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ABSTRACT

Context. CO isotopologue transitions are routinely observed in molecular clouds to probe the column density of the gas, the elemental
ratios of carbon and oxygen, and to trace the kinematics of the environment.
Aims. We aim at estimating the abundances, excitation temperatures, velocity field and velocity dispersions of the three main CO
isotopologues towards a subset of the Orion B molecular cloud, which includes IC 434, NGC 2023, and the Horsehead pillar.
Methods. We use the Cramer Rao Bound (CRB) technique to analyze and estimate the precision of the physical parameters in the
framework of local-thermodynamic-equilibrium (LTE) excitation and radiative transfer with an additive white Gaussian noise. We
propose a maximum likelihood estimator to infer the physical conditions from the 1−0 and 2−1 transitions of CO isotopologues.
Simulations show that this estimator is unbiased and efficient for a common range of excitation temperatures and column densities
(Tex > 6 K, N > 1014 − 1015 cm−2).
Results. Contrary to the general assumptions, the different CO isotopologues have distinct excitation temperatures, and the line in-
tensity ratios between different isotopologues do not accurately reflect the column density ratios. We find mean fractional abundances
that are consistent with previous determinations towards other molecular clouds. However, significant local deviations are inferred, not
only in regions exposed to UV radiation field but also in shielded regions. These deviations result from the competition between se-
lective photodissociation, chemical fractionation, and depletion on grain surfaces. We observe that the velocity dispersion of the C18O
emission is 10% smaller than that of 13CO. The substantial gain resulting from the simultaneous analysis of two different rotational
transitions of the same species is rigorously quantified.
Conclusions. The CRB technique is a promising avenue for analyzing the estimation of physical parameters from the fit of spectral
lines. Future work will generalize its application to non-LTE excitation and radiative transfer methods.

Key words. ISM: molecules; ISM: clouds; Radiative transfer; Methods: data analysis, Methods: statistics
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1. Introduction

Spectroscopic measurements are commonly used to probe astro-
physical objects. In the interstellar medium, the moderate tem-
peratures and densities of diffuse and molecular clouds (Tkin ∼

10−100 K, and n ∼ 102−105cm−3, Draine 2011) are well suited
for the emission in the low energy rotational lines of molecules
such as carbon monoxide, which are accessible at millimeter
wavelengths. The advent of sensitive broadband heterodyne re-
ceivers provides homogeneous data sets of various CO isotopo-
logues and other species with high signal-to-noise ratios over
large fields of view. The ORION-B IRAM-30m large program
(Outstanding Radio-Imaging of OrioN B, co-PIs: J. Pety and
M. Gerin) aims at imaging 5 square degrees towards the south-
ern part of the Orion B molecular cloud over most of the 3 mm
atmospheric window. Carbon monoxide is especially interesting
because it is one of the most abundant molecules after molecular
hydrogen. Using the unsupervised meanshift clustering method
on the intensities of the CO isotopologues, Bron et al. (2018)
show that it is possible to cluster the emission line data across
the analyzed field of view into a few classes of increasing (col-
umn) densities. In two empirical studies, Gratier et al. (2017)
and Gratier et al. (submitted as a companion paper) show qual-
itatively and quantitatively that the 12CO(1−0), 13CO(1−0), and
C18O(1−0) lines are indeed tracing the molecular gas well. Their
quantitative comparisons show that the H2 column density de-
duced from the dust emission can be accurately estimated from
the 12CO(1−0), 13CO(1−0), and C18O(1−0) lines in the column
density range from 1021 to & 1022 cm−2.

Assuming identical excitation temperatures, the opacity of
the ground state transitions is expected to be smaller for
13CO than for 12CO, and even smaller for C18O because
of the difference in elemental abundances, 12C/13C ∼ 60 and
16O/18O ∼ 500 (Langer & Penzias 1990; Wilson & Rood 1994).
These three lines can thus be used to probe progressively higher
gas column densities, provided the relative elemental abun-
dances are constant and the CO isotopologue abundances track
the elemental abundances. However chemical models and ob-
servations show that selective photodissociation and carbon iso-
topic fractionation can significantly modify the relative abun-
dances of carbon monoxide isotopologues, as compared to el-
emental abundances (Visser et al. 2009; Liszt 2017; Roueff et al.
2015). Fractionation via the exchange reaction between 13C+ and
12CO leads to an enhancement of the 13CO abundance in the
diffuse/translucent regions where CO and C+ coexist and the
kinetic temperature remains moderate (. 50 K, Liszt & Pety
2012). This mechanism widens the 13CO emitting region and
brings it closer to that of 12CO, which favors the simultaneous
detection of both isotopologues on wide fields of view. However
the ratio of isotopologue abundances can be significantly differ-
ent from the ratio of elemental abundances, which complicates
the determination of the 13C elemental abundance from CO ob-
servations only. Up to now, the most reliable determinations of
the 12C/13C elemental abundance ratio have been obtained using
C+ or C observations in regions without significant fractiona-
tion (e.g. Keene et al. 1998; Ossenkopf et al. 2013), or involve
C18O and the doubly isotopic species 13C18O (Langer & Penzias
1990).

No such fractionation reaction exists for oxygen. However,
the more abundant CO isotopologues shield themselves from
the destructive effect of UV photons more efficiently than less
abundant isotopologues because the photodissociation of carbon
monoxide is governed by line absorption. This effect called se-
lective photodissociation is important. It has been studied in de-

tail through laboratory experiments (e.g. Stark et al. 2014) and
in models of photo-dissociation regions (e.g. Visser et al. 2009).
In observations, it is clearly seen as an offset between the thresh-
old for the apparition of 12CO (near AV = 0.5 mag) and C18O
(1.5 mag) in the Taurus molecular cloud, and this offset is not due
to a difference in the detection sensitivity (Frerking et al. 1989;
Cernicharo & Guelin 1987). Typically, the 13CO abundance is
enhanced through fractionation in the same regions where the
C18O abundance decreases due to selective photodissociation.
This leads to a broad range of the 13CO/C18O abundance ratio
for a given set of elemental abundances.

Determining the ratio of elemental abundances of the C and
O isotopes is interesting because it provides information on the
stellar populations which have produced these elements. Some
external galaxies exhibit CO isotopologue ratios that signifi-
cantly differ from the expected value based on the mean ele-
mental abundances in the solar neighborhood. Such differences
can trace differences in elemental abundances, hence in stellar
populations and IMF shape (Sliwa et al. 2017; Martín et al.
2019). However, a proper account of isotopic chemistry de-
scribed above must be performed in order to use the information
on the relative abundances of the CO isotopologues.

Finally, Orkisz et al. (2019) show, in an analysis of the fila-
mentary structure of the Orion B molecular cloud, that the gas
velocity dispersion determined from C18O reaches a minimum
value in the filament ridges, that it is always lower than the ve-
locity dispersion determined by 13CO. This suggests that this
variation of velocity dispersion between CO isotopologue traces
the dissipation of turbulence when entering the dense filaments
inside molecular clouds.

Constraining all these astrophysical effects relies on a pre-
cise derivation of physical conditions and chemical composition
from spectroscopic observations. This in turn relies on the res-
olution of the radiative transfer equation because the line inten-
sities and profiles bear information on the line emission mech-
anisms. The large data volumes provided by observational pro-
grams like ORION-B require new statistical analysis methods
using the information in an optimal way, and a derivation of the
physical parameters and their associated errors with a rigorous
methodology. For instance, the emission of the lowest rotational
transitions of the three major isotopologues of carbon monox-
ide, 12CO, 13CO, and C18O is commonly used to determine the
molecular gas column density and evaluate the mass of molecu-
lar gas. Because these lines can now be observed simultaneously,
leading to an homogeneous flux calibration and therefore precise
relative calibration, it is essential to have a good estimation of the
precision on the mass estimate.

In estimation theory, the Cramer Rao bound (CRB) provides
a precision of reference that does not depend on a specific esti-
mator of the searched quantity, but only on the physical model
and the statistical properties of the noise (see, e.g., Bonaca &
Hogg 2018; Espinosa et al. 2018). The CRB further allows the
quantification of the loss of precision due to degeneracies be-
tween the estimated parameters (for instance column density and
excitation temperature). Hence, a large value of this bound in-
dicates insufficient data or knowledge with respect to a given
physical model. We will here apply this technique in the sim-
plest possible model framework, i.e., the emission of lines in
Local Thermodynamic Equilibrium (LTE), which can be fully
expressed with analytical equations.

The level populations of interstellar molecules result from
the balance of collisional (and possibly radiative) excitation and
radiative & collisional de-excitation. Therefore the level popu-
lations often deviate from LTE conditions because the collisions

Article number, page 2 of 27



Antoine Roueff et al.: C18O, 13CO, and 12CO abundances and excitation temperatures in the Orion B molecular cloud

Table 1. Properties of observed lines.

Species Line ν dV1 Beam2 Noise3

MHz km s−1 ′′ mK
C18O 1−0 109782.173 0.5 23.5 116
C18O 2−1 219560.319 0.5 23.5 96
13CO 1−0 110201.354 0.5 23.5 116
13CO 2−1 220398.686 0.5 23.5 134
12CO 1−0 115271.202 0.5 23.5 278

Notes. (1) Channel spacing after resampling. (2) Angular resolution after
smoothing. (3) Median noise σb after resampling and smoothing.

are not efficient enough to populate all energy levels according
to a Boltzmann distribution. With its low dipole moment (0.1
Debye) and high abundance relative to H2, the low energy rota-
tional lines of carbon monoxide are bright and easily thermal-
ized in collisions with H2, H and He. This means that the LTE
model is still a good approximation for this molecule, i.e., the
rotational level populations can be described by a Boltzman dis-
tribution at a single excitation temperature (Liszt 2006; Leung
& Liszt 1976; Goldsmith & Langer 1999; Goldreich & Kwan
1974). Deviations from the LTE model have been theoretically
studied. For instance, using non local, non LTE radiative transfer
models of a uniform (constant density and temperature) spheri-
cal cloud, Bernes (1979) shows that the excitation temperatures
of the 12CO(1−0) and 12CO(2−1) lines exhibit moderate spa-
tial variations from edge to center. It is concluded that the LTE
model is mostly valid for the ground state transition and devia-
tions from this approximation increase with the quantum number
of the upper level (van der Tak et al. 2007).

With a wide range of physical conditions, from bright far-
UV illuminated regions to cold and shielded regions through dif-
fuse and translucent gas irradiated by a moderate radiation field,
the Orion B molecular cloud is an ideal place to probe to which
extent fractionation and selective photodissociation can modify
the elemental abundance ratio. It is also a good region to probe
the differences in excitation between isotopologues as the simple
hypothesis of equal excitation temperatures for 12CO, 13CO and
C18O may not be valid, as discussed in Bron et al. (2018).

The article is organized as follows. Section 2 presents the
data used in this paper. Section 3 summarizes the mathematical
formulation of the LTE radiative transfer. Section 4 computes
and analyzes the precision achievable for this theoretical frame-
work. Section 5 illustrates the proposed methodology on actual
data sets. Section 6 focuses on the astrophysical interpretations
of these results. Appendix A details the calculation of some gra-
dients necessary to compute the Fisher matrix. Appendix B de-
scribes our implementation of the maximum likelihood estima-
tor, and appendix C discusses the performance of this estimator.

2. Description of the data

We will try to estimate the velocity field, the column density,
and the excitation temperature of the CO isotopologues from the
analysis of the 13CO(1−0), 13CO(2−1), C18O(1−0), C18O(2−1)
and 12CO(1−0) lines towards parts of the Orion B molecular
cloud. We will compare our results with the dust-traced H2 col-
umn density and dust temperature. This section describes the as-
sociated data sets.

2.1. IRAM-30m observations

2.1.1. 3 mm CO lines from the ORION-B large program

The 3 mm data were obtained with the IRAM-30m as part of
the ORION-B large program. Pety et al. (2017) present in detail
the acquisition and reduction of the dataset used in this study.
In short, the used data were acquired at the IRAM-30m tele-
scope using the EMIR receiver and Fourier transform spectrom-
eter from August 2013 to November 2014. The frequency range
from 84 to 116 GHz was completely sampled at 200 kHz spectral
resolution. The J = 1−0 lines of the CO isotopologues analyzed
here are observed in a single receiver tuning. These lines are
thus well inter-calibrated. The absolute flux calibration at 3 mm
for the IRAM-30m telescope is estimated to be better than 5%.

