N

N

Software mediators as first-class entities of
systems-of-systems software architectures

Lina Garcés, Flavio Oquendo, Elisa Yumi Nakagawa

» To cite this version:

Lina Garcés, Flavio Oquendo, Elisa Yumi Nakagawa. Software mediators as first-class entities of
systems-of-systems software architectures. Journal of the Brazilian Computer Society, 2019, 25 (1),
10.1186/s13173-019-0089-3 . hal-02570183

HAL Id: hal-02570183
https://hal.science/hal-02570183v1
Submitted on 6 Jan 2025

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-02570183v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Garcés et al. Journal of the Brazilian Computer
Society (2019) 25:8 L Journal Of_the
https://doi.org/10.1186/513173-019-0089-3 Brazilian Computer Society

Software mediators as first-class entities ®

Check for
updates

of systems-of-systems software architectures

%

Lina Garcés'?" ®, Flavio Oquendo? and Elisa Yumi Nakagawa'

Abstract

Context: In contrastto traditional software systems that are mostly created from scratch, current software systems
are engineered as a junction of systems already in operation. Examples can be found in domains, such as smart cities,
crisis and emergency, loT, big data, industry 4.0, and connected health systems. Most of them can be considered
systems-of-systems (S0S), since they refer to alliances of operational and managerial independent software-intensive
systems, which are sometimes distributed over different environments. Therefore, SoS software architectures must be
dynamic, evolve over time, and support the execution of emergent behaviors to accomplish SoS missions. They must
be also designed to enable the connection of heterogeneous systems, making possible their interoperation,
communication, coordination, cooperation, and collaboration, most of the times, in a seamless way. Similar
challenges have been addressed by using software mediators as architectural entities. However, the application of
mediators in SoS has not been properly explored.

Goal: This article introduces MediArch, a layered architecture that considers mediators as first-class software entities
to be used in the construction of SoS architectures. Our objective is to present evidence about how MediArch’s can
support the construction of SoS architectures.

Methods: The following four steps were conducted to define MediArch: (1) identification of mediation requirements
to allow SoS properties; (2) establishment and categorization of twelve types of mediators, for enabling capabilities of
communication and control of constituent systems interactions and conversion of heterogeneous messages
exchanged through a mediation infrastructure; (3) specification of duties, behaviors, assumptions, and guarantees of
mediators; and (4) organization of MediArch in three layers, namely, the constituents & consumer systems layer; the
communication, conversion, & coordination layer; and the control layer. This architecture was used as the backbone
for the software architectures of two SoS in different domains, namely, flood monitoring system-of-systems (FMSoS),
and health-care supportive home system-of-systems (HSH-SoS), for providing evidence on how MediArch supports
the architecting process of SoS.

Results: MediArch (1) supports the integration of independent constituent systems, (2) provides strategies to manage
emergent behaviors, (3) defines different schemes of control authorities, (4) offers elements to support SoS evolution,
and (5) promotes the resilience and adaptability of SoS architectures.

Conclusions: Although MediArch contributes to the establishment of SoS architectures, some challenges related to
performance, resource consumption, security, safety, and non-disruptive reconfigurations must still be overcome.

Keywords: Software architecture, Systems-of-systems, Mediator, Connector, Crisis and emergency systems,
Health-care supportive home systems

*Correspondence: linamgr@icmc.usp.br

'Department of Computer Systems, University of Sdo Paulo, Av. Trabalhador
Sao-carlense, 400 - Centro, 13566-590 Sao Carlos, Brazil

2IRISA - University of Southern Brittany, Rue Yves Mainguy, 56000 Vannes,
France

. © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
@ S ringer O en International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
pringer Op nal L pu//creatiy ; es/by/AC pe ,and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-019-0089-3&domain=pdf
http://orcid.org/0000-0002-4990-6562
mailto: linamgr@icmc.usp.br
http://creativecommons.org/licenses/by/4.0/

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

Introduction

Software systems have grown in complexity and size
and, therefore, require paradigms for their engineer-
ing, specifically for their architecting. Modern systems
are conceived to execute composed functionalities that
depend on interactions among heterogeneous and dis-
tributed software-intensive systems. The construction of
these systems must contemplate a diversity of stakehold-
ers and multidisciplinary practitioners and must consider
the establishment of requirements and behaviors at early
stages of their development, as well as during operation.
In this context, a type of complex, software-intensive,
and large systems has emerged and has been known as
systems-of-systems (SoS).

SoS are comprised of other software systems (some-
times in operation) that are heterogeneous, distributed,
and managerially and operationally independent of the
SoS control. Behaviors of SoS emerge from the interac-
tion among constituent systems; therefore, SoS missions
cannot be achieved by any constituent alone, but through
their cooperation [46, 52]. In short, missions are sys-
tems’ activities to pursue stakeholders’ goals [7]. In this
perspective, software architectures of SoS are considered
dynamic, since alliances of constituent systems are modi-
fied, sometimes seamlessly at runtime, depending on the
SoS missions, constituent availability, and environmental
settings [46, 52]. This scenario raises important challenges
for the design of SoS architectures.

Software architects must deal with interoperability
issues that arise during the dynamic exchange of data
among constituent systems. This is mostly due to differ-
ences in protocols, data formats, workflows, and interfaces,
which are usually neither well defined, nor documented.
Interoperability problems have been presented in many
types of software systems over the years and are still an
open issue. For SoS, interoperability is a critical require-
ment, since it directly impacts on their capabilities of
evolution, dynamicity, and mission achievement.

The software engineering community has conceived the
mediator concept as a solution to deal with the integra-
tion of heterogeneous and distributed data sources [70].
In a general way, mediators have been used as software
entities responsible for achieving interoperability among
diverse and disperse software components through the
translation of exchanged data and coordination of sys-
tems’ interactions [72, 73]. In the SoS context, mediators
have been proposed as architectural elements that con-
nect constituent systems to enable their communication,
coordination, cooperation, and collaboration [54].

Important advances in software connectors, medi-
ators, emergent middleware, software platforms, and
frameworks have been made to overcome interoper-
ability problems in complex and large-scale systems
[3, 8, 25, 36, 40, 42-44, 47, 62, 63]. However, existing

Page 2 of 23

approaches do not consider strategies to enable all inter-
operability levels, i.e., technical, semantic, syntactic, and
organizational, neither other important issues of SoS
architectures [32], such as dynamic integration of con-
stituent systems, incorporation of new SoS missions or
requirements, prediction of emergent behaviors, decision
making, and resilience.

This article presents MediArch, a three-layered archi-
tecture that establishes mediators as first-class software
entities to construct SoS. Mediators are located at the two
higher layers and aim to offer capabilities of communi-
cation, conversion, coordination, and control. MediArch
was used as a backbone for the design of two SoS, namely,
FMSoS (Flood Monitoring SoS) and HSH-SoS (Health-
care Supportive Home SoS). Both SoS gave us evidence
to conclude that MediArch advances the state-of-the-art
on SoS architecting, since it (1) allows the integration
of independent constituent systems, (2) provides strate-
gies to control emergent behaviors, (3) defines strategies
of control authorities, (4) gives structures for SoS evolu-
tion, and (5) promotes resilience and adaptability of SoS
architectures.

The remainder of this article is structured as follows.
The “Background” section presents the theoretical back-
ground used in this work. The “Materials and methods”
section details the methods used to establish and assess
MediArch. The “Software mediators for SoS” section
describes MediArch and specifies all software mediators
that compose this layered architecture. The “Evaluation
of MediArch” section reports results obtained during
MediArch assessment. The “Discussion” section discusses
the results of constructing FMSoS and HSHSoS based
on MediArch. In the same section, related works (the
“Related work” section), contributions of MediArch (the
“MediArch contributions” section), limitations of our
work (the “Limitations and directions for future studies”
section), and threats to validity (the “Threats to validity”
section) are described. Finally, conclusions and future
work are listed in the “Conclusions and future works”
section.

Background

This section presents the theoretical foundation contain-
ing the main topics embraced in this work, namely, SoS
and software mediators.

Systems-of-systems

SoS are systems whose constituent elements are systems
themselves (e.g., software-intensive systems, information
systems, embedded systems, ultra-large systems). Con-
stituent systems collaborate among them to achieve high-
level missions that cannot be addressed by any system
independently. In short, missions are systems’ activities to
pursue stakeholders’ goals [7]. For instance, a mission for

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

the Apollo 12 system is [7] “to perform inspection, survey,
and sampling in lunar mare area”

A system can be considered an SoS if it presents the
following characteristics [46, 52]:

e Operational independence. Constituent systems are
independent and able to operate even when the SoS is
disassembled; hence, constituents must be low
coupled without harnessing operations of their peers;

e Managerial independence. Constituent systems are
governed by their own rules, rather than by external
ones when they participate in an SoS. This
characteristic raises challenges for the creation of
SoS, due to uncertainties on constituents operations
reliability, which can negatively or positively impact
SoS behaviors and the achievement of their missions.

e Distribution. Constituent systems are dispersed;
therefore, a type of mediator is required to allow the
communication of their operations results with other
constituents and, depending on the type of SoS, with
the central authority. Mediators must enable
communication, coordination, and (if required)
translation of messages to support inter-operations
between constituents and the SoS.

e Evolutionary development. SoS can be under
constant changes due to modifications in missions,
e.g., market tendencies can change business
strategies, which results in changes of missions, and
inclusion of new constituents or removal of those
that are not longer required.

e Emergent behavior. An SoS behavior emerges as a
result of the synergistic collaboration of its
constituent systems. An emergent behavior addresses
a global mission, rather than individual missions
accomplished by the constituent systems separately.
Depending on the complexity to characterize,
measure, and predict emergent behaviors, an SoS can
be modeled as deterministic or stochastic systems
[48].

Depending on the independence level of constituents,
an SoS can be classified as follows [15, 38]: (1) directed, if
constituent systems are controlled by a central authority
to satisfy the SoS missions; (2) acknowledged, if con-
stituent systems maintain independent management and
missions, but collaborate with the SoS to achieve its mis-
sions; (3) collaborative, when constituent systems are not
forced to follow a central management, but voluntarily
collaborate to achieve the SoS missions; and (iv) virtual, if
the SoS has neither a central authority, nor clear missions,
its constituent systems are unaware of their participation
in the SoS; therefore, its behaviors are highly emergent.

SoS characteristics and types impose the follow-
ing properties to their architectures [31, 32, 52]: (a)

Page 3 of 23

continuous integration of constituent systems and capa-
bilities, as required by the SoS to achieve its missions; (b)
definition of design decisions to assure predicted emer-
gent behaviors [48]; (c) establishment of decision-making
authorities that control SoS operations and govern (if pos-
sible) alliances of constituent systems; (d) strategies for
SoS evolution, such as new missions, requirements, and
other significant changes appear; and (e) resilience and
adaptability of SoS operations for ensuring desired quality
levels and avoiding unexpected emergent behaviors.
Characteristics of distribution and operational and
managerial independence of constituent systems hamper
the construction of SoS, mainly due to interoperabil-
ity barriers. In SoS, interoperability can be defined as
the ability of constituent systems alliances to exchange
specified state and data and interact following a com-
manding authority or predefined agreements [49]. The
following four levels of interoperability have been consid-
ered in distributed software systems, and also are required

in SoS:

- Technical interoperability, related to establish links
and transmit data among constituent systems. It is
domain-independent and does not know about the
meaning of data exchanged [9]. Therefore, technical
interoperability only guarantees the correct
transmission of bits, but it does not communicate
anything about the meaning of these bits and what
they represent [41]. It is often focused on
communication protocols and infrastructure
necessary for the protocols to operate.

- Syntactic interoperability, related to the syntax that
defines rules on the type of data exchanged,
structures, and organization. It provides data formats,
well-defined syntax, and encoding (e.g., message
content structure, size of headers, size of the message
body, and fields contained into a message) [41].

- Semantic interoperability, related to semantics that
defines the exact meaning of the data exchanged (e.g.,
clear definitions of domain terminology or
vocabulary). Data are conceived, in the semantic
layer, as information to be shared, processed, and
well-understood (with no ambiguity) by systems.
Semantic interoperability is specific to domain and
context and requires the use of unambiguous codes
and identifiers [9].

- Organizational interoperability, concerned with the
interaction of multiple organizations to obtain their
respective business goals [11]. It is focused on the
coordination of independent and distributed
workflows and activities that are well understood by
constituent systems, their organizations, and users.
Organizations participating in a business process, at
SoS level, must commit to perform several activities

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

(as part of their own workflows), and such
commitments are specified in contracts.

