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Time Steps v.s. Cohesion in Non-Smooth Contact Dynamics Algorithm

We develop the equations obeyed by contacts forces in Contact Dynamics algorithm and consider their resolution in two simple cases of cohesive grains, namely two-body and threebody cohesive collisions. We show how equations predict that increasing the time step increases the effective cohesion of the systems. Numerical simulations are performed to verify the predictions, in the case of cohesive granular piles falling in the gravity field, and in the case of a simplified Newton's cradle; predictions are confirmed. We thereby present the details of Contact Dynamics equations in a nutshell, and speculate over the definition of a dimensionless "cohesive time" that would merge considerations over the cohesive properties of the simulations and considerations over their precision.

Introduction

One big challenge in modelling discrete granular media, even in its simplest form, lies in the inescapable existence of two distinct physical scales: the scale of the grains forming the media -their size, their typical displacement, their typical velocity...and the scale of the contact. While the scale of the grains is mainly related to Newton's law of motion, the scale of the contact is rather describing the physico-chemical details of the contact mechanism, such as surface deformation, asperities, cohesion, friction, and so on. Beside the intrinsic physical complexity of the contact phenomena, a major difficulty originates from the fact that the contact scale, arising from a microscopic description, is tiny compared to the grains scale, arising from a macroscopic description. This difficulty becomes very tangible when one undertakes to give a numerical description of the behaviour of a discrete granular media, as the different physical scales of contact and grains will translate into adapting a computational time step to account for the behaviour of the system. Logically, the smaller time step "wins", or the contact phenomena description would be lost. Some methods, known as "event-driven", have tried to mitigate the choice of a computational time scale by allowing the grains trajectories and collisions to dictate the times when computation is necessary; these methods are however not suited to the modelling of dense static packings. Therefore, the most common method, known as Discrete Element Method, explicitly describes the contact phenomena with a varying degree of details [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF][START_REF] Nase | Discrete characterization tools for cohesive granular material[END_REF][START_REF] Di Renzo | Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[END_REF]. Even in the simplest case, as the spring and dashpot model, tiny time steps are necessary to account for the stiffness of the grains: the more rigid the grains, the tiniest the time steps [START_REF] Lommen | DEM speedup: Stiffness effects on behavior of bulk material[END_REF]. It is a well-known fact that the choice of the computational time step is closely linked to contact properties in DEM. As a matter of fact, it coincides with a complex inter-dependence of the physical elements describing the contact phenomena that are physically unconnected, such as cohesion and stiffness [START_REF] Mandal | Some numerical methods in Multibody Dynamics: Application to Granular Materials[END_REF]. As an alternative, Contact Dynamics adopts the assumption that the details of the contact phenomena do not matter so much, as long as the grains are rigid, and contacts are dissipative. Therefore, his deviser J.-J. Moreau introduced nonsmooth contact laws: instead of treating contacts as complex microscopic mechanisms, they are introduced in the evolution of the granular system in the shape of mathematical discontinuities [8]. Doing so, it disposes of the contact physical time scale: the computational time step is dictated by the macroscopic (grain-scale) dynamics, and does not interfere with the details of the contact laws. If this is indeed true for simple rigid grains for which contact forces obey a binary logic -being zero if grains do not touch and compressive if they do -the situation is less clear in the case of cohesive systems. In that case, tensile forces are permitted depending on the cohesive threshold added to the contact non-smooth law, and computational time steps do not systematically simplify out of the resolution. In this paper, we develop the equations obeyed by contacts forces in Contact Dynamics algorithm and consider their resolution in two simple cases of cohesive grains, namely two-body and threebody cohesive collisions. We show how equations predict that increasing the time step increases the effective cohesion of the systems. Numerical simulations are performed to verify the prediction, in the case of cohesive granular piles falling in the gravity field, and in the case of a simplified Newton's cradle; predictions are confirmed. We thereby present the details of Contact Dynamics equations in a nutshell, and speculate over the definition of a dimensionless "cohesive time" that would merge considerations over the cohesive properties of the simulations and considerations over their precision.

