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TANGENT SPACES OF THE TEICHMÜLLER SPACE OF

THE TORUS WITH THURSTON’S WEAK METRIC

HIDEKI MIYACHI, KEN’ICHI OHSHIKA, AND ATHANASE PAPADOPOULOS

Abstract. In this paper, we show that the analogue of Thurston’s
asymmetric metric on the Teichmüller space of flat structures on the
torus is weak Finsler and we give a geometric description of its unit
sphere at each point in the tangent space to Teichmüller space. We
then introduce a family of weak Finsler metrics which interpolate be-
tween Thurston’s asymmetric metric and the Teichmüller metric of the
torus (which coincides with the the hyperbolic metric). We describe the
infinitesimal unit spheres of the metrics in this family.

Résumé en français. Dans cet article, on montre que l’analogue de
la métrique asymétrique de Thurston sur l’espace de Teichmüller des
structures plates sur le tore est une métrique Finslérienne faible, et on
donne une description de sa sphère unité dans chaque espace tangent à
cet espace de Teichmüller. On introduit ensuite une famille de métriques
Finslériennes faibles qui interpolent entre la métrique asymétrique de
Thurston et la métrique de Teichmüller du tore (qui concide avec la
métrique hyperbolique). On décrit les sphères unité infinitésimales des
métriques de cette famille.

1. Preliminaries

We shall use the following identification between the Teichmüller space of
the torus and the upper half-plane model of the hyperbolic plane H:

Let T 2 be a two-dimensional torus and fix a pair of generators a, b of
π1(T

2) represented by two simple closed curves on this surface intersecting
at one point. The Teichmüller space of T 2, denoted by T (T 2), is the set
of equivalence classes of pairs (Σ, f), where Σ is a Riemann surface and
f : T 2 → Σ a homeomorphism, and where two pairs (Σ1, f1), (Σ2, f2) are
defined to be equivalent when f1 ◦f−1

2 is isotopic to a bi-holomorphic home-
omorphism. By the uniformisation theorem, for every point x in T (T 2),
there is a unique complex number ζ with Im(ζ) > 0 such that x is repre-
sented by the pair (C/(Z+ ζZ), f), where f is a homeomorphism taking the
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homotopy class of a, b to 1, ζ ∈ π1(C/(Z + ζZ) respectively. In this way,
T (T 2) is identified with H = {z ∈ C | Im(z) > 0}.

We also need the following notion:
A weak metric δ on a set X is a map δ : X × X → R satisfying the

following:

(1) δ(x, x) = 0 for every x in X;
(2) δ(x, y) ≥ 0 for every x and y in X;
(3) δ(x, y) + δ(y, z) ≥ δ(x, z) for every x, y and z in X.

In the paper [1], the following a weak metric was introduced on H: First,
for ζ1, ζ2 ∈ H, we let

M(ζ1, ζ2) = sup
x∈R

∣

∣

∣

∣

ζ2 − z

ζ1 − x

∣

∣

∣

∣

.(1.1)

The weak metric δ is then defined by setting δ(ζ1, ζ2) = logM(ζ1, ζ2).
In the same paper, the following explicit expression of δ was obtained:

(1.2) δ(ζ1, ζ2) = log

( |ζ2 − ζ̄1|+ |ζ2 − ζ1|
|ζ1 − ζ̄1|

)

.

It was also shown that this weak metric has the following two properties:

(1) The arithmetic symmetrization of the weak metric δ, that is, the
weak metric Sδ defined by

Sδ(ζ1, ζ2) =
1

2
(δ(ζ1, ζ2) + δ(ζ2, ζ1))

is a genuine metric and coincides with the Poincaré metric of the
upper half-plane;

(2) The weak metric δ is an analogue for the torus of Thurston’s asym-
metric metric on Teichmüller space.

