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Abstract

Objective  An electro-active biofilm of Fruit Peeling
(FP) leachate was formed onto the Carbon Felt (CF)
bio-anode in a Microbial Fuel Cell (MFC), after
functioning for a long time. The electro active-biofilm
thus formed was then scratched by ultrasound and re-
inoculated in a new leachate to be transplanted onto
the bio-anode. This procedure allowed the microbial
electron charge transfer and therefore the enhance-
ment of the bio-energy production of the fuel cell.
Results By using the repetitive mechanical biofilm
removal, re-suspension and electrochemically facili-
tated biofilm formation, the voltage was substantially
increased. In effect, the voltage of the 1st G of biofilm,
rose gradually and reached its maximum value of
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65 mV after 10 days. Whilst the 2nd generation
allowed to obtain the maximum voltage 276 mV and
without any lag time. The DCO abatement using the
1st G biofilm was 68% greater than the 3rd G 26%.
Besides, the electrochemical impedance spectroscopy
characterization and cyclic voltammetry of bio-anode
with 2nd G biofilm confirmed the ability of electro-
active biofilm formation on a new support. The biofilm
transplanted showed thus greater kinetic performance,
with reduced lag time demonstrating the interest of the
selection that took place during the formation of
successive biofilms.

Conclusions Despite the transplantation of the elec-
tro-active biofilm onto the bio-anode, the MFC still
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produced relatively lower power output. Nevertheless,
it has been tested successfully for monitoring and
detecting the oxidation of sodium acetate substrate in
the very wide concentration range 0.0025-35 g/1.

Keywords Carbon felt - Microbial fuel cell -
Electroactive bio-film - Scratching-transplantation -
Acetate detection

Abbreviations

CF Carbon felt

CG Carbon graphite

GS Garden soil

GS-MFC  Garden soil microbial fuel cell

FP Fruit peeling

FP-MFC  Fruit peeling microbial fuel cell

Lst First generation microbial fuel cell

G-MFC

Ist G First generation biofilm

2nd G Second generation biofilm (re-inoculated
biofilm)

3rd G Third generation biofilm (re-inoculated
biofilm)

MEC Microbial fuel cell

SS Stainless steel

Gs Generations

Introduction

Owing to preservation of environment, industrial
wastewaters that contain a great deal of organic
matter, require stronger treatment (Mathuriya and
Sharma 2009). In general, managers of industrial units
choose the promising low cost technology of Micro-
bial Fuel Cells (MFCs), for the treatment of their
effluents (Huang and Logan 2008). These innovative
electrochemical devices, convert organic wastes into
electricity by oxidation (Tingry et al. 2013).

A MEFC consists of two compartments (anodic and
cathodic) separated by a cation exchange membrane.
In the anodic compartment, the micro-organisms form
the biofilm that oxidises the organic matter, known as
biocatalyst (Santoro et al. 2017). Whilst, the cathodic
compartment uses metal or nano-particles catalysts
such as platinum, nickel, etc...., to reduce oxygen.
Moreover, these devices need rich environment of

@ Springer

great microbial diversity that can convert different
organic compounds into sustainable and renewable
energy.

Performance optimisation of MFC for wastes
treatment and sustainable clean energy generation
was investigated to make easier the commercialisation
of this new technology (Sedighi et al. 2018). Amongst
the innovative applications utilizing MFCs, we can
cite the treatment of domestic wastewaters (Puig et al.
2011), the reduction of sludge produced by biological
treatment (Kim et al. 2007), treatment of diary
industrial effluent (Manohar et al. 2008), and more
recently biotreatment of vinasse (Ottoni et al. 2019),
removal of salts and elimination of heavy metals traces
from wastewater (Champavert et al. 2017; Yahiaoui
et al. 2020).

Upon the oxidation of organic matter by biofilm
(bio-catalyst), three mechanisms between the bacterial
population and electrodes, can occur: Direct transfer
using cytochromes (Holmes et al. 2004; Cheng et al.
2006; Fapetu et al. 2016); indirect transfer using
mediators either exogen or endogen, such as dyes
(Nam and Park 1999) and phenazines (Rabaey et al.
2004) and finally electron transfer by means of
nanowires (Gorby et al. 2000).