Equations: The two-body case of binary collisions

For the sake of simplicity, in the following equations, we explicit only normal forces, since cohesive forces are normal to the contact and do not enter the computation of the frictional tangential forces. The effect of frictional forces is not investigated here, however, the series of simulations presented in section 3 are of course computed solving all frictional contributions.

Generalities

We consider the contact of two grains i and j of mass m i and m j respectively, forming the contact ij transmitting the normal force N ij as shown in Fig 1 . The contact referential is chosen so that the normal contact vector n ij is positive pointing towards i, and the force N ij is thus positive when compressive. Taking into account the contact force N ij , we write for both grains the equations of dynamics discretised over the time step ∆t in the contact referential n ij , with subscripts n -1 and n denoting respectively the beginning and the end of the time step between instants [n -1, n]:

v n i -v n-1 i = ∆t m i N ij (1) 
v n j -v n-1 j = - ∆t m j N ij (2) 
External forces such as gravity are not written here, and we consider only the contact force; writing them down would not change the outcome of the equations, but make the reading less obvious. Writing (1) -(2), we get:

(v n i -v n-1 i ) -(v n j -v n-1 j ) = ∆t( 1 m i + 1 m j )N ij v n ij -v n-1 ij = ∆t m ij N ij (3) 
with

m ij = 1 mi + 1 mj -1 and v n ij = (v n i -v n j ). The quantity v n ij (respectively v n-1 ij
) is the relative velocity of the grains in contact at the end of the computational time step (respectively beginning, or end of previous), none of which is the Fig. 1 Contact ij forming between particles i and j, transmitting the normale force N ij following the normal contact vector n ij , defining the contact's referential. The grains relative velocity at contact v ij = v i -v j (or contact velocity) is positive when the contact is opening, and negative when the contact is further closing.

relative velocity during the contact. Indeed, the Contact Dynamics does not describe the contact at the scale of the contact phenomena: it does not rely on a microscopic model for elasticity or tensile stress, thus obliterating microscopic length scale. Doing so, concurrently, it disposes of microscopic time scales related to the contact (hence of small computational time steps). If a contact is detected at time n, CD simply knows that the contact was created in the intervalle [n -1, n], and instead of aiming at determining the exact grains relative velocity while making contact, it does propose an estimate for this contact velocity. Therefore, it introduces a formal velocity vij which is a combination of the velocities at the beginning and the end of the time step, weighted by a restitution coefficient, denoted ρ in the following:

vij = v n ij + ρv n-1 ij 1 + ρ . (4) 
Rewritting (3) using [START_REF] Hinch | The fragmentation of a line of balls by an impact[END_REF] gives

N ij = + m ij ∆t (1 + ρ)v ij - m ij ∆t (1 + ρ)v n-1 ij
which we write

N ij = K ij vij + A ij (5) 
with

K ij = mij ∆t (1 + ρ) > 0 and A ij = - m ij ∆t (1 + ρ)v n-1 ij . (6) 
As we see in equation [START_REF] Lommen | DEM speedup: Stiffness effects on behavior of bulk material[END_REF], this straightforward formulation does not provide a solution for the contact force N ij given a formal contact velocity vij , but an infinity of mathematically possible (N ij , vij ) pairs. We hence need an additional constraint to determine the physically relevant pair: this constraint is given by the contact graph.

Solving normal forces using the hard-core repulsion non-smooth graph

The contact graphs used in Contacts Dynamics for solving normal forces are non-smooth hardcore repulsion graphs, which provide an ensemble of possible solutions to be confronted with the contact force equation ( 5): the intersection of the two gives the (N ij , vij ) pair compatible with both Newton's law and hard-core repulsion (a similar technics is used for friction and tangential forces, but not presented here). The non-cohesive CD solves normal contact forces with a non-smooth hard-core repulsion known as Signorini's condition, which ensures that forces may take non-zero positive values only if the contact exists (in practice, if the overlap δ = r ij -

(d i + d j ) is negative) (Fig 2-a).
In the case of cohesive systems, the graph allows negative values of the forces, i.e. allows tensile forces, that will then cause the contact to be cohesive (Fig 2-b).

