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We consider the semiclassical magnetic Laplacian L on a Riemannian manifold, with a constant-rank and non-vanishing magnetic field B. Under the localization assumption that B admits a unique and non-degenerate well, we construct a Birkhoff normal forms to describe the spectrum of L in the semiclassical limit → 0. We deduce an expansion of the eigenvalues of order , in powers of 1/2 .

-Introduction

-Context

We consider the semiclassical magnetic Laplacian with Dirichlet boundary conditions

L = (i d + A) * (i d + A)
on a d-dimensional oriented Riemannian manifold (M, g), which is either compact with boundary, or the Euclidean R d . A denotes a smooth 1-form on M , the magnetic potential. The magnetic field is the 2-form B = dA.

The spectral theory of the magnetic Laplacian has given rise to many investigations, and appeared to have very various behaviours according to the variations of B and the geometry of M . We refer to the books and review [START_REF] Helffer | Semiclassical spectral asymptotics for a magnetic schrödinger operator with non-vanishing magnetic field[END_REF][START_REF] Fournais | Spectral methods in surface superconductivity[END_REF][START_REF] Raymond | Bound States of the Magnetic Schrödinger Operator[END_REF] for a description of these works. Here we focus on the Dirichlet realisation of L , and we give a description of semiexcited states, eigenvalues of order O( ), in the semiclassical limit → 0. As explained in the above references, the magnetic intensity has a great influence on these eigenvalues, and one can define it in the following way.

Using the isomorphism T q M ≃ T q M * given by the metric, one can define the following skew-symmetric operator B(q) : T q M → T q M , by: (1.1) B q (X, Y ) = g q (X, B(q)Y ), ∀X, Y ∈ T q M, ∀q ∈ M .

The operator B(q) being skew-symmetric with respect to the scalar product g q , its eigenvalues are purely imaginary and symmetric with respect to the real axis. We denote these repeated eigenvalues by ±iβ j (q), • • • , ±iβ s (q), 0 , with β j (q) > 0. In particular, the rank of B(q) is 2s and may depend on q. However, we will focus on the constant-rank case. We denote by k the dimension of the Kernel of B(q), so that d = 2s + k. The magnetic intensity (or "Trace+") is the following scalar-valued function,

b(q) = s j=1 β j (q) .
The function b is continuous on M , but non-smooth in general. We are interested in discrete magnetic wells and non-vanishing magnetic fields. Assumption 1. The magnetic intensity is non-vanishing, and admits a unique global minimum b 0 > 0 at q 0 ∈ M \ ∂M , which is non-degenerate. Moreover, in the non-compact case M = R d we assume that b ∞ := lim inf |q|→+∞ b(q) > b 0 and the existence of C > 0 such that

|∂ ℓ B ij (q)| ≤ C(1 + |B(q)|) , ∀ℓ, i, j ∀q ∈ R d .
Assumption 2. The rank of B(q) is constant equal to 2s > 0 on a neighborhood Ω of q 0 .

Under Assumption 1, the following useful inequality was proven in [START_REF] Helffer | Semiclassical analysis for the ground state energy of a schrödinger operator with magnetic wells[END_REF]. There is a C 0 > 0 such that, for small enough, (1.2)

(1 + 1/4 C 0 ) L u, u ≥ M (b(q) -1/4 C 0 )|u(q)| 2 dq , ∀u ∈ Dom(L ) .
Remark 1.1. Actually, one has the better inequality obtained replacing 1/4 by . This was proved by Guillemin-Uribe [START_REF] Guillemin | The laplace operator on the n-th tensor power of a line bundle: eigenvalues which are uniformly bounded in n[END_REF] in the case of a non-degenerate B, by Borthwick-Uribe [START_REF] Borthwick | Almost complex structures and geometric quantization[END_REF] in the constant rank case, and by Ma-Marinescu [START_REF] Ma | The spin-c dirac operator on high tensor powers of a line bundle[END_REF] in a more general setting.

Remark 1.2. Using this inequality, one can prove Agmon-like estimates for the eigenfunctions of L . Namely, the eigenfunctions associated to an eigenvalue < b 1 are exponentially small outside K b 1 = {q , b(q) ≤ b 1 }. We will use this result to reduce our analysis to the neighborhood Ω of q 0 . In particular, the greater b 1 is, the larger Ω must be.

Finally, we will assume the following, in order to get smooth functions β j on Ω.

Assumption 3. β i (q 0 ) = β j (q 0 ) for every 1 ≤ i < j ≤ s.

Under Assumptions 1 and 2, estimates on the ground states of L in the semiclassical limit → 0 were proven in several works, especially in dimension d = 2, 3.

On M = R 2 , asymptotics for the j-th eigenvalue of L

(1.3) λ j (L ) = b 0 + (α(2j -1) + c 1 ) 2 + o( 2 )
with explicit α, c 1 ∈ R were proven by Helffer-Morame [START_REF] Helffer | Magnetic bottles in connexion with superconductivity[END_REF] (for j = 1) and Helffer-Kordyukov [START_REF] Helffer | Semiclassical spectral asymptotics for a two-dimensional magnetic schrödinger operator: The case of discrete wells[END_REF] (j ≥ 1). Actually, this second paper contains a description of some higher eigenvalues. They proved that, for any integers n, j ∈ N, there exist jn > 0 and for ∈ (0, jn ) an eigenvalue λ n,j ( ) ∈ sp(L ) such that

λ n,j ( ) = (2n -1)(b 0 + ((2j -1)α + c n ) 2 ) + o( 2 ) ,
for another explicit constant c n . In particular, it gives a description of some semi-excited states (of order (2n -1)b 0 ). Finally, Raymond-Vũ Ngo . c [START_REF] Raymond | Geometry and spectrum in 2d magnetic wells[END_REF] (and Helffer-Kordyukov [START_REF] Helffer | Accurate semiclassical spectral asymptotics for a two-dimensional magnetic schrödinger operator[END_REF]) got a description of the whole spectrum below b 1 , for any fixed b 1 ∈ (b 0 , b ∞ ). More precisely, they proved that this part of the spectrum is given by a familly of effective operators N [n] (n ∈ N) modulo O( ∞ ). These effective operators are -pseudodifferential operators with principal symbol given by the function (2n -1)b. More interestingly, they explained why the two quantum oscillators (2n -1)b 0 , and (2j -1)α 2 , appearing in the eigenvalue asymptotics correspond to two oscillatory motions in classical dynamics : The cyclotron motion, and a rotation arround the minimum point of b. The results of Raymond-Vũ Ngo . c were generalized to an arbitrary d-dimensional Riemannian manifold in [START_REF] Morin | A semiclassical birkhoff normal form for symplectic magnetic wells[END_REF], under the assumption k = 0 (B(q) has full rank), proving in particular similar estimates (1.3) in a general setting. Actually, these eigenvalue estimates were proven simultaneously by Kordyukov [START_REF] Kordyukov | Semiclassical eigenvalue asymptotics for the bochner laplacian of a positive line bundle on a symplectic manifold[END_REF] in the context of the Bochner Laplacian.

In this paper we are interested on the influence of the kernel of B (k > 0). The rank of B being even, this kernel always exists in odd dimensions : if d = 3 the kernel directions correspond to the usual field lines. On M = R 3 , Helffer-Kordyukov [START_REF] Helffer | Eigenvalue estimates for a three-dimensional magnetic schrödinger operator[END_REF] proved the existence of λ nmj ( ) ∈ sp(L ) such that, λ nmj ( ) =(2n -1)b 0 + (2n -1) 1/2 (2m -1)ν 0 3/2 + ((2n -1)(2j -1)α + c nm ) 2 + O( 9/4 ) , for some ν 0 > 0 and α, c nm ∈ R. Motivated by this result and the 2D case, Helffer-Kordyukov-Raymond-Vũ Ngo . c [START_REF] Helffer | Magnetic wells in dimension three[END_REF] gave a description of the whole spectrum below b 1 , proving in particular the eigenvalue estimates (1.4) λ j (L ) = b 0 + ν 0 3/2 + α(2j -1) 2 + O( 5/2 ) .

Their results exhibit a new classical oscillatory motion in the directions of the field lines, corresponding to the quantum oscillator (2m -1)ν 0 3/2 .

The aim of this paper is to generalize the results of [START_REF] Helffer | Magnetic wells in dimension three[END_REF] to an arbitrary Riemannian manifold M , under the assumptions 1 and 2. In particular we describe the influence of the kernel of B in a general geometric and dimensional setting. Their approach, which we adapt, is based on a semiclassical Birkhoff normal form. The classical Birkhoff normal form has a long story in physics, and goes back to Delaunay [START_REF] Delaunay | Théorie du mouvement de la lune[END_REF] and Lindstedt [START_REF] Lindstedt | Beitrag zur integration der differentialgleichungen der störungstheorie[END_REF]. This formal normal form was the starting point of a lot of studies on stability near equilibrium, and KAM theory (after Kolmogorov [START_REF] Kolmogorov | On the conservation of conditionally periodic motions for a small change in hamilton's function[END_REF], Arnold [START_REF] Arnold | Proof of a theorem of a.n. kolmogorov on the conservation of quasiperiodic motions under small change of the hamiltonian function[END_REF], Moser [START_REF] Moser | On invariant curves of area preserving mappings of an annulus[END_REF]). The works of Birkhoff [START_REF] Birkhoff | Dynamical Systems[END_REF] and Gustavson [START_REF] Gustavson | On constructing formal integrals of a hamiltonian system near an equilibrium point[END_REF] gave its name to this normal form. We refer to the books [START_REF] Moser | Lectures on hamiltonian systems[END_REF] and [START_REF] Hofer | Symplectic invariants and Hamiltonian dynamics[END_REF] for precise statements. Our approach here relies on a quantization. Physicists and quantum chemists already noticed in the 1980' that a quantum analogue of the Birkhoff normal form could be used to compute energies of molecules ( [START_REF] Delos | High rydberg states of an atom in a strong magnetic field[END_REF], [START_REF] Jaffe | Uniform semiclassical quantization of regular and chaotic dynamics on the hénon-heiles surface[END_REF], [START_REF] Marcus | Aspects of intramolecular dynamics in chemistry[END_REF], [START_REF] Shirts | Approximate constants of motion for classically chaotic vibrational dynamics: Vague tori, semiclassical quantization, and classical intramolecular energy flow[END_REF]). Joyeux and Sugny also used such techniques to describe the dynamics of excited states (see [START_REF] Joyeux | Canonical perturbation theory for highly excited dynamics[END_REF] for example). In [START_REF] Sjöstrand | Semi-excited states in non-degenerate potential wells[END_REF], Sjöstrand constructed a semi-classical Birkhoff normal form for a Schrödinger operator -2 ∆ + V , using the Weyl quantization, to make a mathematical study of semi-excited states. In their paper [START_REF] Raymond | Geometry and spectrum in 2d magnetic wells[END_REF], Raymond and Vũ Ngo . c had the idea to adapt this method for L on R 2 , and with Helffer and Kordyukov on R 3 [START_REF] Helffer | Magnetic wells in dimension three[END_REF]. This method is reminiscent of Ivrii's approach (in his book [START_REF] Ivrii | Microlocal Analysis and precise spectral asymptotics[END_REF]).

-Main results

The first idea is to link the classical dynamics of a particle in the magnetic field B with the spectrum of L using pseudodifferential calculus. Indeed, L is a -pseudodifferential operator with symbol

H(q, p) = |p -A q | 2 + O( 2 ) , ∀p ∈ T q M * , ∀q ∈ M ,
and H is the classical Hamiltonian associated to the magnetic field B. One can use this property to prove that, in the phase space T * M , the eigenfunctions (with eigenvalue < b 1 ) are microlocalized on an arbitrarily small neighborhood of

Σ = H -1 (0) ∩ T * Ω = {(q, p) ∈ T * Ω, p = A q } .
Hence, the second main idea is to find a normal form for H on a neighborhood of Σ. Namely, we find canonical coordinates near Σ in which H has a "simple" form. The symplectic structure of Σ, as submanifold of T * M is thus of great interest. One can see that the restriction of the canonical symplectic form dp ∧ dq on T * M to Σ is given by B (Lemma 2.1); and when B has constant-rank, one can find Darboux coordinates ϕ : Ω ′ ⊂ R 2s+k (y,η,t) → Ω such that ϕ * B = dη ∧ dy , up to reducing Ω. We will start from these coordinates to get the following normal form for H.

