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Abstract. A Software-intensive System-of-Systems (SoS) is architecturally 
designed to exhibit emergent behavior from the interactions among independent 
constituent systems. With the upcoming generation of self-driving vehicles, an 
important case of emergent behavior is vehicle platooning. In a platoon, a group 
of vehicles (which is dynamically formed) safely travel closely together like in a 
convoy. It requires, on the one hand, that each vehicle in the platoon control its 
velocity and the relative distance to the vehicle in front of it for avoiding rear 
collision and, on the other hand, that vehicles coordinate for enabling other 
vehicles to dynamically join or leave the platoon. This paper investigates the 
mediated approach for architecting a platooning of self-driving vehicles, with 
SosADL, a novel SoS Architecture Description Language (ADL) enhanced with 
broadcasting for the Internet-of-Vehicles (IoV). In particular, it demonstrates 
how architectural mediators expressed with broadcast constructs of SosADL for 
IoV supports platooning architecture descriptions through an excerpt of a real 
application for architecting platoons of Unmanned Ground Vehicles (UGVs). 
This novel approach is supported by an integrated toolset for SoS architects. 

Keywords: Software Architecture, Self-Driving Vehicle Platooning, Internet-
of-Vehicles (IoV), Systems-of-Systems (SoS), Broadcasting, SosADL. 

1 Introduction 

Definitely, a key facet of the design of any software-intensive system, being a single 
system or a System-of-Systems (SoS) [19], is its software architecture, i.e. the funda-
mental organization of the system embodied in its constituents, their relationships to 
each other, and to the environment, and the principles guiding its design and evolution, 
as defined by ISO/IEC/IEEE 42010 [12]. 

In the case of single systems, the software architecture is described in terms of com-
ponents, connectors binding together these components, and their configurations [20]. 
The resultant system behavior is said to be aggregative, for instance, like the behavior 
of a car that is the result of the sum of the behaviors of its components (e.g. the moving 
behavior of a car is the resultant of the engine that applies a torque on the wheels turning 
them forward, the wheels push backwards on the road surface and, in reaction, the road 
surface pushes back in a forward direction). 
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Differently, in the case of SoSs, the software architecture is described in terms of 

constituent systems, mediators for enabling interaction among the constituents, and 
their coalitions [27]. The resultant system behavior is said to be emergent [16], like the 
behavior of a platoon of cars which results from the interactions of its constituent cars. 

In a platoon, a group of vehicles (which is dynamically formed) safely travel closely 
together like in a convoy [13]. It requires, on the one hand, that each vehicle in the 
platoon controls its velocity and the relative distance to the vehicle in front of it for 
avoiding rear collision and, on the other hand, that vehicles coordinate for enabling 
other vehicles to dynamically join or leave the platoon.  

Note that a car is not designed to have the platooning behavior, this emergent behav-
ior “appears” as the result of the interactions among multiple cars. Nevertheless, the car 
needs to have the capabilities required for participating in platoons. 

Nowadays, the Internet-of-Things (IoT) enables the engineering of SoSs, which are 
opportunistically constructed for achieving specified missions in specific operational 
environments [10][38]. In particular, in the subset of IoT where “things” are predomi-
nantly connected vehicles (i.e. mobile “things”), the so-called Internet-of-Vehicles 
(IoV) [14], the challenge is to coordinate different vehicles for performing together, 
through emergent behavior, traffic-related missions, especially platooning. In the IoV, 
in a platoon, two or more self-driving vehicles are connected together in convoy using 
automated driving support and, possibly, wireless connectivity. 

There are two main kinds of platoons of self-driving vehicles [0]: (i) platoons of 
stand-alone self-driving cars: they are formed and managed based only on the local 
sensing and actuating capabilities of each self-driving car for controlling its velocity 
and the relative distance to the vehicle in front of it; (ii) platoons of connected self-
driving cars: they are formed and managed based, on the one hand, on the local sensing 
and actuating capabilities of each self-driving car and, on the other hand, on inter-vehi-
cle communication for coordinating movements with neighboring vehicles. 

Conceiving Software Architecture Description Languages (ADLs) has been the sub-
ject of intensive research in the last 25 years resulting in the definition of several ADLs 
for modeling initially static architectures, then dynamic architectures of (often large) 
single systems, and presently evolutionary architectures of SoSs [20]. However, none 
of the existing ADLs has the expressive power to describe the evolutionary architecture 
of opportunistic SoSs on the Internet-of-Vehicles [27][36], which requires for a car to 
dynamically discover which other cars are in its neighborhood as well as to dynamically 
create a communication channel with a specific car for coordinating maneuvers while 
driving, such as in platoons and in crossroads. 

The corresponding challenge in the architectural design of SoSs on IoV is to con-
ceive concepts and mechanisms for describing how an SoS architecture is able to create, 
on the fly, and maintain emergent behaviors from connected vehicles, where the actual 
vehicles are not known at design time. 

To fill this gap, we have enhanced SosADL [25][32], a novel ADL specially con-
ceived for formally describing the architecture of software-intensive SoSs, based on 
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supervenience principles [31], with novel features for supporting SoS architecture de-
scription on the IoV, i.e. broadcast for discovering vehicles in the neighborhood and 
unicast for communicating over a communication channel with a specific vehicle. 

SosADL for IoV brings contributions beyond the state-of-the-art to the formalization 
of SoS architectures exposing emergent behaviors relying on connected self-driving 
vehicles. 