Three cases can be distinguished, depending on where the contact equation ( 5) intersect the contact graph. 5) is shown to intersect the graphs in example locations; when the intersection implies a forbidden value of the force (< 0 in a) and < -C 0 in b)), than the resolution algorithm translates the in the last permitted value (0 or -C 0 ) which leads or may lead to the opening of the contact.

N ij = K ij vij + A ij (

Case 1:

A ij > 0 In that case N ij = A ij . From its expression (equa- tion (6)), A ij > 0 implies v n-1 ij < 0: the contact at the beginning of the time step is closing. The normal force N ij = A ij = -m ij (1+ρ)v n-1
ij /∆t > 0 is compressive, namely not immediately opposing the contact. Writing for grains i and j the equation of dynamics in the contact referential, we get:

v n i -v n-1 i = ∆t m i N ij = - m ij m i (1 + ρ)v n-1 ij , (7) 
v n j -v n-1 j = - ∆t m j N ij = m ij m j (1 + ρ)v n-1 ij , (8) 
so that forming ( 7) -(8) readily gives:

v n ij = -ρv n-1 ij
We simply obtain the expression for a two-body collision with a restitution coefficient ρ. In our case, where v n-1 ij < 0, this implies v n ij > 0: the contact now evolves towards opening.

Case 2: -C

0 < A ij < 0
In that case, as in case 1 (paragraph 2.2.1 above), CD prescribes

N ij = A ij . Since A ij < 0, N ij = - mij ∆t (1 + ρ)v n-1 ij < 0 is no longer compressive, but tensile, and v n-1 ij > 0: the contact is opening at time n -1. Forming (7) -(8) readily gives v n ij = -ρv n-1 ij
, namely the contact closes again at time n. In other words, the contact is allowed to out-live negative values of the contact force (as long as it is greater than the threshold -C 0 ), namely to withstand tensile forces, and reverse from opening to closing again.

Case 3:

A ij < -C 0
In that proscribed condition, the intersection between the contact equation ( 5) and the contact graph corresponds to a force beyond the cohesive threshold -C 0 . In that case, the algorithm imposes N ij = -C 0 , which implies, rewriting ( 7) -(8):

v n ij = v n-1 ij - ∆t m ij C 0 . (9) 
The fact that A ij is negative corresponds to a relative velocity v n-1 ij positive: the contact was opening at time t = n -1. Now, considering [START_REF] Nase | Discrete characterization tools for cohesive granular material[END_REF], two possibilities present themselves to us:

the contact keeps opening if

v n ij = v n-1 ij - ∆t m ij C 0 > 0, or -the contact starts closing if v n ij = v n-1 ij - ∆t m ij C 0 < 0.
We thus see how the time step ∆t combined with the cohesive threshold C 0 will play a crucial role in the effective cohesion. The case ∆t favours a positive contact velocity v n ij , hence the opening of the contact: it is expected to coincide with a diminution of the effective cohesion. By contrats, ∆t favours negative contact velocities, hence the further closing of the contact, hence an increase of the effective cohesion. We use here the term effective cohesion as it works on favouring the closing or the opening of contacts without acting on the physical ingredient, no matter how minimalist, of cohesion, namely the threshold -C 0 . As a hallmark of Contact Dynamics, when C 0 = 0, namely for a non cohesive systems, the influence of ∆t vanishes. This can now be illustrated and/or investigated numerically performing simulations, considering complex systems with more particles and contacts rather than plain two-body systems.