Software mediator

Issues on interoperability among software entities (e.g.,
components, systems, services), such as exchanged
data and behavioral heterogeneity, have been overcome
through intermediary software entities called mediators
[36]. Mediators perform the necessary translations of the
data exchanged and appropriately coordinate interactions
among software entities [71]. Similarly to connectors in
software architectures, mediators can be seen as first-class
software entities, that specify their internal behaviors,
protocols, duties, commitments, and roles, making pos-
sible the definition of mediators patterns to be reused by
software architects in different software projects [23, 62].

Because of their benefits, mediators have been stud-
ied in other types of complex systems, for instance, in
services-based systems on distributed environments. Sev-
eral types of mediators (some of them considered as pat-
terns) [8, 36, 43, 62, 63] to improve interoperation among
heterogeneous components and services.

In an SoS perspective, mediators are considered archi-
tectural elements that connect constituent systems to
allow their communication, coordination, cooperation,
and collaboration [54]. SoS mediators must be defined in
an abstract way and instantiated at run-time, for enabling
SoS emergent behaviors and missions accomplishment
[55]. In contrast to software connectors, which act as com-
munication channels to transfer data or control among
constituents, mediators have communication, coordina-
tion, and conversion roles [55] and facilitate SoS control
over dependent entities. Moreover, since they can be cre-
ated or destroyed by the SoS at run-time, they must be
under SoS management.

Figure 1 shows a representation of an SoS mediator used
in this work. In its simple form, a mediator is configured
to receive input data (through its fromEx interface) and
send output data (through its toEy interface).

A mediator has a gate that provides an interface (i.e.,
interaction points) among systems (either SoS, or their
constituents) and their local environment. Each gate spec-
ifies duties (or obligations) to be fulfilled by the entity
connected with the gate. A gate is governed by a proto-
col that defines a set of rules to guide interactions among

fromEx .

/hterface
gate

interface
gate

Fig. 1 General representation of a mediator. Source [23]

Page 4 of 23

the interconnected entities through the gate. The gate
also defines some assumptions and guarantees on behav-
iors, properties, and environment of the entity connected
through the mediator’s gate. Therefore, the interested
entity must provide a respective gate that commiits to offer
duties specified in the mediator’s gate towards a successful
interaction. Most of the times, commitments or contracts
are dynamically created at run-time to achieve assump-
tions and guarantees specified in the gates of the mediator
and the other software entity (e.g., constituent system or
another mediator) interested in being connected. More
details about mediators’ internal composition and formal
specification can be found in [54].

Materials and methods

This section presents the methods used for the construc-
tion and assessment of MediArch, a mediators-oriented
architecture for SoS.

Identification of mediation requirements in SoS

As an initial step, the literature on SoS fundamentals
[46, 52] was read and SoS properties proposed in [32] were
studied. Important requirements of quality attributes for
each SoS property were defined to understand architec-
tural challenges that mediators must address. The map-
ping between properties (P) [32] and quality attributes
requirements of SoS [59] are detailed in the first two
columns of Table 1.

Additionally, we studied architectural strategies to
address both SoS’ quality attributes requirements and
properties. We searched for architectural patterns and
styles used for constructing SoS architectures. For this,
the search string (“architectural pattern?” OR ‘architec-
tural style?”) AND (“System-of-Systems” OR “Systems-
of-Systems” OR “System of Systems”) was executed in
data libraries Scopus and Google Scholar. Such libraries
were selected since they index research published in
other important computer science academic libraries,
such as ACM, SpringerLink, and IEEEXplorer. The
search was limited to Title-Abstract-Keywords. Studies
[5, 12, 13, 31, 32, 39, 50, 53, 57, 58, 69] were returned,
and, to the best of our knowledge, they are the only studies
on architectural patterns and styles for SoS architectures.
We also looked for architectural patterns and styles for
self-organizing systems, since they share characteristics of
dynamism and emergent behaviors with SoS [16, 53, 56].
Architectural patterns and styles related to quality
attributes and properties of SoS are shown in the third
column of Table 1.

Furthermore, research on software connectors [3, 25,
40, 42, 44, 47] and software mediators [8, 36, 43, 62, 63]
were analyzed to understand the concept and capabili-
ties of software entities responsible for mediating inter-
actions in, and among, software systems. Based on that

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

Page 5 of 23

Table 1 Relationship among properties (P), quality attributes, architectural patterns and styles, and mediation categories in SoS

SoS properties Quality attributes

Mediator
categories

Architectural patterns/styles

P1—continuous
accommodation or
integration of constituent
systems.

Cooperation, integration, interoperability
(i.e, technical, semantic, and syntactic),
portability, and flexibility of constituents,
and low-coupling between constituents
and the SoS

P2—assurance of
emergent behaviors

Coordination of constituents’ capabilities,
organizational interoperability, and
situation-aware

Centralized, decentralized, or
full-decentralized control, and
accountability of decisions

P3—necessity of a
decision-making or
control authority

P4—evolutionary
development.

Maintainability, modifiability, separation of
concerns, adaptability, portability,
low-coupling, flexibility, scalability,
integration, and interoperability

P5—resilience or
adaptability of SoS
architecture (e.g., dynamic
reconfigurations)

Adaptability, fault-tolerance,
self-organization, robustness, dynamic
configurations, availability, and security

Communication
and conversion

Centralized architecture, publish-subscribe,
contract monitoring, ESB, trickle-up, pace
layering, MAPE-K, share data, broker, and
observer-controller

Coordination,
conversion, and

Centralized architecture, SOA, supply chain,
reconfiguration control architecture,

contract monitor, trickle-up, evolution styles, control
reflection, MAPE-K, observer-controller, and

master-slave

Centralized architecture, SOA, Control

publish-subscribe, pipe-filter, supply chain,
reconfiguration control architecture,
infrastructure grid, trickle-up, MAPE-K,
shared-data, observer-controller, and
master-slave

Coordination,
conversion,
control

SOA, publish-subscribe, supply chain,
infrastructure grid, ESB, pace layering,
evolution styles, reflection, and MAPE-K

Coordination and
control

SOA, publish-subscribe, blackboard,

pipe-filter, supply chain, reconfiguration
control architecture, ESB, pace layering,
evolution styles, reflection, and MAPE-K

understanding, we abstracted mediation capabilities pre-
sented in architectural patterns and styles used in SoS
architectures.

Categorization of mediators

Similar mediation capabilities (identified in architectural
patterns and styles) were grouped to define types of
mediation. Three categories of mediators, namely, com-
munication & coordination, conversion, and control, were
defined as important for SoS architectures. The last col-
umn of Table 1 shows them and their relationship with
SoS properties, quality attributes, and architectural pat-
terns/styles.

Specification of mediators

The description of each mediator was based on spec-
ifications proposed in SosADL, an ADL (Architectural
Description Language) defined to systematically represent
software architectures of SoS [55]. SosADL proposes the
following structure for the specification of mediators [55]:

e Duties, which are obligations to be fulfilled by
mediator’s gates when the mediator is connected to a
constituent system through an interface

e Behaviors, which are capabilities offered by the
mediator to satisfy duties specified in the interface

e Assumptions, which are conjectures about the
interface offered by the mediator for the desired
behavior

e Guarantees, which are assertions about the results of
the mediator’s behavior to satisfy the duties specified
in the interface.

Definition of MediArch

Since SoS architectures must be conceived to address a
continuous integration of constituent systems, dynamic
reconfigurations, evolution, scalability, and resilience,
mediators must be organized towards satisfying such
requirements. Therefore, they must be structured in a
way they can be created, composed, removed, modified,
and reconfigured at without affecting SoS behaviors or
constituent systems operations.

Interactions among mediators and dependencies
among their behaviors were identified for the establish-
ment of mediators organization in SoS architectures.
Categories of mediators were organized in a three-
layered architecture, called MediArch, detailed in the
“Software mediators for SoS” section. The structure of
this mediators-oriented architecture was based on the
architectural pattern of pace layering, which enables
the construction of complex behaviors through layer
hierarchies [57]. In this pattern, lower layers implement
fast adaptations (e.g., reconfigurations of constituent
systems) and support interoperability of constituent
systems, and higher layers are responsible for time-
demanding adaptations (i.e., selection of the best policy
or plan for reconfiguring the SoS) and address reliability
requirements [57].

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

Evaluation of MediArch

To obtain evidence of the applicability of MediArch, the
mediators contained in this architecture were used as
first-class software entities for the construction of the
software architecture of two SoS, namely, FMSoS (Flood
Monitoring SoS) and HSH-SoS (Healthcare Supportive
Home SoS). The FMSoS is an SoS whose main mis-
sions are the continuous monitoring of rivers in a city
and emergency situations detection (e.g., floods). The
HSH-SoS" mission is to assist patients diagnosed with
chronic diseases (e.g., diabetes mellitus) in the manage-
ment of their conditions during their daily life activities.
Both SoS have been a focus of research of our group
over the past years, and their mediators-based archi-
tectures are detailed in the “Evaluation of MediArch”
section.

The creation of FMSoS and HSH-SoS architectures fol-
lowed the guidelines for architecting software systems
in [29], using MediArch as backbone. The mediators-
oriented architectures of FMSoS and HSH-SoS were
assessed regarding their feasibility to allow SoS properties
and their related quality attributes described in the two
first columns of Table 1. For this, the following research
questions were investigated:

RQ1 - How do SoS architectures based on MediArch
enable continuous accommodation or integration of
constituent systems?

RQ2 - How do SoS architectures based on MediArch
assure emergent behaviors?

RQ3 - How can different strategies of control authori-
ties be established in SoS architectures based on
MediArch?

Page 6 of 23

RQ4 - How can SoS architectures based on MediArch
evolve?

RQ5 - How do SoS architectures based on MediArch
address resilience or adaptability?

Software mediators for SoS

Figure 2a illustrates MediArch, a three-layered architecture
that provides a general structure to design SoS architec-
tures for SoS considering mediators as first-class soft-
ware entities. Mediators in MediArch were categorized
into three types, namely, communication, conversion,
and control. Altogether, they support different capabil-
ities required during SoS operations, such as informa-
tion exchange, request and reply messages transmission,
coordination of capabilities, conversion of messages, and
reconfigurations, among others. Mediators allow inter-
actions between the following software entities: (a) con-
stituent and constituent, (b) SoS and constituent, (c) con-
stituent and SoS, (d) consumers and SoS, (e) SoS and
consumers, and (f) mediators and mediators. For the sake
of clarity and simplicity, constituent systems, consumer
systems, and mediators are referred to as software entities,
i.e., E, that can be mediated.

MediArch was defined following the pace layering pat-
tern [57] and is composed of a hierarchy of mediators
that establishes dependencies among all type of software
entities found in SoS, as illustrated in Fig. 2. Therefore,
mediators in upper layers depend on data coming from
entities in lower layers. Mediators in the control layer use
data provided by mediators in the communication, conver-
sion, & coordination layer to define the current status of
the SoS and establish, for instance, emergency and recon-
figuration plans. Similarly, this middle layer depends on

(b)

Legend:

D Constituent and Consumer Systems

D Mediators

Fig. 2 MediArch, a layered architecture for SoS based on mediators. Adapted from [23]. a Transversal view. b Superior view

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

data supplied by the constituent and consumer systems
layers to compose new information that will allow the
execution of emergent behaviors and, thus, to enable the
accomplishment of SoS missions. Moreover, the media-
tors’ hierarchy in MediArch allows SoS managers to spec-
ify reconfigurations commands at different levels. In this
context, mediators in upper layers can define, propose,
and send emergency and reconfigurations plans. Those
plans detail which types of modifications or actions (pre-
ventive or corrective actions) to be executed by entities in
lower layers.

Elements in MediArch are described in the remainder of
this section.

Constituents and consumers layers

The lowest layer of MediArch is composed of constituents
and consumers systems. Constituents are important sys-
tems for SoS operations. Consumers are systems that
interact with the SoS, utilizing results of SoS operations,
which are the result of interactions among constituents
and SoS controller.

As shown at the right side of Fig. 2, although both
types of systems (i.e., consumer and constituent systems)
are in the same level, they do not communicate directly
while participating of the SoS. This is mainly because
the information required by consumers can only be pro-
duced during interactions between constituent systems
and through the transformations and communication of
exchanged data by SoS mediators. Such systems are out of
the SoS control, operationally and managerially indepen-
dent, and distributed through the environment. Moreover,
their interfaces, transferred data, data formats, and tech-
nologies are heterogeneous.