Theorem 1.3. Under Assumptions 1, 2, and 3, there exists a diffeomorphism

Φ 1 : U ′ 1 ⊂ R 4s+2k → U 1 ⊂ T * M between neighborhoods U ′ 1 of 0 and U 1 of Σ such that H(x, ξ, y, η, t, τ ) := H • Φ 1 (x, ξ, y, η, t, τ )
satisfies (with the notation

β j = β j • ϕ), H = M (y, η, t)τ, τ + s j=1 β j (y, η, t) ξ 2 j + x 2 j + O((x, ξ, τ ) 3 ) ,
uniformly with respect to (y, η, t), for some (y, η, t)-dependant positive definite matrix M (y, η, t). Moreover, Φ * 1 (dp ∧ dq) = dξ ∧ dx + dη ∧ dy + dτ ∧ dt . Remark 1.4. We will use the following notation for our canonical coordinates:

z = (x, ξ) ∈ R 2s , w = (y, η) ∈ R 2s , τ = (t, τ ) ∈ R 2k .
This theorem gives the Tayor expansion of H on a neighborhood of Σ. In particular (x, ξ, τ ) ∈ R d measures the distance to Σ whereas (y, η, t) ∈ R d are canonical coordinates on Σ.

Remark 1.5. This theorem exhibits the harmonic oscillator ξ 2 j + x 2 j in the first-order expansion of H. This oscillator, which is due to the non-vanishing magnetic field, corresponds to the well-known cyclotron motion.

Actually, one can use the Birkhoff normal form algorithm to improve the remainder. Using this algorithm, we can change the O((x, ξ) 3 ) remainder into an explicit function of ξ 2 j + x 2 j , plus some smaller remainders O((x, ξ) r ). This remainder power r is restricted by resonances between the coefficients β j . Thus, we take an integer r 1 ∈ N such that

∀α ∈ Z s , 0 < |α| < r 1 ⇒ s j=1 α j β j (q 0 ) = 0 .
Here, |α| = j |α j |. Moreover, we can use the pseudodifferential calculus to apply the Birkhoff algorithm to L , changing the classical oscillator ξ 2 j +x 2 j into the quantum harmonic oscillator

I (j) = -2 ∂ 2 x j + x 2 j
, whose spectrum consists of the simple eigenvalues (2n -1) , n ∈ N. Following this idea we prove the following theorem.

Theorem 1.6. Let ε > 0. Under Assumptions 1, 2 and 3, there exist b 1 ∈ (b 0 , b ∞ ), an integer N max > 0 and a compactly supported function

f ⋆ 1 ∈ C ∞ (R 2s+2k × R s × [0, 1)) such that |f ⋆ 1 (y, η, t, τ, I, )| (|I| + ) 2 + |τ |(|I| + ) + |τ | 3 ,
satisfying the following properties. For n ∈ N s , denote by N [n] the -pseudodifferential operator in (y, t) with symbol

N [n] = M (y, η, t)τ, τ + s j=1 β j (y, η, t)(2n j -1) + f ⋆ 1 (y, η, t, τ, (2n -1) , ) .
For << 1, there exists a bijection

Λ : sp(L ) ∩ (-∞, b 1 ) → |n|≤Nmax sp N [n] ∩ (-∞, b 1 ) , such that Λ (λ) = λ + O( r 1 
2 -ε ) uniformly with respect to λ. Remark 1.7. In this theorem sp(A) denotes the repeated eigenvalues of an operator A, so that there might be some multiple eigenvalues, but Λ preserves this multiplicity. We only consider self-adjoint operators with discrete spectrum.

Remark 1.8. One should care of how large b 1 can be. As mentionned above, the eigenfunctions of energy < b 1 are exponentially small outside

K b 1 = {q ∈ M , b(q) ≤ b 1 }. Thus, we will chose b 1 such that K b 1 ⊂ Ω,
where Ω is some neighborhood of q 0 . Hence the larger Ω is, the greater b 1 can be. However, there are three restrictions on the size of Ω:

• The rank of B(q) is constant on Ω,

• There exist canonical coordinates ϕ on Ω (i.e. such that ϕ * B = dη ∧ dy),

• There is no resonance in Ω:

∀q ∈ Ω , ∀α ∈ Z s , 0 < |α| < r 1 ⇒ s j=1 α j β j (q) = 0 .
Remark 1.9. If k = 0 we recover the result of [START_REF] Morin | A semiclassical birkhoff normal form for symplectic magnetic wells[END_REF]. Here we want to study the influence of a non-zero kernel k > 0. This result generalizes the result of [START_REF] Helffer | Magnetic wells in dimension three[END_REF], which corresponds to d = 3, s = k = 1, on the Euclidean R 3 . However, this generalization is not straightforward since the magnetic geometry is much more complicated in higher dimensions, in particular if k > 1. Moreover, there is a new phenomena in higher dimensions : resonances between the functions β j (as in [START_REF] Morin | A semiclassical birkhoff normal form for symplectic magnetic wells[END_REF]).

The spectrum of L in (-∞, b 1 ) is reduced to the operators N [n] . Actually if we chose b 1 small enough, it is reduced to the first operator N [1] (Here we denote the multi-integer

1 = (1, • • • , 1) ∈ N s ).
Hence in the second part of this paper, we study the spectrum N [START_REF] Arnold | Proof of a theorem of a.n. kolmogorov on the conservation of quasiperiodic motions under small change of the hamiltonian function[END_REF] using a second Birkhoff normal form. Indeed, the symbol of N [1] is

N [1] (w, t, τ ) = M (w, t)τ, τ + b(w, t) + O( 2 ) + O(τ ) + O(τ 3 ) ,
so if we denote by s(w) the minimum point of t → b(w, t) (which is unique on a neighborhood of 0), we get the following expansion

N [1] (w, t, τ ) = M (w, s(w))τ, τ + 2 ∂ 2 b ∂t 2 (w, s(w)) • (t -s(w)), t -s(w) + • • • and the principal part is a harmonic oscillator with frequences √ ν j (w) (1 ≤ j ≤ k)
where (ν 2 j (w)) 1≤j≤k are the eigenvalues of the symmetric matrix:

M (w, s(w)) 1/2 • 1 2 ∂ 2 t b(w, s(w)) • M (w, s(w)) 1/2
. These frequences are smooth non-vanishing functions of w on a neighborhood of 0, as soon as we assume that they are simple.

Assumption 4. ν i (0) = ν j (0) for indices 1 ≤ i < j ≤ k.
We fix an integer r 2 ∈ N such that

∀α ∈ Z k , 0 < |α| < r 2 ⇒ k j=1 α j ν j (0) = 0 ,
and we prove the following reduction theorem for N [1] .

Theorem 1.10. Let c > 0 and δ ∈ (0, 1 2 ). Under assumptions 1, 2, 3 and 4, with k > 0, there exists a compactly supported function f

⋆ 2 ∈ C ∞ (R 2s × R k × [0, 1)) such that |f ⋆ 2 (y, η, J, √ )| |J| + √ 2 ,
satisfying the following properties. For n ∈ N k , denote by M [n] the -pseudodifferential operator in y with symbol

M [n] (y, η) = b(y, η, s(y, η)) + √ k j=1 ν j (y, η)(2n j -1) + f ⋆ 2 (y, η, (2n -1) √ , √ ) .
For << 1, there exists a bijection

Λ : sp(N [1] ) ∩ (-∞, (b 0 + c δ ) ) → n∈N k sp( M [n] ) ∩ (-∞, (b 0 + c δ ) ) , such that Λ (λ) = λ + O( 1+δr 2 /2
) uniformly with respect to λ.

Remark 1.11. The threshold b 0 +c δ is needed to get microlocalization of the eigenfunctions of N [1] in an arbitrarily small neighborhood of τ = 0.

Remark 1.12. This second harmonic oscillator (in variables (t, τ )) corresponds to a classical oscillation in the directions of the field lines. We see that this new motion, due to the kernel of B, induces powers of √ in the spectrum.

As a corollary, we get a description of the low-lying eigenvalues of L by the effective operator M [1] .

Corollary 1.13. Let ε > 0 and c ∈ (0, min j ν j (0)). Denote by ν(0) = j ν j (0) and r = min(2r 1 , r 2 + 4). Under assumptions 1, 2, 3 and 4, with k > 0, there exists a bijection

Λ : sp(L ) ∩ (-∞, b 0 + 3/2 (ν(0) + 2c)) → sp( M [1] ) ∩ (-∞, b 0 + 3/2 (ν(0) + 2c))
such that Λ (λ) = λ + O( r/4-ε ) uniformly with respect to λ.

We deduce the following eigenvalue asymptotics.

Corollary 1.14. Under the assumptions of corollary 1.13, for j ∈ N, the j-th eigenvalue of L admits an expansion

λ j (L ) = ⌊r/2⌋-2 ℓ=0 α jℓ ℓ/2 + O( r/4-ε ) ,
with coefficients α jℓ ∈ R such that:

α j,0 = b 0 , α j,1 = k j=1 ν j (0), α j,2 = E j + c 0 ,
where c 0 ∈ R and E j is the j-th eigenvalue of a s-dimensional harmonic oscillator.

Remark 1.15. E j is the j-th eigenvalue of a harmonic oscillator whose symbol is given by the Hessian at w = 0 of b(w, s(w)). Hence, it corresponds to a third classical oscillatory motion : a rotation in the space of field lines.

Remark 1.16. The asymptotics

λ j (L ) = b 0 + ν(0) 3/2 + (E j + c 0 ) 2 + o( 2 )
were unknown before, except in the special 3d-case M = R 3 in [START_REF] Helffer | Magnetic wells in dimension three[END_REF].

-Related questions and perspectives

In this paper, we are restricted to energies λ < b 1 , and as mentionned in Remark 1.8, the threshold b 1 > b 0 is limited by three conditions, including the non-resonance one:

∀q ∈ Ω , ∀α ∈ Z s , 0 < |α| < r 1 ⇒ s j=1 α j β j (q) = 0 .
It would be interesting to study the influence of resonances between the functions β j on the spectrum of L . Maybe a Grushin reduction method could help, as in [START_REF] Helffer | Accurate semiclassical spectral asymptotics for a two-dimensional magnetic schrödinger operator[END_REF] for instance. A Birkhoff normal form was given in [START_REF] Charles | Spectral asymptotics via the semiclassical birkhoff normal form[END_REF] for a Schrödinger operator -2 ∆+V with resonances, but the situation is somehow simpler, since the analogues of β j (q) are independent of q in this context.

We are also restricted by the existence of Darboux coordinates ϕ on (Σ, B), such that ϕ * B = dη ∧ dy. Indeed, the coordinates (y, η) on Σ are necessary to use the Weyl quantization. To study the influence of the global geometry of B, one should consider another quantization method for the presymplectic manifold (Σ, B). In the symplectic case, for instance in dimension d = 2, a Toeplitz quantization may be useful. This quantization is linked to the complex structure induced by B on Σ, and the operator L can be linked with this structure in the following way:

L = 4 2 ∂ + i 2 A * ∂ + i 2 A + B = 4 2 ∂ * A ∂ A + B, with A = A 1 + iA 2 , B = ∂ 1 A 2 -∂ 2 A 1 , 2∂ = ∂ 1 + i∂ 2 .
In [START_REF] Prieto | Holomorphic spectral geometry of magnetic schrodinger operators on riemann surfaces[END_REF], this is used to compute the spectrum of L on a bidimensional Riemann surface M with constant curvature and constant magnetic field. See also the recent papers [START_REF] Charles | Landau levels on compact manifolds[END_REF][START_REF] Kordyukov | Berezin-toeplitz quantization associated with higher landau levels of the bochner laplacian[END_REF] where semi-excited states for constant magnetic fields in higher dimensions are considered.

If the 2-form B is not exact, we usually consider a Bochner Laplacian on the p-th tensor product of a complex line bundle L over M , with curvature B. This Bochner Laplacian ∆ p , depends on p ∈ N, and the limit p → +∞ is interpreted as the semi-classical limit. ∆ p is a good generalization of the magnetic Laplacian because locally it can be written 2 , where the potential A is a local primitive of B, and = p -1 . For details, we refer to the recent articles [START_REF] Kordyukov | Semiclassical spectral analysis of toeplitz operators on symplectic manifolds: The case of discrete wells[END_REF], [START_REF] Kordyukov | Semiclassical eigenvalue asymptotics for the bochner laplacian of a positive line bundle on a symplectic manifold[END_REF], [START_REF] Marinescu | Bochner laplacian and bergman kernel expansion of semi-positive line bundles on a riemann surface[END_REF], and the references therein. In [START_REF] Kordyukov | Semiclassical eigenvalue asymptotics for the bochner laplacian of a positive line bundle on a symplectic manifold[END_REF], Kordyukov constructed quasimodes for ∆ p in the case of a symplectic B and discrete wells. He proved expansions:

1 2 (i ∇ + A)
λ j (∆ p ) ∼ ℓ≥0 α jℓ p -ℓ/2 .
Our work also gives such expansions for ∆ p as explained in [START_REF] Morin | Spectral asymptotics for the semiclassical bochner laplacian of a positive line bundle with constant rank curvature[END_REF].

In this paper, we only mentionned the study of the eigenvalues of L : What about the eigenfunctions ? WKB expansions for the j-th eigenfunction were constructed on R 2 in [START_REF] Bonthonneau | Wkb constructions in bidimensional magnetic wells[END_REF], and on a 2-dimensional Riemannian manifold in [START_REF] Bonthonneau | Magnetic wkb constructions on surfaces[END_REF]. We do not know how to construct magnetic WKB solutions in higher dimensions. This article suggests that the directions corresponding to the kernel of B could play a specific role.

