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Abstract

A lubrication equation is obtained for a simplified shear-thinning fluid. The simplified
rheology consists of a piecewise linear stress tensor, resulting in a two-viscosity model.
This can be interpreted as a modified Bingham fluid, which can be recovered in a specific
limit. The lubrication equation is obtained in two steps. First two scalings are performed
on the incompressible Navier-Stokes equations, namely the long-wave scaling and the slow
motion scaling. Second, the resulting equations are averaged along the vertical direction.
Numerical illustations are provided, bringing to light the different possible behaviours.
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son, Université d’Orléans; Laboratoire Jean Leray, Université de Nantes; Institut Jean Le Rond
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1 Introduction

The lubrication equation is quite a classical simplification of the incompressible Navier-Stokes
system. It is obtained for thin films of fluid, when viscous effects balance the pressure force.
This occurs for instance for thin films of oil, hence the name of the equation. The study of this
approximation goes back to Reynolds in 1886 [9]. Several scalings are involved to obtain this
model. First the aspect ratio between the thickness of the film and the characteristic length of
the substrate must be small, say δ. Simultaneously, the time scale has to be of order 1/δ. This
is the so-called long wave regime, and is classically used in the shallow-water approximation.
The lubrication equation requires another assumption of balance between the viscous effects
and the pressure effects, which amounts to neglect all kinematic effects. This simplified flow
is known as the Stokes flow. The lubrication equation itself is then obtained by integration
over the fluid thickness.

We are interested here in the lubrication model for a class of non Newtonian fluids. Several
fluids are known to depart from the usual Newtonian rheology, where the deviatoric stress
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tensor is a linear function of the strain rate tensor, thus defining the dynamical viscosity of the
fluid. The lubrication equation for Newtonian fluids has been studied for instance by Huppert
[5]. Non Newtonian fluids arise in several applications in engineering, biology, geophysics...
In particular, viscoplastic or pseudoplastic fluids are involved in various geological problems,
for instance lava flows, mudslides and avalanches. We refer to [1] for a review on the subject.
A model which is widely used is the so-called Bingham-plastic model. This model involves
a yield stress, namely a threshold on strain rate: for values of the strain rate above this
threshold the fluid behaves like a viscous fluid, for values below, it looks like a solid. This can
be thought of as an infinite viscosity fluid. We refer to the papers by Liu and Mei [7] and
Balmforth et al. [2] for the study of such fluids in the lubrication approximation. Both papers
contain also a complete bibliography. Liu and Mei also introduced in [8] a perturbed Bingham
model, which is actually a two viscosities model, with a high viscosity for small deformations.
When this viscosity goes to ∞ the Bingham model is recovered, thus giving a fluid mechanics
interpretation of this solid behaviour.

This is precisely the two viscosities model we investigate here. First we describe the
mathematical model we use, namely the incompressible Navier-Sokes equations in a time-
dependant domain, since we consider a free-boundary problem. In particular we explain in
some details all the scalings involved. Next, we turn to the lubrication equation itself, which
is a one-dimensional equation, obtained by averaging the previous ones along the thickness.
Finally we provide a few numerical illustrations based on a finite volume scheme.

2 Mathematical model

In this section we set up the model. The starting point is the incompressible Navier-Stokes
system. We limit ourselves in this paper to the two-dimensional case, thus aiming at a one-
dimensional lubrication equation. Similar computations can be performed in three space
dimensions. The domain we consider is Ωt defined by fb(x) < z < ϕ(t, x), for t > 0 and
x ∈ (−∞,+∞), where fb is given topography, and ϕ is a free surface. The notations we use
are gathered in Figure 1.

z∗

ϕ(t, x)

fb(x)

substrate

x

z

0

h∗

h∗

h(t, x)

Figure 1: Notations for the two viscosities fluid: ϕ is the free surface; fb is the topography of
the substrate; z∗ is the ordinate which separates “small deformations” (white zone) from “large
deformations” (green zone), see Section 3 below. We introduce the thicknesses h = ϕ − fb,
h∗ = ϕ− z∗, h∗ = h− h∗.
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The incompressible Navier-Stokes equations are

∂xu+ ∂zw = 0, (1)

∂tu+ u∂xu+ v∂zu = − 1

ρ
∂xp+

1

ρ

(
∂xτxx + ∂zτxz

)
, (2)

∂tw + u∂xw + w∂zw = − g − 1

ρ
∂zp+

1

ρ

(
∂xτzx + ∂zτzz

)
, (3)

where ρ is the density of the fluid, U = (u,w) is the velocity field, and the stress tensor σ is
written as the sum of a volumetric stress tensor, involving the pressure p, and a deviatoric
stress tensor τ :

σ = −pI2 + τ, τ =

(
τxx τxz
τzx τzz

)
.

where I2 is the identity matrix in dimension 2. The density ρ is assumed to be constant here,
and the tensor σ will be defined in Section 2.1 below.