Page 7 of 23

Communication, conversion, & coordination layer

This layer is the intermediate layer between constituent
and consumer systems, and also mediators in the control
layer. Mediators, in this layer, are concerned with inter-
operability, communication, and coordination issues. All
systems participating in the SoS (i.e., consumers and con-
stituents) only can request and exchange interoperable
information through mediators in this layer. Mediators for
communication and conversion purposes are explained as
follows. For each mediator, it is offered its general descrip-
tion, duties, behaviors, assumptions, and guarantees, as
proposed in [54], and detailed in “Software mediator”
section.

Communication & coordination mediators

Mediators for communication allow (synchronous or
asynchronous) transmission of data, messages, events, or
operation results among entities E;, e.g., constituent sys-
tems, consumers systems, and software mediators, and
coordination of interactions among SoS entities. Four
mediators for communication & coordination purposes,
namely, pipe, collaborator, distributor, and router are
defined in this intermediary layer, as showed in Fig. 3a—d.
They were abstracted from architectural patterns/styles
pipe-filter, publish-subscribe, observer-controller, and
pace layering, which are some approaches used for com-
munication & coordination purposes in SoS [32, 39, 57],
as shown in Table 1.

Pipe (P) Communicates data d from E; to Ej. It is an
unidirectional transfer, as shown in Fig. 3 a. Pipes can
be used when an SoS just receives output messages from
constituent systems, but no request can be sent to their

’ from EmEz

(a)

fromEl toEn
d d

fromE1 C s toE2
r.o--" v r
s

fromE2 @

toE1
E EIERT T

(b)

fromE1 toEn
9l e fromEn -9X_
T deT dn

toE2 toE3 ® toE2 | nome2 fromE3 ltoE3
dx

Fig. 3 Communication mediators. Adapted from [23]. a Pipe. b Collaborator. ¢ Distributor. d Router

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

constituents. Pipes can also be used in some virtual SoS,
in which no central control exists to request data from
constituent systems, which are not aware of their partici-
pation in the SoS.

Specifications:
e Duti (o transmit d from Ey to Es.
e Behaviors: Transmit(d) using output interface in Fy to input interface in
Es

Assumptions: E; and E interfaces are known, and d can be processed or
understood by Es.
Guarantees: d is transmitted to Ea.

Collaborator (C) Used to request/supply services/data
between entities, E; and Ej, as illustrated in Fig. 3b.
Collaborators can be used in SoS with certain control
level over their constituent systems, e.g., in directed or
acknowledged SoS.

Specifications:

Duties: To process requests and provide responses.
Behaviors: requestToE2(r), supplyToE1(s), where r is the requested service
or data from E; to Es, and s is the response to that request from Eo to Ey.
Assumptions: Requested services are provided by suppliers and answers can

be understood by requesters.
Guarantees: Synchronous/asynchronous delivery of requests and answers.
Buffering is necessary when requests are streams.

Distributor (D) Useful in distributed systems to com-
municate data d to several receptors (i.e., broadcasting).
Distributors can be used when an SoS must communicate
reconfiguration requests or for coordination purposes
among multiple entities. Distributor is depicted in Fig. 3c.

ﬂpeciﬁcations:

Duties: To distribute d to interested entities.
Behaviors: distribute(d) to an entities’ list entityList interested in receiving
the data.
Assumptions: Type of distribution is broadcast or directed, and receptors

are previously known by emissor.
o Guarantees: Delivery of d to interested entities, and d can be understood by
\ receptors.

—_

Page 8 of 23

Router (R) Coordinates data flow when multiple entities
are transmitting and receiving data in an SoS. As pre-
sented in Fig. 3d, R receives data di,d>,ds, ...,d, from
multiple entities (E1, Ey, E3, ..., E,;) (differently from a dis-
tributor, which has an unique input interface), and coordi-
nately, sends data d,, to interested entities registered in an
entityList.

Specifications:

o Duties: To route data d; among entities.
e Behaviors: route(d;) to entityList.

e Assumptions: d; from E; can be understood by other entities.
e Guarantees: Transmission of data among multiple entities.

Conversion mediators

This type of mediators is concerned with interoperabil-
ity among constituent and consumer systems, and secu-
rity issues when data is transmitted. Four mediators,
namely, filter, wrapper, adapter, and data fusion, showed
in Fig. 4 a—d, were defined to support interoperable and
secure communications and collaborations among enti-
ties, through operations on exchanged data or proto-
cols. These mediators were abstracted from architectural
styles/patterns trickle-up, SOA, shared-data, and broker,
which have been applied for conversion purposes in SoS
[32, 37,57, 58].

Filter (F) Selects and removes parts of input data D
simplifying its structure. Filters can select relevant infor-
mation from outputs of constituent systems that contain
more information than that required for SoS operations.
Filters can be used to decrypt messages for security pur-
poses, obtain data related with specific message headings
for syntactic interoperability intentions, or to eliminate
noise in data provided by constituent systems before their

[
oE2

F :

® ®

D frqul

El
(a)

a1 fr?mEl q T roE% de1

® toEY | fromE2 ®
El o de az

(©

. taEZ.

W :

frc:mEl

El

®

m

N
a

(b)

(d)

Fig. 4 Conversion mediators. Adapted from [23]. a Filter. b Wrapper. ¢ Adapter. d Data fusion

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

use in SoS operations. This mediator is presented in
Fig. 4a.

Specifications:
o Duties: To identify and filter d from input data D.
e B d = filter(D).
. D is understood by the filter, and d is contained in D.
. Selection and filtration of data d from D.

Wrapper (W) Enables technical and syntactic interop-
erability among constituent systems, consumer systems,
and mediators that use different communication or trans-
port protocols, or distinct data formats. Moreover, it adds
encryption data or authentication information for secu-
rity purposes. This mediator can add extra information w
to data exchanged d to construct D, following a wrapping
rule wr. Wrapper is depicted in Fig. 4 b.

Specifications:

e Duties: To create D adding w to d following the wrapping rule wr.

o Beh, s: D = wrap(d, w, wr); d = unWrap(D, w, wr).

e Assumptions: It exists a rule wr to wrap and unwrap data.

e Guarantees: D containing d plus additional information w. d can be recov-
ered from D.

Adapter (AT) Known as Translator, it supports semantic
interoperability of exchanged data d; among constituent
systems, consumer systems, and mediators. This type of
interoperability is done through the translation or map-
ping between different data formats Datatype. More-
over, adapters can be used to match interaction protocols
among constituent systems. Figure 4c shows this media-
tor.

Specifications:

Duties: To receive d; from Ep; To adapt dy into dt;, where di.Datatype #
dty.Datatype, using the transformation rule tr; To communicate dt; to E2.
Behaviors: dt; = Adapt(dy,tr).

Assumptions: There exists a transformation rule tr to allow translation be-
tween exchanged data formats.

Guarantees: Correct transformation of data transmitted between two enti-
ties. dt1 can be successfully understood by Es.

Data fusion (DF) Sometimes referred to as Aggregator,
it collects and merges individual data d;, da, d), from dif-
ferent entities Ej, Ep, E, and creates a single aggregated
output D for further transmission, following a predefined
aggregation rule agr. D contains (parts of) di, ds, d, and,
if needed, some additional information w for SoS control
purposes. Aggregated data is important to SoS to under-
stand about its current status and decide future behaviors
or reconfigurations in its structure. Data fusion mediator
is presented in Fig. 4 d.

Specifications:

Duties: To receive dy,da,dy, from Ey, Ea, E,. To merge di,dy,d, into D.
To communicate D.
Behaviors: D = aggregate(dy,da, ..., dn, w, agr).

Assumptions: di,dz, d, are semantically and syntactically interoperable. It

exist a data aggregation rule agr to coordinate the creation of D.
Guarantees: D as a fusion of di,da, ..., dn, w.

Page 9 of 23

Control layer

The upper layer of MediArch is focused on control
issues, ensuring the identification and execution of emer-
gent behaviors, dynamicity of the SoS, and missions
accomplishment.

Mediators in this layer only have direct interaction
with mediators located in the communication and con-
version layer. Hence, a direct connection between control
mediators and constituent or consumer systems is not
possible.

Mediators in the control layer are concerned with
behavioral and control issues of SoS software architec-
tures. Four mediators, namely, monitor, analyzer, plan-
ner, and executer, were defined to deal with architectural
reconfigurations for the execution of emergent behav-
iors, availability of constituent systems capabilities, or
changes in SoS missions or its environment. Media-
tors for control purposes are presented in Fig. 5a—d.
These mediators were abstracted from architectural
styles/patterns Observer, Publish-subscribe, reflection,
MAPE-K, SOA, centralized architecture, reconfigura-
tion control architecture, contract monitor, pace lay-
ering, and evolution styles, which have been utilized
in SoS for control, emergent behaviors identification,
evolutionary development, and dynamic reconfiguration
purposes [12, 13, 32, 50, 57, 58, 69], as described in
Table 1.

Monitor (M) Collects' information d; from groups
of SoS entities E; registered in an entityList and
provides their status (e.g., constituents
behavior under execution, current environment sta-
tus, constituent availability). Entities status s; is
aggregated to estimate entities situations eSituation
during SoS operations. Figure 5a depicts the monitor
mediator.

81,82, ...,S/'

Specifications:

e Duties: To collect entities’ information d;;
To define entities’ status s;;
To infer and communicate entities’ situation eSituation.
o Behavi ; = collect(E;.d;), where Ej is in entityList;
eSituation = aggregate(si, s2, ..., 5;5);
sendSituation(eSituation).
e Assumptions: Entities E; to be monitored are registered in the entityList;

Information d; received from entities is semantically interoperable;
e Guarantees: Situation inference of entities participating of the SoS.

Analyzer (A) Establishes the situation of an SoS, SoSi-
tuation, based on historical knowledge on SoS (which
is presented as model SoSModel) and its entities’ cur-
rent situation, eSituation. Examples of SoS situations
are current emergent behavior under execution, SoS
mission addressed, or if the SoS is presenting prob-
lems in its operation. This mediator is presented
in Fig. 5 b.

LFor this reason the monitor is also called collecter or observer.

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

Page 10 of 23

® e
.
El ®) S
fromAnalyser

M °

fromAnalyser

laAnaIyser
» Ircm itor

A2°

L T— M)
orerly, AT

mMumr

~

(a)

fromPlanner !mmPVi
< ri
{oPlgnner .
N
i 3
,52, toEm.
toPlgnner fromAnaly3e /mmET JloPiggper
=
fromPlanner
2
sn z (nAnl'ysur fromAianner loPlarmer

¥
m fromPiglner
<
fromPlanner
toplanner

(©

Fig. 5 Control mediators. Adapted from [23]. a Monitor. b Analyzer. ¢ Planner. d Executer

toAnalyser

. mwyPDf

fromAnalyser
e

toAnalyser

toMonitor

fromPlanner

s1

oAnsyeer oplamner
romanalyss ¥
romAnalyser toAnaI‘ysey*I
0 (oMonitor | fromPlanner
to4nalyser 5
rn Rm
«
fromAnalyser fromAnalyser .
e lPDIM
0

(b)

’mmplanne@

toExecutor
toEm

m

rz
n 0
oo
lmmExeculer ImmExeculer

(d)

3

Specifications:

e Duties: To infer SoSituation based on its model SoSModel and entities
situation eSituation.

Behaviors: SoSituation = situation(SoSModel, eSituation).
Assumptions: There is historical knowledge on the SoS previous status, pre-
diction models, situation of entities, and the SoS models.

Guarantees: Possible situations of the SoS.

Planner (PD) Also known as Decider, it selects a bet-
ter configuration plan, confPlan, to be executed by an
SoS (or by parts of it). Configuration plans can change
an SoS architecture (e.g., adding or removing mediators,
connecting or disconnecting constituents) and its behav-
iors, or request new functionalities to constituent systems.
For this, the planner must request reconfiguration poli-
cies and to decide which configuration plan, confPlan, is
the most adequate for the current SoS situation, SoSitu-
ation, and based on SoS historical behaviors, SoSHystory.
The selected plan is communicated for further execution
by responsible parts. Figure 5c illustrates this mediator.

Specifications:

o Duties: To establish and provide reconfiguration plans ,confPlan, based
on current SoS situation, SoSituation, and history of SoS behaviors,
SoSHistory.

Behaviors: policies = requestPlan();

SoSHystory = requestHistory();

confPlan = Planning(SoSituation, policies, SoSHystory);
providePlan(conf Plan).

Assumptions: A knowledge base must be defined containing the SoS current

and historical status, its reconfiguration plans, and its policies.
o Guarantees: Reconfiguration plans.

Executer (Ex) Occasionally referred to as Actuator, it
realizes the reconfiguration plan, confPlan, provided by

planners, and distributes reconfiguration requests, recon-
fRequest, to specific SoS entities (i.e., entities under con-
trol of the SoS) registered in a entityList. The executer is
showed in Fig. 5 d.