The last statement needs some explanation, and we give it now.
For any two points z1, z2 in the Teichmüller space T (T 2), we take repre-

sentatives (Σ1 = C/(Z + ζ1Z), f1), (Σ2 = C/(Z + ζ2Z), f2), and we regard
them as tori equipped with the quotient flat metrics induced by the flat met-
ric of the Euclidean plane. We set δ(z1, z2) = δ(ζ1, ζ2). In [1], a weak metric
on T (T 2) was defined as follows. Let S(T 2) denote the set of homotopy
classes of essential simple closed curves on the torus. We set

(1.3) κ(z1, z2) = log sup
s∈S(T 2)

lengthΣ2
(f2(s))

lengthΣ1
(f1(s))

where length denotes the length of the closed geodesic in the corresponding
homotopy class. The formula for κ(z1, z2) is the analogue, in this Euclidean
setting, of the formula for Thurston’s metric in the hyperbolic setting given
in [3, p. 8]. Theorem 3 of [1] says the following:

(1.4) κ(z1, z2) = δ(ζ1, ζ2)

for any z1, z2 ∈ T (T 2) and zi = (Σi = C/(Z+ ζiZ), fi) for i = 1, 2.
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In the rest of this paper, we investigate further properties of the weak
metric κ = δ. We first show that the geodesics of the Poincaré metric
in H are geodesics with respect to this weak metric. We then show that
this metric is weak Finsler (in a sense we shall make precise) and we give a
geometric description of its unit sphere at each point in the tangent space to
Teichmüller space. We then introduce a family of weak Finsler metrics which
interpolates between the weak metric δ and the Poincaré metric (which
coincides with the Teichmüller metric) and we describe the infinitesimal
unit sphere at eacf point for each weak metric in this family.

2. Geodesics for the weak metric δ

In this section, we give an explicit expression for the point where the
supremum of (1.1) is attained for given ζ1, ζ2 ∈ H and show its geometric
meaning.

First we note the following, which can be shown easily from the definition
of δ:

Lemma 2.1. For λ > 0 and τ ∈ R, we have

δ(λζ1 + τ, λζ2 + τ) = δ(ζ1, ζ2)(2.1)

δ(−ζ1,−ζ2) = δ(ζ1, ζ2).(2.2)

The following is an explicit expression for the supremum in (1.1):

Proposition 2.1. For Re(ζ1) < Re(ζ2), the supremum in (1.1) is attained

at

x+ =
(α− a)2 + β2 − b2

2(α − a)
−

√

(α− a)2 + (β − b)2
√

(α− a)2 + (β + b)2

2(α− a)

where ζ1 = a+ ib, ζ2 = α+ iβ.

For Re(ζ2) < Re(ζ1), from (2.2), by considering −ζ1 and −ζ2 instead of
ζ1 and ζ2 respectively, we get a similar expression.

Proof. From the invariance (2.1), we may assume that a = 0 after we con-
sider ζ1 − a and ζ2 − a instead of ζ1 and ζ2. By assumption, we have α > 0.
Set

f(x) =

∣

∣

∣

∣

ζ2 − x

ζ1 − x

∣

∣

∣

∣

2

=
(x− α)2 + β2

x2 + b2
= 1 +

A+Bx

x2 + b2
,

where A = α2 + β2 − b2 and B = −2α. Then,

f ′(x) = −Bx2 + 2Ax−Bb2

(x2 + b2)2
,

and the critical points of f ′(x) are

x± = −A

B
±

√
A2 + b2B2

B
.
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Since Re(ζ1) = α > 0 and B = −2α < 0, x+ < −A/B < x−. Therefore,
f(x) attains its maximum at

x+ = −A

B
±

√
A2 + b2B2

B

=
α2 + β2 − b2

2α
−

√

α2 + (b− β)2
√

α2 + (b+ β)2

2α
.

�

Theorem 2.1. The point x+ in Proposition 2.1 is the endpoint at infinity

of the hyperbolic geodesic ray in H starting from ζ2 and passing though ζ1.