Boundary conditions are:
z = ϕ: fluid-atmosphere interface. We have continuity of the stress tensor at the free

surface, together with a kinematic boundary condition. Since the atmosphere can be viewed
as an ideal fluid, the stress tensor can be taken equal to zero above ϕ. Hence we get

σ · n|ϕ = (−pI2 + τ) · n|ϕ = 0, ∂tϕ+ uϕ∂xϕ = wϕ. (4)

z = fb: interface between the fluid and the substrate, which is fixed. This is a material
interface, on which we have the no-slip boundary condition

u|fb = ub, w|fb = wb. (5)

Here (ub, wb) is the so-called basal velocity. Often in fluid mechanics the basal velocity is zero,
but for geophysical applications it can actually be the driving force, and thus depend on (t, x).

2.1 Rheology

For a fluid, the deviatoric stress tensor τ is usually a function of the strain rate tensor

ε̇ =

(
ε̇xx ε̇xz
ε̇zx ε̇zz

)
=

1

2
(∇U +∇UT ) =

1

2

(
2∂xu ∂xw + ∂zu

∂xw + ∂zu 2∂zw

)
. (6)

A Newtonian fluid is characterized by a linear relation, defining the viscosity of the fluid,
which is assumed here to be isotropic and constant. Therefore we introduce the dynamical
viscosity coefficient µ, and define the Newtonian stress tensor by

τN = 2µε̇ = 2ρνε̇,

where ν = µ/ρ is the kinematic viscosity.
Fluids that do not follow this kind of constitutive law are non-Newtonian. In the general

case, the material invariance principle implies that the stress tensor depends only on the
similarity invariants of the strain rate tensor, in particular the coefficients of its characteristic
polynomial. In dimension 2 there are only two such coefficients ε̇I and ε̇II . Namely ε̇I is the
trace of the matrix and ε̇II its determinant. For an incompressible fluid, the trace is zero, and
moreover we have

ε̇II = ε̇xxε̇zz − ε̇zxε̇xz = ∂xu∂zw −
1

4
(∂xw + ∂zu)2 = −

(
(∂xu)2 +

1

4
(∂xw + ∂zu)2

)
.
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This allows to define the strain rate γ̇ as

γ̇ = 2
√
−ε̇II = 2

√
(∂xu)2 +

1

4
(∂xw + ∂zu)2. (7)

In a similar way we can check that the Frobenius norm of ε̇, that is ‖ε̇‖2 =
∑

i,j(εij)
2, satisfies

‖ε̇‖2 = γ̇2/2. (8)

A very sketchy illustration of the possible behaviours of non-Newtonian fluids is given in
Figure 2. We will be mostly interested in this work in the so-called pseudoplastic case, that
is the red curve in Figure 2, for which experimental evidence can be given, see [4]. This kind
of models are also used in geophysics, see [3, 10, 12] We wish to give a simplified model for
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Figure 2: Qualitative behaviour of various types of fluids. Left: stress vs shear stress – Right:
apparent viscosity vs shear stress. The Bingham type fluids can be viewed as enjoying infinite
apparent viscosity below the threshold τc.

this pseudo-plastic fluid, that allows to handle explicit computations. The main feature of
this kind of fluids is a nonlinear viscosity, decreasing with the strain rate. Mimicking the
Bingham model, which is based on a threshold on the shear stress, we consider a model with
a threshold on the strain rate: the viscosity is equal to some large µB for small deformations,
that is γ̇ < γc, where γc > 0 is a given constant, and to another value µ for large deformations,
γ̇ > γc. Such models were introduced by Liu and Mei [8], and the limit case νB →∞, which
leads to a Bingham fluid, is studied in [7] and [2]. Notice that using (8) the threshold γc on
γ̇ can be replaced by a threshold γ′c = γc/

√
2 on ‖ε̇‖.