Specifications:

e Duties: To distribute reconfiguration requests, recon f Request, to entities in
en
B«:hzwmr sendRecon f(entityList, recon f Request).

Assumptions: Plans are semantically interoperable to be understood by en-
tities.

Guarantees: All reconfiguration requests in a reconfiguration plan are per-
formed.

Evaluation of MediArch

To assess the applicability of MediArch , presented in
the “Software mediators for SoS” section, the software
architectures of two SoS, FMSoS and HSH-SoS, were
structured considering mediators as first-class entities
and are presented in the “Examples of SoS architectures
application based on MediArch” section. The “Results of
MediArch assessment” section provides answers to the
five research questions introduced in the “Materials and
methods” section.

Examples of SoS architectures application based on
MediArch

To design software architectures of FMSoS and HSH-
SoS, the guidelines proposed by Hofmeister et al. [29]
were followed. These guidelines define that, in a gen-
eral way, the architecting process comprises the stages of
domain analysis, architectural analysis, architectural syn-
thesis, and architectural evaluation. Specifically, in the

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

stage of synthesis, software architectures of both SoS
were built following the structure proposed in Medi-
Arch, depicted in Fig. 2. In the remainder of this section,
both architectures for FMSoS and HSH-SoS are presented
in the “Flood monitoring systems-of-systems—FMSoS”
and “Healthcare supportive home systems-of-systems
—HSH-S0S” sections, respectively.

Flood monitoring systems-of-systems—FMSoS

FMSoS monitors river levels in a given region and uses
the information provided by heterogeneous and indepen-
dent water level sensors (or motes) distributed on the
banks of the river [14]. Besides these sensors, other types
of systems participate of the FMSoS, such as, pollution
level sensors, crowd-sourcing systems, telecommunica-
tion gateways, unmanned aerial vehicles (UAVs), vehicular
ad hoc networks (VANETSs), meteorological centers, fire
and rescue services, hospital centers, police departments,
short message service centers, and social networks, as
described in [26, 54].

In a general way, the FMSoS missions are detection of
floods, prediction of evacuation situations, alert to respec-
tive authorities, and minimization of impacts caused by
floods [27].

Two versions of architectures for FMSoS were pre-
liminarily defined and assessed in [26, 27]. This section
presents a new version of the FMSoS architecture based
on mediators. Figure 6 a shows the layered view of FMSoS
software architecture, as an instance MediArch.

e Constituent and consumer systems layer. In this
version of FMSoS, constituent systems are sensors S;
and Gateways G;. This layer also contains consumer

Page 11 of 23

systems, namely, sensor observation, web map, and
emergency services. FMSoS does not control any
systems in this layer, since their operation and
management are independent of this SoS.
Constituent systems are distributed through the
river. Interfaces, transferred data, data formats, and
technologies of consumer systems are heterogeneous,
since they were developed following neither
predefined communication protocols, nor semantic
standards. Therefore, constituent systems do not
address technical and semantic interoperability. As
shown in Fig. 6 a, constituent and consumer systems
do not establish direct communication; therefore,,
they only can interact through mediation layers of
communication, conversion & coordination, and
control layers.

Communication, conversion, & coordination layer.
Based on mediators proposed in the “Software
mediators for SoS” section and on non-functional
requirements of FMSoS presented in [26, 27], the
following mediators were selected to grant
communication, conversion, and coordination
capacities: Collaborators (C), Distributer (D), Routers
(R), and Adapters (AT). These mediators create the
composed mediators C-AT and R-AT. C-AT is a
mediator that aggregates the capabilities of mediators
Collaborator (C) and Adapter (AT). In the FMSoS,
mediator C-AT was allocated for each constituent
system to communicate, in a bidirectional way,
constituent systems data (e.g., river levels, river
temperature, water velocity) with other mediators
and systems and, at the same time, allows semantic
interoperability among connected entities. R-AT was

Sensor *
Observation
Service

Service

Emergency
Service

Legend:
B Constituent or Consumer System (Sj - sensors, Gi - Gateways)

D Mediator

Layer

(b)

(@ control Layer [Constituent and Consumer Systems

Fig. 6 FMSoS architecture. Adapted from [23]. a Layered view. b Mediator view

ervice Service Service

() Communication, Conversion
and Coordination Layer

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

defined as a mediator that contains capabilities of
routing (R) and adaptation (AT), and it is used to
deliver data to consumer systems in a comprehensible
way. In FMSoS, mediator R-AT communicates flood
alerts, river situations, or SoS situations to sensor
observation, web map, and emergency services. This
communication is interoperable, since this mediator
transforms heterogeneous data in standardized data
formats and communication protocols, enhancing
data comprehension by all consumer systems.

e Control layer. This layer is mainly formed by
instances of mediators Monitor (M), Analyzer (A),
Planner (PD), and Executor (Ex). Monitor collects
data from sensors and gateways and establishes the
current river and constituents status (e.g., river levels
by region, river velocity, or contamination index).
Such a status is directly communicated to the
Analyzer that identifies possible situations of the
EMSoS or its constituents (e.g., the incidence of
floods in a region, unavailability of constituents or
mediators, or normal operation). To predict FMSoS
situations, the Analyzer uses a probabilistic situation
model (SoSModel) stored in a repository. The
Analyzer communicates the FMSoS situation to the
Planner that establishes a reconfiguration plan for the
SoS. These plans can define commands for
deleting/instantiating new mediators, restarting of
constituents, communicating emergency situations to
different systems, or increasing sensing rates of whole
sensors to improve river situation reliability.
Reconfiguration plans are sent to the Executor that
identifies software entities involved in a
reconfiguration, organizes activities as workflows
commands to be executed by each entity, and sends
those commands to be delivered by the Distributor.
Hence, the composed mediator D-Ex guarantees the
correct distribution of reconfiguration commands in
the FMSoS. Finally, mediators in the control layer do
not interact directly with constituents and with
consumer systems, therefore, requests are made by
mediators in the middle layer.

Healthcare supportive home systems-of-systems—HSH-SoS
HSH-SoS has been designed to overcome the increasing
demand for tele-homecare due to the growth of dis-
eases and disabilities and avoid long-term hospitalization
[20, 22]. HSH-SoS involves a variety of technologies and
provides an autonomous life in residences to patients suf-
fering from chronic diseases (e.g., diabetes, hypertension,
Alzheimer’s, Parkinson’s), handicapped individuals, and
dependent elderly people [19].

HSH systems are collaborative SoS, as each constituent
system maintains its operational and managerial indepen-
dence; however, constituents collaborate with the HSH

Page 12 of 23

system to achieve and evolve global missions. Exam-
ples of constituent systems are smart homes, domotic
systems, electronic health records (EHR) systems, moni-
toring systems, smart devices, and rehabilitation systems
[20]. In these SoS, collaborations among constituent sys-
tems grant responses to alarm situations and trigger pre-
ventive actions based on perceived trends and behavioral
patterns. Such systems are based on intelligent situa-
tion analysis, help in the assessment of patient health
conditions, and assist on fitted interventions. Moreover,
HSH-SoS can consider local interventions (e.g., resorting
to robotics, opening/closing doors or windows, emer-
gency callings, activity monitoring, oxygen provision),
tele-presence (in connection with carers, family, or com-
munity), or interventions provided by active supporting
teams from the care network [21].

Figure 7 depicts the architecture of HSH-SoS, whose
construction followed MediArch. The HSH-SoS has a mis-
sion to support patients diagnosed with diabetes mellitus
during the self-management of their diseases at home.
Requirements of this SoS can be consulted in [67], and a
preliminary version of its software architecture is detailed
n [24]. In a general way, the HSH-SoS architecture is
specified as follows.

e Constituents and consumers systems layer. The
bottom layer contains the following three types of
services:

— Services provided by constituent systems that
are of interest of HSH systems to achieve their
missions, but that are managerially and
operationally independent of this SoS§, e.g.,
services furnished by domotic system, sleep
monitor, heart monitor, weight assessment
system, body measurement system, blood
pressure monitor, insulin, and blood glucose
monitor. These systems are presented at the
bottom-left of Fig. 7.

— Services offered by constituent systems that
are under the SoS control and depend on the
information provided by external systems.
These constituents, shown at the bottom-right
of Fig. 7, are dietetic assistant systems, diabetes
monitor, emergency manager, AoDL (activities
of daily life) monitor, patient’s physical signs
and symptoms monitor, pharmacological
treatment manager, disease intervention
manager, and physical exercise monitor.

— Consumer services that interact with the SoS,
requesting and offering information from
constituent systems and results of SoS
operations. Examples include ambulance
services, nutrition plan manager, patient

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

Page 13 of 23

Nutrition pla®@
manager

Ambulance®
Services

Domotic @
system
Sleep monito.r
Heart monito.r

Weight @
assessment

Insulin @
monitor

Blood glucos®
monitor

Legend:

System

Systems Layer
Fig. 7 Layered view of HSH-SoS

Patient Healt!® | Exercise pla®
Records manager

Report @
Services

Constituent or Consumer B Mediator

[Constituent and Consumel__) Communication, Conversion

HSH SoS @
manager
Healthcare @
Team managers
Medication®
Manager

Dietetic ®
assistant
Diabetes @
Monitor
Emergency®
manager
AoDL @
monitor
C-FT|AT-Wj [Patient Physical®
AT-W Signs & Symp-
C- toms monitor
C- Pharmacological ®
= Treatment Manager,
Disease Interven®
tion Manager
Physical @
Exercise Monitor

AT-W

- Control Layer

and Coordination Layer

health records, report services, exercise plan
manager, HSH SoS manager, health-care team
managers, and medication managers,
presented at the top of Fig. 7.

e Communication, conversion, & coordination layer.
The middle layer is composed of mediators of type
Pipe (P), Collaborator (C), and Router (R) for
communication and coordination purposes, and
Filter (F), Adapter (AT), and Wrapper (W) for
conversion. Based on these mediators, two composed
mediators were used in the HSH-SoS: The
P-F-AT-W, which transfers data, unidirectionally,
from constituent systems that are totally independent
of the SoS to elements in upper layers. Constituent
systems connected to the SoS through composed
mediators P-F-AT-W are located at bottom-left in
Fig. 7. Moreover, P-F-AT-W selects only important
information for SoS operations from data obtained
from constituents, as well as the translation and
modification of such data to be communicated in an
interoperable way to other entities participating in
the SoS. In this SoS, a mediator P-F-AT-W was

allocated for each constituent system. The another
composed mediator is C-F-AT-W, which differs from
the P-F-AT-W only in the sense that allows
bidirectional communications among constituent
and consumer systems and the SoS control. Then,
C-F-AT-W also facilitates multiple transformations
of data among constituents, consumers, and the SoS,
while Routers (R) were used to communicate all
transformed and standardized data to elements in the
three layers, namely, constituent systems, consumers
systems, and mediators.

e Control layer. The higher layer is responsible for
coordinating HSH-SoS operations and executing
their missions. This layer is composed of mediators of
type Monitor (M), Analyzer (A), Planner (P), and
Executer (Ex). As showed in Fig. 7, only mediators
Monitor and Executer have bidirectional
communication with Router (from the
communication, conversion, & coordination layer).
Monitor receives standardized data from constituent
and consumers systems through Router and sends
the status of both patients and the HSH-SoS to the
Analyzer. The Analyzer infers possible situations

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

(e.g., systems faults, patient emergency situation) and
communicates them to the Planner, that establishes
different plans of action for avoiding or recovering
from the predicted situations. Plans are sent to the
Executer that defines the entities (i.e., mediators,
constituent systems, consumer systems) involved in
the execution of these plans. Executer communicates
actions to be fulfilled by entities through the Router.

Results of MediArch assessment

Based on the experience of using software mediators
defined in MediArch to construct FMSoS and HSH-SoS,
we present a descriptive analysis about how MediArch
can contribute to address important properties of SoS
architectures, namely, integration of constituent systems,
emergent behavior assurance, decision-making or control
strategies, evolutionary development, and adaptability or
resilience [32]. In the remainder of this section, we answer
the five research questions (RQs) proposed for our study,
which were introduced in the “Evaluation of MediArch”
section.

RQ1—How do SoS architectures based on MediArch allow
continuous accommodation or integration of constituent
systems?

To permit continuous integration of constituent systems,
a SoS architecture must offer entities to ensure inter-
operability at technical, semantic, and syntactic levels.
Only when interoperability is granted, cooperation among
constituents and among other SoS entities is possible.
Moreover, the fact that constituents participate in an SoS
must not affect their operational and managerial inde-
pendence. Therefore, SoS architectures must allow porta-
bility and flexibility when constituents are plugged to or
unplugged from the SoS without affecting their internal
structure and configuration.