2.1.2. 1 mm CO lines

The 13CO(2−1) and C18O(2−1) were also observed at the
IRAM-30m in 2006 (PI: N. Peretto) using the ABCD generation
of receivers and the VESPA auto-correlator. The two lines were
observed simultaneously ensuring an excellent inter-calibration.

Data reduction was carried out using the GILDAS1/CLASS
software. The contribution of the atmosphere was first removed
(ON-OFF procedure) and the data were calibrated to the T?

A scale
using the standard chopper-wheel method (Penzias & Burrus
1973). The data were then converted to main-beam temperatures
using the standard forward (0.94) and main-beam (0.62) efficien-
cies for the ABCD receiver around 220 GHz2. The resulting ab-
solute flux calibration is estimated to be better than 10%. We
subtracted a first order baseline from every spectrum, excluding
the velocity range from 5 to 15 km s−1 in the Local Standard of
Rest (LST) frame. The spectra were finally gridded into a data
cube through a convolution with a Gaussian kernel of full width
at half maximum ∼ 1/3 of the IRAM-30m telescope beamwidth
at the line rest frequency.

2.2. Herschel observations

In order to get independent constraints on the physical conditions
in the Orion B cloud, we use the dust continuum observations
from the Herschel Gould Belt Survey (André et al. 2010; Schnei-
der et al. 2013) and from the Planck satellite (Planck Collabora-
tion I 2011). The fit of the spectral energy distribution by Lom-
bardi et al. (2014) gives us access to the spatial distributions of
the dust opacity at 850 µm and of the dust temperature. As in
Pety et al. (2017), we converted τ850 µm to visual extinctions us-
ing AV = 2.7 × 104 τ850 mag, and the visual extinction into H2
column density using N(H2)/AV = 0.9 × 1021 H cm−2 mag−1.

2.3. Field of view

We will jointly analyze the J = 1 − 0 and J = 2 − 1 lines of the
CO isotopologues. We thus restrict the field of view to the region
that was observed at 3 and 1 mm. This covers 19′ × 26′ towards
the Orion B molecular cloud part that contains the Horsehead
nebula, and the Hii regions NGC 2023 and IC 434. The cubes
used here are rotated counterclockwise by 14◦ around the pro-
jection center (05h40m54.270s,−02◦28

′

00.00
′′

) in the RA/DEC
J2000 reference frame (see Fig. 1). The coordinates are given

1 See http://www.iram.fr/IRAMFR/GILDAS for more information
about the GILDAS software (Pety 2005).
2 For details, see http://www.iram.es/IRAMES/mainWiki/
Iram30mEfficiencies.
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Fig. 1. Spatial distributions of the integrated intensity (in K km s−1) of the considered lines. The maps have been rotated counterclockwise
by 14 degrees from the RA/DEC J2000 reference frame. The spatial offsets are given in arcsecond from the projection center located at
05h40m54.270s,−02◦28

′

00.00
′′

. Red crosses stand for two particular lines of sight which are analyzed in Figure 10.

in offsets (δx, δy) in arcseconds from this projection center. The
IRAM-30m angular resolution ranges from 11.5′′ at 220 GHz to
23.5′′ at 110 GHz. The position-position-velocity cubes of each
line were smoothed to a common angular resolution of 23.5′′
to avoid resolution effects during the comparison. At a distance
of 400 pc (Menten et al. 2007), the sampled linear scales range
from ∼ 0.045 pc to ∼ 3 pc.

The spectral and spatial axes were resampled in order to
share the same spatial grid and velocity axis for all lines.
The spectroscopic observations thus provide position-position-
velocity cubes3 of 129 × 170 × 80 pixels, each pixel covering
9′′×9′′×0.5 km s−1 (Nyquist sampling at 3 mm). Figure 1 shows
the maps of the intensity integrated between 0 and 20 km s−1 for
the five lines of interest.

2.4. Noise

In this paper, the standard deviation of the noise σb is estimated
only on negative values of each spectrum through

σb =

 1
Kneg

∑
k∈{Tk≤0}

T 2
k

1/2

, (1)

where T is the intensity in Kelvin, and Kneg the number of chan-
nels that have a negative value of the intensity. This allows us to
compute it without a priori information on the velocity range
where the line appears, but it assumes that the baselining re-
moved any intensity offset. Table 1 lists the median noise esti-
mated after spectral resampling and angular smoothing.

2.5. Line profiles

A fraction of the studied field of view shows spectra that can
only be modeled with more than one velocity component along
the line of sight. While we will adapt our formalism to handle
such cases, it is not obvious to devise a robust statistical test
to deduce the best number of components that must be used.
This is particularly true at transitions between regions where the
number of required velocity components changes to get a good
fit. To address this issue, we used the ROHSA (Marchal et al.
2019) algorithm that makes a Gaussian decomposition based on
a multi-resolution process from coarse to fine grid. We only used
here the spectra denoised by ROHSA to provide a spatially co-
herent estimation of the number of components and some initial
estimation of their associated central velocities for each pixel.

3 The data products associated with this paper are available at http:
//www.iram.fr/~pety/ORION-B

3. Radiative Transfer in Local Thermodynamic
Equilibrium

Molecular line emission and absorption in the case of Local
Thermodynamic Equilibrium (LTE) are well known (see, e.g.,
Mangum & Shirley 2015). In this Section, we just summarize
the associated notations and equations so that we can easily ex-
plain the precision analysis framework on this case in the next
section. For the sake of simplicity, we focus on a single chem-
ical species and a single velocity component along one line of
sight. The observed spectrum as a function of frequency ν is de-
fined as

x(ν) = s(ν) + b(ν), (2)

where b is a (thermal) Gaussian noise, and s is the spectrum as-
sociated to the species of interest. The specific intensity s and
the associated measurement noise b are expressed in Kelvins
following the standard use in radioastronomy. The data reduc-
tion (atmospheric ON-OFF calibration and spectrum baselining
to subtract the slowly-varying continuum residual from the re-
ceiver and the atmosphere) delivers a noise b that is centered
(i.e., with zero-mean), and whose variance can be considered
constant over each line profile.

We assume that two lines (l ∈ {1, 2}) from the same species
are observed. The photons of each line are emitted at the rest fre-
quency of the line, νl, and redshifted in frequency because of the
Doppler shift due to the motion of the gas along the line of sight
in the observation frame, typically the Local Standard of Rest
(LSR). The photon is thus received at the redshifted frequency
νred

l = νl

(
1 − V

c

)
, where V is the velocity of the emitting cell of

gas in the LSR frame and c is the speed of light. This equation is
the radio low-velocity approximation of the Doppler effect. The
Doppler effect due to the motion of the observer relative to the
LSR is automatically taken into account in the data acquisition
process. Therefore, each line of the dataset is analyzed in the
LSR frame. In this frame each line is centered around a typical
velocity, noted ∆V . This velocity is related to the redshifted cen-
troid frequency of the line, νcent

l , through a particular case of the
previous equation

νcent
l = νl

(
1 −

∆V

c

)
. (3)

We assume that the only background source of emission is the
Cosmic Microwave Background (CMB). In this case, the inten-
sity s at observed frequency ν around νred

l can be written as

s(ν) = {J(Tex, νl) − J(TCMB, ν)}
[
1 − exp(−Ψ(ν))

]
(4)
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where TCMB is the known CMB temperature (TCMB = 2.73 K,
Mather et al. 1994), Tex is the unknown excitation temperature
along the line of sight, and J is a measure of intensity at a given
temperature

J(T, ν) =
c2

2kν2 B(T, ν) =
hν
k

1
exp hν

kT − 1
, (5)

where B(T, ν) is the spectral distribution of the radiation of
a black body at temperature T . The term

[
1 − exp(−Ψ(ν))

]
in Eq. (4) represents the emission/absorption by the emit-
ting/absorbing medium along the line of sight, considered as a
uniform slab. The function Ψ is the profile that corresponds to
the integrated opacity through the whole slab. For each line l, it
can be written as

Ψl(ν) = αl φ
(
ν; νcent

l , νl
σV

c

)
. (6)

In this equation, σV is the velocity dispersion of the source along
the line of sight. It varies as a function of the local physical con-
ditions (higher temperatures and higher turbulence will lead to
larger values). The function φ is a Gaussian profile

φ(ν; νo, σν) =
1

√
2πσν

exp
(
−

(ν − νo)2

2σ2
ν

)
, (7)

where σν is the frequency dispersion in the source rest frame. It
is related to σV by σν = νl σV/c, because of the Doppler effect.
Finally, the amplitude αl associated to the Gaussian profile φ and
line l is

αl =
c2

8π
N

Q(Tex)
Al gup

ν2
l

exp
[
−

Eup

Tex

] (
exp

[
h νl

k Tex

]
− 1

)
(8)

where Al is the Einstein spontaneous emission rate for line l, gup
is the degeneracy of the upper level of the line, Eup its energy
(in units of Kelvin), and N the column density of the species
along the line of sight. The partition function Q(Tex) is tabulated
in molecular databases (e.g., CDMS, Müller et al. 2001, or JPL,
Pickett et al. 1998), and its temperature dependence can be inter-
polated for each species. The partition function is computed as
the sum of the populations of all energy levels Ek. If the energy
levels are expressed in Kelvin, Q(Tex) can be written as

Q(Tex) =

+∞∑
k=1

gk exp
[
−

Ek

Tex

]
. (9)

The parameter αl is related to the line opacity τl

τl =
αl c

√
2πνlσV

, (10)

which is dimensionless. The excitation temperature is defined
from the ratio of the population in the upper (nup) and lower
(nlow) levels of the studied line
nup

nlow
=

gup

glow
exp

[
−

hνl

kTex

]
. (11)

When the molecules are in thermal equilibrium with their envi-
ronment, the temperature Tex is equal to the gas kinetic temper-
ature. The kinetic temperature is not known and must be esti-
mated.

In the previous equations, the physical characteristics of the
gas (N, Tex, σV , and ∆V ) depend on the specific line of sight on
the sky. Moreover, while observers try to get a uniform noise
when observing the source, this is never perfect and it is impor-
tant to assume that the noise standard deviation σb also depends
on the specific line of sight on the sky. These considerations im-
ply that αl, τl, νcent

l , Ψl, s, and x will also depend on the sky
position.

4. Cramer-Rao Bound analysis

In this article, we aim at estimating the physical parameters of
the LTE model presented in section 3 on the ORION-B data (see
section 2). Even when the LTE model is perfectly verified, the
presence of an additive Gaussian noise induces some uncertainty
on the estimation. For each physical parameter θ estimated as θ̂,
the estimation error (̂θ−θ) can be quantified with the mean square
error (MSE) 〈(̂θ − θ)2〉, where 〈.〉 represents the statistical mean
over the different realizations of the noise b. MSE can be esti-
mated with Monte Carlo simulations, but the result then depends
on the choice of the implemented estimator. For example, when
MSE is large, one does not know whether it is due to the choice
of the estimator or to a lack of information in the data. In esti-
mation theory, the Fisher matrix allows to quantify the amount
of information in the considered problem. It provides a refer-
ence precision, named Cramer-Rao Bound (CRB), which does
not depend on the choice of a specific estimator of the searched
quantity, but only on the physical model and the statistical prop-
erties of the noise (see, e.g., Bonaca & Hogg 2018; Espinosa
et al. 2018).

Mathematically speaking, the CRB noted B(θ) is simply a
lower bound on the MSE of unbiased estimators (see Eq. (15)).
Indeed, the MSE is equal to the estimation variance 〈(̂θ − 〈̂θ〉)2〉

for an unbiased estimator because the estimation MSE is in gen-
eral equal to the sum of its variance and its bias (〈̂θ〉−θ) squared,
i.e.,

〈(̂θ − θ)2〉 = 〈(̂θ − 〈̂θ〉)2〉 + (〈̂θ〉 − θ)2 (12)

Therefore, a high CRB value implies that any unbiased estimator
θ̂ will necessarily have a high dispersion around the true value θ.
A high CRB can be understood as a lack of information in the
underlying model with respect to the considered level of noise.
When it occurs, one solution can be to introduce additional a
priori knowledge or to make another measurement with a bet-
ter signal-to-noise ratio. In contrast, a low CRB value does not
necessarily imply that there exists an unbiased estimator θ̂ with
a low dispersion around the true value θ. CRB is only a lower
bound and it can be overly optimistic. It is thus necessary to build
an estimator, which can be tested by comparing its variance with
the CRB. If the estimator is unbiased and its variance is equal
to the CRB, then one knows that there does not exist any better
unbiased estimator. In this section, we analyze the CRB (i.e. a
bound on the variance of all unbiased estimators), and in sec-
tion 5.1 we check with Monte Carlo simulations that an efficient
estimator (i.e., whose variance reaches the CRB) exists.