A multidimensional formulation for these simplified pseudo-plastic fluids is therefore

τPP =

2ρνB ε̇ if ‖ε̇‖ 6 γ′c

2ρνε̇+ 2ρ(νB − ν)γ′c
ε̇

‖ε̇‖
if ‖ε̇‖ > γ′c

(9)

where we have introduced the kinematic viscosities ν and νB.
A particular limit case is νB → ∞, which leads to a Bingham type fluid. To view this,

it is convenient to define the following quantities (see Figure 3 below for an illustration in 1
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dimension)
τc = νBγ

′
c, τ∗ = (νB − ν)γ′c = (1− ν/νB)τc, (10)

so that definition (9) can be rewritten

τPP =

2ρνB ε̇ if ‖ε̇‖ 6 τc/νB

2ρνε̇+ 2ρ(1− ν/νB)τc
ε̇

‖ε̇‖
if ‖ε̇‖ > τc/νB

(11)

It is clear on this formulation that the relevant limit is νB → +∞, together with γ′c → 0,
keeping νBγ

′
c = τc. In doing so, we recover the classical Bingham stress tensor, with threshold

τc:

τBing =

any τ s.t. ‖τ‖ 6 τc if ε̇ = 0

2ρνε̇+ 2ρτc
ε̇

‖ε̇‖
if ‖ε̇‖ > 0

Finally, notice that in the pseudo-plastic (or shear thinning) context, we consider 0 < ν < νB,
but similar computations can be performed in any case.

It is convenient for the scalings below to rewrite expression (11) using an equivalent kine-
matic viscosity νeq, which satisfies ν 6 νeq 6 νB:

τPP = 2ρνeq ε̇, where νeq =

νB if ‖ε̇‖ 6 γ′c

ν + (1− ν/νB)
τc
‖ε̇‖

if ‖ε̇‖ > γ′c
. (12)

2.2 Scalings

We introduce now the scaling laws, namely thin layer, or more precisely long wave approxima-
tion, and slow motion, in order to finally obtain the lubrication model. This kind of scalings
is already present e.g. in [2] in the context of a visco-plastic fluid. Hence we propose the fol-
lowing family of scalings: we introduce a first set of characteristic scales, namely dimensions
`0 and h0, characteristic velocities u0 and v0, and a characteristic time t0. The quantities
`0 and u0 correspond to the horizontal direction, h0 and v0 to the vertical one. The aspect
ratio δ = h0/`0 will be an important parameter, assumed to be small in the thin layer case.
Dimensionless variables are then defined by

x = `0x̄, z = h0z̄, t = t0t̄

u = u0ū, w = w0w̄.

First, we rewrite the incompressibility equation (1) in the rescaled variables. We obtain

u0

`0
∂x̄ū+

v0

h0
∂z̄w̄ = 0,

and following the least degeneracy principle [11], this implies u0/`0 = w0/h0, or equivalently
`0/h0 = u0/w0. Thus w0/u0 = δ, so that in the thin layer approximation w0 is also small
compared to u0.

We turn now to the kinematic part of the equation. Using u0/`0 = w0/h0, we readily
obtain

∂tu+ u∂xu+ w∂zu =
u0

t0
∂t̄ū+

u0w0

h0
ū∂x̄ū+

u0w0

h0
w̄∂z̄ū.
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Once again we apply the least degeneracy principle and obtain t0 = `0/u0 = h0/w0, or, as
expected, u0 = `0/t0 and w0 = h0/t0. We proceed in the same way for the momentum equation
in v and finally obtain

∂tu+ u∂xu+ w∂zu =
u0w0

h0
(∂t̄ū+ ū∂x̄ū+ w̄∂z̄ū) = δ

u2
0

h0
(∂t̄ū+ ū∂x̄ū+ w̄∂z̄ū) , (13)

∂tw + u∂xw + w∂zw =
u0w0

`0
(∂t̄w̄ + ū∂x̄w̄ + v̄∂z̄w̄) = δ2u

2
0

h0
(∂t̄w̄ + ū∂x̄w̄ + w̄∂z̄w̄) , (14)

where we have emphasized the aspect factor δ = h0/`0 = w0/u0.
Following Balmforth [2], we rescale the pressure and the stress tensor by

p = ρgh0p̄, τ = ρν
u0

h0
τ̄ . (15)