The biofilm formation mechanisms in electro active
microorganisms leading to improved electrocatalytic
rates for applications in bioelectrochemical systems,
were addressed (Angelaalincy et al. 2018).The screen-
ing of sediment and wastewater samples to be used as
anolytes in a MFC for microbial electron transfer
activity, was recently investigated (Aiyer et al. 2019).
The inoculation of a reactor with a scraped-off biofilm
collected from a running MFC, improved the electro-
chemical performance of the new biofilm with respect
to that was used as inoculum (Cheng et al. 2011).The
successive scratching and re-inoculation steps using
lower polarisation potentials, showed an increase in
current density using paper waste MFC (Ketep et al.
2013).The consecutive selection and acclimatization
of wastewater inoculum based, mixed culture micro-
bial biofilms demonstrated an alternative biofilm
removal, re-suspension and electrochemically facili-
tated biofilm formation.

It was shown that the bio-electrocatalytic current
density of the secondary biofilm formation was much
greater than a primary biofilm in a MFC (Liu et al.
2008). Furthermore, it has been demonstrated that
once a biofilm was formed on a given anode (1st G),
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then was transferred to a new sterile leachate and made
in contact with a new electrode support, it continued to
grow allowing the formation of the 2nd G (Rivalland
et al. 2015). Moreover, the biofilm transfer can be
achieved by suspension of the support-electrode in
buffered solution, handshaking and scraping of any
remaining biofilm (Kim et al. 2014).

In view of this bibliography, we followed the
scratching/transplanting method utilized by Ketep
et al. (2013) using two different backgrounds: garden

13@XMsoil and natural fruit peeling leachates, for comparing
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and testing the advantage of biofilm re-inoculation. In
effect, we tested the benefits of re-inoculation of
bacterial biofilm formed on electrode surfaces using
fuel cell device without prior polarization of bio-
anode. The purpose of the present paper was to
perform the scratching/re-inoculation of bacterial
biofilm, for increasing bio-energy of MFC and

14PEPoxidizing organic matter contained in wastewater.
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We characterized the three successive biofilm gener-
ations by Scanning Electronic Microscopy (SEM),
Cyclic Voltammetry (CV) and Electrochemical Impe-
dance Spectroscopy (EIS). Besides, despite its lower
power output, we utilized this MFC for monitoring and
detecting the oxidation of sodium acetate in a very
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current response of the MFC-based detector to various
concentrations of substrate in the effluent.

Experimental
Inoculum and microbial fuel cell

Effluent samples were prepared from 500 g of Fruit
Peelings (FP) mixed with potassium chloride solution
60 mM (conductivity = 8.85 mS cm™' and pH 4.8).
Another leachate was prepared similarly using Garden
Soil (GS) (conductivity = 11.72 mS em~! and pH
5.2). They were used without further filtration as
inoculum source for microbial reactor.

As illustrated by Fig. 1a, the MFC consisted of two
glass spherical half-cells 75 mL, connected to each
other by cationic exchange perfluorinated membrane
(Nafion-117; Dupont, Ward Hill, MA, USA), 2 cm in
diameter. The Carbone Felt (CF) and Stainless Steel
(SS) sheet were used as bio-anode and cathode
respectively. They were thus, placed inside the anolyte
and catholyte of the MFC. The anolyte contained the

leachate fed continuously with sodium acetate solu-
tion (20 mM), whereas the catholyte contained potas-
sium ferricyanide K3[Fe(CN)q] 20 mM. The top end
of the anolyte was tightly sealed with paraffin film to
reduce oxygen penetration. Owing to polarization and
in order to render the biofilm electroactive, an external
resistor (1000 Q) to complete a closed external circuit
loop and Copper wires were used to conduct electrons
between electrodes. The electroactive biofilm was
therefore formed on the surface of the electrode within
10 days and the evolution of the cell voltage with time,
was then measured with the digital voltmeter (APRI-
LIA M890C+) placed in parallel.

Scratching/transplanting biofilm

The aim of the present investigation was to select the
electro-active bio-film and to eliminate the non-
electroactive bacterial species that consumed the fuel
uselessly without producing any valuable energy.

In our experiments, the successive biofilm were
formed in the FP effluent which was sterilized to
remove planktonic microorganisms. As a matter of
fact, the primary biofilm was formed from FP leachate
in running MFC. It was then scratched-off from the
bioanode by ultrasound and used as inoculum in
another MFC to form the secondary biofilm. Besides,
in order to optimize the operating conditions for
electroactive biofilm development, and stabilize the
substrate, sterilized sodium acetate solution was added
daily. Under this condition, the pH of the bulk was
controlled by the evolution of the effluent itself. The
experimental protocol was compared to others, for
allowing the formation of the primary biofilm.