An other related question is the decreasing of the real eigenfunctions. Agmon estimates only give a O(e -c/ √ ) decay outside any neighborhood of q 0 , but 2D WKB suggest a O(e -c/ ) decay. In the recent paper [START_REF] Bonthonneau | exponential localization in 2d pure magnetic wells. hal-02319849[END_REF], Bonthonneau, Raymond and Vũ Ngo . c proved this on R 2 , using the FBI Transform to work on the phase space T * R 2 . This kind of question is motivated by the study of the tunneling effect: The exponentially small interaction between two magnetic wells for example.

In this paper, we only have investigated the spectral theory of the stationary Schrödinger equation with a pure magnetic field ; it would be interesting to describe the long-time dynamics of the full Schrödinger evolution, as was done in the Euclidean 2D case by Boil and Vũ Ngo . c in [START_REF] Boil | Long-time dynamics of coherent states in strong magnetic fields[END_REF].

Finally, it would be interesting to study higher Landau levels and the effect of resonances in our normal forms, as was done by Charles and Vũ Ngo . c in [START_REF] Charles | Spectral asymptotics via the semiclassical birkhoff normal form[END_REF] for an electric Schrödinger operator -2 ∆ + V .

-Structure of the paper

In section 2 we prove Theorem 1.3, reducing the symbol H of L on a neighborhood of Σ = H -1 (0). In section 3 we construct the normal form, first in a space of formal series (section 3.2), and then the quantized version N (section 3.3). In section 4 we prove Theorem 1.6. For this we describe the spectrum of N (section 4.1), then we prove microlocalization properties on the eigenfunctions of L and N (section 4.2), and finally we compare the spectra of L and N (section 4.3).

In section 5 we focus on Theorem 1.10 which describes the spectrum of the effective operator N [1] . In 5.1 we reduce its symbol, in 5.2 we construct a second formal Birkhoff normal form, and in 5.3 the quantized version M . In 5.4 we compare the spectra of N [START_REF] Arnold | Proof of a theorem of a.n. kolmogorov on the conservation of quasiperiodic motions under small change of the hamiltonian function[END_REF] and M .

Finally, sections 6 and 7 are dedicated to the proofs of Corollaries 1.13 and 1.14 respectively.

-Reduction of the principal symbol H

-Notations

L is a -pseudodifferential operator on M with principal symbol H:

H(q, p) = |p -A q | 2 g * q , p ∈ T * q M , q ∈ M .
Here, T * M denotes the cotangent bundle of M , p ∈ T * q M is a linear form on T q M . The scalar product g q on T q M induces a scalar product g * q on T * q M , and | • | g * q denotes the associated norm. In this section we prove Theorem 1.3, reducing H on a neighborhood of its minimum:

Σ = {(q, p) ∈ T * M , q ∈ Ω , p = A q } .
Recall that Ω is a (small) neighborhood of q 0 ∈ M \ ∂M . We will construct canonical coordinates (z, w, v) ∈ R 2d with:

z = (x, ξ) ∈ R 2s , w = (y, η) ∈ R 2s , v = (t, τ ) ∈ R 2k .
R 2d is endowed with the canonical symplectic form

ω 0 = dξ ∧ dx + dη ∧ dy + dτ ∧ dt .
We will identify Σ with

Σ ′ = {(x, ξ, y, η, t, τ ) ∈ R 2d , x = ξ = 0 , τ = 0} = R 2s+k
(y,η,t) × {0} . We will use several lemmas to prove Theorem 1.3. Before constructing the diffeomorphism Φ -1 1 on a neighborhood U 1 of Σ, we will restrict to Σ. Thus we need to understand the structure of Σ induced by the symplectic structure on T * M (Section 2.2). Then we will construct Φ 1 and finally prove Theorem 1.3 (Section 2.3).

-Structure of Σ

Recall that on T * M we have the Liouville 1-form α defined by

α (q,p) (V) = p((dπ) (q,p) V) , ∀(q, p) ∈ T * M , V ∈ T (q,p) (T * M ) ,
where π : T * M → M is the canonical projection : π(q, p) = q, and dπ its differential. T * M is endowed with the symplectic form ω = dα. Σ is a d-dimensional submanifold of T * M which can be identified with Ω using j : q ∈ Ω → (q, A q ) ∈ Σ , and its inverse, which is π.

Lemma 2.1. The restriction of ω to Σ is ω Σ = π * B. Proof. Fix q ∈ Ω and Q ∈ T q M . Then (j * α) q (Q) = α j(q) ((dj)Q) = A q ((dπ) • (dj)Q) = A q (Q) , because π • j = id. Thus j * α = A and α Σ = π * j * α = π * A. Taking the exterior derivative we get ω Σ = dα Σ = π * (dA) = π * B .
Since B is a closed 2-form with constant rank equal to 2s, (Σ, π * B) is a presymplectic manifold. It is equivalent to (Ω, B), using j. We recall the Darboux Lemma, telling that such a manifold is locally equivalent to (R 2s+k , dη ∧ dy).

Lemma 2.2. Up to reducing Ω, there exists an open subset Σ ′ of R 2s+k (y,η,t) and a diffeomorphism ϕ : Σ ′ → Ω such that ϕ * B = dη ∧ dy.

One can always take (any) coordinate system on Ω. Up to working in these coordinates, it is enough to consider the case M = R d with

H(q, p) = d k,ℓ=1 g kℓ (q)(p k -A k (q))(p ℓ -A ℓ (q)) , (q, p) ∈ T * R d ≃ R 2d
to prove Theorem 1.3. This is what we will do. In coordinates, ω is given by

ω = dp ∧ dq = d j=1 dp j ∧ dq j
and Σ is the submanifold

Σ = {(q, A(q)) , q ∈ Ω} ⊂ R 2d , and j • ϕ : Σ ′ → Σ.
In order to extend j•ϕ to a neighborhood of Σ ′ in R 2d in a symplectic way, it is convenient to split the tangent space T j(q) (R 2d ) according to tangent and normal directions to Σ. This is the purpose of the following two lemmas. Lemma 2.3. Fix j(q) = (q, A(q)) ∈ Σ. Then the tangent space to Σ is

T j(q) Σ = {(Q, P ) ∈ R 2d , P = ∇ q A • Q} .
Moreover, the ω-orthogonal T j(q) Σ ⊥ is

T j(q) Σ ⊥ = {(Q, P ) ∈ R 2d , P = (∇ q A) T • Q} . Finally, T j(q) Σ ∩ T j(q) Σ ⊥ = Ker(π * B) .
Proof. Σ being the graph of q → A(q), its tangent space is the graph of the differential Q → (∇ q A) • Q. In order to caracterize T Σ ⊥ , note that the symplectic form ω = dp ∧ dq is defined by

ω (q,p) ((Q 1 , P 1 ), (Q 2 , P 2 )) = P 2 , Q 1 -P 1 , Q 2 ,
where •, • denotes the usual scalar product on R d . Thus,

(Q, P ) ∈ T j(q) Σ ⊥ ⇐⇒ ∀Q 0 ∈ R d , ω j(q) ((Q 0 , ∇ q A • Q 0 ), (Q, P )) = 0 ⇐⇒ ∀Q 0 ∈ R d , P, Q 0 -(∇ q A) • Q 0 , Q = 0 ⇐⇒ ∀Q 0 ∈ R d , P -(∇ q A) T • Q, Q 0 = 0 ⇐⇒ P = (∇ q A) T • Q.
Finally, with Lemma 2.1 we know that the restriction of ω to T Σ is given by π * B. Hence, T j(q) Σ ∩ T j(q) Σ ⊥ is the set of (Q, P ) ∈ T j(q) Σ such that

π * B((Q, P ), (Q 0 , P 0 )) = 0 , ∀(Q 0 , P 0 ) ∈ T j(q) Σ .
It is the kernel of π * B.

Now we define specific basis of T j(q) Σ and its orthogonal. Since B(q) is skew-symmetric with respect to g, there exist orthonormal vectors

u 1 (q) , v 1 (q) , • • • , u s (q) , v s (q) , w 1 (q) , • • • , w s (q) ∈ R d such that (2.1)      Bu j = -β j v j , 1 ≤ j ≤ s, Bv j = β j u j , 1 ≤ j ≤ s, Bw j = 0, 1 ≤ j ≤ k.
Moreover, these vectors are smooth functions of q because the non-zero eigenvalues ±iβ j (q) are simple. They define a basis of R d . Define the following ω-orthogonal vectors to Σ:

(2.2)    f j (q) := 1 √ β j (q) (u j (q), (∇ q A) T • u j (q)), 1 ≤ j ≤ s, f ′ j (q) := 1 √ β j (q)
(v j (q), (∇ q A) T v j (q)), 1 ≤ j ≤ s.

These vectors are linearly independent and

T j(q) Σ ⊥ = K ⊕ F , with K = Ker(π * B), F = Vect(f 1 , f ′ 1 , • • • , f s , f ′ s )
. Similarily, the tangent space T j(q) Σ admits a decomposition

T j(q) Σ = E ⊕ K defined as follows. The map ϕ : Σ ′ → Σ from Lemma 2.2 satisfies ϕ * (π * B) = dη ∧ dy.
Thus its differential maps the kernel of B on the kernel of dη ∧ dy:

K == {(dϕ) q (0, T ); T ∈ R k } A complementary space of K in T Σ is given by (2.3) E := {(dϕ) q (W, 0); W ∈ R 2s }.
Lemma 2.4. Fix j(q) = (q, A(q)) ∈ Σ. Then we have the following decomposition:

T j(q) (R 2d ) = T Σ ⊥ E ⊕ K ⊕ F ⊕ L T Σ where L is a Lagrangian complement of K in (E ⊕ F ) ⊥ .
Proof. We have T Σ + T Σ ⊥ = E ⊕ K ⊕ F, and the restriction of ω = dp ∧ dq to this space has kernel K = T Σ ∩ T Σ ⊥ . Hence, the restriction ω E⊕F of ω to E ⊕ F is non-degenerate. So is its orthogonal (E ⊕ F ) ⊥ , which is a symplectic vector space for ω, with dimension 2s -4s = 2k, and we have:

T j(q) R 2d = (E ⊕ F ) ⊕ (E ⊕ F ) ⊥ .
K is a Lagrangian subspace of (E ⊕ F ) ⊥ . It admits a complementary Lagrangian : A subspace L of (E ⊕ F ) ⊥ with dimension k such that ω L = 0, and

(E ⊕ F ) ⊥ = K ⊕ L.
Remark 2.5. A basis (g j ) of L is defined by:

(2.4) ω(g j , dϕ(0, T )) = T j , ∀T ∈ R k .
Indeed, the decomposition (E ⊕ F ) ⊥ = K ⊕ L yield a bijection between L and the dual K * . This bijection is g → ω(g, •). The linear form

dϕ(0, T ) ∈ K → T j ∈ R
is represented by g j .

-Construction of Φ 1 and proof of Theorem 1.3

We identified the "curved" manifold Σ with an open subset Σ ′ of R 2s+k using j • ϕ. Moreover, we did this in such a way that (j • ϕ) * B = dη ∧ dy. In this section we prove that we can identify a whole neighborhood of Σ in R 2d (q,p) with a neighborhood of

Σ ′ in R 4s+2k (z,w,v) , via a symplectomorphism Φ 1 . p ∈ R d q ∈ R d Σ Φ 1 (z, τ ) ∈ R 2s+k Σ ′ = {(w, t) ∈ R 2s+k }
Lemma 2.6. There exists a diffeomorphism

Φ 1 : U ′ 1 ⊂ R 2s+2k+2s (w,t,τ,z) → U 1 ⊂ R 2d (q,p) , such that Φ * 1 ω = ω 0 and Φ 1 (w, t, 0, 0) = j • ϕ(w, t) ; and such that its differential at (w, t, τ = 0, z = 0) ∈ Σ ′ is dΦ 1 (W, T, T , Z) = d (w,t) j • ϕ(W, T ) + k j=1 T j ĝj (w, t) + s j=1 X j fj (w, t) + Ξ j f ′ j (w, t).
Remark 2.7. In this lemma we used the notations Z = (X, Ξ) and ĝj =

g j • ϕ, fj = f j • ϕ, f ′ j = f ′ j • ϕ.
Proof. We will first construct Φ such that

Φ * ω |Σ ′ = ω 0 |Σ ′ only on Σ ′ = Φ -1 (Σ).
Then, we will use to Weinstein theorem to slightly change

Φ into Φ 1 such that Φ * 1 ω = ω 0 on a neighborhood of Σ ′ .
We define Φ by:

Φ(w, t, τ, z) = j • ϕ(w, t) + k j=1 τ j ĝj (w, t) + s j=1 x j fj (w, t) + ξ j f ′ j (w, t) .
Its differential at (w, t, 0, 0) has the desired form. Let us fix a point (w, t, 0, 0) ∈ Σ ′ and compute Φ * ω at this point. By definition,

Φ * ω (w,t,0,0) (•, •) = ω j(q) ((dΦ)•, (dΦ)•),
where q = ϕ(w, t). Computing this 2-form in the canonical basis of R 4s+2k , amounts to computing ω on the vectors g j , f j , f ′ j and d(j • ϕ)(W, T ). By definition of f j we have

ω(f i , f j ) = 1 β i β j (∇ q A) ⊥ • u j , u i -(∇ q A) ⊥ • u i , u j = 1 β i β j (∇ q A) ⊥ -(∇ q A)) • u j , u i = 1 β i β j B(u j , u i ) = 1 β i β j g(u j , Bu i ) = 0, because Bu i = -β i v i is orthogonal to u j . Similarily we get ω(f i , f ′ j ) = δ ij , ω(f ′ i , f ′ j ) = 0 . Moreover, g i ∈ L ⊂ F ⊥ so ω(g i , f j ) = ω(g i , f ′ j ) = 0 . Since L is Lagrangian we also have ω(g i , g j ) = 0. The vector d(j • ϕ)(W, T ) is tangent to Σ and f j , f ′ j ∈ T Σ ′ so ω(f j , d(j • ϕ)(W, T )) = ω(f ′ j , d(j • ϕ)(W, T )) = 0 . Since g i ∈ L ⊂ E ⊥ and using (2.4) we have ω(g j , d(j • ϕ)(W, T )) = ω(g j , d(j • ϕ)(0, T )) = T j . Finally, (j • ϕ) * ω = ϕ * B = dη ∧ dy donc ω(d(j • ϕ)(W, T ), d(j • ϕ)(W ′ , T ′ )) = dη ∧ dy((W, T ), (W ′ , T ′ )) .
All these computations show that (Φ * ω) (w,t,0,0) coincide with ω 0 = dξ∧dx+dη∧dy+dτ ∧dt.