The remainder of this paper is organized as follows. Section 2 refines the notion of 
IoV and of vehicle platooning on the IoV. Section 3 presents how SosADL was en-
hanced to meet the needs of the IoV, issuing the novel SosADL for IoV. Section 4 in-
troduces a field study encompassing vehicle platooning on the IoV and demonstrates 
how the enhanced SosADL is applied to IoV, through an excerpt of a real application, 
focusing on the platooning of a fleet of self-driving vehicles. In section 5, we outline 
the implemented toolset for SosADL for IoV. In section 6, we present the validation of 
SosADL for IoV. In section 7, we compare SosADL for IoV with related work. To con-
clude, we summarize, in section 8, the main contributions of this paper and outline 
ongoing and future work. 

2 Internet-of-Vehicles and Vehicle Platooning 

Let us introduce the notion of Internet-of-Vehicles and its underlying network technol-
ogy, i.e. the VANET (Vehicular Ad-hoc Network). 

VANETs apply the principles of Mobile Ad-hoc Networks (MANETs), i.e. the spon-
taneous creation of a wireless network for data exchange, to the domain of vehicles. 
They enable thereby the creation of the IoV, relying on both V2V communication be-
tween cars and V2I between cars and the roadside infrastructure (and more broadly on 
V2X, i.e. vehicle-to-everything). 

Especially, VANET provides a short-range communication technology that enables 
vehicles to exchange information several times per second, about position, speed, ac-
celeration, and braking. Vehicles equipped with VANET are thereby able to identify 
possible risks within ca. 300 meters and take automatic collision-avoidance actions or 
alert their drivers, possibly assisted by fog/cloud computing accessed via infrastructure. 

 

 
Fig. 1. Self-driving vehicles: wireless connectivity and automated driving support 

As depicted in Fig. 1 (left), the upcoming generation of self-driving vehicles pro-
vides sensors, including radars and lidars, for sensing information from the environ-
ment and from other cars, processing this information, feeding it to drivers as well as 
communicating it to other cars, the infrastructure and, in general, with any “thing”. 
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As also depicted in Fig. 1 (middle), there are two critical zones around a vehicle: the 

minimal safe separation from other vehicles and in general for any kind of obstacle and 
the maximal separation (the perception range of the sensors and V2V communication 
enabling to coordinate with other cars and possibly the infrastructure). Note that the 
relative distance between two vehicles is determined using a radar or lidar (light detec-
tion and ranging sensor, usually with rotating laser beams; it measures the distance to 
a neighboring vehicle by illuminating that vehicle with pulsed laser light and measuring 
the reflected pulses). 

As furthermore depicted in Fig. 1 (right), self-driving vehicles are equipped with 
Global Positioning System (GPS) for positioning and controlling heading and speed 
determining its direction and velocity. These data are generally transmitted via 
VANETs to the neighboring vehicles and the infrastructure. In addition to computing 
real time position in terms of GPS coordinates, a connected vehicle may also share the 
GPS coordinate with other vehicles. 

VANETs make possible to set up and maintain vehicle platoons, as depicted in Fig. 
2. Each vehicle communicates with some other vehicles in the platoon, in particular the 
ones closest in front of and behind it, but also via multihop routing to others. In a pla-
toon, there is a “leader” vehicle that controls the speed and heading of the platoon, 
which drives to the destination, and “follower” vehicles (with matched acceleration and 
braking) that respond to the leading vehicle movements. Note that a “leader” may be 
explicitly or opportunistically determined. 

 

 
Fig. 2. Vehicles in platoon: one leader and many followers 

 
Platooning is the process of cars autonomously following a leader to form a road 

convoy. It requires that each vehicle in the platoon control its velocity and the relative 
distance to the vehicle in front of it, and possibly also to the one behind of it. For sup-
porting maneuvers, with vehicles joining/leaving the platoon, VANETs are used. 

Vehicle platooning has several advantages: reduced risk of accidents, greater fuel 
economy due to reduced air resistance, higher efficiency of the vehicles and increased 
capacity of the highways. However, this comes with challenging issues to be consid-
ered: rear collision must be avoided in case of emergency braking, each vehicle in the 
platoon must have stable dynamics, and the platoon as whole must have string stability 
(i.e. if a deviation occurs w.r.t. the desired distance between the virtual leader and the 
first follower, this error should decrease towards the rear of the platoon and not the 
opposite). Vehicles coordinate using multi-hop routing in VANETs to ensure the string 
stability of the whole platoon. 

By considering self-driving vehicles, it is possible to create a vehicle platoon that 
can travel autonomously. The platoon of vehicles travels in general on a single lane by 
using a longitudinal coordination strategy for each vehicle, as well as considers cases 
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in which a vehicle has to join or leave the platoon, involving the lateral coordination of 
the vehicle. The platoons may also need to change lane.  

3 Enhancing SosADL for the Internet-of-Vehicles 

SosADL was conceived to overcome limitations of existing ADLs by providing the 
expressive power to describe the architectural concerns of software-intensive SoSs 
[29], and in particular to enable the description of emergent behaviors [30].  

The core architectural concepts are the one of system to represent the constituents, 
the one of mediator to represent the enforced interactions among constituents, and the 
one of coalition to represent their formation as an SoS. 

In SosADL, SoS architectures are represented in abstract terms (as the concrete sys-
tems which will become constituents of the SoS are not necessarily known at design-
time; for instance, in vehicle platoon, the SoS architect does not know at design-time 
which vehicles will participate in a platoon). 