We here compute the Fisher matrix and the associated CRB
precisions for the LTE radiative transfer. We then study the vari-
ations of these reference precisions for the different unknown
physical parameters (∆V , σV , Tex, and N) as a function of the ex-
citation temperature and column density. We finally use the CRB
precision to answer two questions. First, what is the maximum
noise tolerable to get a given relative precision on these param-
eters? We here compare the cases where only one (13CO(1−0))
or two (13CO(1−0) and 13CO(2−1)) lines are available. Second,
which 12CO line should be observed to improve the precision
achieved when only 12CO(1−0) observations are available?
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(a) B1/2(∆V ) in km s−1 (b) B1/2(σV ) in km s−1 (c) 1.5σV√
2KR

in km s−1

Fig. 2. Variations of the square root of the Cramer-Rao Bound (CRB) of the centroid velocity (∆V , left panel) and velocity dispersion (σV , middle
panel) in km s−1 as a function of the column density and the excitation temperature. The right panel shows the variations of a function of the
product of the number of channels (K) and the signal-to-noise ratio (R). In all three cases, data are simulated assuming that 13CO(1−0) and
13CO(2−1) are measured and the unit of the image contours are km s−1. In this simulation, σb = 100 mK, ∆V = 1.1 km s−1 and σV = 0.61 km s−1.

4.1. Computing the CRB from the Fisher matrix for a single
line and a single velocity component

For a given line l, a sampled version of Eq. (2) can be written
over K discrete frequency channels as

∀n ∈ {1, ...,K} xn,l = sn,l + bn,l. (13)

When b is a centered white Gaussian noise of standard deviation
σb,l, and the physical model s is expressed as a function of a set
of unknown parameters (θi), the Fisher matrix IF , which repre-
sents the amount of information provided by line l, can simply
be computed as (Stoica & Moses 2005)

∀(i, j) [IF]i j =
1
σ2

b,l

K∑
n=1

∂sn,l

∂θi

∂sn,l

∂θ j
, (14)

where [A]i j stands for the term (i, j) of the matrix A.
In our case, the physical model for s will be the LTE radia-

tive transfer introduced in Sect. 3 and the vector of unknown
parameters is θ = [Tex, log N, ∆V , σV ]T , which we also write
θ = [θ1, θ2, θ3, θ4]T to simplify the expression of the Fisher ma-
trix in Eq. 14. In this vector of parameters, we chose to analyze
the precision of the logarithm4 of the column density N instead
of directly analyzing the precision of N, because the column
density can vary over orders of magnitudes in Giant Molecular
Clouds.

It can be shown (Garthwaite et al. 1995) that the variance of
any unbiased estimator θ̂i (here T̂ex, log N̂, ∆̂V or σ̂V ) is bounded
by

var(̂θi) ≥ B(θi) = [I−1
F ]ii. (15)

Each diagonal term of the inverse of the Fisher matrix B(θi) =
[I−1

F ]ii is called the Cramer Rao bound of the corresponding pa-
rameter. We will note them B(Tex), B(log N), B(∆V ) and B(σV ).
These CRBs do not depend on the choice of the estimation algo-
rithm θ̂ and are usually asymptotically reached by the maximum
likelihood estimator (Garthwaite et al. 1995). The CRB can thus
be considered as a reference precision of the estimation problem.

The calculation of the gradients
(
∂sn,l

∂θi

)
i=1,2,3,4

is detailed in
appendix A.

4.2. Generalization to two lines and two velocity components

We will use the CRB analysis on the case where we observe two
different lines (l ∈ {1, 2}) of the same species. We will assume
that these lines are well separated in frequency so that their fre-
quency supports are disjoint

xn,l = sn,l + bn,l ∀n ∈ {1, ...,K} ∀l ∈ {1, 2}. (16)

The Fisher matrix of the set
(
xn,l

)
is simply the sum of the Fisher

matrices of each transition because we assume that the unknown
parameters θ are identical for the two lines.

We will also use the CRB framework in the case where each
observed line is emitted from two independent velocity compo-
nents, i.e., from two gas components characterized by different
values of the unknown parameters (θm with m ∈ {1, 2}). Equa-
tion 16 that encodes the spectrum for line l can then be written
as

xn,l = S n,l + bn,l ∀n ∈ {1, ...,K} ∀l ∈ {1, 2}, (17)

where S n,l = sn,l(θ1) + sn,l(θ2). (18)

This means that the composite line profile is considered as the
simple sum of two velocity components that do not radiatively
interact. This assumption is only correct if the two velocity com-
ponents are sufficiently separated in velocity. This case with two
components is the most complex model we will study in this pa-
per. In this case, the number of unknown parameters is 8 (instead
of 4) and thus the size of the Fisher Matrix is 8 × 8 (instead of
4 × 4).

4.3. CRB variations as a function of Tex and N

As the inversion of the Fisher matrix is done numerically, we
do not have a simple explicit expression of the CRBs. In this
section, we thus empirically analyze their evolution as a function
of the physical properties of the analyzed medium in a particular
case taken from the ORION-B project. To generate figures 2, 3,
and 4, we assume that the two measured lines are 13CO(1−0)
and 13CO(2−1). The two corresponding opacities are noted τ1
and τ2. The number of samples is K = 80 for each line at a

4 In this paper, the notation log refers to the logarithm in base 10.
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τ2
1σV

in Kelvin (e) 20σbσV,0

τ2
2σV

in Kelvin (f) σbσV,0
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Fig. 3. Top: Variations of the square root of the CRB of Tex in Kelvin as a function of the column density and the excitation temperature. Bottom:
Functions of the line opacities. Left: Only 13CO(1−0) is analyzed. Middle: Only 13CO(2−1) is analyzed. Right: Both 13CO(1−0) and 13CO(2−1)
are analyzed simultaneously. In (a) and (b) pixels in grey correspond to Tex and N values which lead to singular Fisher matrices. For this analysis,
σb = 100 mK, ∆V = 1.1 km s−1 and σV = 0.61 km s−1. The constant σV,0 = 1 km s−1 is introduced to have expressions in (d-f) that depend on σV ,
but remain homogeneous to a temperature.

spectral resolution of 0.5 km s−1. Only one velocity component
is assumed in the remainder of this section. The amount of noise
is fixed and identical for both lines at σb,1 = σb,2 = 100 mK.

The values of the Cramer-Rao Bounds of the unknown pa-
rameters (i.e., Tex, log N, ∆V and σV ) are then computed as a
function of the values of Tex and N. The Fisher matrices are com-
puted following Eq. (14), and then numerically inverted to obtain
B(θi) = [I−1

F ]ii. The excitation temperature Tex is sampled loga-
rithmically between 3 K and 99 K, the column density N is sam-
pled logarithmically between 1013 cm−2 and 1019 cm−2, and the
other two parameters are kept constant at ∆V = 1.1 km s−1 and
σV = 0.61 km s−1 (arbitrarily chosen). This leads to figures 2,
3, and 4, where N and Tex varies horizontally, and vertically, re-
spectively. In these figures, the variations of B1/2(θi) are shown
instead of the variations of B(θi) because the square root of the
CRB is homogeneous to the estimation standard deviation. It can
thus be interpreted as errorbars on the estimated parameter θi.
Varying Tex and N changes not only the signal-to-noise ratio,
but also the amount of information measured by the Fisher ma-
trix because of the non linearity in the radiative transfer equation.

4.4. Precision of the estimation of the centroid velocity ∆V
and the associated velocity dispersion σV

Figure 2(a-b) shows variations of B1/2(∆V ) and B1/2(σV ). For
N ≥ 1016 cm−2 and Tex ≥ 12 K, the square root of both CRBs are
smaller than 0.01 km s−1. This means that any efficient unbiased

estimator will have a small dispersion around the actual values.
This can be written ∆̂V = 1.10 ± 0.01 km s−1 and σ̂V = 0.61 ±
0.01 km s−1.

Figure 2(c) shows a function of KR, where R is the signal-
to-noise ratio defined by

R =

∑K
n=1(s2

n,1 + s2
n,2)

K(σ2
b,1 + σ2

b,2)
. (19)

This expression is used in signal processing to quantify the
signal-to-noise ratio on the “energy” of the signal. In our case,
we empirically find that, as a rule of thumb

B1/2(∆V ) ' B1/2(σV ) '
1.5σV
√

2KR
. (20)

While the dependency on σV is not presented in Fig. 2, we
checked that Eq. (20) remains valid when σV = 0.3, 1.31, and
2 km s−1. The estimation precision on ∆V and σV depends on
the signal-to-noise ratio and on σV . This is expected because of
the similarity with the problem of delay estimation in radar for
which le Chevalier (1989) obtained an analytic formulation sim-
ilar to Eq. (20).
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Fig. 4. Top row: Variations of the square root of the CRB of log N as a function of the column density and the excitation temperature. Second and
third row: Correlation coefficients between efficient estimators of (Tex, log N), and (log N, σV ) in the second and third rows. respectively (defined
in Eqs. (23) and (24)). Bottom row: Variations of functions of the opacities. Left: Only 13CO(1−0) is analyzed. Middle: Only 13CO(2−1) is
analyzed. Right: Both 13CO(1−0) and 13CO(2−1) are analyzed simultaneously. In (a) and (b) pixels in grey correspond to Tex and N values which
lead to singular Fisher matrices. For this analysis, σb = 100 mK, ∆V = 1.1 km s−1 and σV = 0.61 km s−1.

4.5. Precision of the estimation of the excitation temperature
Tex

In this section, we start to quantitatively evaluate the gain in pre-
cision when two lines are observed instead of a single one. Fig-
ure 3 compares the variations ofB1/2(Tex) when only 13CO(1−0)
or 13CO(2−1) is available to constrain the excitation tempera-
ture, and when both lines are available. To interpret this figure,

we first mention that, for low column densities, the uncertainty
quickly increases leading to large values of the CRB, especially
for N < 1016 cm−2. While the variation of the CRB as a func-
tion of the excitation temperature for a given column density is
monotonous in the considered range for the 13CO(1−0) line, it
shows a different behaviour for the 13CO(2−1) line, with a min-
imum near 6 K, and an increase of the CRB for lower values
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of the excitation temperature. This different behaviour is related
to higher energy of the upper state of the 2 − 1 transition. The
emerging 13CO(2−1) signal, which is proportional to the popu-
lation of the upper level of the transition, approaches zero and
becomes close to the noise level.

For the considered example, the analysis of a single line (see
Fig. 3 (a-b)) will give a reference precision on Tex of 0.1 K ≤
B1/2(Tex) < 10 K for typically N > [1016 − 1017.5] cm−2. The
dependence on Tex is such that the same CRB is also reached
at higher column densities for higher values of Tex. This be-
havior of the CRB can be qualitatively understood as resulting
from the increase of the line opacity. When the opacity becomes
larger than about 3, the peak temperature only depends on Tex
as the factor [1 − exp(−Ψ(νcent

l ))] in Eq (4) approaches unity.
The CRB almost linearly depends on log Tex above 6 K. The
analysis of two lines (see Figure 3c) greatly improves the sit-
uation. One reaches the same precision on Tex for column densi-
ties that are between one and two orders of magnitude lower, i.e.,
0.1 K ≤ B1/2(Tex) < 10 K for typically N > [1014 − 1016.5] cm−2.
Here again the precision almost linearly depends on log Tex
above 6 K.

The second row of Figure 3 shows functions of the opacities.
Trying for several values of σV , we empirically obtain

B1/2(Tex) '
20σb σV,0

τ2
l σV

, (21)

when a single line is available, either 13CO(1−0) or 13CO(2−1).
In this equation, σV,0 = 1 km s−1 is a constant fixed so that the
expression depends on σV , but remains homogeneous to a tem-
perature. When these two lines are available, we obtain

B1/2(Tex) '
σb σV,0
√
τ1τ2 σV

. (22)

Hence, according to Eq. (21) and Eq. (22), when opacities are
close to one, the gain in precision (in standard deviation) is
around 20 when one observes two lines of the same species in-
stead of a single one. These relations suggest that the parame-
ters that control the difficulty of the estimation problem are the
amount of noise σb, the velocity dispersions σV , and the opaci-
ties.