Thus Φ * ω = ω 0 on Σ. With Weinstein theorem B.2, we can change Φ into Φ 1 (w, t, τ, z) = Φ(w, t, τ, z) + O((z, τ ) 2 ) such that Φ * 1 ω = ω 0 on a neighborhood U ′ 1 of Σ ′ .
In particular, the differential of Φ 1 at (w, t, 0, 0) coincides with the differential of Φ.

Finally, the following lemma concludes the proof of Theorem 1.3.

Lemma 2.8. The Hamiltonian H = H • Φ 1 has the following Taylor expansion:

H(w, t, τ, x, ξ) = ∂ 2 τ H(w, t, 0)τ, τ + s j=1 β j (w, t)(ξ 2 j + x 2 j ) + O((τ, x, ξ) 3 ).
Proof. Let us compute the differential (and Hessian) of

H(q, p) = d k,ℓ=1 g kℓ (q)(p k -A k (q))(p ℓ -A ℓ (q))
at a point (q, A(q)) ∈ Σ. First, (2.5)

∇ (q,p) H •(Q, P ) = d k,ℓ=1 2g kℓ (q)(p k -A k (q))(P ℓ -∇ q A ℓ •Q)+(p k -A k (q))(p ℓ -A ℓ (q))∇ q g •Q,
and at p = A(q) the Hessian is:

(2.6) ∇ 2 j(q) H • (Q, P ), (Q ′ , P ′ ) = 2 d k,ℓ=1 g kℓ (q)(P k -∇ q A k • Q)(P ′ ℓ -∇ q A ℓ • Q ′ ).
We can deduce a Taylor expansion of H(w, t, τ, z) with respect to (τ, z) (with fixed (q, A(q)) = j • ϕ(w, t)). First, H(w, t, 0, 0) = H(q, A(q)) = 0 .

Then we can compute the (partial) differential:

∂ τ,z H(w, t, 0, 0) • (W, T ) = ∇ j(q) H • ∂ τ,z Φ 1 (w, t, 0, 0) • (W, T ) = ∇ j(q) H • d(j • ϕ)(W, T ) = 0 , because d(j • ϕ)(W, T ) ∈ T j(q) Σ.
The Taylor expansion of H is thus:

H(w, t, τ, z) = 1 2 ∂ 2 τ,z H(w, t, 0) • (τ, z), (τ, z) + O((τ, z) 3 ) ,
where ∂ 2 τ,z H is the partial Hessian with respect to (τ, z). We have

∂ 2 τ,z H = (∂ (τ,z) Φ 1 ) T • ∇ 2 j(q) H • (∂ (τ,z) Φ 1 ) ,
and computing the Hessian matrix amounts to compute ∇ 2 j(q) H on the vectors g j , f j , and

f ′ j . If (Q, P ) ∈ T j(q) Σ ⊥ , then P = (∇ q A) ⊥ • Q so that, with (2.6), 1 2 ∇ 2 j(q) H((Q, P ), (Q ′ , P ′ )) = d k,ℓ,i,j=1 g kℓ (q)(∂ k A j Q j -∂ j A k Q j )(∂ ℓ A i Q ′ i -∂ i A ℓ Q ′ i ) = k,ℓ,i,j g kℓ (q)B kj Q j B ℓi Q ′ i .
But k g kℓ B kj = B ℓj so

1 2 ∇ 2 j(q) H((Q, P ), (Q ′ , P ′ )) = i,j,ℓ B ℓi (B ℓj Q j )Q ′ i = B(B • Q, Q ′ ).
In the special case (Q, P ) = f j we have

1 2 ∇ 2 j(q) H(f i , f j ) = 1 β i β j B(Bu i , u j ) = 1 β i β j g(Bu i , Bu j ) = β i β j g(v i , v j ) = β i β j δ ij .
and similarily

1 2 ∇ 2 j(q) H(f ′ i , f ′ j ) = β i β j δ ij , 1 2 ∇ 2 j(q) H(f i , f ′ j ) = 0 .
Finally, it remains to prove:

(2.7)

∇ 2 j(q) H(g i , f j ) = ∇ 2 j(q) H(g i , f ′ j ) = 0,
to conclude that the Hessian of H is

∂ 2 τ,z H(w, t, 0, 0) =          ∂ 2 τ H(w, t, 0, 0) β 1 β 1 . . . β s β s          .
Actually, (2.7) follows from

(2.8) L ⊂ F ⊥ = T Σ ⊥ ⊥H ,
where ⊥ H denotes the orthogonal with respect to the quadratic form ∇ 2 H (which is different from the symplectic orthogonal ⊥). Indeed, to prove (2.8) note that:

(Q, P ) ∈ (T Σ ⊥ ) ⊥H ⇐⇒ ∀Q ′ ∈ R d , ∇ 2 H((Q, P ), (Q ′ , (∇ q A) T • Q ′ ) = 0 ⇐⇒ ∀Q ′ ∈ R d , k,ℓ,j g kℓ (P k -∇ q A k • Q)B ℓj Q ′ j = 0 ⇐⇒ ∀Q ′ ∈ R d , k,j (P k -∇ q A k • Q)B kj Q ′ j = 0 ⇐⇒ ∀Q ′ ∈ R d , P -∇ q A • Q, BQ ′ = 0 ⇐⇒ ∀Q ′ ∈ R d , P, BQ ′ -Q, (∇ q A) T • BQ ′ = 0 ⇐⇒ ∀Q ′ ∈ R d , ω((Q, P ), (BQ ′ , (∇ q A) T • BQ ′ )) = 0,
and we have

F = {(V, (∇ q A) T V ); V ∈ vect(u 1 , v 1 , • • • u s , v s )} = {(BQ, (∇ q A) T BQ); Q ∈ R d },
because the vectors u j , v j span the range of B. Hence we have

(Q, P ) ∈ (T Σ ⊥ ) ⊥H ⇐⇒ (Q, P ) ∈ F ⊥ .
3 -Construction of the normal form N

-Formal series

Denote by

U = U ′ 1 ∩ {x = ξ = 0 , τ = 0} ⊂ R 2s+k (w,t) × {0}. We construct the Birkhoff normal form in the space E 1 = C ∞ (U )[[x, ξ, τ, ]] .
It is a space of formal series in (x, ξ, τ, ) with (w, t)-dependent coefficients. We see these formal series as Taylor series of symbols, which we quantify using the Weyl quantization. Given a -pseudodifferential operator A = Op w a (with symbol a admitting an expansion in powers of in some standard class), we denote by [a ] or σ T (A ) the Taylor series of a with respect to (x, ξ, τ ) at (x, ξ, τ ) = 0. Conversely, given a formal series ρ ∈ E 1 , we can find a bounded symbol a such that [a ] = ρ. This symbol is not uniquely defined, but any two such symbols differ by O((x, ξ, ) ∞ ), uniformly with respect to (w, t) ∈ U .

Remark 3.1. We prove below that the eigenfunctions of L are microlocalized where (w, t) ∈ U and |(x, ξ)| 1/2 , so that the remainders O((x, ξ, ) ∞ ) are negligible.

• In order to make operations on Taylor series compatible with the Weyl quantization, we endow E 1 with the Weyl product ⋆, defined by Op w (a)Op w (b) = Op w (a ⋆ b). This product satisfies:

a 1 ⋆ a 2 = N k=0 1 k! 2i k a 1 (w, t, τ, z)a 2 (w ′ , t ′ , τ ′ , z ′ )| w ′ =w,t ′ =t,τ ′ =τ,z ′ =z + O( N ) where = s j=1 ∂ η j ∂ y ′ j -∂ y j ∂ η ′ j + s j=1 ∂ ξ j ∂ x ′ j -∂ x j ∂ ξ ′ j + k j=1 ∂ τ j ∂ t ′ j -∂ t j ∂ τ ′ j .
• The degree of a monomial is

deg(x α ξ α ′ τ α ′′ ℓ ) = |α| + |α ′ | + |α ′′ | + 2ℓ .
We denote by D N the C ∞ (U )-module spanned by monomials of degree N , and O N the C ∞ (U )-module of formal series with valuation ≥ N . It satisfies

O N 1 ⋆ O N 2 ⊂ O N 1 +N 2 .
We denote commutators by

[ρ 1 , ρ 2 ] = ad ρ 1 ρ 2 = ρ 1 ⋆ ρ 2 -ρ 2 ⋆ ρ 1 .
We have the formula

[ρ 1 , ρ 2 ] = 2 sinh 2i δ ρ 1 ρ 2 .
In particular

∀ρ 1 ∈ O N 1 , ∀ρ 2 ∈ O N 2 , i [ρ 1 , ρ 2 ] ∈ O N 1 +N 2 -2 ,
and i [ρ 1 , ρ 2 ] = {ρ 1 , ρ 2 } + O( 2 )
. The Birkhoff normal form algorithm is based on the following lemma.

Lemma 3.2. For 1 ≤ j ≤ s, denote z j = x j + iξ j and

|z j | 2 = x 2 j + ξ 2 j . (1) Every series ρ ∈ E 1 satisfies i ad |z j | 2 ρ = {|z j | 2 , ρ} .
(

) Let 0 ≤ N < r 1 . For every R N ∈ D N , there exist ρ N , K N ∈ D N such that R N = K N + s j=1 β j (w, t) i ad |z j | 2 ρ N , 2 
and

[K N , |z j | 2 ] = 0 for 1 ≤ j ≤ s. (3) If K ∈ E 1 , then [K, |z j | 2 ] = 0 for all 1 ≤ j ≤ s if and only if there exist a formal series F ∈ C ∞ (U )[[I 1 , • • • , I s , τ, ]] such that K = F (|z 1 | 2 , • • • , |z s | 2 , τ, ) .
Proof. The first statement is a simple computation. For the second and the third, it suffices to consider monomials R N = c(w, t)z α zα ′ τ α ′′ ℓ . Note that:

ad |z j | 2 (c(w, t)z α zα ′ τ α ′′ ℓ ) = (α ′ j -α j )c(w, t)z α zα ′ τ α ′′ ℓ
, so that R N commutes with every |z j | 2 (1 ≤ j ≤ s) if and only if α = α ′ , which amounts to say that R N is a function of |z j | 2 and proves (3). Moreover,

j β j ad |z j | 2 (z α zα ′ τ α ′′ ℓ ) = α ′ -α, β z α zα ′ τ α ′′ ℓ ,
where γ, β = s j=1 γ j β j (w, t). Under the assumption |α| + |α ′ | + |α ′′ | + 2ℓ < r 1 , we have |αα ′ | < r 1 and by definition of r 1 the function α ′α, β(w, t) cannot vanish for (w, t) ∈ U , unless α = α ′ . If α = α ′ , we chose ρ N = 0 and R N = K N commutes with |z j | 2 . If α = α ′ , we chose K N = 0 and

ρ N = c(w, t) α ′ -α, β z α zα ′ τ α ′′ ℓ ,
and this proves (2).