Proof. Let ζ1 = a + ib and ζ2 = α + iβ. We may assume that a = 0 and
α > 0, and set A = α2+β2−b2 and B = −2α as in Proof of Proposition 2.1.
Then

∣

∣

∣

∣

ζ1 −
(

−A

B

)∣

∣

∣

∣

2

=

∣

∣

∣

∣

ib−
(

−A

B

)∣

∣

∣

∣

2

=
A2

B2
+ b2 =

A2 + b2B2

B2
,

∣

∣

∣

∣

ζ2 −
(

−A

B

)∣

∣

∣

∣

2

=

∣

∣

∣

∣

(α+ iβ)−
(

−A

B

)∣

∣

∣

∣

2

=

(

A

B
+ α

)2

+ β2 =

(

α2 + β2 − b2

−2α
+ α

)2

+ β2

=
(α2 − β2 + b2)2 + 4α2β2

4α2

=
(α2 + (β − b)2)(α2 + (β + b)2)

4α2
=

A2 + b2B2

B2
.

This means that −A/B is the centre of the Euclidean half-circle centered on
the real axis and joining the points ζ1 and ζ2 and that x+ is an endpoint of
that half-circle. Since x+ < −A/B < x−, x+, ζ1, ζ2 lie the half-circle in this
order. Since such a half-circle is a hyperbolic geodesic, we have completed
the proof. �

Theorem 2.2. Hyperbolic geodesics in H are geodesic with respect to the

weak metric δ.

Proof. Suppose that ζ1, ζ2 and ζ3 lie on a hyperbolic geodesic γ in this order.
By Theorem 2.1, the endpoint at infinity x of γ which lies on the side of ζ1
not containing ζ2, ζ3 attains the supremum of (1.1) for M(ζ1, ζ2),M(ζ2, ζ3)
and M(ζ1, ζ3). Then by Section 1, we have

M(ζ1, ζ2) =
|ζ2 − x|
|ζ1 − x| ,M(ζ2, ζ3) =

|ζ3 − x|
|ζ2 − x| ,

and

M(ζ1, ζ3) =
|ζ3 − x|
|ζ1 − x| .

This impliesM(ζ1, ζ3) = M(ζ1, ζ2)M(ζ2, ζ3), and hence δ(ζ1, ζ3) = δ(ζ1, ζ2)+
δ(ζ2, ζ3). This means that γ is a geodesic with respect to δ. �
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Since this point x+ is the slope of the horizontal foliation of the Te-
ichmüller map from ζ2 to ζ1, combining Theorem 2.2 with Eq. (1.4), we
have the following.

Corollary 2.1. Suppose that z, z′ ∈ T (T 2) correspond to ζ1, ζ2 ∈ H respec-

tively. Then the distance κ(z, z′) = δ(ζ1, ζ2) is attained by the slope of the

horizontal foliation for the Teichmüller map from z to z′.

3. The weak Finsler structure of the weak metric δ

We recall now the notion of weak norm and weak Finsler metric on a
manifold, adapted to the case we are dealing with. We start with a weak

norm on a finite-dimensional vector space V . This is a map V → [0,∞),
v 7→ ||v||, satisfying

(1) ||0|| = 0
(2) ||v|| ≥ 0 for all v in V ;
(3) ||v + v′|| ≤ ||v||+ ||v′|| for all v in V .

A metric on a smooth manifold M is said to be weak Finsler if M is
equipped with a continuous field of weak norms defined on the tangent
space at each point of M such that the distance between two points in M
is equal to the infimum of the lengths of piecewise C1 paths joining them,
the length of such a path being computed as the integral over this path of
the weak norms of the tangent vectors.

In this section, we show that the weak metric δ on T (T 2) is weak Finsler
and we give a description of its induced weak norm on the tangent space of
each point in this space. We start with the following proposition.

Proposition 3.1. Let ζ be a point in H, and v a tangent vector at ζ. The

weak metric δ induces on v a weak norm ||v||δ expressed by

||v||δ =
|v|+ Im(v)

2Im(ζ)
.