4.6. Precision of the estimation of the column density N

The top row of Fig. 4 shows that the precision on the estimation
of N has a complex behavior when only one line is available.
To interpret this, we note that even efficient estimators of θ have
correlated components described by the correlation coefficients
of the Fisher matrix. The correlation coefficient between Tex es-
timations and log N estimations is given by

γ(Tex, log N) =
B(Tex, log N)

B1/2(Tex)B1/2(log N)
, (23)

where B(Tex, log N) = [I−1
F ]12 is the non-diagonal element of the

inverse Fisher matrix, see Eq. (14). We also introduce the corre-
lation coefficient between log N estimations and σV estimations

γ(log N, σV ) =
B(log N, σV )

B1/2(log N)B1/2(σV )
(24)

where B(log N, σV ) = [I−1
F ]24, see Eq. (14).
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Estimations

True parameters

Fig. 5. Illustration of the correlation between N and σV estimations
when a single line (13CO(1−0)) is available. The blue points in the scat-
ter plots show the estimations of N and σV obtained with a Monte Carlo
simulation of individual spectra that share the same physical parameters
and different realizations of a white Gaussian noise with standard devi-
ation σb = 100 mK. The parameters are Tex = 18 K, N = 1017.5 cm−2,
∆V = 1.1 km s−1, and σV = 0.61 km s−1.

Correlation coefficients are built such that their value ranges
from -1 to 1. As long as |γ| < 1, CRBs remain finite and thus esti-
mating parameters usually remains possible. There is a complete
ambiguity between estimations of the pairs (Tex and log N) or
(log N andσV ), only when values of |γ| = 1. In this case, the vari-
ance of these estimations becomes infinite. Figure 5 shows a sim-
ulated example where log(N) andσV can be accurately estimated
even though they are highly (but not completely) anti-correlated.
Starting from a modeled spectrum with log(N/ cm−2) = 17.5,
σV = 0.61 km s−1, and Tex = 18 K, we built one thousand re-
alizations of the observed spectrum with a Monte Carlo simula-
tion, and we fitted the LTE model using the estimator proposed
in Sect. 5.1. This Monte Carlo simulation allows us to numeri-
cally estimate the standard deviation on the estimated parame-
ters and the correlation coefficient between log(N) and σV . This
coefficient is -0.94, implying that the parameters are highly anti-
correlated. However, the standard deviation on the log(N/ cm−2

and σV estimations are 0.017 and 0.005 km s−1, respectively.
This corresponds to typical relative errors of 4.0 and 0.8%, re-
spectively. Hence some high (anti-)correlation does not neces-
sarily imply that the model parameters can not be estimated, in
contrast with a widespread intuition. While we illustrated this
property with a given estimator, this statement is true for the
CRB analysis. This emphasizes another of its interests. It pro-
vides standard deviations and coefficient of correlations without
requiring to implement any Monte Carlo simulation.

The second and third row of Fig. 4 show important ambi-
guities (i.e., correlation coefficients close to one or minus one)
between estimations of log N and Tex and even more ambigui-
ties between estimations of log N and σV (in particular for large
values of N). When a single line is observed (Fig. 4 d e, g, h),
|γ(Tex, log N)| and |γ(log N, σV )| are mostly larger than 0.9 for
small N (in Fig. 4 d-e yellow pixels correspond to γ > 0.99
and in g-h to γ > 0.9). For high N, the ambiguity with Tex de-
creases, but not the one with σV (in Fig. 4 d-e light blue values
are −0.5 < γ < 0 while in Fig. 4 g-h dark blue values correspond
to γ < −0.9 and γ < −0.99). The horizontal asymptote on the
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Fig. 6. Noise standard deviation σb,ρ in mK which ensures that relative precisions are better than ρ% (for details see Eq. (25)). Top: A single line
is analyzed. Bottom: Two lines 13CO(1−0) and 13CO(2−1) are analyzed. The contours for 10 and 100 mK are highlighted because these σb values
bracket the values reached during typical observations at the IRAM-30m. For this analysis, ∆V is fixed at 1.1 km s−1, but the computations are done
for four different values of σV (0.3, 0.6, 1.3, and 2.0 km s−1) and then projected on the (N,Tex) plane (see text for details).

left of the CRB maps corresponds to a very sharp change of sign
of correlation coefficients γ. Figure 4 f and i show that, although
some ambiguities remain between log N and σV for high N and
small Tex, having two lines mitigates these ambiguities in most
cases.

As a rule of thumb, with a single line (see Fig. 4 a-b),
B1/2(log N) < 0.1 for N > [1016 − 1017] cm−2 (depending on
Tex), and Tex ≥ [6 − 12] K (depending on N). With two lines
(Fig. 4 c), the situation greatly improves: B1/2(log N) < 0.1 for
N > [1015 − 1017] cm−2 (depending on Tex) and Tex ≥ 6 K. Fig-
ures 4 a, b, c also show local minima of the B1/2(log N) when
Tex increases and N ≥ 1017 cm−2, and when N increases and
Tex ≥ 6 K. To interpret these, the last row of Fig. 4 shows func-
tions of the opacities. Comparing these with the variations of
B1/2(log N) shows that the smallest values of B1/2(log N) (i.e.,
the best achievable precision) are mainly located at the area
where τ1 and τ2 are close to 1. With two lines (see Fig. 4l), the
best precision is when τ1 < 1 and τ2 > 1.

4.7. Maximum noise tolerable to get a given relative
precision on the different parameters

In the previous section, the standard deviation of the noise σb
was fixed to 100 mK. Conversely, we now derive the amount
of noise that guarantees a given relative CRB precision for Tex,
log N, σV and ∆V . We compute σb,ρ the maximal value of σb
that satisfies the following inequalities

B1/2(Tex)/Tex ≤ ρ, B1/2(log N) ≤ ρ,
B1/2(σV )/σV ≤ ρ, B

1/2(∆V )/σV ≤ ρ,
(25)

where ρ is a fixed threshold. In other words, instead of analyz-
ing the precision for a given amount of noise, one can also ana-

lyze the tolerable level of noise to ensure an intended precision
(herein described by ρ). Such an analysis will be useful to design
an observation program and optimize the telescope time needed
to reach the scientific goal.

Up to this point of the paper, we checked the variations of
the quantities as a function of Tex and N with fixed values of ∆V
and σV . Figure 6 shows the variations of σb,ρ as a function of
Tex and N. As the computation of σb,ρ includes the computation
of maximum values, it is possible to make the computations in
three dimensions (with varying values of Tex, N, and σV ), and
to project these on the (Tex,N) plane. That is what is shown in
Fig. 6 for different values of the relative precision ρ (5, 10, and
20%).

The IRAM-30m time estimator for the EMIR receivers5 in-
dicates that we can achieve a sensitivity of 100 mK in 30 to 120 s
at 110 and 220 GHz for a spectral resolution of 0.5 km s−1. Sim-
ilarly, we can achieve a sensitivity of 10 mK in 1 to 3 hours de-
pending on the frequency and the observing mode (frequency or
position switching). The colored contours thus correspond to the
“fast/slow” acquisition mode at the IRAM-30m. The comparison
between the top and bottom lines allows us to see the gain in pre-
cision when analyzing the two lowest J lines of 13CO instead of
a single one. In particular, the surface of reachable combinations
of column density and excitation temperature more than doubles
when analyzing two lines.

Instead of analyzing the level of noise, one can also analyze
the peak-signal-to-noise ratio defined for one transition l by

Pl =
maxn sn,l

σb,l
(26)

5 http://www.iram.es/nte/
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Fig. 7. Same as Figure 6, except that the contours show the variations of the peak-signal-to-noise ratio, Pρ, required to reach a given relative
accuracy (ρ%).

and for two transitions by P = maxl=1,2 Pl. Figure 7 shows the
variations of minimum peak-signal-to-noise ratio Pρ for simi-
lar conditions as in Fig. 6. Analyzing only the 13CO(1−0) line
requires at least a signal-to-noise ratio of 100 to get a relative
precision of 20%. Adding the 13CO(2−1) line in the analysis re-
duces the minimum signal-to-noise ratio by a factor up to 10 to
reach the same relative precision. The required signal-to-noise
ratio increases at high column densities because the lines become
optically thick, and at a combination of low column density and
high excitation.

4.8. How to complement 12CO(1−0) observations?

All the previous analyses were done for the 13CO isotopologue
because it enabled us to study the case of low J lines that ex-
perience the transition from optically thin to thick regime over
the range of column densities and excitation temperatures that
are found in molecular clouds. However, the targeted transition
when observing the molecular gas of a new astronomical source
is usually 12CO(1−0) because it is the strongest line in the easily
observable 3mm atmospheric window (Wilson et al. 1970; Pety
et al. 2017).

We here ask two questions. First, what is the best J line to
observe to reach a relative precision of 20% on all the estimated
parameters? Figure 8 shows the variations of the maximum noise
σb,ρ when a single line is observed among the first six rotational
transitions of 12CO. A global pattern is seen, especially for the
higher energy transitions 12CO(4−3), 12CO(5−4), 12CO(6−5),
For instance, if N lies in the interval [1017, 1019] cm−2 and
Tex > 24 K, the 12CO(6−5) line seems the best choice (from a
CRB point of view) because it allows to reach 20% accuracy
over this broad range of parameters for a noise level of 100 mK.
However this line is not easy to access from ground based tele-

scopes because of the limited atmospheric transmission at the
line frequency of 690 GHz.

Second, what is the best J line to be observed to comple-
ment the J = 1 − 0 line to reach the same relative precision
of 20%? Figure 9 seems to indicate that observing 12CO(6−5)
would be the most useful as it would allow to tolerate a noise
level of σb = 300 mK and keep a good precision for N in the
interval [1016.0, 1018.5] cm−2. We stress that this result only ap-
plies to the case where all transitions have the same excitation
temperature. In practice, deviations from a Boltzmann popula-
tion may be present leading to different excitation temperatures
for the 12CO transitions (van der Tak et al. 2007) because of the
higher critical densities of the higher-J transitions. Nevertheless,
the usefulness of mildly excited lines remains valid. Non-LTE
approaches will be developed in the future that will provide a
quantitative assessment of the diagnostic power of these lines.

5. Application to the ORION-B data

The CRB is only a lower bound on the variance of any unbiased
estimator. Once the order of magnitude of the CRBs have been
analyzed, the next step is to find a good estimator of physical pa-
rameters. In this section, we first propose such an estimator and
analyze its performance for a realistic amount of noise (herein
chosen to σb = 100 mK), before applying it to the ORION-B
data.

5.1. Proposed estimator

The maximum likelihood estimator (MLE) is a good candidate
because under mild conditions, it reaches the CRB asymptoti-
cally, i.e., when σb 7→ 0 (Garthwaite et al. 1995). Appendix B
details the computation of this estimator, its initialization, and
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Fig. 8. Noise standard deviation σb,ρ in mK which ensures relative precisions better than 20% when a single line of 12CO is analyzed. Other details
are identical to Fig. 6.

the iterative algorithm used to yield the estimation that is noted
θ̂. We also briefly discuss its computational efficiency.

Appendix C analyzes the performance of the proposed esti-
mator on simulated data. This appendix shows that this estimator
performs optimally for pairs of (Tex,N) values such that a rela-
tive precision of reference is reached for all estimated parameters
(i.e., the conditions of Eqs. (25) are satisfied with ρ = 20%). In-
terestingly, this appendix also shows that the obtained estimation
θ̂ can be injected in the CRB computation to detect whether or
not this estimation is accurate.

5.2. Estimation of the number of velocity components and
initialization of the parameters

The number of velocity components is a priori unknown. While
we could have tried to use our maximum likelihood estimator to
fit the data with either one or two components, we would then
have had to devise a statistical test to determine which assump-
tion to choose. Instead, it is simpler to check for the presence
of several local maxima in the spectrum denoised with ROHSA,
the technique mentioned in Sect. 2. In particular, this allows us to
have a spatially coherent detection of the number of components.
The ROHSA algorithm is applied separately on the 13CO(1−0),
C18O(1−0), and 12CO(1−0) lines. If one of the denoised spectra
for 13CO(1−0), C18O(1−0) or 12CO(1−0) has at least two local
maxima in the velocity interval of interest [8.25, 14.25] km s−1,
we then fix the number of velocity components to two for all
three species. The denoised spectra 13CO(1−0), C18O(1−0) and
12CO(1−0) are analyzed iteratively in this order, and as soon as
two components are selected based on one of the three spectra,
the velocities associated to the local maxima are used to initial-
ize the estimations of the velocity ∆V of each component for
all three species. This ensures that the velocities of each com-

ponent will stay compatible for all three species during the fit.
We analyze the denoised spectra in the above order because the
13CO(1−0) line has both a good signal-to-noise ratio, and mod-
erate opacities. The C18O(1−0) line delivers a good information
on the underlying velocity structure because it is most often op-
tically thin, but its limited signal-to-noise ratio may hamper the
∆V initialization. The saturation that happens for the 12CO(1−0)
line also makes the determination of the ∆V initializations inac-
curate. Finally, when all the three denoised spectra have only one
maximum, one component is independently fitted per species.