Afterwards, the defined abstract architecture will be evolutionarily concretized at 
run-time, by identifying and incorporating concrete constituent systems; for instance, 
in the case of a platoon, cars which become platoonmates are discovered at run-time 
(see [9] for details on the automated synthesis of concrete SoS architectures from So-
sADL descriptions). 

3.1 Extending SosADL with Digital Twins of “Things” 

For extending SosADL for the IoV, we first extended SosADL for the IoT in general 
[32]. For achieving this aim, we investigated what are the architectural abstractions 
suitable for architecting SoS on the IoT. 

There are indeed different notions and reference architectures for developing soft-
ware-intensive systems, in particular cyber-physical systems, on the IoT. 

Among them, the notion of digital twin (proposed in [7] and extended for IoT [5]) 
fits well the needs for coupling the physical and virtual worlds in terms of “things”, as 
required in software-intensive SoSs on IoT. 

A digital twin provides a virtual replica (in the edge, fog or the cloud) of its physical 
counterpart which is virtually indistinguishable from its physical twin (in the sense that 
it dynamically replicates the behavior and properties of the physical twin as well as 
enriches the replica with additional information about the physical counterpart). It is in 
fact a dynamic digital representation of its physical counterpart. Dynamic in the sense 
that the physical asset and its digital twin are connected during their whole lifecycle. 

In general, the digital twin monitors the physical twin through data provided by sen-
sors on the IoT as well as information coming from domain experts to maintain a utility 
replica of the physical asset. It acts back on the physical twin through actuators on IoT. 

In the Internet-of-Vehicles, the digital twin of each self-driving vehicle will inspect 
the physical vehicle (the physical twin), which provides all the data to the digital twin. 

Therefore, to enable the architectural description of enhanced IoT applications, So-
sADL was extended with constructs for expressing digital twins (for details, see [33]). 
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3.2 Constructs for Autonomous Constituent Systems in SosADL 

SosADL was firstly conceived for describing SoS architectures which involve SoSs 
composed of autonomous systems, i.e. where constituents are systems that behave ac-
cording to only its own capabilities, sensing and actuating in its local environment. 

The key point to be addressed was the one of partial information, as no constituent 
system of the SoS has complete knowledge, each one having only partial knowledge 
according to the information it can perceive in its local environment. 

Therefore, for handling partial knowledge in SoS architectural design and particu-
larly in the description of the designed SoS architecture, SosADL was conceived to 
enable the representation of partial information as well as to reason on this partial in-
formation to influence the behavior of the SoS. By the decentralized nature of SoSs, 
these representation and reasoning mechanisms are expressed from the viewpoint of 
each constituent system and mediators enabling their interactions and thereby influenc-
ing individual behaviors as well as the raising of emergent behaviors. 

For defining the formal semantics of SosADL handling partial information, we eval-
uated different behavior calculi developed for modeling complex systems and identi-
fied several forms of the π-Calculus [21], however none of them complied with the SoS 
requirements for architectural behavior description [27]. 

We have therefore designed a novel π-Calculus for SoS [28], which extended the 
original π-Calculus with mediated constraints, where mediation is achieved by con-
straining interactions, and where constrained interactions raise emergent behaviors [2]. 
More precisely, the π-Calculus for SoS generalizes the original π-Calculus with the 
notion of computing with partial information based on the concurrent constraint para-
digm and in particular on the principles of constraint-based calculi [23]. 

Formally based on the π-Calculus for SoS, SosADL provides: (i) a tell construct for 
adding a constraint to the local environment; (ii) an ask construct for querying if a 
constraint can be inferred from the local environment. 

These constructs enable each constituent system to behave according to the con-
straints imposed by other constituent systems sharing the same local environment. 

Intuitively speaking, based on π-Calculus for SoS, in SosADL a constituent can pub-
licly tell to the environment about the pieces of information that it knows, while main-
taining private information internally. A constituent can also ask information from the 
environment that influences on its own behavior. 

The communication between composed constituent systems is supported by unicast 
connections: (i) a send construct for synchronously sending a value over a connection 
to another constituent system; (ii) a receive construct for synchronously receiving a 
value over a connection from another constituent system. 

Relying on the π-Calculus for SoS, the formal operational semantics of SosADL was 
defined by means of a formal transition system, expressed by labelled transition rules. 
For details on the formal semantics of SosADL in terms of π-Calculus for SoS, see [28]. 

If SosADL demonstrated to be a suitable formal ADL for SoSs, able to describe the 
SoS architectures of flocks of autonomous drones and platoons of autonomous self-
driving cars, it is not able to support the description of SoS architectures based on wire-
less network communications in addition to sensing/actuating capabilities. 
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3.3 Extending SosADL with Constructs for Connected Constituent Systems 

In this paper, we extend SosADL for describing SoS architectures which involve SoSs 
composed of communicating autonomous systems, i.e. where SoS constituents are con-
nected systems to wireless local area networks, supporting in particular Vehicle-to-Ve-
hicle (V2V) data exchange through VANETs, that behave in coordination with its own 
neighboring constituents in partially shared environments. 

For extending SosADL for IoV, the key points to be addressed were: (i) delimiting 
the wireless communication range (the communication is limited to constituent systems 
in the neighborhood, that is determined by the maximum wireless communication range 
of the V2V radio technology); (ii) discovering which are the other constituent systems 
that are within the V2V communication range; (iii) getting specific V2V communica-
tion channels to interact with relevant neighbors. 