We can write now the rescaled version of the Navier-Stokes momentum equations (2) and (3):

δ
u2

0

h0
(∂t̄ū+ ū∂x̄ū+ w̄∂z̄ū) = − δg∂x̄p̄+ ν

u0

h2
0

(δ∂x̄τ̄xx + ∂z̄ τ̄xz) , (16)

δ2u
2
0

h0
(∂t̄w̄ + ū∂x̄w̄ + w̄∂z̄w̄) = − g∂z̄ p̄− g + ν

u0

h2
0

(δ∂x̄τ̄xz + ∂z̄ τ̄zz) . (17)

At this stage, we introduce two classical dimensionless quantities, namely the Froude and
Reynolds numbers, defined from the characteristic horizontal velocity u0, the vertical extension
h0, and the kinematic viscosity for large deformations ν:

1

Fr2
=
gh0

u2
0

,
1

Re
=

ν

u0h0
. (18)

We divide the previous two equations by u2
0/h0, and noticing that τ = ρReu2

0τ̄ , we obtain

δ (∂t̄ū+ ū∂x̄ū+ w̄∂z̄ū) = − δ

Fr2
∂x̄p̄+

1

Re
(δ∂x̄τ̄xx + ∂z̄ τ̄xz) , (19)

δ2 (∂t̄w̄ + ū∂x̄w̄ + w̄∂z̄w̄) = − 1

Fr2
∂z̄ p̄−

1

Fr2
+

1

Re
(δ∂x̄τ̄xz + ∂z̄ τ̄zz) . (20)

The idea now is to send δ to zero, thus implementing the thin layer assumption, but in
a regime where the Reynolds number Re is kept of order 1, together with a balance between
viscosity and gravity forces. Therefore we set

Fr2 = δRe, Re = O(1). (21)

This readily gives

u0 = δ
gh2

0

ν
=
gh3

0

`0ν
, (22)

the latter being the scaling proposed in [2]. It introduces another characteristic velocity,
namely u′0 = (gh2

0)/ν. The latter equality shows that this is indeed a slow motion scaling,
thus we meet the initial requirement.

Inserting (21) in equations (19) and (20), and keeping only the dominant terms of order
δ−1 gives first the dimensionless Stokes equation

− ∂x̄p̄+ ∂z̄ τ̄xz = 0, (23)
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then the dimensionless hydrostatic relation for the pressure

∂z̄ p̄ = − 1. (24)

Now we compute τ̄ from (12). We start by rewriting ε̇ in rescaled variables

ε̇ =
1

2

 2
u0

`0
∂x̄ū

w0

`0
∂x̄w̄ +

u0

h0
∂z̄ū

w0

`0
∂x̄w̄ +

u0

h0
∂z̄ū 2

w0

h0
∂z̄w̄

 =
1

2

u0

h0

(
2δ∂x̄ū δ2∂x̄w̄ + ∂z̄ū

δ2∂x̄w̄ + ∂z̄ū 2δ∂z̄w̄

)
. (25)

From this we easily deduce

τ̄ =
νeq
ν

(
2δ∂x̄ū δ2∂x̄w̄ + ∂z̄ū

δ2∂x̄w̄ + ∂z̄ū 2δ∂z̄w̄

)
. (26)

We define a dimensionless equivalent viscosity by ν̄eq = νeq/ν, and rewrite equation (23)

∂z̄
(
ν̄eq∂zū

)
= ∂x̄p̄. (27)

We turn now to the expression of ν̄eq. We first notice that, using (25)

‖ε̇‖ =
u0

h0

√
2

√
δ2(∂x̄ū)2 +

1

4
(δ2∂x̄w̄ + ∂z̄ū)2 −→

δ→0

1√
2

u0

h0
|∂z̄ū|. (28)

Hence the condition ‖ε̇‖ > γ′c leads us to define a dimensionless threshold γ̄c = (
√

2h0/u0)γ′c =
(h0/u0)γc, so that the condition ‖ε̇‖ > γ′c becomes |∂z̄ū| > γ̄c, and ν̄eq becomes