SoS architectures based on MediArch can address inter-
operability among constituent systems through the com-
position of communication, conversion, & coordination
mediators. For instance, in FMSoS (see Fig. 6b) for each
constituent system (e.g., sensors Sj and gateways Gi), a
composed mediator C-AT (including capabilities of col-
laborator and adapter mediators) was allocated with the
aim of modifying data formats, vocabularies, and pro-
tocols used by each system into a common standard.
Similarly, a composed mediator R-AT (containing capa-
bilities of router and adapter mediators) was allocated
to establish communication and information adaptations
to consumer systems, such as sensor observer, emer-
gency, and web map services, among others. For the same
purpose, in HSH-SoS (see Fig. 7) two composed medi-
ators, namely P-F-AT-W and C-F-AT-W were defined.
The former aggregates capabilities from pipes (P), to
obtain data from constituents; filters (F), to select only

Page 14 of 23

relevant data for SoS operations; adapter (AT), to trans-
late concepts contained in constituents data to an uni-
fied vocabulary managed by the SoS; and wrapper (W),
to transform constituents data formats into standard-
ized data format to be managed in the SoS. The medi-
ator C-F-AT-W also promotes data filtering, concepts
translation, and data format transformation; however, it
permits bidirectional data exchange among SoS enti-
ties, differently from P-F-AT-W, whose interactions are
unidirectional.

Mediators in the communication, conversion, & coor-
dination layer allow interoperability and coordination of
data exchanged among SoS entities. Specifically, medi-
ators Collaborator (C), Distributer (D), and Router (R)
are responsible for delivering data, messages, events
from constituent systems, consumer systems, and medi-
ators to the SoS controllers, and vice-versa, pro-
moting cooperation of constituents with other SoS
entities.

In FMSoS and HSH-SoS architectures, constituent sys-
tems were not directly connected to SoS controllers, but
through mediators from the communication, conversion,
& coordination layer, that were allocated to each con-
stituent system. In MediArch, these mediators allow low
coupling among constituent systems, consumer systems,
and SoS controllers, since they can cooperate making
use of mediation capabilities, and avoid adaptations of
their interfaces for communication purposes. Moreover,
MediArch promotes separation-of-concerns, since each
type of mediator has unique responsibilities that can be
reused at connecting constituent or consumer systems,
saving these systems to include mediation capabilities
in their operations. Moreover, once constituent or con-
sumer systems are removed from the SoS, they can be
fully operational and used in other contexts. In this sce-
nario, MediArch enables portability and flexibility of con-
stituent and consumer systems to be used by the same
SoS in different scenarios, or by purposes outside of
SoS scope.

Trade-offs Significant performance overhead can be
imposed on SoS operations during data transformations
executed by conversion mediators. For this, a work-force
must be dedicated to structure interoperation standards
governing the SoS. Finally, transformation rules among
data structures must be created when a constituent sys-
tem does not follow a specific interoperability standard,
for instance, in the HSH-SoS transformation rules must
be defined to map segments of the XML-based messages
to segments of HL7-based messages. HL7 (Health Level
7) is a standard for the exchange, integration, sharing,
and retrieval of electronic health information that sup-
ports clinical practice and the management, delivery, and
evaluation of health services [28].

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

RQ2—How do SoS architectures based on MediArch assure
emergent behaviors?
SoS must predict or evaluate possible emergent behav-
iors and estimate their impact over operations and mis-
sions achievement [32, 48, 52]. Therefore, SoS archi-
tectures must be constructed to facilitate the reasoning
about emergent behaviors [32]. For this, SoS architectures
must allow organizational interoperability allowing coor-
dinated interactions among participants, and awareness of
SoS situations to perceive possible unexpected behaviors.
In MediArch, mediators of type Collaborator (C), Dis-
tributor (D), and Router (R) are responsible to coordinate
interactions among entities participating in a SoS. Hence,
these mediators can be specialized for executing work-
flows required during SoS operations. These workflows
are a combination of capabilities (functionalities, opera-
tions, processes) offered by constituent systems that are
arranged in a systematic way to allow the execution of
SoS missions, achieving organizational interoperability. It
is only through the coordination of constituents capabil-
ities that new SoS behaviors emerge [46, 48, 52]. In the
FMSoS, the communication, conversion, & coordination
layer contains all mediators needed to allow the coopera-
tion of systems in a crisis situation. For instance, consumer
systems (web map service, sensor observation service,
and emergency service) can exchange information (in an
interoperable way) making use of the mediator R-AT to
coordinate efforts to assist people during a disaster. More-
over, consumer systems can obtain updated information
from constituent systems to support their decisions.
Through mediators located in the control layer of Medi-
Arch, it is possible to obtain a partial situation of each
participant in a SoS. These situations are useful to estab-
lish possible behaviors and their effects on SoS operations.
This is allowed thanks to the interaction between media-
tors of type Monitor (M) and Analyzer (A). For instance,
in the HSH-SoS, the Monitor, through the Router (R),
can obtain different information from constituent sys-
tems (e.g., domotic system, sleep monitor, heart monitor,
insulin monitor); define the status of each system (active,
inactive), patient parameters (quality of sleep, heartbeats,
blood sugar levels), house condition (empty, occupied);
and communicate such information to the Analyzer (A).
The Analyzer then defines possible situations for both
patient’s health and the SoS. In this context, the monitor-
analyzer duo offers situation-aware capabilities required
to measure risks in SoS operations or patient’s health
status.

Trade-offs Having continuous monitoring and analysis
of constituent systems and SoS operations to establish
situations and predict emergent behaviors might nega-
tively impact time and resource consumption [32]. Models
of possible SoS situations are required, demanding high

Page 15 of 23

efforts in SoS architectural analysis stage. Mostly, these
models are modified at runtime, requiring the adoption of
challenging strategies, as models@run.time [1].

RQ3—How can different strategies of control authorities be
established in SoS architectures based on MediArch?
Depending of the SoS type, namely, directed, acknowl-
edge, or collaborative, control authority varies, e.g., a
directed SoS can require a centralized control, differ-
ently from acknowledge or collaborative SoS whose con-
trol authorities can be decentralized or fully-decentralized
[32, 46, 52, 57]. Therefore, SoS architectures must be flex-
ible regarding the composition of entities accountable for
decision-making.

In MediArch, mediators in the control layer, namely,
Monitor (M), Analyzer (A), Planner (PD), and Executer
(Ex), are low-coupled making it possible to create dif-
ferent configurations of composed mediators. Hence, for
directed SoS, the composed controller mediator M-A-PD-
EX can be arranged to control all operations, configura-
tions, and qualities in a centralized way. In this scenario,
the mediator M-A-PD-Ex can be set up following the
pattern MAPE-K, also known as autonomic manager [61].

Moreover, different control activities (e.g., monitor-
ing operations, analyzing systems situation, planning of
reconfigurations, or executing of control commands) can
be performed individually by specialized mediators fol-
lowing workflows configured to pursuit SoS missions. In
FMSoS and HSH-SoS, decisions were made by control
mediators arranged in a decentralized way. For instance,
in FMSoS (see Fig. 6b), control mediators were config-
ured to enable (1) bidirectional interactions between the
monitor and the analyzer, (2) unidirectional communi-
cation from the analyzer to the planner, and (3) unidi-
rectional communication between the planner and the
executer. Whereas, in the HSH-SoS (see Fig. 7), control
mediators were set up to have bidirectional communi-
cation between monitor-analyzer, analyzer-planner, and
planner-executer.

Additionally, control mediators can be organized in
a fully-decentralized configuration enabling concurrent
analysis of different situations. For instance, a composed
control mediator M-A-PD-Ex can be created to manage
each desired quality in an SoS, e.g., performance, reliabil-
ity, and safety. Each composed mediator can identify the
SoS level-of-agreement regarding each quality property
and define different reconfiguration strategies to ensure
or recover an expected quality level.

The assurance of an accountable decision-making
requires the establishment of reconfiguration policies
to be performed by the planner. These policies must
specify possible trade-offs in SoS operations (e.g.,
decreasing performance level) and strategies to mitigate
them.

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

Trade-offs The definition of reconfiguration policies is
a time-demanding task, since a deep analysis and for-
mal representation of architectural trade-offs related to
reconfigurations are required. Moreover, over reconfigu-
rations of the SoS, participant systems, and mediators can
appear, as more composed controllers are defined. This
can be mitigated by the reflection strategy [12], in which
a higher layer (out of the SoS control) monitors the SoS as
a whole, prioritizing types of reconfigurations and quality
properties.

RQ4—How can SoS architectures based on MediArch evolve?
New missions, requirements, and policies can be required
in an operating SoS. This can imply adding or removing
constituent systems, requiring new capabilities from par-
ticipants, or creating, removing, or modifying mediators
configurations. Therefore, entities in SoS architectures
must be adaptable, scalable, and modifiable for consider-
ing unforeseen changes without affecting the SoS quality.

The strategy adopted in MediArch for addressing adapt-
ability and modifiability and facilitating maintainability
of SoS architectures and its mediators were proposed con-
sidering separation-of-concerns and low-coupling, avoid-
ing possible interdependencies among constituent sys-
tems, consumer systems, and SoS controllers. In this
scenario, SoS entities can be added/removed and SoS
operations can change, as required by the controller, with-
out affecting participant systems configurations. These
characteristics are required to allow SoS evolution and
scalability. For instance, in the FMSoS, new constituent
systems (e.g., sensors or gateways) can be located in a dif-
ferent region of a river to increase the area monitored by
this SoS. For this, mediators C-AT can be created as new
constituents are included in the SoS. Information from
new constituents is aggregated to offer updated informa-
tion to consumer systems, e.g., web map service or sensor
observation service.

Trade-offs Reconfigurations of an SoS require to pre-
serve the current execution state (e.g., data values, active
operations, interdependencies) of all entities (e.g., con-
sumers, constituents, mediators, controllers) involved in
the reconfiguration plan. Strategies that ensure safety and
non-disruptive reconfiguration approaches [66] must be
defined and considered in MediArch.

RQ5—How do SoS architectures based on MediArch address
resilience or adaptability?

Most operational and managerial independence and dis-
tribution of constituent systems imply inaccessibility of
constituents capabilities (due to network problems or
unavailability of systems) required in SoS operations.
Therefore, SoS architectures must be resilient to support
SoS operations in challenging environments. Resilience

Page 16 of 23

can be considered in software architectures for enabling
the self-organization of their structures and dynamic
reconfiguration of their operations. Resilience is an impor-
tant requirement for SoS and assure reliable and robust
operations [52, 64].

In MediArch, self-organization and dynamic configu-
ration can be achieved by two strategies. The first one
is to organize MediArch mediators following the pace
layering pattern [57], also known as layers of changes.
The second strategy was to allow the composition of
mediators located in the control layer. These media-
tors can be aggregated to realize the autonomic man-
ager pattern (or MAPE-K) [61], which is a strategy in
self-adaptive systems to achieve architecture reconfigu-
rations in run-time [2, 69]. Moreover, control media-
tors can identify faults in constituent systems and SoS
operations and, through a predefined set of policies,
propose changes in structure and setting of the SoS
to prevent or recover from faults. This scenario brings
a strategy to achieve reliability and robustness in SoS
architectures [32, 52, 64].

Trade-offs SoS resilience and adaptability at runtime
depend on the quality of reconfiguration policies specifi-
cations. As in MediArch, the policies logics is independent
of SoS controllers capabilities, accessing and processing
such policies could raise bottlenecks during reconfigu-
rations execution, thus affecting the overall SoS perfor-
mance.

Discussion

SoS impose challenges to software architects, mainly
because their construction is based on collaboration
among software systems geographically distributed and
managed by different providers. Constituent systems
are often engineered by distinct software organiza-
tions for specific purposes without considering their
further integration in more complex systems. There-
fore, constituents are operationally independent, and
their data models are heterogeneous, which requires
to refactor their code towards interoperability capa-
bilities. To conform a SoS, it is required a success-
ful collaboration among their internal entities, con-
stituent systems, and consumer systems. Then, it is
important to have well-defined interfaces, standardized
data structures, a common vocabulary, clear workflows,
communication protocols, and entities responsibilities.
Moreover, collaborations among constituents must be
flexible to permit adding or removing new partici-
pants, requirements, and activities during an SoS oper-
ation. The traditional integration of systems in which
participants are highly connected is not favorable in
SoS.

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

Related work

Different strategies have been proposed to support inte-
gration, interoperability, coordination, and collaboration
of distributed software systems [10]. These solutions vary
from specific architectural structures such as connectors
and mediators, to more complete architectural solutions,
e.g., middlewares, frameworks, and platforms.