-Formal Birkhoff normal form

In this section we construct the Birkhoff normal form at a formal level. We will work with the Taylor series of the symbol H of L , in the new coordinates Φ 1 . According to Theorem 1.3, H = H • Φ 1 defines a formal series

[ H] = H 2 + k≥3 H k , where H k ∈ D k and (3.1) H 2 = M (w, t)τ, τ + s j=1 β j (w, t)|z j | 2 .
At a formal level, the normal form can be stated as follows.

Theorem 3.3. For every γ ∈ O 3 , there are κ, ρ ∈ O 3 such that:

e i ad ρ (H 2 + γ) = H 2 + κ + O r 1 ,
where κ is a function of harmonic oscillators:

κ = F (|z 1 | 2 , • • • , |z s | 2 , τ, ) with some F ∈ C ∞ (U )[[I 1 , • • • , I s , τ, ]]
. Moreover, if γ has real-valued coefficients, then ρ, κ and the remainder O r 1 as well.

Proof. We prove this by induction on an integer N ≥ 3. Assume that we found

ρ N -1 , K 3 , • • • , K N -1 ∈ O 3 with [K i , |z j | 2 ] = 0 for every (i, j) and K i ∈ D i such that e i ad ρ N-1 (H 2 + γ) = H 2 + K 3 + • • • + K N -1 + O N .
Rewritting the remainder as R N + O N +1 with R N ∈ D N we have:

e i ad ρ N-1 (H 2 + γ) = H 2 + K 3 + • • • + K N -1 + R N + O N +1 .
We are looking for a ρ ′ ∈ O N . For such a ρ ′ we apply e i ad ρ ′ :

e i ad ρ N-1 +ρ ′ (H 2 + γ) = e i ad ρ ′ (H 2 + K 3 + • • • + K N -1 + R N + O N +1 ). Since i ad ρ ′ : O k → O k+N -2 we have: (3.2) e i ad ρ N-1 +ρ ′ (H 2 + γ) = H 2 + K 3 + • • • + K N -1 + R N + i ad ρ ′ (H 2 ) + O N +1 .
The new term i ad ρ ′ (H 2 ) = -i ad H 2 (ρ ′ ) can still be simplified. Indeed by (3.1),

(3.3) i ad H 2 (ρ ′ ) = i M (w, t)τ, τ , ρ ′ + s j=1 β j i |z j | 2 , ρ ′ + |z j | 2 i β j , ρ ′ , with : i β j , ρ ′ = s i=1 ∂ βj ∂y i ∂ρ ′ ∂η i - ∂ βj ∂η i ∂ρ ′ ∂y i + k i=1 ∂ βj ∂t i ∂ρ ′ ∂τ i + O N -1 = O N -1 ,
because a derivation with respect to (y, η, t) does not reduce the degree. Similarily,

i M (w, t)τ, τ , ρ ′ = k j=1 ∂ t j M (w, t)τ, τ ∂ρ ′ ∂τ j - ∂ M (w, t)τ, τ ∂τ j ∂ρ ′ ∂t j + O N +1 = O N +1
and thus (3.3) becomes :

i ad H 2 (ρ ′ ) = s j=1 βj i ad |z j | 2 (ρ ′ ) + O N +1 .
Using this formula in (3.2) we get

e i ad ρ N-1 +ρ ′ (H 2 + γ) = H 2 + K 3 + • • • + K N -1 + R N - s j=1 βj i ad |z j | 2 (ρ ′ ) + O N +1 .
Thus, we are looking for K N , ρ ′ ∈ D N such that

R N = K N + s j=1 βj i ad |z j | 2 (ρ ′ ),
with [K N , |z j | 2 ] = 0. By Lemma 3.2, we can solve this equation provided N < r 1 , and this concludes the proof. Moreover, i ad |z j | 2 is a real endomorphism, so we can solve this equation on R.

-Quantizing the normal form

In this section we construct the normal form N , quantizing Theorems 1.3 and 3.3. We denote by I (j) the harmonic oscillator with respect to x j , defined by:

I (j) = Op w (ξ 2 j + x 2 j ) = -2 ∂ 2 ∂x 2 j + x 2 j .
N is a function of the harmonic oscillators I (j) (1 ≤ j ≤ s), depending on parameters (y, η, t, τ ). More precisely, we prove the following theorem.

Theorem 3.4. There exist:

(1) A microlocaly unitary operator U :

L 2 (R d x,y,t ) → L 2 (M ), quantifying a symplecto- morphism Φ1 = Φ 1 + O((x, ξ, τ ) 2 ), microlocally on U ′ 1 × U 1 . (2) a function f ⋆ 1 : R 2s+2k y,η,t,τ × R s I × [0, 1] which is C ∞ with compact support such that f ⋆ 1 (y, η, t, τ, I, ) ≤ C (|I| + ) 2 + |τ |(|I| + ) + |τ | 3 , (3) A -pseudodifferential operator R , whose symbol is O((x, ξ, τ, 1/2 ) r 1 ) on U ′ 1 , such that U * L U = N + R , with N = Op w M (w, t)τ, τ + s j=1 I (j) Op w β j (w, t) + Op w f ⋆ 1 (y, η, t, τ, I (j) , • • • , I (s) , ) .
Remark 3.5. U is a Fourier integral operator quantizing the symplectomorphism Φ1 (See [START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF][START_REF] Zworski | Semiclassical Analysis[END_REF]). In particular, if A is a pseudodifferential operator on M with symbol a = a 0 + O( 2 ), then U * A U is a pseudodifferential operator on R d with symbol

σ = a 0 • Φ1 + O( 2 ) on U ′ 1 .
Remark 3.6. Due to the parameters (y, η, t, τ ) in the formal normal form, an additional quantization is needed, hence the Op w f ⋆ 1 term. It is a quantization with respect to (y, η, t, τ ) of an operator-valued symbol f ⋆ 1 (y, η, t, τ, I (1) , • • • , I (s) ). Actually, this operator-symbol is simple since one can diagonalize it explicitly. Denoting by h j n j (x j ) the n j -th eigenfunction of I (j) , associated to the eigenvalue (2n j -1) , we have for n ∈ N s :

f ⋆ 1 (y, η, t, τ, I (1) , • • • , I (s) , )h n (x) = f ⋆ 1 (y, η, τ, (2n -1) , )h n (x) , where h n (x) = h 1 n 1 (x 1 ) • • • h s ns (x s ). Thus the operator Op w f ⋆ 1 satisfies for u ∈ L 2 (R s+k (y,t) ), (Op w f ⋆ 1 )u ⊗ h n = (Op w f ⋆ 1 (y, η, t, τ, (2n -1) , )u) ⊗ h n . Proof.
In order to prove Theorem 3.4, we first quantize Theorem 1.3. Using the Egorov Theorem, there exists a microlocally unitary operator V :

L 2 (R d ) → L 2 (M ) quantizing the symplectomorphism Φ 1 : U ′ 1 → U 1 . Thus, V * L V = Op w (σ ) ,
for some symbol σ such that

σ = H + O( 2 ), on U ′ 1 .
Then we use the following Lemma to quantize the formal normal form and conclude. Lemma 3.7. There exists a bounded pseudodifferential operator Q with compactly supported symbol such that

e i Q Op w (σ )e -i Q = N + R ,
where N and R satisfy the properties stated in Theorem 3.4.

Remark 3.8. As explained below, the principal symbol

Q of Q is O((x, ξ, τ ) 3
). Thus, the symplectic flow ϕ t associated to the Hamiltonian Q is ϕ t (x, ξ, τ ) = (x, ξ, τ ) + O((x, ξ, τ ) 2 ). Moreover, the Egorov Theorem implies that e -i Q quantizes the symplectomorphism ϕ 1 . Hence, V e -i Q quantizes the composed symplectomorphism

Φ1 = Φ 1 •ϕ 1 = Φ 1 +O((x, ξ, τ ) 2 ).
Proof. The proof of this lemma follows the exact same lines as in the case k = 0 ([36] Theorem 4.1). Let us recall the main arguments. The symbol σ is equal to H + O( 2 ) on U ′ 1 . Thus, its associated formal series is [σ ] = H 2 + γ for some γ ∈ O 3 . Using the Birkhoff normal form algorithm (Theorem 3.3), we get κ, ρ ∈ O 3 such that

e i adρ (H 2 + γ) = H 2 + κ + O r 1 .
If Q is a smooth compactly supported symbol with Taylor series [Q ] = ρ, then by the Egorov Theorem the operator

(3.4) e i -1 Op w Q Op w (σ )e -i -1 Op w Q
has a symbol with Taylor series H 2 + κ + O r 1 . Since κ commutes with the oscillator |z j | 2 , it can be written as

κ = 2|α|+|α ′ |+2ℓ≥3 c αα ′ ℓ (w, t)|z 1 | 2α 1 • • • |z s | 2αs τ α ′ 1 1 • • • τ α ′ k k ℓ .
We can reorder this formal series using the monomials

(|z j | 2 ) ⋆α j = |z j | 2 ⋆ • • • ⋆ |z j | 2 : κ = 2|α|+|α ′ |+2ℓ≥3 c ⋆ αα ′ ℓ (w, t)(|z 1 | 2 ) ⋆α 1 • • • (|z s | 2 ) ⋆αs τ α ′ 1 1 • • • τ α ′ k k ℓ .
If f ⋆ 1 is a smooth compactly supported function with Taylor series

[f ⋆ 1 ] = 2|α|+|α ′ |+2ℓ≥3 c ⋆ αα ′ ℓ (w, t)I α 1 1 • • • I αs s τ α ′ 1 1 • • • τ α ′ k k ℓ ,
then the operator (3.4) is equal to

Op w H 2 + Op w f ⋆ 1 (y, η, t, τ, I (1) , • • • , I (s) , ) modulo O r 1 .
4 -Comparing the spectra of L and N

-Spectrum of N

In this section we describe the spectral properties of N . Since it is a function of harmonic oscillators, we can diagonalize this operator in the following way. For 1 ≤ j ≤ s and n j ≥ 1, we recall that the n j -th Hermite function h j n j (x j ) is an eigenfunction of I (j) :

I (j) h j n j = (2n j -1)h j n j .
Hence, the functions (h n ) n∈N s defined by

h n (x) = h 1 n 1 ⊗ • • • ⊗ h s ns (x) = h 1 n 1 (x 1 ) • • • h s ns (x s ) form a Hilbertian basis of L 2 (R s x )
. Thus, we can use this basis to decompose the space L 2 (R 2s+k

x,y,t ) on which N acts :

L 2 (R 2s+k ) = n∈N s L 2 (R s+k y,t ) ⊗ h n .
As a function of the harmonic oscillators, N preserves this decomposition, and

N = n∈N s N [n] ,
where N [n] is the pseudodifferential operator with symbol (4.1)

N [n] = M (w, t)τ, τ + s j=1
β j (w, t)(2n j + 1) + f ⋆ 1 (w, t, τ, (2n -1) , ) .

In particular, the spectrum of N is given by

sp(N ) = n∈N s sp(N [n] ) .
Moreover, as in the k = 0 case, for any b 1 > 0 there is a

N max > 0 (independent of ) such that sp(N ) ∩ (-∞, b 1 ) = |n|≤Nmax sp(N [n] ) ∩ (-∞, b 1 ) .
The reason is that the symbol N [n] is greater than b 1 for n large enough. Finally, to prove our main theorem 1.6 it remains to compare the spectra of L and N .

-Microlocalization of the eigenfunctions

In this section we prove microlocalization results for the eigenfunctions of L and N . These results are needed to show that the remainders O((x, ξ, τ ) r 1 ) we got are small. More precisely, for each operator we need to prove that the eigenfunctions are microlocalized:

• inside Ω (space localization),

• where |(x, ξ, τ )| δ for δ ∈ (0, 1 2 ) (i.e. close to Σ). Fix b1 such that 

K b1 = {q ∈ M , b(q) ≤ b1 } ⊂⊂ Ω .
ψ = χ 0 ψ + O( ∞ ) , where the O( ∞ ) is independant of (λ , ψ ).
Proof. This follows from the Agmon estimates, (4.2)

e d(q,K b1 ) -1/4 ψ ≤ C ψ 2 ,
as in the k = 0 case (in [START_REF] Morin | A semiclassical birkhoff normal form for symplectic magnetic wells[END_REF]). Indeed, from (4.2) we deduce

(1 -χ 0 )ψ ≤ Ce -ε -1/4 ψ ,
as soon as χ 0 = 1 on a ε-neighborhood of K b1 . 

ψ = Op w χ 1 ( -δ (q, p))ψ + O( ∞ )ψ , where the O( ∞ ) is in L(L 2 , L 2 ) and independant of (λ , ψ ). Proof. Let g ∈ C ∞ 0 (R) be such that g (λ) = 1 si λ ≤ b 1 , 0 si λ ≥ b1 .
Then the eigenfunction ψ satisfies ψ = g (λ )ψ = g (L )ψ .

Denoting χ = 1χ 1 , we will prove that

(4.3) Op w χ( -δ (q, p))g (L ) L(L 2 ,L 2 ) = O( ∞ ),
from which will follow ψ = Op w χ 1 ( -δ (q, p))ψ + O( ∞ )ψ , uniformly with respect to (λ , ψ ).