When initializing the parameters before maximizing the like-
lihood, we use two different assumptions to help the algorithm
to converge towards reasonable solutions. First, when two com-
ponents are detected, we use the same ∆V and σV initializations
for all the species so that the estimated parameters for each com-
ponent remain correctly paired among the three species, as ex-
plained above. The white contours in Fig. 13 delimit the regions
where two local maxima have been detected. Only 23% of the
field of view requires two velocity components. As the estima-
tions of Tex, N, and σV are highly correlated (see Sect. 4.6), we
systematically search in the 3D grid described in Sect. B.2 to ini-
tialize them. We stress that this is only during the initialization
process that we use the same values ∆V and σV for 13CO and
C18O. The maximization of the log-likelihood is done indepen-
dently on each species, ensuring that the estimations of ∆V and
σV may take a different value for each species.

Second, a single line of 12CO is available and it is quite op-
tically thick. In our analysis of the CRB, we observed in Fig-
ure 4 (d-e and g-h) that the estimation of log N is highly cor-
related with σV , when N is high. This may imply some de-
generacy between the estimation of the velocity dispersion and
the column density. To alleviate this issue, we first deal with
13CO(1−0), 13CO(2−1), C18O(1−0), C18O(2−1), and we use the
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Fig. 9. Noise standard deviation σb,ρ in mK which ensures relative precisions better than 20% when a couple of 12CO lines are observed: J = 1−0
and a higher J line. Other details are identical to Fig. 6.

estimation of σV obtained on 13CO to fix σV for the estimation
of the other parameters (Tex, log N and ∆V ) in the analysis of the
12CO(1−0) line. If this assumption is false, the obtained estima-
tions of the other parameters will be biased. While this proce-
dure is not ideal, we empirically obtained estimations of Tex and
log N much closer to physical intuition: in particular, the estima-
tions of the column density are 100 times too large when all four
parameters are estimated. An analysis of the impact of a poten-
tial incorrect value of σV goes beyond the scope of the present
paper.

5.3. Detailed analysis of two lines of sight

Figure 10 shows how the proposed estimator succeeds to fit the
C18O, 13CO and 12CO low J lines towards two lines of sight
in the studied field of view (see red crosses Fig. 1), at offsets
(803′′, 473′′) and (578′′,−121′′). The spectra on the left column
are modeled with a single velocity component but they are asym-
metric. This implies that our model is not perfectly adequate be-
cause it assumes that the line profile is symmetric. The issue is
most problematic for 12CO, because the high opacity and the
complex underlying velocity field imply a more complex profile
with broad wings on each side of the line. A detailed solution for
this issue is beyond the scope of the present paper.

The spectra on the right column are well fitted with two dif-
ferent velocity components. The estimations for the C18O and
13CO species are physically relevant because the two velocity
components are well separated in velocity. This is less obvious
for 12CO, which presents a large velocity overlap of the two com-
ponents.

5.4. Estimation of the quality of the fit and filtering out
inaccurate estimations

In this section, we first compute the “energy” and the standard
deviation of the fit residuals as two ways to quantify the qual-
ity of the fit. We then explain how we will filter out inaccurate
estimations from the physical analysis.

After a fit, we can define three different “energies” in the
sense of the information theory.

– The “energy” of the measured signal is

Exl =
∑

n

x2
n,l. (27)

– The “energy” of the estimated signal is

Esl =
∑

n s2
n,l (̂θ) or Esl =

∑
n s2

n,l (̂θ1) + s2
n,l (̂θ2), (28)

depending of the number of estimated components.
– The “energy” of the fit residual is

Erl =
∑

n

r2
n,l, (29)

where rn,l = xn,l − sn,l (̂θ),
or rn,l = xn,l − sn,l (̂θ1) − sn,l (̂θ2).

(30)

All the sums are computed on an interval of 10 km s−1 around the
maximum. The fit quality can then be quantified by comparing
the “energy” in the residual with either the “energy” in the ob-
served spectrum (Erl/Exl ) or the difference of “energy” between
the observed and estimated signals ({Exl − Esl }/Exl ). The former
formula tells us the fraction of the observed “energy” that has
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Fig. 10. Two examples of LTE fit of the CO isotopologues lines. In the titles, Tex is expressed in Kelvin, N in cm−2, ∆V in km s−1, and σV in km s−1.
The plain lines show the data, and the dotted ones show the fit results. Values in red indicate estimations whose relative precision is larger than
20%. The associated lines of sight can be localized in Fig. 1 (see red crosses).

not been fitted. The latter formula tells us whether the observed
spectra has been under-fitted (positive value) or over-fitted (neg-
ative value). Measuring the residual “energies” is similar to com-
puting a χ2 in least-square fitting. Another way to quantify the
quality of the fit is to compare the standard deviation of the resid-
uals σr =

(
1

K−1
∑

n r2
n,l

)1/2
with the noise standard deviation (σb)

on the observed spectrum. The fit is good when σr ∼ σb.
We can in addition use the CRB framework to filter out pix-

els with inaccurate estimations. As explained in Sect. C.1, an
estimation will be considered inaccurate when there is at least
one estimation among the 3 × 3 neighboring pixels, for which at
least one of the following conditions is satisfied

B1/2(T̂ex)/T̂ex > 0.2, B1/2(log N̂) > 0.2,
B1/2(σ̂V )/σ̂V > 0.2, B1/2(∆̂V )/σ̂V > 0.2.

(31)

5.5. Global analysis of the quality of the estimation

Figure 11 compares the standard deviation of the residuals (σr)
with the standard deviation of the noise (σb) for all the lines
studied here. If the fits were ideal, the joint histograms would
only peak near a line of slope one. They thus suggest that the
C18O lines are better fitted than the 13CO lines, and that the 12CO
lines are the least well fitted. We also checked that the residu-
als are larger (i.e., σr > σb) when the energy Ex is large (not
shown in the figure). As the signal-to-noise ratio also increases
with Ex, this issue implies some misspecification of the model.

The best fit happens for the C18O(1-0) line that has the lowest
opacity. In that case, the profiles Ψ are almost perfect Gaussian
profiles. On the contrary the high opacity of the 12CO(1-0) line
implies that the profiles are highly saturated, and any small kine-
matic perturbations will create deviations from a Gaussian pro-
file as shown in Fig. 10, where the asymmetry pattern could not
be taken into account by the model. A better modeling could
thus require additional velocity components especially for the
12CO(1−0) line. Another limit of the model is that it does not en-
code self-absorption signatures that may happen at large opacity.

Figures 12 a and b show the spatial distributions of the “en-
ergy” of the observed spectra and of the fit residuals for the
13CO(1−0) line. Both images share the same color look-up ta-
ble. On the left image, the yellow pixels correspond to bright
molecular gas while the blue pixels corresponds to faint signal or
noise associated with the IC 434 Hii region. The “energy” of the
residual still exhibits spatially coherent structures, but at a much
smaller level than the “energy” of the measured spectra. Our esti-
mator under-fits the observed spectra as shown in Fig. 12d. This
may be related to the fact that our model does not fit asymmetric
profiles. However, the fit quality is good as illustrated by the im-
age of the energy ratio, which shows that the residual “energy”
amounts to less than 1% of the signal (the dark blue color cor-
responds to 0.01% in image 12c) except in regions where the
signal-to-noise ratio becomes small. Figure D.1 shows the same
quantities for all the lines modeled in this paper. Overall, the fit-
ting method is able to recover all the emission with differences
at the percent level or less for all lines.
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Fig. 11. Joint histograms of the standard deviations of the residuals (σr) and of the noise (σb) for all the studied lines. Standard deviations are
expressed in Kelvin. The dashed lines correspond to ratios 1 and 10.
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Increasing the complexity of the line profile model to address
the observed misspecifications could be hazardous. While the
increase of the number of parameters in more complex models
certainly allows one to decrease the difference between the ob-
served spectrum and the model, it may also increase the variance
of estimations in such proportions that obtained estimations may
become useless. In other words, the simple model used here does
not capture all the complexity of the physical processes, but it at
least allows us to capture the processes that it already encodes.
The fact that the residuals are smaller than 1% compared to the
observed signal is sufficient to make the analysis of the excita-
tion temperature, the column density, and the velocity dispersion
pertinent for CO isotopologues. The main source of systematic
errors in the column density determination results from the de-
viations from the local thermodynamic equilibrium, leading to
a more complex partition function than the simple formula in
Eq. (9). The effect is expected to be stronger in warm regions
(Tex ≥ 50 − 100 K) where many rotational levels are populated
and contribute to the partition function. These warm regions oc-
cupy a small fraction of the total volume and therefore a bias
would not affect the general conclusions. Non-LTE approaches
will be developed to assess more quantitatively the magnitude of
the effect and to provide recommendations on the best method
depending on the molecular lines and the range of physical con-
ditions that are studied.

Table 2. Statistics of the estimated parameters over all the pixels for the
three CO isotopologues.

Quantity Unit 12CO 13CO C18O
Tex K 30 ± 7.6 17 ± 4.6 15 ± 4.4
Tex/Tdust 1.3 ± 0.3 0.76 ± 0.22 0.71 ± 0.23
log N cm−2 18 ± 0.5 16 ± 0.45 15 ± 0.27
log N/NH2 −4.2 ± 0.4 −5.6 ± 0.29 −6.7 ± 0.15
σV km s−1 0.63 ± 0.17 0.64 ± 0.26 0.58 ± 0.2
log τ1 0.96 ± 0.47 −0.06 ± 0.4 −0.76 ± 0.25
log τ2 0.34 ± 0.41 −0.39 ± 0.25

6. Astrophysical implications

The proposed estimator (see Sect. 5.1) provides accurate column
densities, excitation temperatures, and velocity dispersions in the
framework of LTE excitation and radiative transfer. This allows
us to carefully analyze the errors introduced by the simpler hy-
potheses that are commonly used for deriving CO isotopologues
column densities.

6.1. Estimated parameters and associated uncertainties for
C18O, 13CO, and 12CO

Figure 13 shows the spatial variations of the estimated parame-
ters and associated uncertainties for the C18O, 13CO, and 12CO
isotopologues. Table 2 lists the mean and standard deviation val-
ues of the excitation temperatures, column densities, velocity
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Fig. 13. Top: Spatial variations of the estimated physical parameters. From left to right: Centroid velocity, velocity dispersion, excitation tem-
perature, column density, and line opacities. Bottom: Spatial variations of the relative precisions. From left to right: Relative precision on the
centroid velocity, velocity dispersion, excitation temperature, column density, and line peak signal-to-noise ratio. The black contours on the peak
signal-to-noise-ratio image delimit the regions where P ≥ 3. On all images, red contours delimit the regions where the relative precision is better
than 20% for all estimated parameters, and white contours delimit regions where two components have been estimated. In this latter case, the
images only show the estimation that is the closest (in terms of centroid velocity ∆V ) to its neighboring pixels.

dispersions and opacities. These values are computed over the
field of view that is observed for all the lines.

The peak-signal-to-noise ratio of the 12CO(1−0),
13CO(1−0), and 13CO(2−1) lines is large (> 20) over most of the
studied field of view. The regions where the peak-signal-to-noise
ratio of the C18O(1−0) and C18O(2−1) is larger than 20 still

amounts to respectively 15% and 32% of the studied field of
view. The CRBs are small for all estimated parameters (inside
the red contours that delimit the regions where the relative
precision is better than 20% for all estimated parameters) except
near the regions of transitions between one and two velocity
components (i.e., near the white contours). Even though the
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Fig. 14. Comparison between the map of the dust temperature and maps of temperature ratios. Inaccurate estimations are filtered out. The dust
temperature is only presented in regions with an accurate estimation of parameters.

Fig. 15. Scatter plots between the CO isotopologue excitation temperatures. The color scale encodes the dust temperature Tdust. The ellipses
represent the interval of confidence for each estimation: Each ellipse is centered on the estimation of the excitation temperature for one pixel
and its horizontal and vertical sizes are equal to the associated CRBs. Dashed ellipses correspond to pixels with two components. Inaccurate
estimations are filtered out. Dashed red lines show the loci of ratios 1/2, 1, 2, and 4.