In reference to literature, we review below the
previous methods so far utilized for scratching and
transplanting of electro-active bio-film onto carbon
carbon-based materials, which are as follows:

a-As suggested by Rivalland et al. (2015), the
biofilm formed on an anode (in 1st G), it was then
transferred to a new sterile leachate and made in
contact with a new electrode support. It resulted in the
growth of the 2nd G biofilm. The same procedure was
followed to form the 3rd G biofilm generation.

b-As recommended by Kim et al. (2014), and Doyle
et al. (2017), the biofilm transfer can be achieved by
suspension of the support-electrode in buffered solu-
tion, handshaking and scraping of any remaining
biofilm.
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Fig. 1 a Scheme of MFC, b sonication method steps

c-As advised by Ketep et al. (2013) and Yates et al.
(2017), the primary biofilm was scrapped-off from
bio-anode using sonication in Ringer solution, then
transferred into sterilized leachate to be re-inoculated
onto a new electrode.

Accordingly, we adopted in the present work the
method followed by Ketep et al. (2013). In effect, after
forming the electro-active biofilm in the MFC, the
electrode bearing this biofilm was subject to sonica-
tion suspended in Ringer’s solution (30 ml) for 15 min
in three replicates, 5 min each in order to preserve the
bacterial cells already scratched. This makes it pos-
sible to recover more cells without exposing the
unhooked cells to a long duration of sonication
(Fig. 1b).The primary biofilm was formed onto CF
bio-anode in MFC during more than ten days without
supplying any electrical polarisation. The biofilms
formed from the successive re-inoculations were then
performed in identical experimental conditions.

The primary electroactive biofilm formed in 1st
MFC, was detached from the initial inoculated elec-
trode by ultrasound in 30 ml physiological sterilised
Ringer solution. This volume was added to a new
sterilized leachate to be inoculated and used as the
anodic chamber for a new electrochemical cell called
2nd MFC. The primary biofilm were removed from the
anode surface and used to inoculate a new electro-
chemical reactor filled with sterilized FP leachate. The
new biofilm (i.e. 2nd G) was formed on the new
sterilised carbon felt electrode: the same steps were
followed to form 3rd G.

The scanning electron microscope JSM-6610LA
was used to examine the anodic electrode surface

@ Springer
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Sonication of the bio-anodein 10mL Ringer solution (three replicates)

before the MFC experiment and after the biofilm re-
formation.

Electrochemical characterisation

The cyclic voltammetry curves were recorded at scan
rate 10 mV/s and electrochemical impedance spec-
troscopy diagrams were recorded in range (100 kHz to
100 mHz) using the potentiostat—galvanostat (PGZ-
301). The temperature was maintained at 25 °C. The
electrochemical glass cells of 80 mL were filled with
FP leachate containing primary biofilm (Ist G),
secondary (2nd G) or tertiary biofilm (3rd G). The
lid and the reactor-body were sealed with a clamping
ring. The working electrodes were flat 1.27 cm in
diameter and 5 cm in length CF (99%, Alfa Aesar)
screwed onto 5 mm diameter, 1 cm long graphite rods
that ensured the electrical connection. The new CF
electrodes were pre-treated by soaking in hydrochloric
acid 1.0 M overnight to eliminate possible metal ion
contamination, 20 min rinsing with distilled water (10
times) then immersed in sterilized water 48 h and
allowed to dry in an oven (50 °C) at least one hour.
Auxiliary electrodes were stainless steel flat cleaned
by sterilization in Pasteur oven (Heraeus INSTRU-
MENTS Vacutherm). Potentials were controlled and
expressed versus a saturated silver chloride electrode.
The working electrode (i.e. bio-anode) was kept as
close as possible to the reference electrode in front of
the platinum auxiliary electrode.
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Results
Voltage evolution of MFCs

In previous investigations, the first 1st G of biofilm
was obtained naturally by connecting directly the bio-
anode to cathode in closed circuit configuration using
an electric resistance (Huang et al. 2014; Cabezas et al.
2015). Accordingly, the same procedure was, there-
fore followed by us to obtain the 1st G of biofilm,
where the voltage increased gradually and reached its
maximum value of 65 mV after 10 days. As for the
2nd G, the voltage started with 150 mV without lag
time and attained its highest value of 276 mV.
However, the voltage of the 3rd G was lower than
that of the 2nd G but was still higher than the 1st G.