To lighten the notations, we define χ w := Op w χ( -δ (q, p)). For every ψ ∈ L 2 (M ) we define ϕ = g (L )ψ. Then, (4.4) L χ w ϕ, χ w ϕ = χ w L ϕ, χ w ϕ + L , χ w ϕ, χ w ϕ .

We will bound from above the right-hand side, and from below the left-hand side. First, since g (λ) is supported where λ ≤ b1 we have, (4.5)

χ w L ϕ, χ w ϕ ≤ b1 χ w ϕ 2 .
Moreover, the commutator L , χ w is a pseudodifferential operator of order , with symbol supported on suppχ. Hence, if χ is a cutoff function having the same general properties of χ, such that χ = 1 on suppχ, we have:

(4.6) L , χ w ϕ, χ w ϕ ≤ C χ w ϕ χ w ϕ .
Finally, the symbol of χ w is equal to 0 on a δ -neighborhood of Σ ; and thus the symbol |p -A(q)| 2 of L is ≥ c 2δ on the support of χ w . Hence the Gårding inequality yield

(4.7) L χ w ϕ, χ w ϕ ≥ c 2δ χ w ϕ 2 .
Using this last inequality in (4.4), and bounding the right-hand side with (4.5) and (4.6) we get to c 2δ χ w ϕ 2 ≤ b1 χ w ϕ 2 + C χ w ϕ χ w ϕ , and we deduce that χ w ϕ ≤ C 1-2δ χ w ϕ .

Iterating with χ instead of χ, we finally get for arbitrarily large N > 0,

χ w ϕ ≤ C N N ϕ .
This is true for every ψ, with ϕ = g (L )ψ and thus χ w g (L ) = O( ∞ ).

Lemma 4.3 (Microlocalization near Σ for N ). Let δ ∈ (0, 1 2 ), b 1 ∈ (b 0 , b1 ) and χ 1 ∈ C ∞ 0 (R 2s+k
x,ξ,τ ) be a cutoff function equal to 1 on a neighborhood of 0. Then every eigenfunction ψ of N associated with an eigenvalue λ ≤ b 1 satisfies:

ψ = Op w χ 1 ( -δ (x, ξ, τ )) + O( ∞ )ψ , where the O( ∞ ) is in L(L 2 , L 2
) and independant of (λ , ψ ).

Proof. Just as in the previous Lemma, it is enough to show that

χ w g (N ) = O( ∞ )
where χ w = Op w (1-χ 1 )( -δ (x, ξ, τ )). We prove this using the same method.

If ψ ∈ L 2 (R d ) and ϕ = g (N )ψ , (4.8) N χ w ϕ, χ w ϕ = χ w N ϕ, χ w ϕ + N , χ w ϕ, χ w ϕ .
One can bound the right-hand side from above as before, and found ε > 0 such that (4.9)

N χ w ϕ, χ w ϕ ≥ (1 -ε) H 2 χ w ϕ, χ w ϕ , with H 2 = Op w M (w, t)τ, τ + β j (w, t)|z j | 2 .
The symbol of χ w vanishes on a δneighborhood of x = ξ = τ = 0. Thus we can bound from below the symbol of H 2 and use the Gårding inequality:

H 2 χ w ϕ, χ w ϕ ≥ c 2δ χ w ϕ 2 .
We conclude the proof as in Lemma 4.2.

Lemma 4.4 (Space localization for N ). Let b 1 ∈ (b 0 , b1 ) and χ 0 ∈ C ∞ 0 (R 2s+k y,η,t ) be a cutoff function equal to 1 on a neighborhood of { b(y, η, t) ≤ b1 }. Then every eigenfunction ψ of N associated with an eigenvalue λ ≤ b 1 satisfies:

ψ = Op w χ 0 (w, t)ψ + O( ∞ )ψ , where the O( ∞ ) is in L(L 2 , L 2 ) and independent of (λ , ψ ).
Proof. Every eigenfunction of N is given by ψ (x, y, t) = u (y, t)h n (x) for some Hermite function h n with |n| ≤ N max and some eigenfunction u of N [n] . Thus, it is enough to prove the lemma for the eigenfunctions of N [n] . If u is such an eigenfunction, associated with an eigenvalue λ ≤ b 1 , then

u = g (N [n] )u .
We will prove that χ w g (N

[n] ) = O( ∞ ) , with χ w = Op w (1 -χ 0 ), which is enough to conclude. If u ∈ L 2 (R k+s y,t ) and ϕ = g (N [n] )u, then (4.10) N [n] χ w ϕ, χ w ϕ = χ w N [n] ϕ, χ w ϕ + N [n] , χ w ϕ, χ w ϕ .
On the first hand we have the bound

(4.11) χ w N [n] ϕ, χ w ϕ ≤ b1 χ w ϕ 2 .
On the other hand, the commutator N [n] , χ w is a pseudodifferential operator of order with symbol supported on suppχ. Moreover, its principal symbol is {N [n] , χ}. From the definition of N [n] we deduce

N [n] , χ w ϕ, χ w ϕ ≤ (1 + C ) χ w |τ | w ϕ, χ w ϕ ,
where χ has the same general properties as χ, and is equal to 1 on suppχ. By Lemma 4.3, we can had a cutoff where |τ | δ and we get (4.12)

N [n] , χ w ϕ, χ w ϕ ≤ C 1+δ χ w ϕ χ w ϕ .
Finally for ε > 0 small enough we have the lower bound

N [n] χ w ϕ, χ w ϕ ≥ ( b1 + ε) χ w ϕ 2 ,
because N

[n] (w, t) ≥ b(w, t) and χ vanishes on a neighborhood of { b(w, t) ≤ b1 }. Using this lower bound in (4.10), and bounding the right-hand side with (4.11) and (4.12) we get (4.13)

( b1 + ε) χ w ϕ 2 ≤ b1 χ w ϕ 2 + C 1+δ χ w ϕ χ w ϕ .
Thus ε χ w ϕ ≤ C δ χ w ϕ , and we can iterate with χ instead of χ to conclude.

-Proof of Theorem 1.6

To conclude the proof of Theorem 1.6, it remains to show that

λ n (L ) = λ n (N ) + O( r 1 /2-κ ) uniformly with respect to n ∈ [1, N max ] with N max = max{n ∈ N, λ n (L ) ≤ b 1 } .
Here λ n (A) denotes the n-th eigenvalue of the self-adjoint operator A, repeated with multiplicities.

Lemma 4.5. One has

λ n (L ) = λ n (N ) + O( r 1 2 -ε ) uniformly with respect to n ∈ [1, N max ].
Proof. Let us focus on the "≤" inequality. For n ∈ [1, N max ], denote by ψ n the normalized eigenfunction of N associated with λ n (N ), and

ϕ n = U ψ n .
We will use ϕ n as quasimode for L . Let N ∈ [1, N max ] and

V N = span{ϕ n ; 1 ≤ n ≤ N } .
For ϕ ∈ V N we use the notation ψ = U -1 ϕ. By Theorem 3.4, we have

(4.14) L ϕ, ϕ = N ψ, ψ + R ψ, ψ ≤ λ N (N ) ψ 2 + R ψ, ψ .
According to lemmas 4.3 and 4.4, ψ is microlocalized where

|(x, ξ, τ )| ≤ δ and (w, t) ∈ { b(w, t) ≤ b1 } ⊂ U . But the symbol of R is such that R = O((x, ξ, τ, 1/2 ) r 1 ) for (w, t) ∈ U , so: (4.15) R ψ, ψ = O( δr 1 ) = O( r 1 
2 -ε ), for suitable δ ∈ (0, 1 2 ). By (4.14) and (4.15) we have

L ϕ, ϕ ≤ (λ N (L ) + C r 1 2 -ε ) ϕ 2 , ∀ϕ ∈ V N .
Then φ * ω 0 = ω 0 + O(τ ). Using the Darboux-Weinstein Theorem B.2, we can make φ symplectic on a neighborhood of 0, up to a change of order O(τ 2 ). In these new variables, the symbol Ñ := N [1] • φ-1 is:

Ñ = M w + O(τ ), t + s( w + O(τ )) τ , τ + b ỹ + O(τ ), η + O(τ ), s(ỹ, η) + t + O(τ ) + O( 2 ) + O( τ ) + O(τ 3 ) = M ( w, t + s( w))τ , τ + b ỹ, η, s(ỹ, η) + t + O( 2 ) + O( τ ) + O(τ 3 ).
Then we remove the tildes and we expand this symbol in powers of t, τ , . We get

Ñ = M (w, s(w))τ, τ + b(w, s(w)) + 2 ∂ 2 t b(w, s(w))t, t + O(|t| 3 ) + O( 2 ) + O( |τ |) + O(|τ | 3 ) + O(|t||τ | 2 ).
Now, we want to coreduce the positive quadratic forms M (w, s(w)) and

1 2 ∂ 2 t b [w, s(w)].
The reduction of quadratic forms in orthonormal coordinates implies that there exists a matrix P (w) such that:

t P M -1 P = I, and t P 1 2 ∂ 2 t b P = diag(ν 2 1 , ..., ν 2 k ).
We define the new coordinates (

         ť = P (w) -1 t τ = t P (w)τ y = y + t [∇ η (P -1 t)]. t P τ η = η -t [∇ y (P -1 t)]. t P τ, so that φ * ω 0 -ω 0 = O(|t| 2 + |τ |) y, η, ť, τ ) = φ(y, η, t, τ ) by: 
. Again, we can make it symplectic up to a change of order O(|t| 3 + |τ | 2 ) by Weinstein Lemma B.2. In these new variables, the symbol becomes (after removing the "checks"):

Ň = b(w, s(w)) + k j=1 τ 2 j + ν j (w) 2 t 2 j + O(|t| 3 |τ | 2 ) + O(|t| 3 ) + O( 2 ) + O( |τ |) + O(|τ | 3 ) + O(|t||τ | 2 ).
The last change of coordinates (ŷ, η, t, τ ) = φ(y, η, t, τ ) defined by:

         tj = ν j (w) 1/2 t j τj = ν j (w) -1/2 τ j ŷj = y j + k i=1 ν -1/2 i τ i ∂ η j ν 1/2 i t i η = η -k i=1 ν -1/2 i τ i ∂ y j ν 1/2 i t i ,
is such that φ * ω 0 = ω 0 + O(τ ), so it can be corrected modulo O(|τ | 2 ) to be symplectic, and we get the new symbol:

N = b(w, s(w)) + k j=1 ν j (w) τ 2 j + t 2 j + O(|t| 3 |τ | 2 ) + O(|t| 3 ) + O( 2 ) + O( |τ |) + O(|τ | 3 ) + O(|t||τ | 2 ).
and Lemma 5.1 is proved.

-Formal second normal form

The harmonic oscillators occuring in N are

J (j) = Op w h ( -1 τ 2 j + t 2 j ), 1 ≤ j ≤ k. If we denote h = √ ,
the symbol of J (j) for the h-quantization is τ 2 j + t 2 j . This is why we use the following mixed quantization:

Op w ♯ (a)u(y 0 , t 0 ) = 1 (2π ) n-k (2π √ ) k e i y 0 -y,η e i √ t 0 -t,τ a( √ , y, η, t, τ )dydηdtdτ .
It is related to the -quantization by the relation

τ = hτ , h = √ .
In other words, if a is a symbol in some standard class S(m), and if we denote:

a(h, y, η, t, τ ) = a(h 2 , y, η, t, hτ ), then we have: Op w ♯ (a) = Op w h (a). However, if we take a ∈ S(m), then Op w ♯ (a) is not necessarily a -pseudodifferential operator, since the associated a may not be bounded with respect to , and though it does not belong to any standard class. For instance, we have:

∂ τ a = 1 √ ∂ τ a.
But still Op w ♯ (a) is a h-pseudodifferential operator, with symbol: a(h, y, η, t, τ ) = a(h, y, hη, t, τ ).

With this notation:

Op w ♯ (a) = Op w h (a). Thus, in this sense, we can use the properties of -pseudodifferential and h-pseudodifferential operators to deal with our mixed quantization.

In our case, we have:

Op w ♯ (N h ) = Op w h ( N ), with N h = h 2 b(w, s(w)) + h 2 k j=1 ν j (w)(τ 2 j + t 2 j ) + O(h 2 |t| 3 ) + O(h 4 ) + O(h 3 |τ |) + O(h 2 |t||τ | 2 ).
Let us construct a semiclassical Birkhoff normal form with respect to this quantization. We will work in the space of formal series

E 2 := C ∞ (R d w )[[t, τ , h]
] endowed with the star product ⋆ adapted to our mixed quantization. In other words

Op w ♯ (a ⋆ b) = Op w ♯ (a)Op w ♯ (b).
The change of variable τ = hτ between the classical quantization and our mixed quantization yields the following formula for the star product:

a ⋆ b = k≥0 1 k! h 2i k A h (∂) k (a(h, y 1 , η 1 , t 1 , τ1 )b(h, y 2 , η 2 , t 2 , τ2 )) |(t 1 ,τ 1 ,y 1 ,η 1 )=(t 2 ,τ 2 ,y 2 ,η 2 ) , (5.2) with A h (∂) = k j=1 ∂ ∂t 1j ∂ ∂ τ2j - ∂ ∂t 2j ∂ ∂ τ1j + h s j=1 ∂ ∂y 1j ∂ ∂η 2j - ∂ ∂y 2j ∂ ∂η 1j
.