The meaning of the expression “induced weak norm” will be clear from
the computation done in the proof, and it acquires its complete significance
in Corollary 3.1 that follows.
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Proof. Set ζ ′ = ζ + tv (t > 0). Then,

|ζ − ζ ′| = |ζ − (ζ + tv)| = t|v|

|ζ − ζ ′| = |ζ − ζ − tv| = |ζ − ζ|
∣

∣

∣

∣

1− t
v

ζ − ζ

∣

∣

∣

∣

= |ζ − ζ|
(

1− tRe

(

v

ζ − ζ

)

+ o(t)

)

= |ζ − ζ|
(

1− tRe

(

v

2iIm(ζ)

)

+ o(t)

)

= 2Im(ζ)

(

1 + t
Im(v)

2Im(ζ)
+ o(t)

)

.

Hence, we have

δ(ζ, ζ + tv) = log
1

2Im(ζ)

(

t|v|+ 2Im(ζ)

(

1 + t
Im(v)

2Im(ζ)
+ o(t)

))

= log

(

1 + t
|v|+ Im(v)

2Im(ζ)
+ o(t)

)

= t
|v|+ Im(v)

2Im(ζ)
+ o(t).

Thus, we obtain

lim
tց+0

δ(ζ, ζ + tv)

t
=

|v|+ Im(v)

2Im(ζ)
.

�

Notice that as an invariant expression, the weak metric in Proposition 3.1
is presented as

(3.1) ‖ · ‖δ =
√

dx2 + dy2 + dy

2y
= dshyp +

1

2
d log y

on TζH and ζ = x + iy ∈ H, where dshyp is the length element of the
hyperbolic metric on H of constant curvature −4.

Combining this with Theorem 2.2, we have the following corollary.

Corollary 3.1. The weak metric space (T (T 2), δ) is a weak Finsler metric

space with the corresponding weak norm || ||δ given in Proposition 3.1.

Proof. First we show that

(3.2)

∫ θ2

θ1

||γ̇(θ)||δdθ ≥ δ(ζ1, ζ2)

for ζ1, ζ2 ∈ H and any piecewise C1-path γ : [θ1, θ2] → H connecting ζ1 to
ζ2. Indeed, from the invariant expression (3.1), the integration in the left-
hand side of (3.2) is at least equal to the hyperbolic distance (of constant
curvature −4) between ζ1 and ζ2 minus the Busemann function at ζ1, ζ2
(see (4.1)), which is the right-hand side of (3.1) (cf. §4). This observation
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also implies that the integration in the left-hand side of (3.2) is minimized
only when it is done along the hyperbolic geodesic from ζ1 to ζ2.

We now show that the distance between any two points ζ1 and ζ2 is given
by integrating the weak norm || ||δ along a parametrised geodesic joining
these two points. Let ζ1, ζ2 ∈ H. As in the proof of Proposition 2.1, we may
assume that ζ1 = ib and ζ2 = α + iβ with α > 0. Let A = α2 + β2 − b2,
B = −2α and R =

√
A2 + b2B2/|B|. Define θ1, θ2 ∈ (0, 2π) by eiθ1 =

(ζ1 − (−A/B))/R and eiθ2 = (ζ2 − (−A/B))/R. The geodesic from ζ1 to ζ2
is parametrized as γ(θ) = (−A/B) +Reiθ (θ1 ≤ θ ≤ θ2). Hence
∫ θ1

θ2

||γ̇(θ)||δdθ =

∫ θ1

θ2

|γ̇(θ)|+ Im(γ̇(θ))

2Im(γ(θ))
dθ =

∫ θ2

π−θ1

R+R cos θ

2R sin θ
dθ

=
1

2

∫ θ1

θ2

sin θ

1− cos θ
dθ =

1

2
log(1− cos θ1)−

1

2
log(1− cos θ2)

=
1

2
log

(

1 +
A√

A2 + b2B2

)

− log

(

1− 2α2 −A√
A2 + b2B2

)

.

An easy claculation shows that this expression is equal to

log

√

α2 + (β − b)2 +
√

α2 + (β + b)2

2β

that is, to δ(ζ1, ζ2). This gives what we wanted. �

Next we describe the unit sphere in the tangent space with respect to the
weak norm || ||δ .
Proposition 3.2. The unit circle of the tangent space at ζ ∈ H with respect

to || ||δ is expressed as a parabola with focus at the origin and vertex at

iIm(ζ).