Mehta et al. [47] proposed, by the early 2000s, the first
initiative to consolidate a taxonomy of software connec-
tors for component-based systems. This taxonomy com-
prises four categories of connectors, i.e., communication,
coordination, conversion, and facilitation. Since then,
connectors started to be considered as first-software enti-
ties for component-based architectures, separating com-
munication logic (provided by connectors behaviors) from
business logic (implemented in components). However,
connectors are limited when dynamic alliances between
heterogeneous components (developed in different pro-
gramming languages or running in different platforms)
are required. Despite connectors which enhance reuse in
component-based systems, they are in some ways high-
coupled since they are set up to components they con-
nect, limiting their use in more dynamic settings, such
as in SoS. This is evidenced in two works [17, 51] who
focused in directed SoS in the military domain. Combs
and Vaggle [51], describe a directed service-oriented SoS,
that dynamically creates connectors to integrate services
in the architecture. These connectors are only focused on
communication protocol conversions. Similarly, Ehrman-
ntraut [17] proposes to use software connectors for inte-
grating constituent systems. For each system, a connector
is set up for allowing the transformation of communi-
cation protocols. In both works, the connector logic of
communication and conversion is implemented in a high-
coupled way.

The increasing need for creating dynamic alliances of
distributed and heterogeneous systems lead the creation
of software mediators, initially referred to as mediation
connectors. Mediators were initially defined in [70, 73] as
an intermediate layer to promote communication, simpli-
fication, abstraction, reduction, merging, communication,
and intelligence during interaction among highly dis-
tributed systems and heterogeneous data representation.
Different types of mediators have been proposed in com-
plex systems during the last fifteen years [8, 18, 36, 43, 62].
Ege et al. [18] define a three-layered framework composed
of three types of mediators (i.e., presence, integration, and
homogenization) for information systems. This frame-
work is oriented to collect data from different databases
and integrate such data to be presented in an aggregated
way to final users. However, this framework does not con-
sider interactions, collaboration, or coordination among
data providers which is a common characteristic in SoS. Li
et al. [43] define a mediator to allow cooperation among

Page 17 of 23

different web services, focusing on the conversion of indi-
vidual services work-flows to collaborate in the execution
of composed business processes. Spalazzese et al. [62]
is one of the first works proposing the dynamic synthe-
sis of mediators in networked systems. The creation of
mediators at runtime is made by a central controller and
supports interoperability at technical and organizational
levels since communication and operational protocols of
distributed systems are homogenized. Despite works of Li
et al. [43] and Spalazzese et al. [62] enhancing organiza-
tional interoperability in service-oriented, networked, and
component-based systems, solutions for important issues,
such as technical, semantic, syntactic interoperability, and
control of distributed, heterogeneous, and independent
systems (as those found in SoS) are not described.

To solve mediation issues in SoS, during the last five
years, middleware [8, 36, 45] and framework [63, 65, 68]
solutions have been suggested. The middleware in Lopes
et al. [45] was proposed for IoT-based SoS. This mid-
dleware considers a central service control for decision-
making and a central bus and proxy for constituents
coordination purposes. Despite to enhance constituent
alliances in a SoS, strategies to integrate constituent sys-
tems are only oriented to directed SoS, where constituents
interfaces must be modified and the SoS has control over
their operations, limiting the participation of more opera-
tional and independent constituent systems. Tomson and
Preden [63] designed MACE, a simulation framework
based on multi-agents for modeling proactive middle-
ware in directed SoS and assessing possible emergent
behaviors. MACE internal structures are not clear, har-
nessing the understanding on which and how SoS archi-
tectures properties are met by this framework and the
simulated middleware. The framework defined by Varga
et al. [65] supports cloud-based and event-oriented SoS
and defines a central orchestrator for decision-making
in directed SoS. This framework supports interoperabil-
ity at technical (following cloud-based architecture) and
organizational (proposing services orchestration) levels.
However, the composition of services is coupled, since
they must be adapted to participate in the SoS, limiting
the operational and managerial independence of con-
stituent systems; therefore, a new SoS must be configured
(through the configuration of services adapters) when new
requirements/missions are required. Wanderley et al. [68]
proposed the MBA (Model-Broker-Agent) framework
based on multi-agent systems that are interconnected
through composed connectors named facilitators-broker.
This framework defines a central broker to coordinate
constituent systems and agents to transform or facilitate
communication protocol and data semantic conversions.
The use of multi-agents systems promotes SoS properties
of robustness, low-coupling, and technical and syntac-
tic interoperability. However, the MBA framework lacks

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

strategies to support important properties of SoS archi-
tectures, such as dynamism, evolution, and organizational
interoperability.

Finally, the emergent middleware, proposed by Issarny
and Bennaceur [36] and Bennaceur and Issarny (8],
is the most related work found in the literature. This
middleware enables the on-the-fly creation, remotion
of mediators allowing adaptability and dynamic con-
figuration of SoS architectures. This middleware has
learning enablers to continuously determine components
behaviors, it achieves semantic interoperability through
ontologies, and it was conceived to support alliances of
components in directed, acknowledge, and collaborative
SoS.

MediArch contributions

Last column of Table 2, summarizes MediArch contri-
butions to support architectural properties (P), quality
attributes, and SoS types. Properties and qualities of SoS
architectures were introduced in the “Identification of
mediation requirements in SoS” section and types of SoS
were defined in the “Systems-of-systems” section. Table 2
compares contributions made in MediArch and related
works.

MediArch advances the state-of-the art, since from our
knowledge, is the second approach proposed to overcome
problems in SoS architectures that considers mediators as
first-class entities. The first work in this line is reported
in [36]. MediArch also proposes mediators organizations
that can be configured to support (at least partially) all SoS
properties. Therefore, SoS architectures based on Medi-
Arch could be able to dynamically integrate constituent
systems, identify possible emergent behaviors, set up dif-
ferent strategies for control and decision-making (i.e.,
centralized, decentralized, full-decentralized), evolve over
time including or modifying new requirements, policies,
or constituents, and decide and execute reconfigurations
at runtime. This is possible, due to mediators were pro-
posed in MediArch to address important qualities, such
as interoperability (in all its levels), low-coupling, sepa-
ration of concerns, scalability, and maintainability. More-
over, based on experiences at architecting FMSoS and
HSH-SoS, we are confident that MediArch can be used
as backbone to create software architectures for directed,
acknowledge, and collaborative SoS.

Limitations and directions for future studies

The SoS construction requires investments of time, eco-
nomical resources, human resources, and the establish-
ment of partnerships and collaborations among own-
ers and managers of the SoS and its constituent sys-
tems. Hence, architectures of both FMSoS and HSH-
SoS were conceptually validated in this work. Medi-
Arch was assessed regarding organizations of SoS entities

Page 18 of 23

(constituent systems, consumer systems, and mediators)
for achieving requirements of interoperability, integration,
modifiability, low-coupling, and flexibility. Low-coupling
capabilities brought by mediators allow us to visualize
how SoS architectures could support dynamic reconfig-
urations; however, more investigations about mediators
synthesis at runtime must be conducted to verify this
hypothesis. Moreover, additional studies about how Medi-
Arch could overcome issues related to performance,
non-disruptive configurations, safety, and security must
be done. These issues were identified as trade-offs during
MediArch assessment.

Complementary decisions to define internal structures
and behaviors of each mediator must be made. For
instance, for communication mediators, Collaborator (C)
can implement the RPC? pattern, Router (R) can be struc-
tured following publish-subscribe, and Distributor (D) can
be assembled as a service bus. For control mediators,
Mounitor (M) can be instantiated either as an Observer
when no clear contract exists between SoS and moni-
tored constituent systems, or as part of a publish-subscribe
strategy when Monitor (M) subscribes to messages sent
by constituent systems. For Analyzer (A), additional deci-
sions are related to approaches for predicting situations
(or emergent behaviors) based on historic SoS status.
Situations can be predicted using machine learning algo-
rithms, such as those proposed in [30], namely, dimen-
sion reduction, clustering, classification, or regression. For
Planner (P) a standardized template to represent reconfig-
uration plans must be established, since reconfiguration
strategies could be modified at runtime by the SoS man-
ager. Both reconfiguration plans (used by Planner (P)) as
situations records (used by Analyzer (A)) can be mod-
eled through ontologies, XML schemes, graphs, entity-
relationship, key-value, or NoSQL schemes, and stored
in dedicated repositories. Decisions to implement medi-
ators will depend on (1) the nature of each SoS, i.e.,
directed, acknowledged, collaborative, and virtual [46, 52];
(2) categories of emergent behaviors that the SoS could
present, i.e., simple, weak, strong, or spooky [48]; and
(3) SoS requirements related to quality attributes, e.g.,
performance, reliability, or security.

Besides using MediArch, SoS architects will need to
define strategies for mediators synthesis at runtime, to
achieve requirements of reliability, dynamic evolution,
and adaptivity. Automatic synthesis is required, as medi-
ators must be created or removed during SoS operations.
Some interesting approaches architects could follow are
presented in [27, 33-35].

Initial research on requirements of quality attributes
and architectural styles/patterns for SoS and self-adaptive,
self-management, self-organizing (self-*) systems served

2Remote procedure call

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8 Page 19 of 23

Table 2 Comparison between MediArch and related work

Related work reference
[51] [17] (18] [43] [62] [36] [63] [8] [45] [65] (68] MediArch
Oriented to SoS X X X X X X X X

Oriented to X X X X X X
mediators

Comparison criteria

Property
P1 X X X X
P2 X
P3 X X X X X
P4 X X
P5

< X X X X

Quiality attributes
Cooperation X X
Integration X X X X X

Technical X X X X X X X X X
interoperability

Syntactic X X X
interoperability

Semantic X X X
interoperability

Organizational X X X X X
interop.

Portability

Flexibility X

Low-coupling X X
Situation-aware

Centralized X X X X X
control

<X X X X X

Decentralized X
control

Full- X
decentralized
control

Accountability
Maintainability X
Modifiability

Separation of
concerns

Adaptability X X X
Scalability X X

Fault-tolerance X

< X X X

Self-organization
Robustness X

Dynamic X X X X
configuration

<X X X X X X

Performance**

Non-disruptive**

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

Page 20 of 23

Table 2 Comparison between MediArch and related work (Continued)

Related work reference

Comparison criteria
[51] (171 (18] (43] [62]

[36] [63] (8l [45] [65] [68] MediArch

Safety**

Security**

SoS

Directed X X
Acknowledge X
Collaborative

Virtual**

Legend: SoS Properties: P1 continuous integration of constituent systems, P2 emergent behavior assurance, P3 the need for a decision-making or control authority, P4

evolutionary development, P5 resilience or adaptability. **Limitations of MediArch

as a basis to identify and specify mediators contained
in MediArch. For instance, we considered the follow-
ing styles/patterns: pace layering, SOA, autonomic man-
ager, central architecture, broker, and publish-subscribe,
as the most important ones. Mapping among require-
ments, styles/patterns, SoS characteristics, and media-
tors types was presented in Table 1. We observed that
existing patterns, proposed more than 15 years ago [4],
are as relevant now to architectures of contemporary
systems (e.g., SoS and self-* systems), as they are for
other types of systems. However, it is important to
investigate about pattern languages, architectural frame-
works, and reference architectures, to establish guide-
lines for solving recurrent problems in SoS architectures.
MediArch could be used as initial step to standardize
architectural solutions for SoS, and its application in
FMSoS and HSH-SoS is an important start point for its
consolidation.

Threats to validity

Three aspects of validity of our work were considered,
namely construct, internal, and external. These aspects
ensure the trustworthiness of results obtained at apply-
ing MediArch for constructing the architectures of FMSoS
and HSH-SoS and analyzing the evidence to answer our

RQs.

Construct validity

This validity reflects in which measure the use of Medi-
Arch supported the construction of SoS architectures
that achieve continuous integration of constituent sys-
tems, assurance of emergence behaviors, decision-making
authorities, evolution, and dynamic configurations.

To avoid threats to construction validity, MediArch and
its mediators were defined based on deep studies on soft-
ware connectors and mediators in large-scale and com-
plex systems. Moreover, SoS architectural patterns and
styles were investigated to understand their mediation

approaches and their support to quality attributes
of integration, interoperability (in technical, syntac-
tic, semantic, and organizational levels) situation-aware,
accountability of decisions, maintainability, modifiabil-
ity, separation of concerns, portability, low-coupling,
flexibility, scalability, adaptability, fault-tolerance, robust-
ness, and dynamic configurations (see Table 1). Addi-
tionally, software architectures of FMSoS and HSH-SoS
were constructed as instances of MediArch, following
the guidelines proposed in [29]. More information about
architectures of FMSoS and HSH-SoS can be consulted
in [21-23, 26, 67].