Therefore, for handling communication supported by wireless local area networks 
in SoS architectural design and particularly in the description of the designed SoS ar-
chitecture, SosADL was enhanced to address each one of these three points. 

First, it was extended to enable to physically sense which are the neighboring con-
stituent systems within a given radius. For instance, in the case of autonomous cars, it 
senses which are the other cars in front of it and behind of it in the same road lane as 
well as in adjacent lanes using a lidar. 

Formally, we have extended SosADL with a new construct for expressing neighbor-
hood of mobile constituents. The notion of neighborhood is given by extending digital 
twins accessing physical properties, i.e. every digital twin of a “thing” is able to inform 
about (a subset of) physical properties of its physical counterpart. These properties are 
available in all digital twins through built-in constraints in SosADL for IoT.  

Thereby, a physical twin can tell about its physical properties and the digital twin 
can apply the ask construct for getting each physical property of the related physical 
twin: (i) ask range for thing to get the maximum V2V communication range in meter 
(the radius) of the thing in question; (ii) ask neighborhood within range for thing to 
get the set of “things” in the neighborhood of the thing in question; (iii) ask [local] 
coordinate for thing to get the coordinate of the thing in question (the coordinate is 
given in global or local coordinate systems, the default being global coordinate in terms 
of GPS). All physical properties are given in SI unit (the International System of Units) 
and all these SI datatypes are equipped with operations for manipulation and conver-
sion. 

Second, SosADL was extended to enable to communicate with all neighbors of a 
“thing” using broadcasting, supporting one-to-many communication and its opposite 
collect concept, which supports many-to-one communication. 

Hereafter, we will focus on broadcasting, which provides the essential concept for 
supporting SoS architectures on the IoV. Broadcasting is the mechanism of transferring 
a message from a sender to all receivers, simultaneously, within the communication 
range. It is worth highlighting that, as demonstrated in [4], broadcast cannot be encoded 
with unicast and thereby is needed as a primitive concept in an ADL for IoV. 

For expressing broadcast, we extend SosADL with two constructs: talk and listen. 
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The talk construct is expressed as via connection [within range] talk data, meaning 

that connection is used to transmit data to all “things” that are within the given range. 
In case range is not specified, it is by default the maximum communication range. 
Thereby data will be transmitted to all “things” in the neighborhood. 

The listen construct is expressed as via connection [within range] listen place-
holder, meaning that connection is used to receive data in the placeholder talked by 
all “things” that are within the given range. In case range is not specified, it is by 
default the maximum communication range. Thereby data transmitted from all “things” 
in the neighborhood, can be listened. 

4 SoS Architecture Description for UGV-based Platooning 

To demonstrate how SosADL for IoV can be applied to architecturally describe SoS 
architectures on the IoV, we will present hereafter an excerpt of an SoS architecture 
description that we have designed in a cooperative project with stakeholders of the city 
of Sao Carlos as part of a pilot for a Flood Monitoring and Emergency Response SoS 
[26], focusing on the platooning of Unmanned Ground Vehicles (UGVs). 

UGVs are self-driving (driverless) vehicles equipped with V2V wireless technology, 
supporting on-the-fly creation of VANETs. They are usually used for applications 
where it is inconvenient, dangerous, or impossible to have a human operator present. 

In this pilot SoS, the UGV-based Emergency Response SoS is formed by UGVs 
deployed from different city councils in the metropolitan area of Sao Carlos and neigh-
bor municipalities. Several fleets of UGVs can be activated by the gateway of the WSN-
based Urban River Monitoring SoS for accomplishing disaster relief missions and 
search and rescue operations. UGVs drive autonomously using built-in GPS to the in-
undated area identified by drones. 

The acquired UGVs are fully autonomous, able to self-navigate in GPS-enabled en-
vironments as well as to detect and avoid obstacles. They in particular provide a follow 
mode enabling wireless tethering to another UGV. In this mode, it reacts to its front-
runner movements and direction while having the mission route saved for autonomous 
execution. The follow mode is used by the autopilot of a UGV, when it is participating 
in a platoon for following the UGV that is in front of it. 

Let us now focus on the supervenient emergent behavior of the UGV-based Emer-
gency Response SoS to create and maintain platoons of UGVs through self-organiza-
tion during the journey to the destination. More specifically, we will concentrate on the 
maneuvers for a UGV to join an ongoing platoon, where the maneuvers are coordinated 
between the UGV joining the platoon and UGVs that are already in the platoon using 
wireless communication on VANETs. 

Hereafter, we will demonstrate how to apply SosADL for IoV to describe the SoS 
architecture of UGV platooning as well as explain the operational semantics of the re-
sulting SoS architecture description during the join maneuver of a UGV into a platoon. 

In the formalization with SosADL for IoV, we will first describe the digital twin me-
diators enforcing the join maneuver required for a UGV to join a platoon (we will not 
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present the digital twins of the UGVs due to page limit). Next, we will describe the 
abstract architecture of the SoS on the IoV as a whole in terms of a digital coalition. 

Let us now declare, in SosADL for IoV, the Platooning mediator which will support 
the platooning as well as the join maneuver of a UGV in the vehicle platoon. 