ν̄eq =
νeq
ν

=


νB
ν

if |∂z̄ū| 6 γ̄c

1 + (1− ν/νB)
τc
ν

h0

u0

√
2

|∂z̄ū|
if |∂z̄ū| > γ̄c

(29)

We introduce a dimensionless viscosity ν̄B and a dimensionless yield stress B by setting

ν̄B =
νB
ν

> 1, B =

√
2τch0

νu0
, (30)

so that the expression of τ̄xz, which is the only part of the deviatoric stress tensor remaining
in the equations, becomes (see Figure 3)

τ̄xz =

ν̄B∂z̄ū if |∂z̄ū| 6 γ̄c

∂z̄ū+ (1− 1/ν̄B)B
∂z̄ū

|∂z̄ū|
if |∂z̄ū| > γ̄c

(31)

This is the model proposed by Liu and Mei in [8].
As concerns the boundary conditions, we notice that the no-slip and kinematic boundary

conditions remain unchanged by the scaling. In contrast, the continuity of the stress tensor
across the free surface ϕ is greatly simplified. Recalling that ϕ = h0ϕ̄, we indeed obtain

σ · n =

(
−p∂xϕ+ τxx∂xϕ− τxz
p+ τxz∂xϕ− τzz

)
= ρ

−δp̄gh0∂x̄ϕ̄+ δν
u0

h0
τ̄xx∂x̄ϕ̄− ν

u0

h0
τ̄xz

p̄gh0 + δν
u0

h0
τ̄xz∂x̄ϕ̄− ν

u0

h0
τ̄zz

 .
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γc

τ∗

Figure 3: Simplified shear-thinning model. We consider a piecewise linear approximation (in
black) of the “theoretical” pseudoplastic law (in red). Parameters τ∗ and τc are defined by
(10). The blue curve is the Bingham limit: νB → +∞, γc → 0 with γcνB = τc. The green
dashed line is the pure Newtonian limit νB → ν.

Now making use of (26), we obtain

σ · n = ρ


δ
(
(δνeq

u0

h0
∂x̄ū− gh0p̄)∂x̄ϕ̄− δνeq

u0

2h0
∂z̄w̄

)
− νeq

u0

2h0
∂z̄ū

δνeq
u0

2h0

(
δ2∂x̄w̄ + ∂z̄ū∂x̄ϕ̄− ∂z̄w̄

)
+ gh0p̄

 .

Letting δ go to zero implies therefore that (4) becomes

p̄|ϕ̄ = 0, ∂z̄ūϕ̄ = 0, (32)

In other words, we recover separately the continuity of ∂zu and the continuity of the pressure.

Remark 1. It is worth to notice here that we assume implicitly in this paper that νeq is
bounded. However, if we wish to consider νB → +∞, we should take care of the product δνeq
that appears at several places in the equations. Thus another scaling arises, namely δνB should
go to zero when δ goes to zero. This was pointed out by Liu and Mei [8].

3 Lubrication equation

The so-called lubrication equation is obtained by integrating equations (1) along the vertical
direction. The long wave and slow motion assumptions imply that we obtain a single nonlinear
equation on the depth ϕ. Similar computations were performed by Liu and Mei [8], for a two-
viscosity model, in order to justify the Bingham case, which corresponds to νB → ∞ in our
context. For Bingham fluids, we refer to Liu and Mei [7], and more recently to Balmforth [2].
The final equation is obtained through three steps we present in detail now.

We recall the equations we obtained in the preceding section, dropping the bars for clarity.
First we have the hydrostatic relation

∂zp = −1, fb 6 z 6 ϕ, (33)

8



next, the dimensionless Stokes equation (23)

∂zτxz = ∂xp, fb 6 z 6 ϕ, (34)

where τxz is the dimensionless deviatoric stress tensor defined by (31).
These equations are coupled with the following boundary conditions (in these relations, t

and x are hidden parameters):

� on the free surface z = ϕ
p(ϕ) = 0, ∂zu(ϕ) = 0, (35)

� on z = fb
u(fb) = ub, w(fb) = wb. (36)

Concerning first the pressure, using the boundary condition on the free surface we obtain
the usual hydrostatic approximation

p(z) = ϕ− z, fb 6 z 6 ϕ. (37)

The averaged equation we look for is obtained by integrating in z the incompressibility
equation, or mass conservation,

∂xu+ ∂zw = 0.