3 Varying time steps and cohesion together: cohesive piles

Simulations

To check the predictions deduced from analysing the simple case of a collision between two particles, we carry out series of CD simulations with few grains (138) in two dimensions. The particles are circular, showing a slight disparity in size, with diameter varying in the intervalle [d -20%, d+20%], with a mean diameter d = 0.005m. They interact through collisions with a coefficient of restitution ρ = 0.1, and although it was dropped from the equations developed in section 2 for the sake of simplicity, friction controls the value of tangential forces at contact, with a coefficient of friction µ = 0.5. In the following, neither ρ nor µ were varied. The contacts are cohesive up to a cohesive threshold -C 0 which we chose, as often in the literature, to scale like the mean weight of the grains involved in the contact, with a factor known as the granular B ond number [START_REF] Rognon | Dense flows of cohesive granular materials[END_REF]:

C 0 = B ond × m ij g, (10) 
with

m ij = 1 mi + 1 mj -1
.

The pile is initially created by random rain in a container so that it forms a rectangular pile (Figure 3). At time t = 0, the walls of the containers are removed and the pile is allowed to slump or spread in the gravity field (as in [START_REF] Abramian | The Slumping of a Cohesive Granular Column: Continuum and Discrete Modelling, in preparation 2. Barbera[END_REF][START_REF] Staron | Study of the collapse of granular columns using two-dimensional discretegrain simulation[END_REF]). We perform a series of 24 simulations using the exact same initial state, but varying the cohesion threshold -C 0 through varying the bond number B ond , taking alternatively the values 0, 20, 50 and 100, and more to the point, varying the computational time step ∆t, all other quantities being kept constant. Therefore, the time step was alternatively set to ∆t = 1.10 -4 s, 2.10 -4 s, 5.10 -4 s, 1.10 -3 s, 2.10 -3 s and ∆t = 5.10 -3 s, the characteristic physical time scale for the particles dynamics being d/g 0.022s (g = 9.8m.s -2 ). The numerical duration of each collapse was set to 1s, irrespective of B ond and ∆t. The final states for 6 examples are shown in Fig- ure 4. We observe that depending on the B ond number and ∆t, the pile spread out or remains more or less close to being stable. These differences are discussed quantitatively in the following.

Time step and cohesive threshold making up effective cohesion

In order to get a better idea of the role played by the time step ∆t in the overall cohesive properties of the piles, we quantify the pile's equilibrium or slumping by computing how much his center of mass has fallen (in the vertical axis) at the end of the simulation (t = 1s = ∞) compared to its initial position (t = 0), normalised by the latter:

∆y G = np i=1 (y i (t = 0) -y i (t = ∞)) np i=1 y i (t = 0) , (11) 
where n p is the number of grains (here 138). For a very cohesive pile, ∆y G will be zero or close to zero, while it will be maximum for cohesion-less systems.

The vertical slump ∆y G is plotted in Figure 5a against the value of the computational time step ∆t used for performing the simulations, for 4 values of the B ond number: 0 (namely no cohesion), intermediate values B ond = 20 and B ond = 50, and a stronger value B ond = 100. In the case B ond = 20, the vertical slump ∆y G clearly decreases with increasing ∆t, bespeaking an increase of the cohesion predicted by equation [START_REF] Nase | Discrete characterization tools for cohesive granular material[END_REF]. But the evolution is becoming non-monotonous for B ond = 50, and downright reversed in the case B ond = 100, so that depending on the value of the cohesive threshold -C 0 , increasing ∆t may decrease the effective cohesion, in contradiction with equation [START_REF] Nase | Discrete characterization tools for cohesive granular material[END_REF].