As shown in Listing 1, Platooning is described as a digital mediator: we declare the 
duties of the mediated UGV and the behavior abstractions that can be applied during 
the mediation, i.e. abstraction Leading_platoon(…) declares the behavior abstraction 
for leading the platoon; abstraction Following_platoonmate(…) declares the behavior 
abstraction for following the in-front platoonmate in the platoon; and abstraction 
Steering_to_join_platoon(…) declares the behavior abstraction for joining the platoon. 
The declared main behavior for self-driving the UGV is behavior Self_Driving(…). 

 

 
Listing 1. Digital mediator declaration for platoonmates in SosADL for IoV 

Based on the declaration of UGVs as systems (not shown for brevity) and of the 
digital mediator, presented in Listing 1, let us now declare the PlatooningSoS architec-
ture (presented in Listing 2). It describes which are the digital twins of the constituent 
systems that can participate in the SoS, the digital mediators that can be created and 
managed for coordinating the constituent systems via their digital twins and the digital 
coalitions that can be formed to achieve the SoS emergent behavior of platooning. As 
declared in the platoon coalition, by creating concretions, a digital mediator will be 
synthesized for each digital twin of a UGV that participates in the fleet of UGVs. 

 

//use the predefined library for the Internet-of-Vehicles (IoV) 
with IoV 
//declare the self-driving vehicle mediator for platooning 
digital mediator Platooning(min:Distance) is { 
 //declare the duty to support the join maneuver into platoons 
 duty join is { 
  //declare a broadcast channel for communicating with platoonmates   
  connection request_ch is broadcast{connection[connection[Thing]]} 
} 
duty control is { 
  //declare connections for steering the mediated UGV 
  connection align_x_start is out{…} 
  connection align_x_end is in{…} 
  connection align_y_start is out{…} 
  connection align_y_end is in{…} 
  connection keep_x_distance is out{…} 
  connection keep_y_distance is out{…} 
} 
//declare the behavior abstraction for leading the UGV platoon 
abstraction Leading_platoon(…) is {…} 
//declare the behavior abstraction for following in the UGV platoon 
abstraction Following_platoonmate(…) is {…} 
//declare the behavior abstraction for joining into the UGV platoon 
abstraction Steering_to_join_platoon(…) is {…} 
//declare the main behavior for self-driving the UGV 
behavior Self_Driving(…) is {…} 

} 
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Listing 2. Platooning SoS architecture declaration in SosADL for IoV 

Let us now describe, in Listing 2, the SoS architecture enabling the platooning emer-
gent behavior as well as maneuvers in the platoon.  

The SoS architecture description, shown in Listing 2, comprises the declaration of a 
sequence of digital twins of constituent systems complying with the system abstraction 
of UGV and a sequence of digital mediators conforming with the mediator abstraction 
of Platooning (as declared in Listing 1). 

Based on the digital twins of these systems and mediator abstractions, the digital 
coalition for creating emergent behavior is declared, named platoon, as shown in Listing 
2. In particular, the digital coalition of UGVs is described as a sequence of digital twins 
of UGVs where each digital twin has an associated steering digital mediator created in 
the digital coalition, with the specified minimum separation distance (min) as parame-
ter. The emergent behavior of the digital coalition, platoon, is giving by the macro-
scale behavior created by supervenience from the mediating micro-behaviors, accord-
ing to each situation. 

Let us now declare the digital mediating behavior, described in Listing 3. For the 
sake of space, we will focus on the general case of the join maneuver somewhere in the 
middle of the vehicle platoon. In this case, a vehicle that is not in the platoon, i.e. the 
joining UGV, broadcasts a joining request to the platoonmates expressing its intention 
to join the platoon. One of the concerned platoonmates, which listened the broadcast, 
contact back the joining UGV to accept the request and send the information required 
for the UGV to join the platoon. The agreed platoonmate increases the space in front of 
it until enough space has been created, i.e. at least two times the min separation distance 
plus the size of the joining UGV, and in parallel the joining UGV aligns longitudinally 
itself between the agreed platoonmate and the platoonmate in front of it. Then, the join-
ing UGV aligns laterally itself by changing its road lane to the same as the platoon. 
Once it merges into the platoon, being completely aligned in the lane of the platoon, it 
keeps driving forward while keeping a safe distance to the platoonmate in front of it. It 
becomes a regular platoonmate, and its autopilot (an adaptive cruise controller) takes 
the command (it automatically steers to maintain the platoon, regulating its distance to 
the platoonmate in front of it). Note that along the join maneuver, the joining UGV as 
well as the platoonmates drive forward with respect to the road geometry. 

//use UGV system abstraction and Platooning mediator abstraction 

with IoV,UGV,Platooning 

architecture PlatooningSoS(min:Distance) is { 

 coalition platoon is compose{ 

  fleet is sequence{UGV()} 

  platooning is sequence{Platooning(min)} 

 } binding { 

    forall {ugv in fleet suchthat 

      exists{one steer in platooning suchthat 

        unify one{steer::join} to one{ugv::join} 

        unify one{steer::control} to one{ugv::control}}}} 

} 
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Listing 3. Digital mediator behavior for platoonmates in SosADL for IoV 