This is quite classical, see e.g. [2] in the same slow motion context, or [6] for shallow water
approximation. We obtain

w(t, x, ϕ) = w(t, x, fb)−
∫ ϕ

fb

∂xu(z) dz (38)

= w(t, x, fb)− ∂x
(∫ ϕ

fb

u(z) dz

)
+ u(t, x, ϕ)∂xϕ− u(t, x, fb)∂xfb. (39)

The kinematic boundary condition on z = ϕ leads to w(t, x, ϕ) − u(t, x, ϕ)∂xϕ = ∂tϕ = ∂th,
and for z = fb, we make use of the no-slip boundary condition (36), to obtain the following
averaged equation

∂th+ ∂x

(∫ ϕ

fb

u(z) dz

)
= wb. (40)

The flux

∫ ϕ

fb

u(z) dz can be computed explicitly as a function of ϕ, by integrating twice

equation (34).
The first step towards the computation of the flux is to obtain the vertical velocity profile.

The general structure of this profile is as follows. We have τxz = F (∂zu), where F is a
continuous, one-to-one, increasing function, with F (0) = 0, see (31) and Figure 3. From (34)
and (37) we are led to solve ∂z

(
F (∂zu)

)
= ∂xϕ. Since F (∂zu) = 0 for z = ϕ (or equivalently

∂zu = 0) we get F (∂zu) = ∂xϕ(z − ϕ), so that F (∂zu) is monotone (increasing if ∂xϕ > 0,
decreasing if not). Because F is increasing, ∂zu is monotone as well, in particular, since
∂zu = 0 for z = ϕ, its sign remains constant. Therefore |∂zu| is decreasing in z (increasing
with depth).

The threshold in formula (31) eventually splits the fluid in two layers. Let z∗ be defined
by |∂zu(z∗)| = γc. Provided z∗ ∈]fb, ϕ[ (see below for precise formulas), we have a “small
deformation” region, that is |∂zu(z)| < γc, for z ∈]z∗, ϕ[, because |∂zu| is decreasing from 0

9



for increasing depth. Similarly for z ∈]fb, z
∗[ we have |∂zu(z)| > γc, so that finally, according

to (31), the velocity is ruled by the system of equations

νB∂zzu = ∂xϕ, z∗ 6 z 6 ϕ,

∂zzu = ∂xϕ, fb 6 z 6 z∗,

where for the second equation we have used that ∂zu has a constant sign. These equations
are complemented with the boundary conditions

∂zu = 0, z = ϕ ; u = 0, z = fb.

Notice that the curve z = z∗ is not a physical interface, yet we have continuity of the stress
tensor, or equivalently here continuity of ∂zu.

Now the computations are quite easy. We integrate once the first equation between ϕ and
z∗, to obtain

∂zu =
1

νB
∂xϕ(z − ϕ).

This leads to

γ̇ = |∂zu| =
1

νB
|∂xϕ|(ϕ− z),

so that the value of z∗ and the thickness h∗ of this layer are given by

z∗ = max

(
ϕ− B

|∂xϕ|
, fb

)
, h∗ = ϕ− z∗ = min

(
B

|∂xϕ|
, h

)
. (41)

These definitions ensure that z∗ > fb and h∗ 6 h, and are valid for ∂xϕ = 0 with the convention
B/0 = ∞. Notice that z∗ can be equal to fb for weak slopes (small ∂xϕ), or small depths
(small h). Conversely, z∗ → ϕ when |∂xϕ| goes to ∞.

Integrating once again between z∗ and ϕ, we obtain the velocity profile for ϕ > z > z∗:

u(z) =
1

2νB
∂xϕ(ϕ− z)2 +K,

where the constant K will be determined later. Notice for further use that by construction

∂zu(z∗) =
1

νB
∂xϕ(z∗ − ϕ) = γc. (42)

We turn now to the lower layer, z∗ > z > fb. The fluid here has dimensionless viscosity 1,
and we use the boundary conditions (42) for z = z∗, and no slip (36) at z = fb. First we get,
using (42),