The degree function on E 2 is defined by:

deg(t α 1 τ α 2 h ℓ ) = |α 1 | + |α 2 | + 2ℓ.
The degree of a general series depends on w. We denote by D N the subspace spanned by monomials of degree N , and O N the subspace of formal series with valuation at least N on a neighborhood of w = 0. For τ 1 , τ 2 ∈ E 2 , we define

ad τ 1 (τ 2 ) = [τ 1 , τ 2 ] = τ 1 ⋆ τ 2 -τ 2 ⋆ τ 1 . Then, if τ 1 ∈ O N 1 and τ 2 ∈ O N 2 , i h ad τ 1 (τ 2 ) ∈ O N 1 +N 2 -2 .
We denote

N 0 = b(w, s(w)) ∈ D 0 and N 2 = k j=1 ν j (w)|ṽ j | 2 ∈ D 2 ,
with the notation ṽj = t j + iτ j , so that

1 h 2 N h = N 0 + N 2 + O 3 .
Then we can construct the following normal form. Recall that r 2 is an integer chosen such that

∀α ∈ Z k , 0 < |α| < r 2 , s j=1 α j ν j (0) = 0.
Moreover, this non-resonance relation at w = 0 can be extended to a small neighborhood of 0. Proof. We prove this result by induction. Assume that we have, for some N > 0, a τ ∈ O 3 such that

e i h ad τ (N 0 + N 2 + γ) = N 0 + N 2 + K 3 + ... + K N -1 + R N + O N +1 , with R N ∈ D N and K i ∈ D i such that [K i , |ṽ j | 2 ] = 0. We are looking for a τ N ∈ D N . For such a τ N , i h ad τ N : O j → O N +j-2 so: e i h ad τ +τ N (N 0 + N 2 + γ) = N 0 + N 2 + K 3 + ... + K N -1 + R N + i h ad τ N (N 0 + N 2 ) + O N +1 .
Moreover N 0 does not depend on (t, τ ) so the expansion (5.2) yields

i h ad τ N (N 0 ) = h s j=1 ∂τ N ∂y j ∂N 0 ∂η j - ∂τ N ∂η j ∂N 0 ∂y j + O N +6 = O N +2 ,
and thus:

e i h adτ+τ N (N 0 + N 2 + γ) = N 0 + N 2 + K 3 + ... + K N -1 + R N + i h ad τ N (N 2 ) + O N +1 .
So we are looking for τ N , K N ∈ D N solving the equation

R N = K N + i h ad N 2 τ N + O N +1 . (5.4)
To solve this equation, we study the operator i h ad

N 2 : O N → O N . i h ad N 2 (τ N ) = k j=1 ν j (w) i h ad |ṽ j | 2 (τ N ) + i h ad ν j (τ N )|ṽ j | 2 ,
and since ν only depends on w, expansion (5.2) yields:

i h ad ν i (τ N ) = s j=1 h ∂ν i ∂y j ∂τ N ∂η j - ∂ν i ∂η j ∂τ N ∂y j + O N +6 = O N +2 . Hence, i h ad N 2 (τ N ) = k j=1 ν j (w) i h ad |ṽ j | 2 (τ N ) + O N +2 ,
and equation (5.4) becomes:

R N = K N + k j=1 ν j (w) i h ad |ṽ j | 2 (τ N ) + O N +1 . (5.5)
Moreover, i h ad |ṽ j | 2 acts as:

k j=1 ν j (w) i h ad |ṽ j | 2 (v α 1 vα 2 h ℓ ) = ν(w), α 2 -α 1 v α 1 vα 2 h ℓ .
The definition of r 2 ensures that ν(w), α 2α 1 does not vanish on a neighborhood of

w = 0 if N = |α 1 | + |α 2 | + 2ℓ < r 2 and α 1 = α 2 .
Hence we can decompose every R N as in (5.5), where K N contains the terms with α 1 = α 2 . These terms are exactly the ones commuting with |ṽ j | 2 for 1 ≤ j ≤ k.

-Quantized second normal form

Now we can quantize Lemma 5.1 and Lemma 5.2 to prove the following Theorem.

Theorem 5.3. There are :

(1) A unitary operator U 2, :

L 2 (R s+k (y,t) ) → L 2 (R s+k (y,t) ) quantifying a symplectomorphism Φ2 = Φ 2 + O((t, τ ) 2 ) microlocally near 0, (2) A function f ⋆ 2 : R 2s w × R k J × [0, 1) → R which is C ∞ with compact support, such that |f ⋆ 2 (w, J 1 , • • • , J k , √ )| ≤ C(|J| + √ ) 2 , (3) A √ -pseudodifferential operator R 2, with symbol O((t, -1/2 τ, 1/4 ) r 2 ) on a neigh- borhood of 0, such that U * 2, N [1] U 2, = M + R 2, ,
where M is the following -pseudodifferential operator :

M = Op w h b(w, s(w)) + k j=1 J (j) Op w h ν j + Op w h f ⋆ 2 (w, J (1) , • • • , J (k) , √ ).
Proof. Lemma 5.1 gives a symplectomorphism Φ 2 such that:

N [1] • Φ 2 = b(w, s(w)) + k j=1 ν j (w) τ 2 j + t 2 j + O(|t| 3 |τ | 2 ) + O(|t| 3 ) + O( 2 ) + O( |τ |) + O(|τ | 3 ) + O(|t||τ | 2 ).

LÉO MORIN

We can apply the Egorov Theorem to get a Fourier Integral Operator V 2, such that:

V * 2, Op w h (N [1] )V 2, = Op w h ( N ),
with N = N [1] • Φ 2 + O( 2 ). We define N h (y, η, t, τ ) = N (y, η, t, hτ ), and following the notations of Section 5.2, we have the associated formal series:

1 h 2 N h = N 0 + N 2 + γ, γ ∈ O 3 .
We apply Lemma 5.2 and we get formal series κ, ρ such that:

e i h ad ρ (N 0 + N 2 + γ) = N 0 + N 2 + κ + O r 2 .
We take a compactly supported symbol a(h, w, t, τ ) with Taylor series ρ. Then the operator

(5.6) e ih -1 Op w ♯ (a) Op w ♯ (h -2 N h )e -ih -1 Op w ♯ (a)
has a symbol with Taylor series

N 0 + N 2 + κ + O r 2 . Since κ ∈ O 3 commutes with |ṽ j | 2 , it can be written κ = 2|α|+2ℓ≥3 c ⋆ αℓ (w) |ṽ 1 | 2 ⋆α 1 ... |ṽ k | 2 ⋆α k h ℓ .
If we take f ⋆ 2 (h, w, J 1 , ..., J k ) a smooth compactly supported function with Taylor series:

[f ⋆ 2 ] = 2|α|+2ℓ≥3 c ⋆ αℓ (w)J α 1 1 ...J α k k h ℓ ,
then the operator (5.6) is equal to 1) , ..., J

Op w ♯ N 0 + Op w ♯ N 2 + Op w h f ⋆ 2 (h, w, J ( 
k) ) modulo O r 2 . ( 
Multiplying by h 2 , and getting back to the -quantization, we get:

e ih -1 Op w ♯ (a) Op w ( N )e -ih -1 Op w ♯ (a) = M + R , with: M = Op w b(w, s(w)) + k j=1 Op w ν j (w)J (j) + Op w f ⋆ 2 ( √ , w, J (1) 
, ..., J

k) ), ( 
and R a √ -pseudodifferential operator with symbol O r 2 . Note that M is a -pseudodifferential operator whose symbol admits an expansion in powers of √ .

-Proof of Theorem 1.10

In order to prove Theorem 1.10, we need the following microlocalization lemma.

Lemma 5.4. Let δ ∈ (0, 1/2) and c > 0. Let χ 0 ∈ C ∞ 0 (R 2s (y,η) ) and χ 1 ∈ C ∞ 0 (R 2k (t,τ ) ) both equal to 1 on a neighborhood of 0. Then every eigenfunction ψ of N or M associated to an eigenvalue λ ≤ (b 0 + c δ ) satisfies :

ψ = Op w √ χ 0 ( √ -δ (t, τ ))Op w h χ 1 (y, η)ψ + O( ∞ )ψ .
Proof. Using our mixed quantization and h = √ , we have N

[1] = Op w ♯ N [1] h with N [1] h (y, η, t, τ ) = h 2 M (y, η, t)τ , τ + h 2 b(w, t) + f ⋆ 1 (y, η, t, hτ , h 2 ).
The principal part of N [START_REF] Arnold | Proof of a theorem of a.n. kolmogorov on the conservation of quasiperiodic motions under small change of the hamiltonian function[END_REF] h is of order h 2 , and implies a microlocalization of the eigenfunctions where

h 2 M (w, t)τ , τ + h 2 b(w, t) ≤ λ h ≤ h 2 (b 0 + ch 2δ ).
Since b admits a unique and non-degenerate minimum b 0 at 0, this implies that w lies in an arbitrarily small neighborhood of 0, and that :

|t| 2 ≤ Ch 2δ , |τ | 2 ≤ Ch 2δ .
The technical details follow the same ideas of Lemmas 4.2, 4.3 and 4.4. Now we can focus on M whose principal symbol with respect to the Op w ♯ -quantization is

M 0 (y, η, t, τ ) = b(y, η, s(y, η)) + k j=1 ν j (y, η)(τ 2 j + t 2 j ).
Hence its eigenfunctions are microlocalized where b(y, η, s(y, η))

+ k j=1 ν j (y, η)(τ 2 j + t 2 j ) ≤ b 0 + ch 2δ ,
which implies again that w lies in an arbitrarily small neighborhood of 0 and that

|t| 2 ≤ Ch 2δ , |τ | 2 ≤ Ch 2δ .
Using the same method as before, we deduce from Theorem 5.3 and Lemma 5.4 a comparison of the spectra of N [1] and M . With the notation

N max (c, δ) = max{n ∈ N, λ n N [1] ≤ (b 0 + c δ )},
the following lemma concludes the proof of Theorem 1.10.

Lemma 5.5. Let δ ∈ (0, 1/2) and c > 0. We have

λ n (N [1] ) = λ n (M ) + O( 1+δr 2 /2 ), uniformly with respect to n ∈ [1, N max (c, δ)].
Proof. We use the same method as before (see lemma 4.5). The remainder R 2, is O((t, τ , √ ) r 2 ) and the eigenfunctions are microlocalized where |t| + |τ | ≤ C δ/2 . Hence the R 2, term yield an error in 1+δr 2 /2 .

-Proof of Corollary 1.13

In this section we prove that the spectrum of L below b 0 + 3/2 (ν(0) + 2c) is given by the spectrum of M [1] , up to O( r/4-ε ). We recall that c ∈ (0, min j ν j (0)) and r = min(2r 1 , r 2 + 4).

We can apply Theorem 1.6, for b 1 > b 0 arbitrarily close to b 0 . Thus the spectrum of L in (-∞, b 1 ) is given by the spectrum of n∈N s N

[n] modulo O( r 1 /2-ε ) = O( r/4-ε ).
Moreover, the symbol of N

[n] for n = (1, • • • , 1) satisfies N [n] (y, η, t, τ ) ≥ (b 0 + 2 min β j -C ) ,
et we deduce from the Gårding inequality that

N [n] ψ, ψ ≥ b 1 ψ 2 , ∀ψ ∈ L 2 (R s+k ) , if b 1 is close enough to b 0 .
Hence the spectrum of L below b 1 is given by the spectrum of N [1] . Then, we apply Theorem 1.10 for δ close enough to 1/2, and we see that the spectrum of N [1] below (b 0 + δ ) is given by the spectrum of

n∈N k M [n] , modulo O( 1+r 2 /4-ε ) = O( r/4
). The symbol of M [n] for n = 1 satisfies:

M [n] (y, η) ≥ b 0 + 1/2 k j=1 ν j (y, η)(2n j -1) -C ,
and the eigenfunctions of M [n] are microlocalized on an arbitrarily small neighborhood of (y, η) = 0 (Lemma 5.4), and M [n] satisfies on this neighborhood:

M [n] (y, η) ≥ b 0 + 1/2 k j=1 ν j (0)(2n j -1) -1/2 ε -C ≥ b 0 + 1/2 (ν(0) + 2 min j ν j (0) -ε) -C .
Using the Gårding inequality, the spectrum of M

[n] (n = 1) is thus ≥ b 0 + 1/2 (ν(0) + 2c)
for ε and small enough. It follows that the spectrum of N [1] below b 0 + 3/2 (ν(0) + 2c) is given by the spectrum of M [1] .