By comparing the temporal progression (Fig. 2) of
MEC:s using the electrodes of the 1st and 2nd Gs, the
following comments may be made:

¢ During the first period (0-100 h), the MFC of 2nd
G allowed a starting voltage greater than 10 mV,
right up the Ist hour, which explained the rapid
formation of electroactive biofilm in the presence
of the 1st G biofilm scratched (tested in sterile
environment and electrode). Between 100 and
200 h, the improvement of the voltage of the 1st G
MFC was noticed, due to the formation of the
electroactive biofilm. After 200 h, the variations of
the voltage of the two MFCs were identical which
resulted in the stable formation of the electro-
active biofilm on both electrodes.

e Throughout 10 days, the temporal variations of the
three generations show that the FP-MFEC of the 2nd

140

—=—GS 1°G
120 —e—FP 1" G
100
S
£ 80
kol
(o]
S 60
o
>
40
20
0
0 50 100 150 200 250

Duration (hrs)

Fig.2 Evolution voltage curves of 1st G MFC using: GS and FP
leachates

G recorded an initial electric voltage higher than
5 mV and a rapid progression from the second
operating day (Table 1). There was an increase of
the cell voltage, upon the addition of the fuel.
Really, the voltage was much higher, when the
medium had been changed and the fuel had been
added simultaneously.

Moreover, the two MFCs of 2nd G (GS and PF)
have been compared between each other. For both
MFCs, an initial voltage greater than 5 mV was
observed with a rapid progression from the second
operating day. In addition, during the voltage evolu-
tion, two antagonist behaviours were observed. The
GS-MFC (Ist G) started right up from the beginning,
whilst the FP-MFC did so after 5 days. For the 2nd G
(i.e. after biofilm transplantation), the opposite
occurred, showing a remarkable difference in lag time
of 2 days for GS-MFC (Fig. 3).

Primary, secondary and tertiary biofilms formed
in MFC

Akoglu (2020) have recently carried out an investiga-
tion on the biofilm formation obtained from lactic acid
bacteria. The biofilm was utilized advantageously and
beneficially as the starter culture, for the formation of
the new biofilm. On this basis, our primary biofilm
collected from a MFC prototype, was removed from
the anode surface by ultrasound and was then used to
inoculate a new electrochemical reactor filled of
sterilized FP leachate. As shown in Fig. 4, the new
biofilm (2nd G) was therefore formed on the new
sterilized CF electrode. The initial lag period was in
contrast reduced with respect to that obviously
observed with the primary biofilm; the bioenergy
performances were thus amply better. Consequetively,
the secondary biofilm was used to inoculate the third
electrochemical reactor. The 3rd G showed a

Table 1 Values of voltage (mV) of FP-MFC
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Duration (h)  Sterilized leachate 1stG  2nd G  3rd G
33 <1 5 150 52.2
66 <1 65 201.3 82
266 <1 20 276 220
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Fig. 3 Comparison between 2nd electricity generation GS and FP MFCs; a evolution curves and b bar-chart values

remarkable performance as well; it provided maxi-
mum power density about 21.77 mW m™>.

In summary, forming the primary biofilm as
inoculum led to the secondary biofilm that provided
the significant power density which was four times
higher than that given with the primary biofilm
(Fig. 5). It was besides possible to form the tertiary
biofilm from the secondary biofilm as inoculum. The
power density yielded with the tertiary biofilm was
slightly lower than that observed with the secondary
one. These results are in quite good agreement with
previous investigations in the improvement of bio-
electro-catalytic performance of mixed culture bio-
films by consecutive electrochemical selection. A
comparison of primary and secondary biofilms
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Fig. 4 Evolution voltage curves of FP-MFCs: 1st G; 2nd G and
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Fig. 5 Comparison between FP-MFCs of 1st and 2nd Gs; a Evolution curves and b Bar-chart values

revealed that the secondary biofilm usually exceeds
the primary one (Liu et al. 2008).