∂zu = ∂xϕ(z − z∗)− 1

νB
∂xϕh

∗,

next, integrating once again between fb and z∗,

u =
1

2
∂xϕ(z∗ − z)2 − 1

νB
∂xϕh

∗z + L,

where L is computed using (36), leading to

L = ub −
1

2
∂xϕ(z∗ − fb)2 +

1

νB
∂xϕh

∗fb,
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so that

u =
1

2
∂xϕ

(
(z∗ − z)2 − (z∗ − fb)2

)
− 1

νB
∂xϕh

∗(z − fb) + ub, (43)

Finally, we use the continuity of the velocity at z = z∗ to obtain the constant K:

1

2νB
∂xϕ(ϕ− z∗)2 +K = − 1

2
∂xϕ(z∗ − fb)2 − 1

νB
∂xϕh

∗(z∗ − fb) + ub.

The velocity profile is therefore given by

u(z) =



∂xϕ

2

(
(z∗ − z)2 − (z∗ − fb)2

)
− ∂xϕ

νB
h∗(z − fb) + ub, fb 6 z 6 z∗

∂xϕ

2νB

(
(ϕ− z)2 − (ϕ− z∗)2

)
− ∂xϕ

2
(z∗ − fb)2

− ∂xϕ

νB
h∗(z∗ − fb) + ub,

z∗ 6 z 6 ϕ

(44)

Notice that for νB = 1, easy computations show that the profile is the same in the two layers,

namely u =
∂xϕ

2
(z− fb)(z− fb− 2h) + ub, which is as expected the usual parabolic profile for

a Newtonian fluid.
On the other hand, letting νB → +∞, and γc → 0, keeping νBγc = τc, we recover formally

the Bingham fluid velocity, as in Balmforth [2]:

u(z) =


−∂xϕ

2

(
(h∗)

2 − (h∗ − (z − fb))2
)

+ ub, fb 6 z 6 z∗

−∂xϕ
2

(h∗)
2 + ub, z∗ 6 z 6 ϕ

where we have set h∗ = z∗ − fb = h− h∗.
It is now straightforward to obtain the flux in (40), since∫ ϕ

fb

u(z) dz =

∫ z∗

fb

u(z) dz +

∫ ϕ

z∗
u(z) dz.

We have on the one hand∫ z∗

fb

u(z) dz = − ∂xϕ

3
(h∗)

3 − ∂xϕ

2νB
h∗(h∗)

2 + ubh∗,

on the other hand∫ ϕ

z∗
u(z) dz = − ∂xϕ

3νB
(h∗)3 − ∂xϕ

2
(h∗)

2h∗ − ∂xϕ

νB
h∗(h

∗)2 + ubh
∗.

Therefore the flux we are looking for is given by∫ ϕ

fb

u(z) dz = − ∂xϕ

3

(
(h∗)

3 +
3

2

( 1

νB
+ 1
)
(h∗)

2h∗ +
3

νB
h∗(h

∗)2 +
1

νB
(h∗)3

)
+ ubh. (45)

It is easy once again to check on this formula that we recover the usual cubic flux −∂xϕ
3
h3 for

the Newtonian fluid νB = 1. On the other hand the limit case νB →∞ gives back Balmforth’s
formula ∫ ϕ

fb

u(z) dz = −∂xϕ
6

(h∗)
2(h∗ − 3h).
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Inserting (45) in the conservation equation (40) leads to the following advection-diffusion
equation:

∂th+ ∂x(ubh) = vb + ∂x (D(h, ∂xh)∂x(h+ fb)) , (46)

where

D(h, ∂xh) =
1

3

(
(h∗)

3 +
3

2

( 1

νB
+ 1
)
(h∗)

2h∗ +
3

νB
h∗(h

∗)2 +
1

νB
(h∗)3

)
(47)

and we recall the definitions of h∗ from (41), and h∗

h∗ = min

(
B

|∂xϕ|
, h

)
, h∗ = h− h∗ = z∗ − fb. (48)

Notice that 0 < D(h, ∂xh) 6 h3/(3νB).