-Proof of Corollary 1.14

In this section we explain where the asymptotics for λ j (L ) come from (Corollary 1.14). First we can use Corollary 1.13 so that the spectrum of L below b 0 + 3/2 (ν(0) + 2c) is given by M [1] , modulo O( r/4-ε ). But the symbol of M [1] has the following expansion

M [1] (w) = b(w, s(w)) + 1/2 ν(0) + 1/2 ∇ν(0) • w + c0 + O( w + 3/2 + 1/2 w 2 ) , with ν(w) = k j=1 .
The principal part admits a unique minimum at 0, which is nondegenerate. The asymptotics of the first eigenvalues of such an operator are well-known. First one can make a linear change of canonical coordinates diagonalizing the Hessian of b, and get a symbol of the form

M [1] (w) = b 0 + s j=1 µ j η 2 j + y 2 j + 1/2 ν(0)+ 1/2 ∇ν(0)•w+ c0 +O(w 3 + w+ 3/2 + 1/2 w 2 ) .
One can factor the ∇ν(0) • w term to get

M [1] (w) = b 0 + s j=1 µ j η j + ∂ η j ν(0) 2µ j 1/2 2 + y j + ∂ y j ν(0) 2µ j 1/2 2 + 1/2 ν(0) + c 0 + O(w 3 + w + 3/2 + 1/2 w 2 ) ,
with a new c 0 ∈ R. Conjugating Op w M [1] by the unitary operator U ,

U v(x) = exp   i √ s j=1 ∂ η j ν(0) 2µ j y j   v   x - s j=1 ∂ y j ν(0) 2µ j 1/2   ,
amounts to make a phase-space translation and reduces the symbol to

M [1] (w) = b 0 + s j=1
µ j (η 2 j + y 2 j ) + 1/2 ν(0) + c 0 + O(w 3 + w + 3/2 + 1/2 w 2 ).

For an operator with such symbol (i.e. harmonic oscillator + remainders) one can apply the results of [START_REF] Charles | Spectral asymptotics via the semiclassical birkhoff normal form[END_REF] (Thm 4.7) or [START_REF] Helffer | Multiple wells in the semi-classical limit[END_REF], and deduce that the j-th eigenvalue λ j (M [1] ) admits an asymptotic expansion in powers of 1/2 such that λ j (M [1] ) = b 0 + 1/2 ν(0)

+ (c 0 + E j ) + 3/2 ∞ m=0 α j,m m/2
, where E j is the j-th repeated eigenvalue of the harmonic oscillator with symbol s j=1 µ j (η 2 j + y 2 j ).

A -Local coordinates

If we choose local coordinates q = (q 1 , ..., q d ) on M , we get the corresponding vector fields basis (∂ q 1 , ..., ∂ q d ) on T q M , and the dual basis (dq 1 , ..., dq d ) on T q M * . In these basis, g q can be identified with a symmetric matrix (g ij (q)) with determinant |g|, and g * q is associated with the inverse matrix (g ij (q)). We can write the 1-form A and the 2-form B in the coordinates: 

B ij = ∂ i A j -∂ j A i = ( t dA -dA) ij . (A.1)
Let us denote by (B ij (q)) 1≤i,j≤d the matrix of the operator B(q) : T q M → T q M in the basis (∂ q 1 , ..., ∂ q d ). With this notation, equation (1.1) relating B to B can be rewritten:

∀Q, Q ∈ R d , ijk g kj B ki Q i Qj = ij B ij Q i Qj , which means that ∀i, j, B ij = k g kj B ki . (A.2)
Finally, in the coordinates, H is given by: H(q, p) = i,j g ij (q)(p i -A i (q))(p j -A j (q)), (A.3) and L acts as the differential operator:

L coord = d k,l=1
|g| -1/2 (i ∂ k + A k )g kl |g| 1/2 (i ∂ l + A l ). (A.4)

B -Darboux-Weinstein lemmas

We used the following presymplectic Darboux Lemma.

Theorem B.1. Let M be a d-dimensional manifold endowed with a closed constant-rank two form ω. We denote 2s the rank of ω and k the dimension of its kernel. For every q 0 ∈ M , there are a neighborhood V of q 0 , a neighborhood U of 0 ∈ R 2s+k (y,η,t) , and a diffeomorphism: ϕ : U → V, such that ϕ * ω = dη ∧ dy.

We also used the following Weinstein result (see [START_REF] Weinstein | Symplectic manifolds and their lagrangian submanifolds[END_REF]). We follow the proof given in [START_REF] Raymond | Geometry and spectrum in 2d magnetic wells[END_REF]. Proof. First we recall how to find a 1-form σ on a neighborhood of x = 0 such that:

τ := ω 1ω 0 = dσ, and σ = O(|x| α+1 ).

We define the family (φ t ) 0≤t≤1 by: φ t (x, y) = (tx, y).

We have: Let us denote by X t the vector field associated with φ t :

X t = dφ t dt • φ -1 t = t -1 (x, 0).
The Lie derivative of τ along X t is given by φ * t L Xt τ = d dt φ * t τ . From the Cartan formula we have:

L Xt τ = ι(X t )dτ + d(ι(X t )).

Since τ is closed, dτ = 0, and:

d dt φ * t τ = d(φ * t ι(X t )τ ). (B.2)
We choose the following 1-form (where (e j ) denotes the canonical basis of R d ):

σ t := φ * t ι(X t )τ = k j=1
x j τ φt(x,y) (e j , ∇φ t (.)) = O(|x| α+1 ). Then we use the Moser deformation argument. For t ∈ [0, 1], we let ω t = ω 0 + t(ω 1ω 0 ). The 2-form ω t is closed and non degenerate on a small neighborhood of x = 0. We look for ψ t such that: ψ * t ω t = ω 0 .

For that purpose, let us determine the associated vector field Y t :

d dt ψ t = Y t (ψ t ).
The Cartan formula yields: So :

0 = d dt
ω 0 -ω 1 = d(ι(Y t )ω t ),
and we are led to solve:

ι(Y t )ω t = -σ.
By non degeneracy of ω t , this determines Y t . ψ t exists until time t = 1 on a small enough neighborhood of x = 0, and ψ * t ω t = ω 0 . Thus ψ = ψ 1 is the desired diffeomorphism. Since σ = O(|x| α+1 ), we get ψ = Id + O(|x| α+1 ).

C -Pseudodifferential operators

We refer to [START_REF] Zworski | Semiclassical Analysis[END_REF] and [START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF] for the general theory of -pseudodifferential operators. If m ∈ Z, we denote by If M is a compact manifold, a pseudodifferential operator A on L 2 (M ) is an operator acting as a pseudodifferential operator in coordinates. Then the principal symbol of A (and its Kohn-Nirenberg class) does not depend on the coordinates, and we denote it by σ 0 (A ). The subprincipal symbol σ 1 (A ) is also well-defined, up to imposing the charts to be volume-preserving (in other words, if we see A as acting on half-densities, its subprincipal symbol is well defined). In the case where M is a compact manifold, L is a pseudodifferential operator, and its principal and subprincipal symbols are: In this case, we assume that B belongs to some standard class. This is equivalent to assume that H belongs to some (other) standard class. Then, L is a pseudodifferential operator with total symbol H.

S m (R 2d ) = {a ∈ C ∞ (R 2d

Lemma 4 . 1 (

 41 Space localization for L ). Let b 1 ∈ (b 0 , b1 ) and χ ∈ C ∞ 0 (M ) be a cutoff function such that χ = 1 on K b1 . Then every normalized eigenfunction ψ of L associated with an eigenvalue λ ≤ b 1 satisfies:

Lemma 4 . 2 (

 42 Microlocalization near Σ for L ). Let δ ∈ (0, 1 2 ), b 1 ∈ (b 0 , b1 ) and χ 1 ∈ C ∞ (T * M )be a cutoff function equal to one on a neighborhood of Σ. Then every eigenfunction ψ of L associated with an eigenvalue λ ≤ b 1 satisfies:

Lemma 5 . 2 .

 52 For any γ ∈ O 3 , there exist κ, τ ∈ O 3 and ρ ∈ O r 2 such that e i h adτ (N 0 + N 2 + γ) = N 0 + N 2 + κ + ρ, (5.3) and [κ, |ṽ j | 2 ] = 0 for 1 ≤ j ≤ k.

A ≡ A 1

 1 dq 1 + ... + A d dq d , B = i<j B ij dq i ∧ dq j , with A = (A j ) 1≤j≤d ∈ C ∞ (R d , R d ) and

Theorem B. 2 .

 2 Let ω 0 and ω 1 be two 2-forms on R d which are closed and non-degenerate.Let us split R d into R k x × R d-k y .We assume that ω 0 = ω 1 + O(|x| α ), for some α ≥ 1. Then there exists a neighborhood of 0 ∈ R d and a change of coordinates ψ on this neighborhood such that:ψ * ω 1 = ω 0 and ψ = Id + O(|x| α+1 ).

φ * 0 τ = 0 and φ * 1 τ

 1 = τ. (B.1)

Equation (B. 2 ) 1 0

 21 shows that t → φ * t τ is smooth on [0, 1]. Thus, we can define σ = σ t dt. It follows from (B.2) and (B.1) that: d dt φ * t τ = dσ t and τ = dσ.

  ), |∂ α x ∂ β ξ a| ≤ C αβ ξ m-|β| , ∀α, β ∈ N d } the class of Kohn-Nirenberg symbols. If a depends on the semiclassical parameter , we require that the coefficients C αβ are uniform with respect to ∈ (0, 0 ]. For a ∈ S m (R 2d ), we define its associated Weyl quantization Op w (a ) by the oscillatory integral A u(x) = Op w (a )u(x) = 1 (2π ) d R 2d e i x-y,ξ a x + y 2 , ξ u(y)dydξ, and we denote: a = σ (A ).

  σ 0 (L ) = H, σ 1 (L ) = 0.If M = R d and m is an order function on R 2d , we denote byS(m) = {a ∈ C ∞ (R 2d ), |∂ α x ∂ β ξ a| ≤ C αβ m(x, ξ), ∀α, β ∈ N d }the class of standard symbols, and we similarly define the operator Op w (a) for such symbols.

  ψ * t ω t = ψ * t d dt ω t + ι(Y t )dω t + d(ι(Y t )ω t ) .

Since V N is N -dimensional, the minimax principle implies that (4.16) λ

The reversed inequality is proved in the same way: we take the eigenfunctions of L as quasimodes for N , and we use the microlocalization lemma 4.2.

5 -A second normal form in the case k > 0

In the last sections, we reduced the spectrum of L to the spectrum of a normal form

given by the spectrum of N [1] , an -pseudodifferential operator on R s+k (y,t) with symbol (5.1) N [1] = M (y, η, t)τ, τ + b(y, η, t) + f ⋆ 1 (y, η, t, τ, ). In this section, we will construct a Birkhoff normal form again, to reduce the spectrum of N [1] to an effective operator M on R s y . In that purpose, in section 5.1 we will find new canonical variables ( t, τ ) in which N [1] is the perturbation of an harmonic oscillator. In sections 5.2 and 5.3 we will construct the semiclassical Birkhoff normal form M . In section 5.4 we will prove that the spectrum of N [1] is given by the spectrum of M .

In the following, we assume that t → b(w, t) admits a non-degenerate minimum at s(w) for w in a neighborhood of 0, and we denote by

) the eigenvalues of the positive symmetric matrix:

ν 1 , • • • , ν k are smooth non-vanishing functions in a neighborhood of w = 0.

-Symplectic reduction of N [1]

In this section we prove the following Lemma.

Lemma 5.1. There exists a canonical (symplectic) transformation

Proof. We want to expan N [1] near its minimum with respect to the variables v = (t, τ ).

First, from the Taylor expansion of f ⋆ 1 we deduce:

We will Taylor-expan t → b(w, t) on a neighborhood of its minimum point s(w). In that purpose, we define new variables (ỹ, η, t, τ ) = φ(y, η, t, τ ) by:

D -Egorov Theorem

In this paper, we used several versions of the Egorov Theorem. See for example [START_REF] Robert | Autour de l'approximation semi-classique[END_REF], [START_REF] Zworski | Semiclassical Analysis[END_REF], or [START_REF] Helffer | Magnetic wells in dimension three[END_REF].

Theorem D.1. Let P and Q be -pseudodifferential operators on R d , with symbols p ∈ S(m), q ∈ S(m ′ ), where m and m ′ are order functions such that:

Then the operator e i Q P e -i Q is a pseudodifferential operator whose symbol is in S(m), and its symbol is:

, where the canonical transformation κ is the time-1 Hamiltonian flow associated with q.

We can use this result with the √ -quantization, to get an Egorov Theorem for our mixed quantization Op w ♯ .

Theorem D.2. Let P be a h-pseudodifferential operator on R d , and a ∈ C ∞ 0 (R 2d ). Then e