Furthermore, as shown in Fig. 6, SEM images
(magnification 50 pm) confirm reformation of bio-
films resulting from sonication of successive FP
generations: a) pristine CF fibres, b) biofilm of 1st

G, ¢) biofilm of 2nd G, d) biofilm of 3rd G.
Qualitatively, the scratching/transplanting of our
biofilm by ultrasound seems to be in agreement with
the experience described by Zhao et al. (2015), where
it was shown that delaying polarization of carbon cloth
bioanode, brought about biofilm architecture that was
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Fig. 6 SEM images (magnification 50 pm) confirm reformation of biofilms resulting from sonication of successive generations:
a pristine CF; b biofilm of 1st G; ¢ biofilm of 2nd G; d biofilm of 3rd G

more heterogeneous and thinner as compared to
homogenous and thick biofilm resulting in full
polarization.

Electrochemical characterization
Impedance spectroscopy

The impedance spectra of the different MFCs are
represented according to the Nyquist diagram. They
are represented in Fig. 7 given below, for the different
electrodes (pristine, 1st G, 2nd G and 3rd G). In
general, their shapes are semi-circles which intersect
the axis of the real at the two points R. and Ry
corresponding to the electrolyte and transfer resis-
tances respectively. Obviously, the variations of the
curves are different, reflecting the duration of opera-
tion of the MFC, in the presence of the bacterial
biofilm. However, the MFC without biofilm has the
highest resistance, the pristine work electrode gives a
relatively higher resistance, and finally that of the 3nd
G has the lowest resistance due to the electro-activity
of the bacterial biofilm where the electronic conduc-
tion is better. This theory is verified in the case of
electrodes immersed in the juice solution of autumn
peelings fruits. For GS leachate, the electrode carrying
the biofilm of the 1st G has a higher resistance than the
electrode of the 2nd G: it is assumed in this case that
the electroactive biofilm has not taken enough time to
rebuild itself for train the 2nd G. In order to make it
clear, a zooming has been provided inside the

@ Springer

figure where the curves overlapped. The values of
real impedance of the three generations and the
pristine electrode are therefore in the following order:

Re (Z)3,46< Re (Z)5,96< Re (Z),45 < Re (Z)

Ist pristine *

As it is shown by the above inequalities, the thicker
and fully developped the electroactive biofilm, the
lower the charge transfer resistance was. The biofilm-
free MFC yields the highest resistance, the sterile
gives a relatively lower resistance, and finally the third
generation leads to the lowest resistance due to the
electro-activity of the bacterial biofilm where elec-
tronic conduction becomes much pronouced. Qualita-
tively, our results are comparable to those previously
reported by Doyle et al. (2017), though they used
polarization for the biofilm growth.

Cyclic voltammetry (CV)

The quality of the tertiary bio-anode can be assessed
from CV curves recorded at day 10, when the current
was maximal. The scan rate of 10 mV/s was conse-
quently low enough to represent the stationary char-
acteristics of the electrode. The voltammograms
recorded in the absence of substrate confirmed that
the current was due to acetate oxidation. The voltam-
mograms (Fig. 8) of the sterile electrodes show a
hysteresis of the electrodes before use, due to gener-
ation of capacitive currents. As a consequence of the
increase of the interface capacitance with time, the
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Fig. 7 a Impedance Nyquist diagram of different stages of
bioanodes: pristine, 1st G and 2nd G of biofilm: GS. b Nyquist
diagrams of bio-anodes inoculated with fruit peeling biofilms of:

electron transfer also increases, as indicated by the
voltammograms of the electrodes of st and 2nd Gs.
These observations are in accordance with the voltam-
mograms which give clearly the redox compounds

Pristine/sterile leachate (black circle); 1st G (red circle); 2nd G
and (blue inverted triangle); 3rd G (asterisk)

contained in the biofilms that can be addressed by the
electrode (Fricke et al. 2008; Harnisch and Freguia
2012).
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Fig. 8 Voltamogramms of bio-anodes inoculated with FP
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Chemical oxygen demand (COD)

COD was determined for assessing the degradation of
organic matter by MFC. In effect, its value for FP
leachate before the treatment was about 466 mg L™".
After 10 days, it decreased down to 147, 280 and
345 mg L' for Ist, 2nd and 3rd G FP, respectively.
The corresponding COD abatements were, therefore
tabulated by using (Eq. 1).The values are summarized
in Table 2. As it is illustrated, the COD abatement was
thus in favour to 1st FP-MFC, while the energy
production was better with 2nd and 3rd Gs (i.e. after
transplanting). The organic matter degradation was
higher with scratched biofilm from the 1st G because
the initial leachate contained not only the direct
contact electrode biofilm but also planktonic microor-
ganisms that helped in the COD abatement. In
agreement with the results obtained recently using
the MFC for the treatment of vinasse where the
inoculum concentration promoted a different variation
in relation to the measures of COD and power density
(Ottoni et al. 2019).