//behavior abstraction of the mediator for UGV to join the platoon 
abstraction Steering_to_join_platoon(min:Distance) is { 
 repeat { 
  //ask the “thing” handle of the joining UGV itself 
  value ugv is ask itself 
   //ask the max V2V communication range of the joining UGV itself 
   value ugv_range is ask ugv for range 
  //request to join the platoon talking to its neighbors in platoon 
  behavior Requesting_to_join(min,ugv,ugv_range) 
 } 
 //broadcast intention to join platoon and then wait for responses 
 abstraction Requesting_to_join(min:Distance,ugv:Thing, 
  ugv_range:Distance) is { 
  //ask the vehicle size in the x axis of the joining UGV itself 
  value ugv_size_in_x is ask ugv for size_in_x 
   //declare unicast channel of channel for communicating with mate   
  restrict ugv_request_ch:connection[connection[Thing]] 
  //broadcast the unicast ch of ch for all neighboring platoonmates 
  via join::request_ch within ugv_range talk ugv_request_ch 
  replicate {//wait for the responses from neighboring platoonmates 
   //receive the unicast channel from the platoonmate which agreed 
   via ugv_request_ch receive platoonmate_ch:connection[Thing] 
   //receive the “thing” handle of the platoonmate which agreed 
   via platoonmate_ch receive platoonmate:Thing 
   //receive the “thing” handle of its in-front platoonmate 
   via platoonmate_ch receive frontmate:Thing 
   //align in x,y the joining ugv between platoonmate and frontmate 
   behavior Aligning_to_join(min,ugv_size_in_x,ugv,platoonmate, 
    frontmate) } 
 } 
 //maneuver to align the mediated UGV for joining the platoon  
 abstraction Aligning_to_join(min:Distance,ugv_size_in_x:Distance,  
  ugv:Thing,platoonmate:Thing,frontmate:Thing) is { 
  via control::align_x_start send [min,ugv_size_in_x, 
   ugv,platoonmate,frontmate] 
  via control::align_x_end receive ugv_in_x_coordinate:Coordinate 
  via control::align_y_start send [ugv,platoonmate,frontmate] 
  via control::align_y_end receive ugv_in_y_coordinate:Coordinate 
  //once inside, follow the UGV in front of it, i.e. its frontmate 
  behavior Following_platoonmate(min,ugv,front_mate) 
 } 
 abstraction Following_platoonmate(min:Distance,ugv:Thing, 
  frontmate:Thing) is { 
  choose { 
    //once aligned, the joining UGV behave as a platoonmate 
    via control::keep_x_distance send min 
    behavior Following_platoonmate(min,ugv,frontmate) 
    //in case, the UGV as platoonmate will support others joining 
  or replicate { via join::request_ch listen ugv_request_ch:  
             connection[connection[Thing] 
    restrict platoonmate_ch:connection[Thing] 
    via ugv_request_ch send platoonmate_ch 
    via platoonmate_ch send ugv 
    via platoonmate_ch send frontmate 
    via platoonmate_ch receive joining_frontmate 
   behavior Following_platoonmate(min,ugv,frontmate) } } 
 } 
} 
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It is by the application of the mediating behaviors, described in Listing 3, command-

ing the digitally mediated UGVs, that a UGV, when approaching a platoon, will per-
form the maneuver to join the platoon. It will stepwise behave to get closer to the neigh-
boring UGVs in the platoon and then join the platoon. For an external observer, at the 
macro-scale level, a UGV somewhere in the middle of the platoon will create a space 
in front of it allowing the joining UGV to safely come into the platoon, while avoiding 
collision. The safe space is of at least two times the minimum separation distance plus 
the size of the UGV joining the platoon. 

It is worth noting that the maneuver for joining the platoon is coordinated by the 
digital twins of the UGVs. Each UGV is not aware of the rest of the platoon, except for 
its own neighbors, generally composed of the platoonmates in front of and behind itself. 
For instance, a UGV in the platoon is not aware of the size of the platoon, i.e. of how 
many members has the platoon. 

From the abstract SoS architecture described in Listing 1, Listing 2, and Listing 3, 
different concrete SoS architectures of platoons may be created based on the identified 
UGVs for each particular operational environment. These platoons, through the medi-
ated platooning behavior, support the maneuvers for other UGVs joining the platoon 
dynamically. For instance, as mentioned, in the case of the UGV-based Emergence Re-
sponse SoS of the Monjolinho river, the fleet of identified UGVs are located at different 
municipalities along the river. They are then commanded to drive and reach an area 
with high risk of flooding for an emergency response mission (triggered by the moni-
toring of the urban river). From each departing point, the UGVs will leave to the desti-
nation zone in platoons (economizing on fuel) and, along the way, other UGVs will join 
the running platoons for forming larger ones. Once in destination, they will dissolve the 
platooning SoSs adopted in the navigation mission to reach the destination point and 
then adopt another SoS architecture for the search and rescue mission. 

 

 

 

 
Fig. 3. Snapshots of the mediated maneuver of a UGV joining a platoon 
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For illustrating the platooning mediation in the support of the maneuvers for a UGV 

joining a platoon, let us now suppose that a UGV enters the roadway and, at some point, 
drives in a contiguous lane of another where there is a platoon, as shown in Fig. 3 (top). 
This approaching UGV can join the platoon by the application of the Steer-
ing_to_join(…) mediated behavior declared in Listing 3. 

First the joining UGV broadcast its intention to join the platoon, then get a response 
from a member of the platoon, a platoonmate, which creates the space needed for the 
insertion of the joining UGV in front of it. The joining UGV will then align longitudi-
nally to be closer to that platoonmate. When the gap appears between the near UGVs, 
i.e. in this case between ugv@fleet::3 and ugv@fleet::2 as shown in Fig. 3 (middle), 
the joining UGV, in this case ugv@fleet::5, initiates the maneuver to align laterally, as 
shown in Fig. 3. Smoothly, the ugv@fleet::5 maneuvers to come into the platoon, as 
shown in Fig. 3 (from top to bottom). 