Proof. Let ζ = α+ iβ. When v = v1+ iv2 ∈ C ∼= TζH (as real vector spaces)
is lies on the unit circle of the tangent space at ζ, we have

1 =
|v|+ Im(v)

2Im(ζ)
=

√

v21 + v22 + v2
2β

,

which is equivalent to

v21 + v22 = (2β − v2)
2 = 4β2 − 4βv2 + v22 .

This means that the infinitesimal unit circle at ζ = α + iβ ∈ H is the
parabola

v2 = − v21
4β

+ β,

which implies the desired result. �

Note that the fact that the unit ball of the weak Finsler norm has an
infinite direction expresses the fact that the distance function is degenerate
in this direction (that is, we have, in this direction, δ(x, y) = 0 for x 6= y).
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4. Deforming δ to the Teichmüller metric

In this section, we consider a family of weak Finsler metrics which in-
terpolate between δ and the hyperbolic distance (which, as is well known,
coincides with the Teichmüller distance). We then describe the infinitesimal
unit ball of each of these metrics.

Consider the family of weak metrics δp (0 ≤ p ≤ 1) defined by

δp(ζ1, ζ2) = log sup
x∈R

(Im(ζ1))
p/2

(Im(ζ2))p/2

∣

∣

∣

∣

ζ2 − x

ζ1 − x

∣

∣

∣

∣

=
p

2
log

Im(ζ1)

Im(ζ2)
+ log sup

x∈R

∣

∣

∣

∣

ζ2 − x

ζ1 − x

∣

∣

∣

∣

.

Note that the function

(4.1) H×H ∋ (ζ1, ζ2) 7→
1

2
log

Im(ζ1)

Im(ζ2)
= −1

2

∫ ζ2

ζ1

d log y

is the Buseman function (associated to x = ∞ ∈ ∂H) of the hyperbolic
metric of curvature −4, which is the Teichmüller distance. Using the same
proof as in Theorem 2.2, the hyperbolic geodesic from ζ1 to ζ2 is the geodesic
of the metric δp. The arithmetic symmetrisation of δp is the hyperbolic
metric of curvature −4, like for δ = δ0 (cf. (1) in §1).

As we did in Proposition 3.1, we can calculate the infinitesimal form of
the metric δp:

Let ζ ∈ H. For v ∈ TζH
∼= C,

log
Im(ζ)

Im(ζ + tv)
= − log

(

1 + t
Im(v)

Im(ζ)

)

= −t
Im(v)

Im(ζ)
+ o(t)

as t ց +0. We obtain

‖v‖δp :=
δp(ζ, ζ + tv)

t
= −p

2

Im(v)

Im(ζ)
+

|v|+ Im(v)

2Im(ζ)

=
|v|+ (1− p)Im(v)

2Im(ζ)

= ‖v‖δ − p
Im(v)

2Im(ζ)
.

Notice that ‖v‖δp > 0 when v 6= 0 and p > 0. The infinitesimal unit circle
with respect to the weak norm ‖ · ‖δp in the tangent space TζH is the ellipse
with foci 0 and 4Im(ζ)(1 − p)/(p(2 − p)). As an invariant expression, the
weak metric ‖ · ‖δp is presented as

(4.2) ‖ · ‖δ =
√

dx2 + dy2 + (1− p)dy

2y
= dshyp +

1− p

2
d log y

A discussion similar to that of the proof of Corollary 3.1 and (4.2) shows that
the weak metric space (T (T 2), δp) is a weak Finsler metric with associated
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weak norm || ||δp and that the hyperbolic geodesic from ζ1 to ζ2 ∈ H is a
unique geodesic for δp.

It follows that {δp}0≤p≤1 is a continuous family of weak Finsler metrics
giving a deformation from δ = δ0 to the hyperbolic metric δ1 (which is
Teichmüller metric κ). Notice that

|ζ − x|2
Im(ζ)

coincides with the extremal length of the measured lamination corresponding
to x ∈ R up to a constant factor (depending only on x). Hence, δ1 coincides
with Kerckhoff’s formula for the Teichmüller distance [2] adapted to the case
of the torus.
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