Polarization and power characteristics of MFC

The characteristic curves of polarization and power of
the MFC were used to evaluate the electrical perfor-
mance of the cell under load. The polarization curve
was obtained using different values of the resistance
ranging between 10 Q and 10 MQ. As shown in Fig. 9,
the polarization curve i.e. voltage versus current
density presents three distinct regions. The first region
represents the activation over voltage that results from
the energy loss during the initiation of the Ox/Red
reactions and electron transfer between the bacterial
cell and the anodic surface. In the beginning, the MFC
creates a short-circuit current density at the highest
voltage. The second region shows an ohmic linear
drop caused by the electrolyte. The third region
displays a second over voltage that yields the maxi-
mum open-circuit current density due to the loss of
concentration occurring during the diffusion phe-
nomenon. On the other hand, the power curve i.e.
power density versus current density provides the
maximum energy that can be delivered by the MFC.
The power density is obtained as the product of output
voltage and current density. The power density versus
current density provides a curve having a first ohmic
linear part, which increases by reaching the maximum
power point. It then falls as the current density
increases. As investigated in previous work, the power
density of another MFC increased in the same manner
with increasing values of current density, and reached
optimal values upon the addition of substrate (Zer-
rouki et al. 2018).

0,014
0 _ _ G . —a—35g/l
COD abatement (%) =100 x (Ci— C{)/ C;i (1) oo Ny
. . g —4—0.025 g/
where C; and C€ are the initial and final COD 3 o0l 0023 ¢/
. = ——0.0025 g/l
respectively. £ 0.008
>
Z 0,006
3
Table 2 Values of COD abatement of FP-MFC for the three § 0,004
generations £ 0002
Generation 1st G 2nd G 3rd G
0 002 004 006 008 01 012 014 016 0,18
COD abatement (%) 68.45 39.91 25.96 Current density (mA/em’)
Fig. 9 Power density curves of MFCs using different concen-
trations of substrate (sodium acetate)
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Discussions

Comparison between three successive bio-film
generations

By using the scratched biofilm, it was possible to
reform an electro-active biofilm on a new electrode in
a sterilized medium. The comparison of the impe-
dance spectra and cyclic voltamograms of the sterile
electrode and the 2nd G biofilm electrode confirmed
the ability of the electroactive biofilm reformation on a
new support. Rivalland et al. (2015) reported that the
electrochemical monitoring of biofilm generations
collected from French Guiana mangrove sediments,
revealed the bacterial selection occurring at the anode
for three distinct generations. Indeed, the first biofilm
generation produced a stable current density reaching
about 18 A/m* while 2nd and 3rd Gs yielded current
densities of about 10 A/mz, making in evidence that
the 1stG biofilm is more electroactive than the 2nd G
biofilm.

Besides, the importance of refreshing the medium
along with the addition of the fuel, was confirmed by
recorded higher voltage peaks. Ketep et al. (2014)
demonstrated that the bio-anodes formed upon the
addition of acetate, led to the highest current densities
(6 A/m?) but were then unable to oxidize the raw
effluent efficiently (0.5 A/mz). In contrast, the bio-
anodes formed without acetate addition, were fully
able to oxidize the organic matter contained in the
effluent, giving up to 4.5 A/m” in continuous mode.
Bacterial communities showed less bacterial diversity
for the acetate-fed bio-anodes compared to those
formed in raw effluents. By using the biofilm off-hook,
it was possible to reform an electro-active biofilm on a
new sterilized electrode in a sterilized medium.
Sedighi et al. (2018) investigated the relation between
the power generation of MFC and the COD removal in
optimised conditions. They concluded that optimising
both parameters simultanously, made them compro-
mising and therefore reducing the MFC efficiency.

MEFC-based bio-detector

MFC-based biosensors are considered to be the next
generation bio-sensing technology for environmental
monitoring (Sun et al. 2015), in particular the inclu-
sion of microbial activity, test of biochemical demand
and detection of toxicants (Yang et al. 2015).

Although small power output of MFC constraints its
application for directly operating electrical devices,
great progress has been achieved in its utilization as a
biosensor for monitoring of water quality and detect-
ing of air quality (Cui et al. 2019) as well as
determination of biodegradable organics (Lorant
et al. 2019). So, beyond the small energy production
harvested, our MFC was used also to develop a bio-
detector using a two-compartment cell. In the anode
compartment, the biocatalyst was renewed for each
sample analysis by substituting the old microbial
consortium with an equal amount of fresh one. The
sodium acetate substrate was utilized as a target for
detection. The biofilm was involved to degrade the
substrate by producing electrons to be used as source
of electric energy.