Note that other maneuvers are supported in the field study (not shown for reason of 
space): UGVs leaving a platoon, a platoon split in smaller platoons, and different pla-
toons merging together to form larger ones. 

5 SosADL Implementation 

We have developed an SoS Architecture Development Environment, named SosADL 
Studio [34], for supporting the architecture-centric formal development of SoSs using 
SosADL (from missions to SoS architectures [39], and their validation/verification), 
while providing guarantees of correctness of the elaborated SoS architectures [35]. 

This toolset is constructed as plugins in Eclipse (http://eclipse.org/). It provides a 
model-driven architecture development environment where the SosADL meta-model 
is defined in EMF/Ecore (http://eclipse.org/modeling/emf/), with the textual concrete 
syntax expressed in Xtext (http://eclipse.org/Xtext/), the graphical concrete syntax de-
veloped in Sirius (http://eclipse.org/sirius/), and the type checker implemented in Xtend 
(http://www.eclipse.org/xtend/), after having being proved using the Coq proof assis-
tant (http://coq.inria.fr/). 

By applying model-to-model transformations, SoS architecture descriptions are 
transformed and converted to input languages of analysis tools, including UPPAAL 
(http://www.uppaal.org/) for extensive model checking, DEVS (http://www.ms4sys-
tems.com/) for simulation, and PLASMA (http://project.inria.fr/plasma-lab/) for statis-
tical model checking. 

The constraint solving mechanism implemented to support the tell and ask con-
structs are based on the Kodkod SAT-solver (http://alloy.mit.edu/kodkod/). 

Of particular interest for validating SoS emergent behavior is the automated gener-
ation of concrete SoS architectures, by automated transformation from SosADL to 
DEVS, and the subsequent simulation in DEVS enabling to observe and tune the de-
scribed emergent behavior of an SoS [6]. 

For supporting verification of SoS architectures, we have conceived a novel logic, 
named DynBLTL [37], for expressing correctness properties of evolving architectures 
as well as verifying these properties by model checking [3]. 
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The SosADL Studio for IoV extends the core SosADL Studio with enhancements to 

the ADL, incorporating in particular the new constructs for broadcast (i.e. talk and 
listen), and their implementation in the toolchain, as well as collect. The different con-
crete syntaxes, the abstract syntax in terms of the meta-model, the type checker as well 
as the model-to-model transformations were extended accordingly. 

In addition to these domain independent tools, the resulting SosADL Studio for IoV 
was extended with VEINS, https://veins.car2x.org/, which provides an open source 
framework for running vehicular network simulations, including inter-vehicular com-
munication with VANETs. 

The implemented toolchain in SosADL Studio for IoV provides the ability to validate 
and verify the studied SoS architectures on the IoV very early in the SoS lifecycle with 
respect to its correctness properties, in particular regarding emergent behaviors. 

6 SosADL Validation for the IoV by Controlled Experiment 

For validating SosADL for IoV and its supporting toolchain, SosADL Studio for IoV, we 
carried out a field study of a real SoS for Flood Monitoring and Emergency Response 
and studied its concretization in the Monjolinho river, which crosses the city of Sao 
Carlos (see [26] for more details on the description of the field study). 

The mission of the designed SoS is to monitor potential floods and to handle related 
emergencies. The SoS stakeholder is the DAEE (Sao Paulo’s Water and Electricity De-
partment), a government organization of the State of Sao Paulo, Brazil, responsible for 
managing water resources, including flood monitoring of urban rivers. This SoS also 
involves as stakeholders the different city councils crossed by the Monjolinho river, the 
policy and fire departments of the city of Sao Carlos that own UAVs (drones) and have 
UGVs (self-driving vehicles) equipped with VANET. Also involved are the hospitals 
of the city of Sao Carlos (they have ambulances equipped with VANETs). 

The aim of this field study developed conjointly with USP was to assess the fitness 
for purpose and the usefulness of, on the one hand, SosADL as a formal SoS architec-
tural language, and on the other hand, of SosADL Studio as an SoS architecture devel-
opment environment to support the architectural description and analysis of real SoSs. 

In addition to IoT in general, to validate that the expressive power of SosADL for 
IoT copes with the needs of IoT, we carried out a controlled experiment for addressing 
IoV in particular through its challenging case of vehicle platooning, which involves ad-
hoc networking and physical mobility. The controlled experiment was designed as a 
subset of the field study of the Flood Monitoring and Emergency Response SoS applied 
to the Monjolinho river in the city of Sao Carlos, as cited. 

Overall, the result of the assessment based on the controlled experiment concluded 
that SosADL for IoV enables descriptions of SoS architectures on the IoV which were 
not possible to be described with core SosADL or even its customized SosADL for IoT. 

The reason is that SosADL and SosADL for IoT (for stationary “things”) are based 
only on unicast communication constructs, i.e. send/receive, while SosADL for IoV (for 
mobile “things”) was extended with broadcast constructs. Formally speaking, the 
broadcast constructs were demonstrated to be not encodable with the unicast ones [4]. 
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Intuitively, it means that the behaviors expressed in the maneuver for joining platoons 
cannot be specified in languages providing only unicast send/receive constructs, which 
is today the case of all existing ADLs [36]. 