The underlying reason is made clear on Figure 5-b, where the mean normalised overlap, defined as the distance between the center of mass of the two grains at contacts minus the sum of their radius

δ = 1 n c nc α=1 (r α ij -(d i + d j )/2) /d,
where n c is the number of contacts, and i and j are the two particles involved in contact α, is plotted as a function of ∆t. We observe how the hard-core approximation is soon non-longer verified, and how the overlap may exceed by far 1%, when ∆t increases. This is due to the fact that the positions of the grains are recomputed before forces may adapt the contact graphs. Indeed, each new time step, the position of the grains are up-dated, and so is the list of contacts. If at instant n, the contact is such that v n ij is positive, the newly evaluated positions

r n i = r n-1 i + v n i × ∆t (12) 
and r n j = r n-1 j + v n j × ∆t are such that the new distance between the two grains r n ij = r n-1 ij + v n ij × ∆t increases. Since the greater ∆t, the greater the distance r n ij between the two grains, the contact might well be lost at the end of the time step. The overlap δ α will become positive, i.e. contact ij no longer exists. In that case, ∆t coincides with a loss of cohesive contacts, then a decrease of the effective cohesion at the scale of a pile. Practically, in that case, the computation of new positions prevails on the strict equations, so that the case ∆t coincides with an increase of effective cohesion, contrarily to what is expected from equation ( 9): cohesive contacts are less cohesive, but they are preserved.

Defining a non-dimensional "cohesive time" ?

We thus conclude that knowing the cohesive threshold -C 0 is not a sufficient information to deduce the effective cohesive strength of one single contact, not to mention a pile of grains. If it is clear that increasing C 0 will make contacts more cohesive, CD equations show that increasing ∆t will also increase cohesion, but up to a certain point, where the error in computing contacts position may induce cohesive contacts to be lost. Interestingly, this last effect, if very clear for large C 0 (B ond = 100 in the simulations), is very discreet for weaker C 0 (B ond = 20 in the simulations): the respective role of C 0 and ∆ t are intertwined, in a non-obvious way. While it is somehow easy to chose ∆t for non-cohesive systems by ensuring that its value remains bounded with regards to the characteristic system time scale d/g, limiting the error for cohesive systems is not selfevident, and does not tell us readily which will be the effective cohesion of the contact. We may try to normalise the term ∆t mij C 0 (equation ( 9)) with the characteristic velocity √ dg, thus creating a non-dimensional "cohesive time". Using [START_REF] Di Renzo | Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[END_REF] for C 0 , as implemented in the simulations, this normalisation translates into B ond ∆t

√ d/g
, which can be used to re-plot Figure 5-a (Figure 6-b). Doing so, we see no clear trend, but we simply get the feeling that the cohesive time B ond ∆t √ dg 1 might well be a separation between two regimes: B ond ∆t √ dg < 1 where cohesion increases with ∆t due to the discretisation of dynamics equations, and B ond ∆t √ dg > 1 where cohesion decreases with ∆t due to the error. But this is only a guess, and if the simulations presented in this contribution are sufficient to give evidence of the role of ∆t, they are too small-scaled to derive general scalings. Further simulations, counting more grains, with a larger interval of ∆t and C 0 , should be performed to this end, in a dedicated piece of work.

4 Toy example: the three-body case or Newton's cradle

Equations

We now consider a three-body system composed of particles i, j, and k, interacting through two contacts ij and ik. In a first step, the two particles i and j are at rest forming a contact transmitting the forces N ij , when particle k comes into collision with i. The question is, will the contact ij open as a result of this collision? Newton's cradle usually counts more beads (usually five) entering in collision by different groups of one or two or three particles, making it an incomparably more complex system [START_REF] Hinch | The fragmentation of a line of balls by an impact[END_REF]. Yet, our simple version allows to investigate the effect of the computational time step on effective cohesion in a CD simple application.

Step 1 The contact ij is transmitting the force N ij while particle k is not yet in contact with i.