During the first week, the biofilm was cultured and
formed in the MFC inoculated with the initial
concentration of substrate 35 g/l. At the end of the
first experiment, the newly formed biofilm was well
recovered as needed on the same electrode. It was then
used to inoculate the new MFCs using disparate values
of substrate concentrations i.e. 0.0025, 0.025 and
0.25 g/l spanning more than fifteen thousands of order,
to ensure the low and high detection limits. These
limits were investigated by using values of maxima of
power density curves that highlight the performances
of the MFC.

As it is observed in Fig. 9, the peak of the
maximum power seems to be proportional to the
concentration of substrate consumed by the bacterial
consortium. Thus the MFC can play the role of
biosensor used as an organic matter detector. Besides,
in order to prove this detection, the variation of the
current density delivered by the MFC versus the fuel
concentration (sodium acetate) is plotted. Unfortu-
nately, it is shown to be not quite linear, because the
concentration range is too wide; values are of com-
pletely different orders of magnitude (35 g/1is 14 000
times higher than 0.0025 g/l). Hence, a logarithmic
scale plot yields a smooth straight which passes
approximately through all the data points. As shown in
Fig. 10, the straight line highlights the linearity of the
curve in logarithmic scale.

Furthermore, the MFC with replaceable consortium
could be used as a biosensor for on-line motoring of
organic matter as it has been previously highlighted by
Cui et al. (2019) and Sumaraj and Ghangrekar ( 2014).
As pointed out by Sun et al. (2019), more efforts are
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Fig. 10 Current density versus logarithm of concentration of
substrate: a typical characteristic of biosensor

needed in the future to accelerate the response of the
biosensor. Following this recommendation, our MFC-
based detector may be accordingly successful for the
fulfilment of this requirement.This interesting biolog-
ical electric device has been tested using the micro-
organism from waste media, and used for detecting
organic matter detection, spanning the concentration
range 0.0025-35 g/1. It has, therefore, detected the
lowest concentration of substrate (i.e. 0.0025 g/l)
achieving the lowest current density 0.0011 mA/
cm?. The higher the concentration, the more the
output current that is directly proportional to the
logarithm of the value of the input concentration (i.e.
0.11 mA/cm? at 35 g/l), hundred times greater. More-
over, according to Sun et al. (2019), the MFC-based
biosensor for selective monitoring of acetate during
anaerobic digestion, operated in a closed loop where
the increase in acetate concentration at the anode was a
function of the electric field generated by the MFC.
The resulted electric current obviously increased
linearly in the restricted concentration range of sodium
acetate, less than 20 mM (i.e. < 1.65 g/l). However,
in our case, the current density was produced just by
injecting the substrate into the anode compartment. It
was really proportional to the logarithm of sodium
acetate concentration. As a consequence, the MFC
was able to detect wider concentration range of
sodium acetate (i.e. 0.0025-35 g/ 1). Our MFC could
therefore be used analogously in very wide concen-
tration range for detecting of organic matter, as well as
a radio frequency logarithmic detector power meter.

Conclusions

Taking our results into account, we can conclude that
the MFC technology is highly promising for the

@ Springer

treatment of wastewater and the production of low
bioenergy using two distinct inocula: Garden Soil and
Fruit Peeling. Furthermore, in the present investiga-
tion, we have demonstrated the possibility to improve
the energy production of a MFC by using different
biofilm generations. The scratching of the biofilm
from the electrode was achieved by ultrasound. Its re-
inoculation into a new leachate enhanced the energy
performance of the MFC using the 2ndG biofilm.
These results were confirmed by the impedance
spectra and the voltammograms. In addition, the
COD abatement was thus in favour to 1stG-MFC,
however, the energy production was better with 2nd &
3rd Gs, after biofilm transplantion. Besides, the
linearity of maximum current density versus concen-
tration of substrate on logarithmic scale makes in
evidence that the MFC could be used as a biosensor for
the detection of the waste organic matter. It can be
widely used in very wider concentration range detec-
tion for monitoring oxidation of matter, as it is the case
of logarithmic detector power meter for detecting
radio frequency signals.
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