Internal validity

This validity considers whether all causal relations that
affect the application of MediArch were defined and han-
dled. The following factors that could prejudice the con-
struction of SoS architectures based on MediArch were
identified: (1) the understanding of FMSoS and HSH-SoS
scope and their requirements, which had no impact on
results, since authors had previous experience on working
with both SoS; (2) the difficulty to understand media-
tors and their application in SoS architectures, that was
avoided, since mediators and the layered architecture
were proposed based on well-known architectural pat-
terns and styles; and (3) problems to instantiate MediArch,
that were mitigated by using well-understood guidelines
for software architecting [29].

External validity

This validity is concerned with the generalization of
results obtained at applying MediArch, i.e., it is possible to
obtain similar results in other SoS using this architecture
and mediators proposed in this work. To mitigate external
validity, we presented two cases in different application
domains, demonstrating how SoS architectures could be
hierarchically organized, having mediators as first-class
entities.

Garcés et al. Journal of the Brazilian Computer Society (2019) 25:8

Conclusions and future works

In our preliminary work [23], we established a taxon-
omy to support the selection of software mediators during
architectural design of SoS. In this work, we extend such
taxonomy as basis to construct MediArch, a high-level
architecture composed of three layers: the constituent and
consumer systems layer; the communication, conversion,
and coordination layer; and the control layer. The last two
layers describe hierarchical organizations of three soft-
ware mediators, namely, communication & coordination,
conversion, and control.

MediArch considers mediators as first-class entities in
SoS architectures and was used as a backbone during
the architectural synthesis of two systems, FMSoS, in the
domain of crisis and emergency management, and HSH-
SoS, in the domain of smart homes for health-care. Soft-
ware architectures for both SoS have already been studied
by authors in [21, 22, 26, 27]. In particular, in this work,
alternative architectures for these SoS were presented
using software mediators as core entities to enhance con-
tinuous integration of constituent systems, assurance of
emergence behaviors, decision-making authorities, evolu-
tion, and dynamic configurations.

As future work, validation and verification of SoS soft-
ware architectures based on MediArch can be done using
simulation approaches such as those presented in [26].
Mediators were defined in an abstract way to support
low-coupled architectures; hence, it is expected medi-
ators could be dynamically synthesized and deployed
to conform to different architectural configurations of
an SoS. Moreover, mediators described herein are fine
grained, with clear objectives and specifications; hence,
they can be also implemented following different archi-
tectural styles, for instance, SOA or microservices to con-
struct service-oriented SoS. Additionally, MediArch can
be used to design more complex SoS architectures and ref-
erence architectures in different domains, as presented in
[21, 22]. Finally, we intend to develop and publish a
mediators-based platform that implements MediArch.
This platform will facilitate SoS mediation improv-
ing the development of those systems, reducing costs
and time. Besides that, it is our goal to continue
investigating on mechanisms to support interopera-
tion and dynamic organization of SoS in different
domains, for instance, education, defense [6], and big
data [60].

Abbreviations

ADL: Architectural Description Language; AoDL: Activities of daily life; FMSoS:
Flood monitoring system-of-system; HSH: Healthcare supportive home
system; IRISA: Institut de Recherche en Informatique et Systémes Aléatoires;
NoSQL: Class of database management systems (DBMS) that do NOT follow all
of the rules of a relational DBMS and cannot use traditional SQL to query data;
Self-*: Self-adaptive, self-management, self-organizing; SOA: Service-oriented
architecture; SoS: System-of-system; SosADL: Systems-of-systems Architectural
Description Llanguage; XML: Extensible Markup Language

Page 21 of 23

Acknowledgements

The Authors thank the Program Committee of SBCARS'18 (XII Brazilian
Symposium on Software Components, Architectures, and Reuse) for the
opportunity to extend their previous work and submit it to this journal.

Authors’ contributions

The first author wrote this article contents. The second and third authors
oriented sections organization and reviewed this work. All authors read and
approved the final manuscript.

Authors’ information

Lina Garcés is a postdoctoral fellow at the Institute of Computer and
Mathematic Sciences (ICMC) - University of Sdo Paulo (USP), Brazil. She
received her BEng (2009) and MSc (2012) from the Industrial University of
Santander (UIS), Colombia, and her PhD (2018) from University of Sao Paulo
(USP), Brazil, and University of Southern Brittany (UBS), France. Her main
research interests are reference architectures, software architectures, dynamic
architectures, interoperability , systems-of-systems, e-Health, ambient assisted
living, and health ecosystems. She is a member of the IEEE, SBC (Brazilian
Computer Society), and SBIS (Brazilian Society of Health Informatics). Contact
e-mail: linamgr@icmc.usp.br.

Flavio Oquendo is a full professor of Computer Science (holding a Research
Excellence Award from the Ministry of Higher Education and Research of
France) serving as Research Director at the UMR CNRS IRISA, in Brittany, France.
He received his BEng from ITA, Sao José dos Campos, SP, Brazil, and his MSc,
PhD, and HDR from the University of Grenoble, France. He has published over
200 refereed journal and conference papers and has been editor of over 15
journal special issues and research books. He has served on program
committees of over 100 international conferences, e.g., ICSE, ESEC/FSE, has
chaired more than 10 of them, of which are the French, European, and
IEEE/IFIP International Conferences on Software Architecture (CAL, ECSA,
ICSA). His research interests are centered on formal languages, processes, and
tools to support the efficient architecture of complex software-intensive
systems and systems-of-systems. Contact e-mail: flavio.oquendo@irisa fr.

Elisa Yumi Nakagawa is a MS (1998) and PhD (2006) in Computer Science from
the University of Sao Paulo (USP), Brazil. She conducted her Post-Doctoral in
2011-2012 in Fraunhofer IESE, Germany, and in 2014-2015 at the University of
South Brittany, France. She is associate professor in the Department of
Computer Systems at the University of Sao Paulo, Brazil. Her main research
interests are software architecture, reference architectures,
systems-of-systems, software testing, and evidence-based software
engineering. She is a member of the IEEE and SBC (Brazilian Computer
Society). Contact e-mail: elisa@icmc.usp.br.

Funding
The Séo Paulo Research Foundation, FAPESP Grants No. 2018/07437-9,
2017/06195-9, and 2013/20317-9.

Availability of data and materials
Nothing to be included.

Competing interests
The authors declare that they have no competing interests.

Received: 7 February 2019 Accepted: 24 July 2019
Published online: 20 August 2019

References

1. Abmann U, Gotz S, Jézéquel JM, Morin B, Trapp M (2014) A reference
architecture and roadmap for Models@run.time systems. In: Bencomo N,
France R, Cheng BHC, Abmann U (eds). Models@run.time. Lecture Notes
in Computer Science, vol. 8378. Springer, Cham. pp 1-18

2. Affonso FJ, Nakagawa EY (2013) A Reference Architecture Based on
Reflection for Self-Adaptive Software. In: VIl Brazilian Symposium on
Software Components, Architectures and Reuse (SBCARS'2013), Brasilia.
pp 129-138

3. Amirat A, Oussalah M (2009) First-class connectors to support systematic
construction of hierarchical software architecture. J Object Technol
8(7):107-130

4. Avgeriou P, Zdun U (2005) Architectural Patterns Revisited - A Pattern
Language. In: the European Pattern Languages of Programming
(EuroPLOP), Irsee. pp 1-39

Garcés et al. Journal of the Brazilian Computer Society

20.

21

22.

23.

24.

(2019) 25:8

Barnes JM, Garlan D, Schmerl B (2014) Evolution styles: foundations and
models for software architecture evolution. Softw Syst Model
13(2):649-678

de Barros Paes CE, Neto WG, Moreira T, Nakagawa EY (2019)
Conceptualization of a System-of-Systems in the Defense Domain: An
Experience Report in the Brazilian Scenario. In: IEEE Systems Journal (Early
Access). pp 1-10. https://doi.org/10.1109/JSYST.2018.2876836

Beale D, Bonometti J (2012) Chapter 2: systems engineering (SE) - the
systems design process. In: Fundamentals of lunar and systems
engineering for senior project teams, with application to a lunar
excavator. Auburn University, ESMD Course Material

Bennaceur A, Issarny V (2015) Automated synthesis of mediators to
support component interoperability. IEEE Trans Softw Eng 41(3):221-240.
March 2015

Benson T, Grieve G (2016) Principles of health interoperability SNOMED
CT, HL7 and FHIR. Third edition. Springer-Verlag London, London. (Health
Information Technology Standards)

Blair GS, Paolucci M, Grace P, Georgantas N (2011) Interoperability in
Complex Distributed Systems. In: Bernardo M, Issarny V (eds). Formal
Methods for Eternal Networked Software Systems. SFM 2011. Lecture
Notes in Computer Science, vol 6659. Springer, Berlin, Heidelberg

. Chopra AK (2008) Business process interoperability: extended abstract. In:

Proceedings of the 7th international joint conference on Autonomous
agents and multiagent systems: doctoral mentoring program

(AAMAS '08), Estoril. pp 1730-1731

Cuesta C, Romay MP (2010) Elements of self-adaptive systems — a
decentralized architectural perspective. In: First International Workshop
on Self-Organizing Architectures, SOAR, 2009, Revised Selected and
Invited Papers. Springer Berlin Heidelberg 2010, Berlin. pp 1-20

Cuesta CE, Navarro E, Dewayne E, Roda C (2013) Evolution styles: using
architectural knowledge as an evolution driver. J Softw Evol: Evol Process
25:957-980

Degrossi L, Do Amaral G, De Albuquerque J, Ueyama J (2013) Using
Wireless Sensor Networks in the Sensor Web for Flood Monitoring in Brazil.
In: Comes T, Fiedrich F, Fortier S, Geldermann J, Muller T (eds). Proceedings
of the 10th International Conference on Information Systems for Crisis
Response and Management (ISCRAM), Baden-Baden. pp 458-462

DoD (2008) Systems Engineering Guide for Systems of Systems, version
1.0. Washington, DC, USA: US Department of Defense (DoD). Available:
http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf. Accessed 20 June
2019

Dove R, Jennifer B (2011) Systems of systems and self-organizing security.
INSIGHT 14(2):7-10

Ehrmanntraut R (2003) System-of-systems integration of air-ground
telecommunications with the software connector. In: The 22nd Digital
Avionics Systems Conference (DASC '03), vol. 2, Indianapolis.

pp 6.A.3-61-12

Ege RK, Yang L, Kharma Q, Ni X (2004) Three-layered mediator architecture
based on DHT. In: 7th International Symposium on Parallel Architectures,
Algorithms and Networks, (I-SPAN 2004), Hong Kong. pp 313-318

Garcés L, Ampatzoglou A, Avgeriou P, Nakagawa EY (2015) A Reference
Architecture for Healthcare Supportive Home Systems. In: IEEE 28th
International Symposium on Computer-Based Medical Systems
(CBMS'15), Sao Carlos. pp 358-359

Garcés L, Nakagawa EY (2017) A process to establish, model and validate
missions of systems-of-systems in reference architectures. In: Proceedings
of the Symposium on Applied Computing (SAC '17). ACM, New York.

pp 1765-1772

Garcés L (2018) A reference architecture for healthcare supportive home
systems from a systems-of-systems perspective. Thesis. University of Sao
Paulo and University of Southern-Brittany

Garcés L, Oquendo F, Nakagawa EY (2019) Uma arquitetura de referéncia
para sistemas de casas inteligentes de apoio ao cuidado a saude da
perspectiva de sistemas-de-sistemas. In: Proceedings of the Simpdsio
Brasileiro de Computagdo Aplicada a Saude (CTD-SBCAS'19), Niterdi.

pp 73-78. https://doi.org/10.5753/sbcas.2019.6287

Garcés L, Oquendo F, Nakagawa EY (2018) Towards a Taxonomy of
Software Mediators for Systems-of-Systems. In: Proceedings of the VI
Brazilian Symposium on Software Components, Architectures, and Reuse
(SBCARS "18). ACM, Sao Carlos. pp 53-62

Garcés L, Zanin Vicente |, Nakagawa EY (2019) Software Architecture for
Health Care Supportive Home Systems to Assist Patients with Diabetes

25.

26.

27.

28.

29.

30.