12CO signal-to-noise ratio is much larger than the C18O or the
13CO one, the 12CO estimations are more uncertain (see map of
B1/2(log N) for 12CO in Figure 13) because a single transition
is available and the 12CO opacities are large (ranging from 5
to about 1 000). However, the higher signal-to-noise ratio for
12CO helps to derive the velocity field in regions where 13CO
and C18O are not well detected (diffuse gas).

The largest variations are observed in the column density
which varies from the detection limit near 1015 cm−2 up to val-
ues larger than 1017 cm−2 for 13CO. The comparison of the col-
umn density maps for 13CO and C18O suggests that the C18O
molecules are confined to the high column density regions and
avoid the cloud edges. The 12CO isotopologue shows a different
behavior with emission extending over most of the imaged field
of view and column densities ranging from ∼ 1016 to ∼ 1019

cm−2. These behaviors are related to the difference of opacity of
the isotopologues lines. Both 13CO lines have moderate opaci-
ties across the mapped region, with somewhat higher values for
13CO(2−1) than for 13CO(1−0). The 12CO is highly optically
thick almost everywhere.

For all CO isotopologues, the excitation temperature presents
coherent spatial variations with maximum values near the
NGC 2023 star forming region. Even though the C18O emission
is fainter and less extended than that of 13CO, both species pro-
vide similar kinematics information. The velocity field is spa-
tially regular with well-resolved gradients, for instance in the
Horsehead nebula at the bottom right of the map. The velocity

Table 3. Statistics of ratios of the estimated parameters over all the pix-
els for the three CO isotopologues. We stress that σV (12CO) is fixed to
σV (13CO).

13CO/C18O 12CO/13CO
Tex/T ′ex 1.3 ± 0.33 1.7 ± 0.39
log(N/N′) 1.2 ± 0.17 1.4 ± 0.33
σV/σ

′
V 1.1 ± 0.25 Fixed to 1

dispersion σV ranges from 0.4 to 0.8 km s−1, with values around
0.3 km s−1 in the Horsehead nebula (see also Hily-Blant et al.
2005), and somewhat narrower lines for C18O than for 13CO.

6.2. Excitation temperatures

Simplifying assumptions are often made when analyzing the CO
rotational emission. The most usual one is that all isotopologues
have the same excitation temperature. It is based on the simi-
larity of the collisional cross sections. Because the opacity of
a rotational transition scales with the molecular column den-
sity, the differences in abundances translate to different opacities.
The main isotopologue (12CO) has optically thick lines while
the rarer isotopologues (13CO and C18O) have lines either op-
tically thin or with moderate opacities (see, e.g., Ripple et al.
2013). Another assumption for high density regions (n > 105

cm−3 Goldsmith & Langer 1978) is the full thermalization of
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Fig. 16. Plots of the 13CO column densities per unit intensity of
13CO(1−0) (top) and 13CO(2−1) (bottom) as a function of the exci-
tation temperature. This plot is done for four values of the 13CO column
density, and σV = 0.61 km s−1.

the lowest CO rotational levels at the temperature measured on
dust (i.e., assuming the convergence of the dust and gas tem-
peratures). Both hypotheses have been questioned. Recently, in
their clustering analysis of a one square degree map in the Orion
B cloud, Bron et al. (2018) have shown that the observed CO
isotopologue line intensities and line ratios cannot be explained
using these simple hypotheses and that differences in excitation
temperatures should be present.

As shown in Fig. 14, the excitation temperatures of the three
isotopologues are different across the field of view. The 12CO
isotopologue has the largest excitation temperature, followed
by 13CO and C18O. Table 3 lists the typical ratios of excita-
tion temperatures. They are Tex(12CO)/Tex(13CO) ∼ 1.7 and
Tex(13CO)/Tex(C18O) ∼ 1.3. Figure 14 shows that these ratios
vary significantly as a function of the total column density and
dust temperature. Figure 15 suggests that higher dust temper-
ature regions that trace higher UV illumination conditions, tend
to show larger differences in excitation temperatures between the
CO isotopologues. The same trend is seen when the CO isotopo-
logue excitation temperatures are compared to the dust temper-
ature as in Fig 14. A similar effect has been reported by Welty
et al. (2018) for the diffuse/translucent cloud along the line of
sight to HD62542.

The excitation temperature of C18O, which traces the UV
shielded regions, is on average lower than Tdust (the mean value

of Tex/Tdust is 0.71, see Table 2). We find a similar situation for
13CO(1-0) (mean value Tex/Tdust = 0.76), while most of the po-
sitions show 12CO(1-0) excitation temperatures larger than Tdust.
This difference between the CO excitation temperature – which
is a lower approximation of the gas kinetic temperature– and
the dust temperature is indeed expected in photo-dissociation re-
gions and UV-dominated regions where the gas kinetic temper-
ature is larger than the dust temperature. This is different from
the usual approximation that Tdust is a good approximation of the
gas kinetic temperature in cold and shielded regions.

The difference in excitation temperatures between CO iso-
topologues can be explained by radiative trapping in the 12CO
lines or by the presence of kinetic temperature gradients along
the line of sight, especially near photodissociation regions, pos-
sibly combined with density gradients. Clear spatial patterns
emerge in Fig. 14. The C18O and 13CO excitation temperatures
get closer to Tdust in regions where Tdust is lower than 20 K. Be-
cause the dust emission strongly varies with its temperature (as
T (4+β) where β is the dust emissivity index and takes values be-
tween 1.5 and 2, Planck Collaboration XI 2014), the dust temper-
ature derived from a single temperature fit of the spectral energy
distribution in lines of sight combining a strongly UV illumi-
nated region and a more shielded material does not represent the
conditions in the UV shielded region well. The dust temperature
can overestimate the temperature in the shielded gas that repre-
sents the bulk of the material. Somehow the illuminated region
"overshines" as compared to the bulk of the matter.

The error introduced in the column density determination
by using an incorrect excitation temperature can be estimated
by examining the variation of the line column-to-intensity ra-
tio, defined as the ratio of the column density of the species
to the line integrated emission, as a function of the excitation
temperature. Figure 16 shows the variation of the column-to-
intensity ratio for the 13CO(1−0) and 13CO(2−1) lines for dif-
ferent column densities of 13CO, assuming a velocity dispersion
of 0.61 km s−1. Column densities of N13CO ∼ 1014 − 1015 cm−2

correspond to optically thin lines, while the opacity becomes sig-
nificant (i.e., τ ≥ 0.5) for 1016 − 1017 cm−2. In the optically thin
case, the column-to-intensity ratio presents a shallow minimum
which depends on the transition, rises rapidly at temperatures
lower than the minimum and more slowly for excitation temper-
atures above the minimum. When the line opacity becomes sig-
nificant, the shape of the column-to-intensity ratio curve changes
and the minimum shifts to higher excitation temperatures or pos-
sibly disappears. Therefore, using the 12CO excitation temper-
ature for determining the column densities of 13CO and C18O
leads to errors in the estimation of these column densities be-
cause the associated column-to-intensity ratio is inappropriate.
For moderate column densities (N12CO < 1016 cm−2), the col-
umn densities can be underestimated in the case of low excita-
tion temperatures, or overestimated when using a too high exci-
tation temperature, depending on the position of Tex relative to
the minimum of the column-to-intensity curve. A CO excitation
temperature near the minimum of the column-to-intensity curve
will minimize the error because a small difference in Tex in this
region will not change the column-to-intensity. For high column
densities (N ∼ 1017 cm−2), the bias is significant at low excita-
tion temperatures (Tex < 20 K) because the column-to-intensity
ratio (purple curve in Fig. 16) is rising fast at low excitation tem-
peratures.
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Fig. 18. Scatter plot of the CO isotopologue column densities as a function of the dust-traced H2 column density. Inaccurate estimations are filtered
out. The black dashed lines show the expected gas phase abundances relative to H2 with no depletion: C18O/H2 = 5 × 10−7, 13CO/H2 = 4 × 10−6,
and CO/H2= 1.4 × 10−4.

6.3. Abundances

Figure 17 presents maps of the CO isotopologue abundances rel-
ative to H2 (see Sect. 2.2), and Fig. 18 shows scatter plots of
the relationships between the CO isotopologue column densi-
ties and that of molecular hydrogen. In the mapped area, 13CO
and 12CO can be fitted and analyzed for H2 column densities
larger than 1021.5 cm−2. The threshold for C18O is about twice
higher at ∼ 1021.8 cm−2. Indeed, as shown by Pety et al. (2017)
and Orkisz et al. (2019), the threshold for the detection of C18O
is AV ∼ 3 mag or N(H2) = 1021.5 cm−2 in the Orion B molecu-
lar cloud, while the thresholds for 12CO and C13O are close to
AV = 1 mag.

Over the mapped area, the mean abundances are well de-
fined at N(13CO)/N(H2) = 10−5.6±0.29 = 2.5 ± 1.5 × 10−6,
and N(C18O)/N(H2) = 10−6.7±0.15 = 2.0 ± 0.8 × 10−7 (see
Table 2). These mean abundances are comparable to those of
other molecular clouds in the solar neighborhood such as Tau-
rus and Ophiuchus (Frerking et al. 1989). But these values are
about a factor of two lower than those predicted when one as-
sumes no isotopic fractionation, and uses the non depleted gas
phase carbon elemental abundances applicable to the Orion re-
gion, C/H = 1.4 × 10−4, 12C/13C = 57 − 67 and 16O/18O
= 500 − 560 (Gerin et al. 2015; Langer & Penzias 1990; Wil-
son & Rood 1994), namely N(13CO)/N(H2) = 4 − 5 × 10−6,
and N(C18O)/N(H2) = 5 − 6 × 10−7. The difference is more

pronounced for C18O because its abundance is affected by both
photodissociation and freeze-out over a more significant fraction
of the studied area.

Significant deviations from the mean values are present. The
C18O abundance is not only lower near the photo-illuminated
edges where molecules are photodissociated, but also in high
column density and well shielded regions. In these latter regions,
the dust temperature gets below the CO condensation tempera-
ture (Tdust < 17 K), and the CO molecules can rapidly freeze
onto dust grains, lowering the gas phase abundances. This deple-
tion effect is seen for C18O and 13CO supporting the explanation
by a global freeze-out effect.

Because the 12CO lines are saturated over most of the re-
gion, and because a single line has been observed, the determi-
nation of its abundance is more uncertain. Nevertheless, fixing
the value of the velocity dispersion of 12CO to the one estimated
for 13CO (see Sect. 5.2) allows us to determine the 12CO col-
umn density for the pixels that have the least saturated line emis-
sion. Although fairly uncertain, the resulting values of the 12CO
abundance relative to H2 are close to 6 × 10−5, lower than the
expected value using the carbon elemental abundance relative to
H, 1.4 × 10−4 (Gerin et al. 2015), but similar to values obtained
in Taurus by Pineda et al. (2010).
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Fig. 19. Scatter plots between CO isotopologue column densities. The color scale encodes the ratio of the excitation temperatures of the considered
species in each panel. The ellipses represent the interval of confidence for each estimation: Each ellipse is centered on the estimation of the
column density for one pixel and its horizontal and vertical sizes are equal to the associated CRBs. Dashed ellipses correspond to pixels with two
components. Inaccurate estimations are filtered out. The dashed red lines show the loci of ratios 5, 20, and 60.

Fig. 20. Joint histogram of the logarithm of the estimated column den-
sity ratios and of the observed integrated intensity ratios. All the ra-
tios are computed for the 13CO(1−0) line over the C18O(1−0) one. The
dashed red lines correspond respectively to ratios of one and two.

6.4. CO isotopologue column density ratios

Maps of the CO isotopologue column density ratios are shown
in Fig. 17 and scatter plots are displayed in Fig. 19. With no
isotopic fractionation and all carbon locked in CO, the expected
CO isotopologue ratios are 12CO/13CO = 57−67 and 13CO/C18O
= 7.5−9.8 using the elemental abundances given in the previous
subsection. As shown in Fig. 19, the lower bound of the ratio of
the 13CO and C18O column densities is indeed in the expected
range at N(13CO)/N(C18O) = 8. The upper bound is close to
50 indicating that chemical effects play a significant role, by en-
hancing the 13CO abundance (fractionation) and/or destroying
C18O (photodissociation).

