields is justified in view of the complexity of the inversions. These two
methods are essentially generic. On problems deemed to be insolvent, these
techniques have given very good results.
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behaviour of their natural counterparts. After a sometimes very long
learning process, the connections (e.g. synapses) are calibrated in the form
of coefficient calculations. These more or less modulate the signal from the
previous neuron to the next neuron. The simulation of logic functions, how-
ever complex they may be, are trivial neural network problems. Once the
network is calibrated, the calculation time of a response is very fast, hence
its growing usefulness in the real time domain.

The article[3] proposes to teach the neural network where to place sources
according to the field they generate. The training is simple, we choose a large
number of randomly chosen source positions in space and we provide by an
direct calculation of the magnetic field corresponding to the neural network.
Therefore, during the learning phase, at the input of the network, the charac-
teristics of the field are provided and at the output the position of the sources.
A classical algorithm used for the calculation of the synaptic coefficients is
the error backpropagation. After initialization, the extraordinary fact is that
the network is able to give an approximately coherent source position even
if the entered field is not in the learning domain. This is the main interest
of inverse problems, other applications rather exploit the learning memory
function. Even if the accuracy is currently nothing like the one needed for
our applications, it is a very promising method.

Genetic algorithms, on the other hand, work very differently. They are
used in complete NP problems, i.e. combinatorial explosion problems. If
the search space is absolutely gigantic, like the exhaustive search of all valid
positions of the chess game (greater than the number of particles in the uni-
verse), they find their interest by selecting very quickly the locally winning
combinations. As Nature operates a selection of viable DNA helices, the
algorithms have at their disposal the possibility to multiply, destroy or mu-
tate the most significant combinations of the problem. They perform these
operations with a given probability.

In field synthesis, we have a probability criterion stated on page 48 con-
cerning the search for positions that are statistically closer and closer to the
solution. We have chosen a purely numerical method in order to considerably
reduce the number of random vectors. But it is also possible to make this
choice among this space using genetic algorithms. It is still a method that
lets the computer search alone for a solution based on a local law. This can
be in the case of the magnet cage, the choice of the magnets to be moved
at step n. Then depending on the best configurations, this law can cross
the positions (cross-over). However, we have doubts about the efficiency of
the method in this particular case, because by moving a single magnet all
the other positions have to be retouched. It is therefore a strongly coupled
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problem. It appears that mixing two parts of the two most significant config-
urations has no chance of giving a more efficient configuration. On the other
hand, weakly coupled problems give very good results.

The use of Legendre polynomial potential development is well suited if a
high accuracy of a spatially limited profile is required. The use of Legendre
polynomial potential development is well suited if high accuracy is required
from a space-limited profile. However, it is imperative to use a powerful
root search algorithm. In order to correctly understand the chosen inversion
method, we have explained how to solve a simple problem in two and three
dimensions, which allows the graphical representation of the equations.

First, we created a fictitious field from generators and then we inverted
the problem. Knowing that at least one solution exists, the algorithm was
refined until we obtained a solution in a reasonable calculation time. We
noticed that the number of solutions is very limited or even unitary because
we always found the initial position of the generators and only this one.
Uniqueness is further demonstrated[35]. If a field is defined in space, there
is only one source position capable of producing it. But at a given precision
several configurations can be equivalent.

The main difficulty encountered during the study is the physical possibil-
ity of a given structure to generate the required field profile. The choice of the
magnet cage and the displacement in z alone does not necessarily prove the
existence of the solution even if it is in the correction domain. A mathemat-
ical study of the coupling between equations in the case of a given structure
would certainly allow us to raise this question. To reach this problem we have
not obtained with great precision for all flat gradients. Some coefficients pose
difficulties because we deliberately limit the location of sources to restricted
areas.

The equations composing the system are fractions of polynomials, it is
therefore possible to analytically invert these equations and rewrite them
on the form of a Groebner base. However, putting these fractions on the
same denominator provides a polynomial of very high degree. If this track
is followed, it is imperative to continue to the Groebner base, otherwise we
will be back to the search for polynomial roots, which we are already doing.
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