31

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Page 22 of 23

Mellitus. In: IEEE 32nd International Symposium on Computer-Based
Medical Systems (CBMS'19), Cordoba. pp 249-252

Garlan D (1998) Higher-Order Connectors. In: Workshop on
Compositional Software Architectures, Monterey. pp 1-4

Graciano Neto V, Barros Paes C, Garcés L, Guessi M, Manzano W, Oquendo
F, Nakagawa EY (2017) Stimuli-SoS: a model-based approach to derive
stimuli generators for simulations of systems-of-systems software
architectures. J Braz Comput Soc 23(13):1-22

Guessi M (2017) Synthesis of software architectures for
systems-of-systems: an automated method by constraint solving. Thesis.
University of Sao Paulo

HL7 International. Health Level Seven International (HL7). ANSI. Online:
https://www.hl7.org/. Last Access: 27 June 2019

Hofmeister C, Kruchten P, Nord RL, Obbik H, Ran A, America P (2005)
Generalizing a model of software architecture design from five industrial
approach. In: Proceedings of the 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA). IEEE, Pittsburgh. p 2005

Hui L Which machine learning algorithm should | use? The SAS Data
Science Blog, April 12,2017. Available: https://blogs.sas.com. Last Access:
21Jan 2019

Ingram C, Payne R, Perry S, Holt J, Hansen FO, Couto LD (2014) Modelling
patterns for systems of systems architectures. In: 2014 IEEE International
Systems Conference Proceedings, Ottawa. pp 146-153

Ingram C, Payne R, Fitzgerald J (2015) Architectural modelling patterns for
systems of systems. INCOSE 25(1):1177-1192

Inverardi P, Issarny V, Spalazzese R (2010) A theory of mediators for eternal
connectors. In: Margaria T, Steffen B (eds). Leveraging applications of
formal methods, verification, and validation. ISoLA 2010. Lecture Notes in
Computer Science, vol. 6416. Springer, Berlin

Issarny V, et al (2009) CONNECT Challenges: Towards Emergent
Connectors for Eternal Networked Systems. In: 14th |EEE International
Conference on Engineering of Complex Computer Systems, Potsdam.
pp 154-161

Issarny V, Bennaceur A, Bromberg YD (2011) Middleware-layer connector
synthesis: beyond state of the art in middleware interoperability. In:
Bernardo M, Issarny V (eds). Formal methods for eternal networked
software systems. SFM 2011. Lecture Notes in Computer Science, vol.
6659. Springer, Berlin

Issarny V, Bennaceur A (2013) Composing Distributed Systems:
Overcoming the Interoperability Challenge. In: Giachino E, Hahnle R,

de Boer FS, Bonsangue MM (eds). Formal Methods for Components and
Objects. FMCO 2012. Lecture Notes in Computer Science, vol 7866.
Springer, Berlin, Heidelberg

Josuttis N (2007) SOA in practice: the art of distributed system design.
O'Reilly Media, Inc, Beijing

Judith D, et al. (2008) Systems Engineering for Capabilities. CrossTalk. J
Def Softw Eng 21(11):4-9

Kazman R, Nielsen C, Schmid K (2013) Understanding Patterns for
System-of-Systems Integration. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, Technical Report
CMU/SEI-2013-TR-017. Available in: http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetlD=75750. Accessed 15 June 2019

Kiwelekar AW, Joshi RK (2010) Identifying Architectural Connectors
through Formal Concept Analysis of Communication Primitives. In: Babar
MA, Gorton | (eds). Software Architecture. ECSA 2010. Lecture Notes in
Computer Science, vol 6285. Springer, Berlin, Heidelberg. pp 515-518
Kubicek H, Cimander R, Scholl HJ (2011) Layers of interoperability.
Organizational interoperability in E-government: lessons from 77
European good-practice cases. Springer Berlin Heidelberg, 2011. chap. 7,
Berlin

Lau KK, Velasco Elizondo P, Wang Z (2005) Exogenous Connectors for
Software Components. In: Heineman GT, Crnkovic |, Schmidt HW, Stafford
JA, Szyperski C, Wallnau K (eds). Component-Based Software Engineering.
CBSE 2005. Lecture Notes in Computer Science, vol. 3489. Springer, Berlin,
Heidelberg

Li X, Fan 'Y, Wang J, Wang L, Jiang F (2008) A Pattern-Based Approach to
Development of Service Mediators for Protocol Mediation. In: Seventh
Working IEEE/IFIP Conference on Software Architecture (WICSA 2008),
Vancouver. pp 137-146

Lopes A, Wermelinger M, Fiadeiro JL (2003) Higher-order architectural
connectors. ACM Trans Softw Eng Methodol 12(1):64-104

https://doi.org/10.1109/JSYST.2018.2876836
http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf
https://doi.org/10.5753/sbcas.2019.6287
https://www.hl7.org/
https://blogs.sas.com
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=75750
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=75750

Garcés et al. Journal of the Brazilian Computer Society

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

(2019) 25:8

Lopes F, Loss S, Batista T, Lea R (2016) SoS-centric Middleware Services for
Interoperability in Smart Cities Systems. In: Proceedings of the 2nd
International Workshop on Smart (SmartCities '16). ACM, New York.

pp 1-6. Article 4

Maier MW (1999) Architecting principles for system-of-systems. Syst Eng
1:267-284

Mehta NR, Medvidovic N, Phadke S (2000) Towards a taxonomy of
software connectors. In: Proceedings of the 2000 International
Conference on Software Engineering. ICSE 2000 the New Millennium.
IEEE, Limerick. pp 178-187

Mittal S, Rainey L (2015) Harnessing emergence: The control and design
of emergent behavior in system of systems engineering. Society for
Computer Simulation International, Chicago. 2015

Morris E, Levine L, Meyers C, Place P, Plakosh D (2004) Systems of Systems
Interoperability (SOSI): Final report. CMU/SEI-2004-TR-004
ESC-TR-2004-004. April 2004. Carnegie Mellon University:67. Available via:
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2004_005_
001_14375.pdf. Accessed 15 May 2019

Muller HA, Kienle HM, Stege U (2009) Autonomic computing now you see
it, now you don't. In: Lucia A, Ferruci F (eds). Software engineering.
Springer Berlin Heidelberg, Berlin. pp 32-54. Lecture Notes in Computer
Sciences v. 5413

Nathan C, Jeff V (2002) Adaptive mirroring of system of systems
architectures. In: Garlan D, Kramer J, Wolf A (eds). Proceedings of the first
workshop on Self-healing systems (WOSS '02). ACM, New York. pp 96-98
Nielsen C, Larsen PG, Fitzgerald J, Woodcock J, Peleska J (2015) System of
systems engineering: basic concepts, model-based techniques, and
research directions. ACM Comput Surv 48(2):1-41

Nichols C, Dove R (2011) 7.1.3 Architectural patterns for self-organizing
systems-of-systems. INCOSE Int Symp 21(1):856-867

Oquendo F (2016) Formally describing the software architecture of
Systems-of-Systems with SosADL. In: 11th System of Systems Engineering
Conference (SoSE). IEEE, Kongsberg. pp 1-6

Oquendo F (2016) Formally Describing the Architectural Behavior of
Software-Intensive Systems-of-Systems with SosADL. In: 21st
International Conference on Engineering of Complex Computer Systems
(ICECCS). IEEE, Dubai. pp 13-22

Oquendo F (2017) Software architecture of self-organizing
systems-of-systems for the Internet-of-Things with SosADL. In: 12th
System of Systems Engineering Conference (SoSE). IEEE, Waikoloa. pp 1-6
Romay MP, Cuesta CE, Ferndndez-Sanz L (2013) On self-adaptation in
systems-of-systems. In: Proceedings of the 1st International Workshop on
Software Engineering for Systems-of-Systems. IEEE, Montpellier. pp 29-34
Rothenhaus KJ, Michael JB, SM T (2009) Architectural patterns and
auto-fusion process for automated multisensor fusion in soa
system-of-systems. IEEE Syst J 3(3):304-316

Santos D, Oliveira B, Duran A, Nakagawa EY (2015) Reporting an
Experience on the Establishment of a Quality Model for Systems-of-
Systems. In: The 27th International Conference on Software Engineering
and Knowledge Engineering (SEKE'2015), Pittsburgh. pp 304-309

Sena B, Garcés L, Allian A, Nakagawa E (2018) Investigating the
Applicability of Architectural Patterns in Big Data Systems. In: 25th
Conference on Pattern Languages of Programs (PLoP 2018), Portland.

pp 1-10. HILLSIDE 978-1-941652-03-9

Sinreich D (2006) An architectural blueprint for autonomic computing.
Fourth Edition. IBM White Paper, IBM

Spalazzese R, Inverardi P, Issarny V (2019) Towards a formalization of
mediating connectors for on the fly interoperability. In: Joint Working
IEEE/IFIP Conference on Software Architecture & European Conference
on Software Architecture (WICSA/ECSA). IEEE, Cambridge. pp 345-348
Tomson T, Preden J (2013) Simulating System of Systems Using MACE. In:
15th International Conference on Computer Modelling and Simulation
(UKSim), Cambridge. pp 155-160

Valerdi R, Axelband E, Baehren T, Boehm B, Dorenbos D, Jackson S, Settles
S (2008) A research agenda for systems of systems architecting. Int J Syst
SystEng 1(1/2):171

Varga P, Blomstedt F, Ferreira LL, Eliasson J, Johansson M, Delsing J,
Martinez de Soria | (2017) Making system of systems interoperable — the
core components of the arrowhead framework. J Netw Comput Appl
81:85-95

Vasconcelos RO, Vasconcelos |, Endler M (2016) Dynamic and coordinated
software reconfiguration in distributed data stream systems. J Internet
Serv Appl 7(1):8

67.

68.

69.

70.

Page 23 of 23

Vicente |, Garcés L, Nakagawa EY (2017) Establishment of a Software
Architecture for Health Care Supportive Home System to Assist Patients
with Diabetes Mellitus: Functional and Non-Functional Requirement.
Technical Report N. 421. University of Sao Paulo, Sdo Carlos. Available via
http://repositorio.icmc.usp.br//handle/RICMC/6651. Accessed 10 May
2019

Wanderley GMP, Abel M, Paraiso EC, Barthes JA (2018) MBA: A Framework
for Building Systems of Systems. In: 13th Annual Conference on System of
Systems Engineering (SoSE), Paris. pp 358-364

Weyns D, Ahmad T (2013) Claims evidence for architecture-based
self-adaptation: a systematic literature review. In: 7th European
conference on Software Architecture. Springer Berlin Heidelberg, Berlin
Heidelberg. pp 249-265

Wiederhold G (1992) Mediators in the architecture of future information
systems. IEEE Comput 25:38-49

71. Wiederhold G (1988) Interoperation, mediation, and ontologies. In:
Institute for New Generation Computer Technology (ed). Proceedings of
the International Conference on Fifth Generation Computer Systems,
Tokyio. pp 33-48

72. Wiederhold G (1995) Mediation in information systems. ACM Comput
Surv 27(2):265-267

73. Wiederhold G, Genesereth M (1997) The conceptual basis for mediation
services. |EEE Expert 12:5:38-47

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2004_005_001_14375.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2004_005_001_14375.pdf
http://repositorio.icmc.usp.br//handle/RIICMC/6651

	Abstract
	Context
	Goal
	Methods
	Results
	Conclusions
	Keywords

	Introduction
	Background
	Systems-of-systems
	Software mediator

	Materials and methods
	Identification of mediation requirements in SoS
	Categorization of mediators
	Specification of mediators
	Definition of MediArch
	Evaluation of MediArch

	Software mediators for SoS
	Constituents and consumers layers
	Communication, conversion, & coordination layer
	Communication & coordination mediators
	Pipe (P)
	Collaborator (C)
	Distributor (D)
	Router (R)

	Conversion mediators
	Filter (F)
	Wrapper (W)
	Adapter (AT)
	Data fusion (DF)

	Control layer
	Monitor (M)
	Analyzer (A)
	Planner (PD)
	Executer (Ex)

	Evaluation of MediArch
	Examples of SoS architectures application based on MediArch
	Flood monitoring systems-of-systems—FMSoS
	Healthcare supportive home systems-of-systems—HSH-SoS

	Results of MediArch assessment
	RQ1—How do SoS architectures based on MediArch allow continuous accommodation or integration of constituent systems?
	Trade-offs

	RQ2—How do SoS architectures based on MediArch assure emergent behaviors?
	Trade-offs

	RQ3—How can different strategies of control authorities be established in SoS architectures based on MediArch?
	Trade-offs

	RQ4—How can SoS architectures based on MediArch evolve?
	Trade-offs

	RQ5—How do SoS architectures based on MediArch address resilience or adaptability?
	Trade-offs

	Discussion
	Related work
	MediArch contributions
	Limitations and directions for future studies
	Threats to validity
	Construct validity
	Internal validity
	External validity

	Conclusions and future works
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