The force simply obeys the equation developed in section 2;

Step 2 The particle k collides with i, forming the contact ik transmitting the force N ik = 0. We suppose that, as a result, the contact force N ij tends to become tensile, and will reach the cohesive threshold -C 0 . Now, the equation of dynamics for particle i and j are rewritten (in the contact referential n ij ), taking N ik into account:

v n i -v n-1 i = ∆t m i N ij - ∆t m i N ik (13) v n j -v n-1 j = - ∆t m j N ij (14) 
so that writing (13) -( 14), and taking into account the fact that N ij = -C 0 , we get:

v n ij = v n-1 ij - ∆t m ij C 0 - ∆t m i N ik , v n ij = v n-1 ij -∆t C 0 m ij + N ik m i .
Step 3 The contact ij may open as a result of the cohesion ik if v n ij > 0, namely, if

v n-1 ij > ∆t C 0 m ij + N ik m i . ( 15 
)
We see that this condition is made difficult by increasing the cohesion threshold -C 0 , as expected, and by increasing the time step ∆t, in agreement with the analysis of the two-body case1 .

Simulations

We perform a three-body "toy" simulation to illustrate the equation above. We consider two particles i and j forming a cohesive contact, with a cohesion threshold C 0 = -B ond × m ij g. At time t choc , a particle k makes a collision with particle i in the axis of the ij contact. Varying the time step ∆t for a given cohesion threshold -C 0 , we observe wether the contact ij opens as a result of the collision.

To attract the particle k to make collision, but to avoid particles i and k to follow and go behind j after the choc whether the contact ij opens or not, we do not create the collision by simply "throwing" k at i. Instead, a gravity center is placed in the location occupied by the center of mass of grain i at t = 0. As a result, particle k moves towards particle i until collision ensues; meanwhile, we set the particle j to be free of gravity attraction (by just not submitting j to the attractive gravity force), so it is not drawn in the direction of i, and may follow freely its own course. Doing so, if the contact ij opens, this procedure ensures that k and i are stuck in contact together oscillating around the gravity point, and let j go; if the contact remains closed, then the triplet formed by ijk oscillates, j moving together with i (to which it is stuck) even though it does not "see" gravity. The simulations were performed with unrealistic values, just for the sake of giving a verification Fig. 7 Snapshots of the collision between the particles k (dark grey) and i (white), influencing the particle j (light grey) to behave differently depending on the value of the computational time step. Left: ∆t = 5.10 -4 , Right: ∆t = 1.10 -3 . The times are, top to bottom, t = 1.32s, 1.76s, 2.25s and 2.5s. The black dot shows the location of the center of gravity seen by i and k.

of prediction (15): grains diameter d = 0.3m , B ond = 3 (not varied), g = 2m.s -2 , so that the characteristic time scale d/g is equal to 0.38s. We performed 20 simulations with time step ∆t varying from 1.10 -4 to 1.10 -2 , observing for each whether the contact ij opens as a result of the collision of particle k with particle i, or remains closed. We find that prediction (15) is verified: larger time step do not allow the relative velocity at the contact to take a positive value, thus do not permit the contact to open, and thus induce a larger effective cohesion. While the time step intervalle [1.10 -4 ; 6. 10 -4 ] coincides with a contact opening and j being ejected with one given fixed velocity, the time step intervalle [7.10 -4 ; 3. 10 -3 ] coincides with a contact remaining closed, and particles i, j and k forming a cluster oscillating around the gravity centre. This is for instance visible in Figure 7: for time step ∆t = 5.10 -4 , the contact ij opens as a result of the collision between k and i: while the newly formed pair ki starts oscillating around the center of gravity, particle j leaves. Now, multiplying the time step by a factor two, setting ∆t = 1.10 -4 , all other things being kept equal, the contact ij no longer opens but survives the collision, and the system created by particles i, k and j starts oscillating. These two different scenari are illustrated in Figure 7 where the different steps are pictured. The prediction (15) is verified: a larger time step hampers the relative velocity at the contact raising to a positive value, thus does not permit the contact to open, and thus induces a larger effective cohesion. However, just as for many-body systems as presented in section 3, increasing further ∆t reverses this effect, and counters the equation by losing precision. Accordingly, for ∆t = 4.10 -3 , the contact ij is lost and particle j leaves; but surprisingly, and apparently, inconsistently, it again survives for ∆t = 5.10 -3 . This return to cohesion is however the result of a complexe interplay between i, j and k dynamics: indeed, increasing ∆t induces contact ik to be lost, allowing particle i to follow and catch j, so that the contact ij forms Fig. 8 Position of particle j (light grey) following the initial contact axis, for simulations performed with a computational time step varying from ∆t = 5.10 -4 s to ∆t = 1.10 -2 s.