Figure 20 suggests that the column density ratio is well cor-
related with the ratio of line intensities, but the column density
ratio is a factor up to 1.75 smaller than the ratio of line inten-
sities because of the difference in excitation temperatures and

of the moderate opacity of the 13CO(1-0) line. Ratios of inte-
grated intensities can therefore be used to estimate the column
density ratios, but after checking with radiative transfer calcula-
tions for a possible multiplicative bias and introducing a correc-
tion if needed.

Although the derivations of 12CO column densities are un-
certain, the column density ratio N(12CO)/N(13CO) ranges be-
tween 10 and 60. In particular, the low values of the ratio remain
even when the opacity of the 12CO line becomes small enough to
accurately derive the column density. Such low values are found
in diffuse and translucent gas as a consequence of efficient frac-
tionation in 13C due to the exchange reaction between 13C+ and
12CO, that enhances the 13CO abundance (Liszt & Pety 2012).
The physical conditions in the translucent envelope of Orion B
seem to favor fractionation, which is not restricted to a small sub-
set of the mapped area but it seen over wide areas. As discussed
by Bron et al. (2018) the presence of chemical fractionation over
the whole region can be identified by comparing the ratio of in-
tegrated intensities of the CO isotopologues, and looking at the
data in the W(13CO)/W(12CO) versus W(13CO)/W(C18O) plane.
The existence of this chemical fractionation implies that using a
single value for the abundance ratios of CO isotopologues can
introduce significant errors when attempting to correct for the
CO opacity in computing its column densities as done by Barnes
et al. (2018) for instance. This will further increase the bias in-
troduced by using the same excitation temperature for 12CO and
13CO ground state transitions. In addition to possibly biasing the
results, using such simplifying assumptions is also expected to
increase the dispersion and affect the overall determination of
the XCO = N(H2)/W(CO) conversion factor.

6.5. Velocity dispersions

Maps of the velocity dispersions for 13CO, C18O, and 12CO are
shown in Fig. 13. The mean values are listed in Table 2 and
the ratios for the different CO isotopologues are listed in Ta-
ble 3. Our formalism includes the line broadening due to opac-
ity (see, e.g., Phillips et al. 1979), which is very significant for
12CO. This implies that the actual velocity dispersion derived
from high opacity lines like those of 12CO is smaller than the ap-
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parent line width. Because we fixed the 12CO velocity dispersion
to the value obtained with 13CO in our estimation, the velocity
dispersions of 12CO and 13CO are identical (see Sect. 5.2). The
velocity dispersions of C18O and 13CO are however fitted in-
dependently. Both species show similar velocity dispersions but
13CO has consistently broader line profiles than C18O. The ratio
between the velocity dispersions of 13CO and C18O is 1.1 (see
Table 3). The 13CO emission is produced by a more extended
volume along the line of sight than the C18O emission as shown
by the lower threshold in N(H2) where 13CO is detected as dis-
cussed above. When analyzing the filamentary structure of the
Orion B molecular cloud, Orkisz et al. (2019) showed that the
gas velocity dispersion determined from C18O reaches a mini-
mum value in the filament ridges, and is always lower than the
velocity dispersion determined by 13CO. The refined analysis
presented here, which takes the opacity broadening effect into
account, confirms the presence of gradients in velocity disper-
sion across the spatial extent of the cloud and along the line of
sight, which are captured by the difference between 13CO and
C18O. Inspecting the spatial distribution of the velocity in Fig. 13
suggests that the small excess of velocity dispersion for 13CO
relative to C18O is more prominent in the regions with relatively
low Tdust. This supports the hypothesis that this variation of ve-
locity dispersion is tracing the starting point of the dissipation of
turbulence when entering the dense filamentary skeleton of the
molecular cloud.

7. Conclusion

This paper presents an analysis of the precision of the estimation
of physical parameters (∆V , σV ,N,Tex) when trying to fit spec-
tra of low J transitions for the most common CO isotopologues,
using the LTE radiative transfer model. This analysis was based
on the Cramer Rao bound (CRB) computation. We applied this
analysis to the region of the Orion B molecular cloud that con-
tains the Horsehead pillar and the NGC 2023 and IC 434 Hii re-
gions with the following astrophysical results.

– The mean abundances of the CO isotopologues are consistent
with previous determinations in other regions: X(12CO) ∼
6 × 10−5, X(13CO) = 2.5 ± 1.5 × 10−6, and X(C18O) = 2.0 ±
0.8 × 10−7.

– The excitation temperatures Tex are different among the CO
isotopologues. 12CO presents the highest Tex, followed by
13CO and C18O. For 13CO and C18O, the excitation temper-
atures are lower than the dust temperature on average, while
they are higher for 12CO. This systematic variation can be
understood as resulting from gradients of physical conditions
along the line of sight together with the increased effect of
radiative trapping for the more abundant isotopologues.

– These differences in Tex imply that the ratio of 13CO(1−0)
and C18O(1−0) integrated intensities is not a direct measure-
ment of the column density ratio N(13CO)/N(C18O), with
a difference of up to a factor two. Moreover, this column
density ratio exhibits regular spatial variations across the
mapped region, with high values in the UV illuminated re-
gions and low values in shielded regions. These low values
are consistent with the ratio of 13C and 18O elemental abun-
dances (i.e., a factor of about 8).

– In this nearby molecular cloud, the elemental abundances are
uniform and the variations in CO isotopologue relative abun-
dances are solely due to chemical processes (fractionation,
photodissociation, freezing). The interpretation of variations

of line integrated intensity ratios should therefore be per-
formed with caution, taking into account radiative transfer
and chemical effects.

We obtained the following results from the methodological
viewpoint.

– This analysis has shown that it is important to take the
opacity broadening effect into account when fitting the line
profiles, even for moderate opacities as first discussed by
Phillips et al. (1979). The estimation of the column density
is correlated with that of the velocity dispersion when the
line is optically thick and this correlation between column
density and velocity dispersion must be taken into account
when estimating uncertainties on the fitted parameters even
for moderate line opacities. When the line is optically thin,
the estimation of the column density is correlated with that
of the excitation temperature except in a small interval where
the ratio of the column density of the species to the integrated
intensity of the line reaches a minimum (around Tex = 10 K
for the 1-0 transitions of CO isotopologues). This means that
a small variation of the estimation of the excitation temper-
ature or velocity dispersion will lead to large errors on the
estimation of the column density.

– This analysis also allows us to quantify the benefit of a simul-
taneous analysis of two rotational lines of the same species
compared to the analysis of a single line. In particular, it al-
leviates the degeneracy described above. This is a rigorous
demonstration of intuitive results. It is an argument in fa-
vor of the installation of dual-band receiver systems for tele-
scopes like the IRAM-30m or NOEMA.

– In order to derive the precision achieved on these parameters
when trying to fit actual observations of the CO isotopologue
lines towards the Orion B molecular cloud, we first showed
that a (simple) maximum likelihood estimator is unbiased
and efficient when the relative precision given by the CRB
is better than 20%, and that it is possible to detect pixels for
which the estimation of the parameters in LTE conditions is
accurate (i.e., better than 20%).

– The residuals of the fit of the CO isotopologue lines amount
to less than 1% of the original signal and the relative preci-
sion on the physical parameters is better than 20% for 63%,
82%, and 40% of the field of view for the 12CO, 13CO, and
C18O species, respectively. The presence of structured resid-
uals nevertheless indicates that the model remains sometimes
too simple. In particular, asymmetric line profiles or the pres-
ence of line wings are incorrectly modeled. The 12CO line
profiles are the most affected. Addressing the possibility of
catching the complex shape of this spectrum is a motivating
perspective that would generalize the approach initiated in
this paper.

In the transition between regions where the number of re-
quired velocity components changes, some ambiguity on the ve-
locities of the components occurs, and this impacts the estima-
tions of all the other parameters. Fixing a priori ∆V based on
spatial processing (e.g. extending the ROHSA pre-processing)
and thus applying only a gradient on σV , Tex and N could im-
prove the robustness of our estimations. This would be useful,
in particular, for low signal-to-noise ratio pixels. Another per-
spective is to use a spatial regularization criterion in the fit to
improve all the estimations. This will be the subject of another
paper (Vono et al., in prep.). Finally, trying to estimate the above
physical parameters in regions that are more diffuse than on the
studied field of view or for other species that have higher dipole
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moments (HCO+ or CS), requires the use of non-LTE models.
Such non-LTE models would also be interesting to identify pos-
sible systematic effects coming from the use of the LTE approx-
imation. Another paper will study the Large Velocity Gradient
approximation of the radiative transfer using a similar CRB ap-
proach.
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Appendix A: Gradient calculation

The spectrum at frequency ν is

s(ν) = (J(Tex, νl) − J(TCMB, ν))
[
1 − exp(−Ψ(ν))

]
(A.1)

It it thus a function of the unknown parameters θ =
[Tex, log N, ∆V , σV ]. The following gradients are useful to de-
rive the Fisher matrix (see Eq. 14).

Appendix A.1: ∂s(ν)/∂Tex

∂s(ν)
∂Tex

=
∂J(Tex,νl)
∂Tex

[
1 − exp(−Ψ(ν))

]
+ (J(Tex, νl) − J(TCMB, ν))

∂Ψ(ν)
∂Tex

exp(−Ψ(ν))
(A.2)

Appendix A.2: ∂J(T,ν)
∂T

J(T, ν) =
hν
k

1
exp hν

kT − 1
(A.3)

Thus

∂J(T, ν)
∂T

=
hν
k

hν
kT 2 exp hν

kT(
exp hν

kT − 1
)2 =

h2ν2

k2T 2

exp hν
kT(

exp hν
kT − 1

)2 (A.4)

and finally

∂J(T, ν)
∂T

=
h2ν2

k2T 2

1
exp hν

kT − 2 + exp− hν
kT

(A.5)

Appendix A.3: ∂Ψ(ν)
∂Tex

Ψ(ν) =

2∑
l=1

αlφ

(
ν; νl

(
1 −

∆V

c

)
, νl

σV

c

)
(A.6)

Thus

∂Ψ(ν)
∂Tex

=

2∑
l=1

∂αl

∂Tex
φ

(
ν; νl

(
1 −

∆V

c

)
, νl

σV

c

)
(A.7)

Appendix A.4: ∂αl
∂Tex

αl =
c2

8π
N

Q(Tex)
Al gup

ν2
l

exp
[
−

Eup

Tex

] (
exp

[
h νl

k Tex

]
− 1

)
(A.8)

Thus,

∂αl

∂Tex
=

−Q′(Tex)
Q(Tex)

+
Eup

T 2
ex
−

h νl

k T 2
ex

1

1 − exp− h νl
k Tex

αl (A.9)

where Q′(Tex) =
∂Q(Tex)
∂Tex

is numerically computed.

Appendix A.5: ∂s(ν)/∂LN

Let us introduce LN = log N.

∂s(ν)
∂LN

= (J(Tex, νl) − J(TCMB, ν))
∂Ψ(ν)
∂LN

exp(−Ψ(ν)) (A.10)

Appendix A.6: ∂αl
∂LN

Since N = 10LN and using Eq. (A.8), one gets

∂αl

∂LN
= αl ln(10) (A.11)

where ln is the natural logarithm.