7 Related Work 

Related work on the description of behaviors shaped by software architectures is of two 
kinds: aggregative behavior in single systems architecture [15][36] and emergent be-
havior in SoS architectures [8]. SoS architectures on the IoV imply the need to describe 
emergent behaviors drawn from the interaction of mobile “things”. 

Let us first analyze related work on emergent behavior related to SoS, of which the 
key ones are proposed by Wachholder and Stary [40] and Motus et al. [22]. 

Wachholder and Stary [40] presents an attempt for describing emergent behavior in 
SoSs. The proposed approach is based on Bigraphs and focuses on the modeling of both 
the structure and the structural dynamics of an SoS. It, however, does not address the 
behavioral aspects of emergent behavior, limiting the solution to the configuration and 
re-configuration features. The proposed solution is limited only to concrete (one-of-a-
kind) SoS architectures and limited only to the endogenous approach for modeling 
emergent behavior in SoS. These limitations restrict the expressiveness of the proposed 
approach, which does not cope with the needs for architecting SoS on IoV. 

Motus et al. [22] address the importance of mediating interactions among constituent 
systems to achieve emergent behavior. In particular, it proposes a middleware based on 
mediated interaction. That work is complementary to ours in the sense that SoS archi-
tectures described with SosADL can be deployed in the proposed middleware. 

Let us now analyze how emergent behavior has been specifically addressed for de-
signing platoons as SoSs. This issue has been tackled by two related works: Kumar et 
al. [17] and Labrado et al. [18]. 

Kumar et al. [17] proposed a modeling approach based on Bond Graph Theory for 
describing a platoon of autonomous vehicles. The proposed solution is limited to the 
physical model of the vehicle platoon, as well as can only be applied to a concrete (one-
of-a-kind) SoS based on endogenous modeling. Its role is mainly for supervision pur-
poses. This work is complementary to ours in the sense that SoS architectures described 
with SosADL for IoV can be refined to bound graph models to study the physical prop-
erties of the architected SoS platooning. It however does not address the digital coun-
terpart. 

Labrado et al. [18] proposed a testbed for simulating SoSs based on physical robots 
connected to a cloud. Platoon is one of the supported kinds of SoS. Again, this work is 
complementary to ours in the sense that SoS architectures described with SosADL for 
IoV can be refined to concrete implementations that can then be simulated using the 
proposed simulation framework. Again, it does not address the digital counterpart. 

Let us now analyze related work on aggregative behavior exposed by single systems. 
The description of single systems architecture as based on three notions: component, 
connector, and configuration. The notion of connector as a first-class entity in architec-
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ture description has been proposed two decades ago [1]. Connectors were firstly de-
signed as static entities, that never changed during run-time, then as dynamic entities 
changing dynamically at run-time to support dynamic architectures [24]. More recently 
the automatic synthesis of connectors during design-time was proposed [11]. 

The notion of mediator proposed in SosADL, which provides the basis for exoge-
nously describing SoS architectures, generalizes the notion of connector. In particular, 
SosADL advances the current state-of-the-art on synthesized connectors at design-time 
in single systems architecture exposing aggregative behavior by providing the novel 
concept of mediator, based on synthesized mediators at run-time, on demand, in SoS 
architectures exposing emergent behavior. In addition, SosADL for IoV encompasses 
mediators supporting broadcast communication, which cannot be expressed on lan-
guages based only on unicast connectors, which is the case of all existing ADLs. 

Overall, currently, other ADLs are not expressive enough to be able to describe SoS 
architectures on the IoV such as in vehicular platooning with dynamic join/leave. So-
sADL for IoV is therefore the first ADL designed for meeting the needs of IoV, while 
based on a formal calculus enabling to formally express correctness properties as well 
as to verify these properties through automated tools, in particular statistical model 
checkers. 

8 Conclusion and Future Work 

This paper presented the novel concepts and constructs of SosADL for IoV, extending 
the core SosADL, while generalizing SosADL for IoT to both stationary and mobile 
“things”. In particular, it demonstrated how architectural mediators expressed with So-
sADL for IoV support SoS architecture descriptions on the IoV through an excerpt of a 
real application for architecting a UGV-based platooning enabling dynamic maneuvers, 
e.g. joining/leaving, focusing on the join maneuver. It provides the first formal SoS 
architectural description of connected autonomous vehicles supporting dynamic ma-
neuvers, all others being only limited to the architectural formation of SoS platooning. 

The formal foundation of SosADL for IoV extends the π-Calculus enhanced with 
concurrent constraints, the π-Calculus for SoS, bringing contributions beyond the state-
of-the-art by providing the first full formal ADL having the expressive power for de-
scribing emergent behavior in software-intensive SoS architectures on the IoV, in par-
ticular IoV-connected vehicle platooning with dynamic maneuvers, grounded on its 
constraint solving mechanism, mobile unicast, and now broadcast communication. 

SosADL has been applied in several case studies and pilots where the suitability of 
the language and the supporting toolchain has been validated, including SosADL for 
IoV for SoS applications in smart-cities. 

On-going and future work is mainly related with the application of SosADL for IoV 
to real-scale projects on the Internet-of-Vehicles. They include joint work with IBM for 
applying SosADL to architect smart-farms on the IoT in general and IoV in particular, 
and with SEGULA for applying SosADL for IoV to architect SoSs in the navy domain, 
based on 5G. Description of SoS architectures on the IoV, and their validation and ver-
ification using the SosADL for IoV toolchain, are main threads of these pilot projects. 
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