again. But increasing ∆t further leads to losing ij in all cases simulated here. The various trajectories followed by particle j depending on the computational time step ∆t are visible in Figure 8. The position (following the axis of the initial ij contact) of j is plotted as a function of time, and distinct trajectories are induced by changing the time step of the computation: either the contact opens and j leaves with a constant velocity, or the contact survives and j oscillates around the point of gravity following the motion of i to which it is stuck. Note that for this example, the non-dimensional "cohesive time" takes its values between 8.10 -4 and 8.10 -2 , namely a very different intervalle than that observed for many-body simulations as in section 3. The systems simulated are however so unlike, and the physical values of the parameters chosen for the cradle being so unrealistic, that it seems pointless to develop further the discussion over the relevance of the aforesaid cohesive time. Dedicated appropriate simulations are needed to this end.

Conclusion

By writing the Newton's equations and their resolution following the Contact Dynamics algorithm for a contact force in very simple cases (two-body and three-body systems) [8], we are able to show that in the case of cohesive contacts, the value of the computational time step plays a significant part. Being central in the evolution of the contact velocity (namely, the relative velocity of the two grains in contact), it partly dictates, together with the cohesive threshold, wether a contact will open, vanishing, or stay closed and hold on. It thereby enters directly the effective cohesion properties of the simulated media. The prediction from the equations was verified by carrying out Contact Dynamics simulations, where both time step and cohesive threshold were varied. In agreement with the predictions derived from the equations, increasing the computational time step increases cohesion by making it harder to the relative grains velocity at contact to reach positive values, thereby hampering the contact opening, thus favouring the chance that contacts survive. This is true up to a certain point, where increasing the time step beyond reasonable precision concern induces contacts to be lost. Eventually, the equations solved by the algorithm and the algorithm's precision compete with the physical ingredient of cohesive threshold, to create an effective cohesion difficult to predict. Defining a non-dimensional "cohesive time" for Contact Dynamics by combining cohesion, time step and gravity, we speculate as to how this quantity may control the effective cohesion of the systems simulated in addition to controlling the precision of the algorithm. Further simulations are however needed to discuss this last point.
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 2 Fig.2Non-smooth contact graphs for the normal forces ensuring that forces are transmitted only at contact (no distant interaction) while respecting a hard core repulsion. Non-cohesive (a) and cohesive (b) cases are represented; -C 0 denotes the cohesive threshold. In each case, equationN ij = K ij vij + A ij (5) is shown to intersect the graphs in example locations; when the intersection implies a forbidden value of the force (< 0 in a) and < -C 0 in b)), than the resolution algorithm translates the in the last permitted value (0 or -C 0 ) which leads or may lead to the opening of the contact.
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 3334 Fig.3Pile counting 138 grains is its initial state, allowed to collapse in the gravity field at t = 0.
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 5 Fig. 5 a: Vertical slump δy G (equation 11) as a fonction of the computational time step ∆t for 4 values of the B ond number and b: Mean overlap at the contacts.
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 6 Fig.6Vertical slump δy G (equation 11) as a fonction of the non-dimensional "cohesive time" ∆t × B ond / d/g for the 3 non-zero values of the B ond number.

We also see that the condition v n ij > 0 is made difficult by increasing N ik , which may seem counterintuitive, but for the fact that in a first step, N ik will push i toward j, tending to close any gap between i and j and thus opposing the contact opening.
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