Appendix A.7: ∂Ψ(ν)/∂LN

From Eq. (A.6), one gets

∂Ψ(ν)
∂LN

=

L∑
l=1

∂αl

∂LN
φ

(
ν; νl

(
1 −

∆V

c

)
, νl

σV

c

)
(A.12)

Then using Eq. (A.11), one gets

∂Ψ(ν)
∂LN

= log(10) Ψ(ν) (A.13)

Appendix A.8: ∂s(ν)/∂∆V

∂s(ν)
∂∆V

= (J(Tex, νl) − J(TCMB, ν))
∂Ψ(ν)
∂∆V

exp(−Ψ(ν)) (A.14)

Appendix A.9: ∂Ψ(ν)/∂∆V

With νc = νl

(
1 − ∆V

c

)
and σν = νl

σV
c one has

Ψ(ν) =

2∑
l=1

αl φ (ν; νc, σν) (A.15)

Thus

∂Ψ(ν)
∂∆V

=

2∑
l=1

αl
∂φ (ν; νc, σν)

∂∆V
(A.16)

Since φ(ν; νc, σν) = 1
√

2πσν
exp

(
−

(ν−νc)2

2σ2
ν

)
, one gets

∂Ψ(ν)
∂∆V

= −

2∑
l=1

αl
νl

c
∂φ(ν; νc, σν)

∂νc
(A.17)

where

∂φ(ν; νc, σν)
∂νc

=
2(ν − νc)

2σ2
ν

φ(ν; νc, σν) (A.18)

Thus

∂Ψ(ν)
∂∆V

= −

2∑
l=1

αl
νl

c
(ν − νc)
σ2
ν

φ (ν; νc, σν) (A.19)

Appendix A.10: ∂s(ν)/∂σV

∂s(ν)
∂σV

= (J(Tex, νl) − J(TCMB, ν))
∂Ψ(ν)
∂σV

exp(−Ψ(ν)) (A.20)
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Appendix A.11: ∂Ψ(ν)/∂σV

From Eq. (A.15), one gets

∂Ψ(ν)
∂σV

=

2∑
l=1

αl
∂φ (ν; νc, σν)

∂σV
(A.21)

and with φ(ν; νc, σν) = 1
√

2πσν
exp

(
−

(ν−νc)2

2σ2
ν

)
, one gets

∂Ψ(ν)
∂σV

=

2∑
l=1

αl
νl

c
∂φ(ν; νc, σν)

∂σν
(A.22)

Then,

∂φ(ν; νc, σν)
∂σν

= −
1
σν
φ(ν; νc, σν) +

2(ν − νc)2

2σ3
ν

φ(ν; νc, σν) (A.23)

Thus

∂Ψ(ν)
∂σV

=

2∑
l=1

αl
νl

c

(
(ν − νc)2

σ3
ν

−
1
σν

)
φ (ν; νc, σν) (A.24)

which can also be written

∂Ψ(ν)
∂σV

=

2∑
l=1

αl
1
σV

(
(ν − νc)2

σ2
ν

− 1
)
φ (ν; νc, σν) . (A.25)

Appendix B: Maximum Likelihood Estimator

Appendix B.1: Definition for two lines of the same species,
and a single velocity component

We start with the assumption that we will estimate the physical
parameters (θ) of the LTE radiative transfer for two lines of the
same species, and a single velocity component. Starting from
Eq. (13), we note the 2K samples xn,l as χ. The amount of noise
for each line is fixed to σb,1, and σb,2. In this case, the maximum
likelihood estimator (MLE) is (Garthwaite et al. 1995)

θ̂ = arg max
θ

(
log l(θ;χ)

)
. (B.1)

Thus, θ̂ is the argument that maximizes the likelihood for the
observed sample χ. With two lines, the likelihood can be written
as

l(θ;χ) =

2∏
l=1

K∏
n=1

1
√

2πσb,l
exp

− (xn,l − sn,l)2

2σ2
b,l

.

 (B.2)

And the log-likelihood is

L(θ;χ) = cte −
2∑

l=1

∑K
n=1(xn,l − sn,l)2

2σ2
b,l

. (B.3)

Appendix B.2: Initialization of the unknown parameters

The log-likelihood function L(θ;χ) can have many local max-
ima. It is thus crucial to initialize the gradient near the global
maximum. As explained in Sect. 4.1, the vector of unknown pa-
rameters has 4 components (θ = [Tex, log N, ∆V , σV ]T ) in the
case of a single velocity component. A simple initial estimation
of the typical velocity along the line of sight (∆V ) is given by the
velocity where the spectrum intensity is maximum. As the three
other unknown parameters (Tex, N, andσV ) are highly correlated
(see section 4.6), we systematically search in a 3D grid defined
as follows.

– We sample N logarithmically between 1012 and 1018 cm−2

with a step of 0.1 (i.e., 61 values).
– We sample Tex logarithmically between 3 K and 100 K with

a step of 0.05 (i.e., 31 values).
– Finally, we first sample σV with 0.2, 0.3, ..., 0.6, 1.2,..., 3.8

km/s (i.e., 10 values) before refining the search with a step
of 0.025 km s−1 for σV ≤ 0.6 km s−1, and of 0.05 km s−1 oth-
erwise.

These values have been fixed empirically based on simulations
for which we tried to find a tradeoff between accuracy and com-
putation time.

Appendix B.3: Maximization of the likelihood function
through a scoring algorithm

The likelihood function is maximized here using Fisher’s scoring
algorithm (Garthwaite et al. 1995). It is an iterative algorithm

θ̂
(i+1)

= θ̂
(i)

+ piI−1
F (̂θ

(i)
)∇θ (̂θ

(i)
) (B.4)

where i is the ith iteration, pi is a constant, IF(θ) is the Fisher
matrix (see Sect. 4) seen as a function of θ, and ∇θ(θ) is the
gradient

∀ j = 1, ..., 4 [∇θ(θ)] j =

2∑
l=1

1
σ2

b,l

K∑
n=1

∂sn,l

∂θ j
(xn,l − sn,l), (B.5)

where j is the index of the unknown parameter.
In practice, at each iteration i, the algorithm tries pi = 0.1,

0.4 and 0.8, and it makes a quadratic fit to get an estimation
of pi that minimizes the log-likelihood in the interval [0.1, 0.8].
Moreover, the inversion of IF is made with the pseudo-inverse
when IF becomes singular (in the sense that the ratio between
the largest and the smallest eigenvalues of IF is larger than 108).
Finally, the iteration loop stops when the log-likelihood verifies
|L(̂θ

(i+1)
;χ)−L(̂θ

(i)
;χ)| < 10−16 or when the number of iterations

reaches 1000.

Appendix B.4: Generalization to two velocity components

When two velocity components are needed, the log-likelihood of
Eq. (B.3) becomes

L(θ1, θ2;χ) = cte −
2∑

l=1

∑K
n=1(xn,l − sn,l(θ1) − sn,l(θ2))2

2σ2
b,l

(B.6)

where sn,l(θm) is the spectrum corresponding to the component
m ∈ {1, 2}. The grid used in the initialization step has now six di-
mensions: T (1)

ex ,N(1), σ(1)
V ,T (2)

ex ,N(2), σ(2)
V . One solution is to con-

sider the total Fisher matrix of size 8 × 8 (see section 4.2), but it
can lead to singularities. We empirically observe that using iter-
atively the gradient on each component separately (θ1, and then
θ2) actually leads to better results than using a gradient on the en-
larged vector [θ1, θ2]T . Such a coordinate descent only requires
inversions of 4 × 4 Fisher matrices.

Appendix B.5: Computing load and optimization

From the computational viewpoint, the estimation will be done
many times either because it will be applied to many different
lines of sight or because it will be used in Monte Carlo simu-
lations. It is thus useful to actually compute in advance a 5D
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Fig. C.1. Variations of the relative number of accurate estimations as a
function of the column density and excitation temperature. The contour
corresponds to the frontier where the relative precision on the actual
values of the four parameters is ρ = 20% (solid red contour on the
left), and 10% (dashed red contour on the right). The 13CO(1−0) and
13CO(2−1) lines are simulated with σb = 100 mK, ∆V = 1.1 km s−1, and
σV = 0.61 km s−1.

set of (sn(θ))n,Tex,N,σV ,∆V
per line. In this 5D set, Tex, N and σV

are sampled as described in Sect. B.2. Moreover, we consider 10
different values of ∆V with a step of 0.05 km s−1 and we restrict
the range of explored channels to the velocity range where the
lines appear, i.e., an interval of 26.5 km s−1 around the initially
estimated ∆V . This last point decreases substantially the compu-
tation time. For a single species, the computation of the 5D set
of (sn(θ))n takes around 13 seconds in our Matlab implementa-
tion on a standard 2016 laptop. Each subsequent estimation (ini-
tialization plus gradient) takes around 0.05 or 1.0 second when
estimating one or two velocity components, respectively.

For the considered ORION-B data, and with the initialization
proposed in Sect. B.2, the median number of iterations required
to reach convergence is 40 or 200 when estimating one or two
velocity components, respectively.

Appendix C: Performance of the Maximum
Likelihood Estimator

Monte Carlo simulations with P independent realizations of the

estimator
{̂
θ

(p)
}

p=1,...,P
are used to analyze its performance. We

simulate data for the 13CO(1−0) and 13CO(2−1) lines using the
different values of Tex and N already used in Sect. 4.3. We here
compute P = 200 simulations with random noise for each pair
of (Tex,N) values.

After showing that MLE estimates of the parameters (̂θ) can
be injected in the computation of the CRB to detect accurate es-
timations, we will show that the proposed estimator is unbiased
and efficient.

Appendix C.1: Detection of (in)accurate estimations

In order to physically interpret the estimations θ̂ computed on
observed data, it is crucial to remove inaccurate estimations. We
thus need a way to quickly detect inaccurate estimations. Fig-
ure C.1 shows the fraction of the Monte Carlo realizations for
each pair of (Tex,N) values that deliver “accurate” estimations
of all parameters. “Accurate” here means that all the following
conditions are simultaneously satisfied

B1/2(T̂ex)/T̂ex ≤ ρ, B
1/2(log N̂) ≤ ρ,

B1/2(σ̂V )/σ̂V ≤ ρ, B1/2(∆̂V )/σ̂V ≤ ρ.
(C.1)

In these equations, ρ is the relative precision required for all the
parameters. At first sight, Eq. (C.1) and Eq. (25) seem identical.
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Fig. C.2. Variations of the bias (left) and efficiency (right) of the max-
imum likelihood estimator as a function of the column density and ex-
citation temperature. The solid and dashed red contours correspond to
the frontiers where the relative precisions on the estimations on the four
parameters are ρ = 20, and 10%, respectively, as defined in Fig. C.1.
The 13CO(1−0) and 13CO(2−1) lines are simulated with σb = 100 mK,
∆V = 1.1 km s−1, and σV = 0.61 km s−1.

However, we here use estimation of the parameters θ̂, while we
used values of θ used to simulate the data in Sect. 4.7. The value
R(ρ) is the fraction of “accurate” estimations detected without a
priori information on the parameters.

The contours in Fig. C.1 correspond to the frontiers where
the relative precision on the actual values θ of the four param-
eters is ρ = 20% or 10%. Figure C.1 thus clearly suggests that
these frontiers are close to the pixels for which R(ρ) ' 0.5. The
test R(ρ) ≥ 0.5 thus gives a fair detection of accurate (and in-
accurate) estimations. Furthermore, these maps show that, most
of the time, all P estimations are either inaccurate (R(ρ) = 0 in
blue) or accurate (R(ρ) = 1, in yellow). In other words, a single
estimation θ̂ is often sufficient to detect whether it is accurate or
not.

More precisely, the light blue area in Fig. C.1.a corresponds
to a value R(0.2) = 0.15. This means that we still have a 15%
chance of considering an estimation as accurate when it is in
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fact inaccurate, when N ' 1015 cm−2 and Tex > 50 K. It is pos-
sible to improve this on observed data because adjacent pixels
on the sky have physical parameters that are partially correlated.
We can thus assume that accurate and inaccurate estimations are
spatially grouped, and the detection can be improved by comput-
ing Eq. (C.1) in a sliding window of size 3×3 pixels. In practice,
we remove estimations of pixels for which one of the neighbors
in the 3 × 3 pattern violates Eq. (C.1).

Appendix C.2: Bias and variance of the estimator

The bias and variance of the maximum likelihood estimator can
be estimated with (Garthwaite et al. 1995)

b̂ias(̂θi) = 1
P
∑
θ̂

(p)
i − θi

v̂ar(̂θi) = 1
P−1

∑(
θ

(p)
i −

1
P
∑
θ̂

(p)
i

)2
,

(C.2)

where P is the number of simulations in the Monte Carlo anal-
ysis, θi are the actual values of the parameters, and θ̂i are the
estimated values. Figure C.2 shows the variations of the ratios
b̂ias(̂θi)/v̂ar1/2 (̂θi) and v̂ar1/2 (̂θi)/B1/2(θ) as a function of Tex and
N.

It shows that the bias of the proposed estimator is neg-
ligible compared to its standard deviation (i.e., b̂ias(̂θi) �
v̂ar1/2 (̂θi)), and that its variance reaches the Cramer Rao bound
(i.e., v̂ar(̂θi) ' B(θi)) in the region where the CRBs are suffi-
ciently small to get accurate estimations.

Appendix D: Additional figures

In section 5.5, Figure 12 shows the residuals for only one line.
Figure D.1 is a generalization to the other lines.
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Fig. D.1. Spatial variations of the observed spectrum “energy” (first column), of the residual “energy” (second column), of their ratio (third
column), and of the ratio of “energy” that has not been modeled. The unit of the color look-up table is Kelvin2 or % depending on the column.
White contours show the regions where two components have been detected.
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