4 Numerical illustrations

We turn now to numerical examples to illustrate the behaviour of the two-viscosity fluid. The
point here is not to give an accurate specific scheme, which is an interesting perspective since
the diffusion term may degenerate, but is beyond the scope of this work. We merely apply
here a simple finite volume strategy. The infinite space domain is replaced by some finite
computational domain [a, b]. Since we do not want to cope with boundary conditions here,
we merely impose a free flux on the boundaries, which is compatible with the examples we
choose. Positive time and space steps ∆t and ∆x being given, we introduce the usual notations
tn = ∆t, n > 0, and xj = j∆x, 0 6 j 6 J , where J = (b − a)/∆x. An approximation of the
depth h is sought for in the form

hn+1
j = hnk −

∆t

∆x
(Fnj+1/2 − F

n
j−1/2) +

∆t

∆x
(Gnj+1/2 −G

n
j−1/2),

where Fnj+1/2 is the numerical advection flux, and Gnj+1/2 the numerical diffusion flux, both
computed at interface xj+1/2. In the following we denote unj the discretized basal velocity,
and fj the discrete topography, which are both given functions.

The advection flux is merely an upwind flux

Fnj+1/2 =

{
hnj (unj + unj+1)/2 if unj + unj+1 > 0

hnj+1(unj + unj+1)/2 if unj + unj+1 6 0

For the diffusive flux, we write Gnj+1/2 = Dn
j+1/2K

n
j+1/2, where Kn

j+1/2 is the approximate
value of the slope ∂xϕ

Kn
j+1/2 =

hnj+1 − hnj
∆x

+
fj+1 − fj

∆x
,

and Dn
j+1/2 is a discretization of (47). To obtain it we need to compute h∗ and h∗ at the

interface. Accordingly to (48), we put

(h∗)nj+1/2 =


B

|Kn
j+1/2|

if B <
hnj+1 + hnj

2
|Kn

j+1/2|

hnj+1 + hnj
2

if not
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and (h∗)
n
j+1/2 = (hnj+1 + hnj )/2− ((h∗)nj+1/2, so that Dn

j+1/2 is given by

Dn
j+1/2 =

1

3

((
(h∗)

n
j+1/2

)3
+

3

2

( 1

νB
+ 1
)(

(h∗)
n
j+1/2

)2
(h∗)nj+1/2

+
3

νB
(h∗)

n
j+1/2)

(
(h∗)nj+1/2

)2
+
(
(h∗)nj+1/2

)3)
,

The time step ∆t is actually updated at each time step using the CFL condition

∆tn

∆x2
=

σ

2Dn
, with Dn = max

j
Dn
j+1/2, where σ < 1.

The following simulations have been performed with J = 200 cells in the interval [−1, 1],
together with σ = 0.9. All figures are gathered at the end of the paper.

The first set of simulations concerns the collapse of a square-shaped stack on a horizontal
flat bottom: h0(x) = 1 for x ∈]−1/3, 1/3[, 0 elsewhere, with zero basal velocity (ub = vb = 0).
We first propose a comparison between the two viscosities model and the high viscosity and
low viscosity models. The small deformation viscosity is νB = 100 (recall that ν = 1), and
the yield stress is 0.1 in Figure 4, and 0.5 in Figure 5. These figures are complemented by
Figure 6 where we display for four values of the yield stress B a timelapse of the evolution of
both the total thickness of the fluid h (plain lines) and the thickness of the low velocity layer
(dashed lines).

For B = 0.1, the fluid clearly behaves similarly as the low viscosity fluid in the early stages,
then eventually it slows down, when the low viscosity layer tends to disappear, see Figure 6,
top left. With a yield stress B = 0.5, the two viscosities model stays inbetween the other two,
as expected, faster that the high viscosity model, slower than the low viscosity one, see Figure
5. However, one can check that the front hardly moves between t = 10 and t = 50, indicating
that the fluid tends to behave as the high velocity one. This is made more explicit in Figure
6, top right, where for t = 10 and t = 50 the low viscosity layer is very small. In general, the
thickness h∗ decreases with time, faster when B is larger. It is hardly observable for t = 50
when B = 2.5, indicating that the fluid is almost completely driven by the high viscosity.

Using the same initial data, we check the convergence of the two viscosities model towards
the Bingham fluid when νB goes to∞. We take a yield stress B = 1.25, and νB = 10, 100, 1000.
As expected, the behaviour becomes close to the Bingham fluid, yet it departs from it for larger
times, see Figure 7. This somehow justifies a posteriori that we have taken into account the
scaling δνB → 0, see Remark 1.

We turn now to a different context, closer to the situation in geophysics. The flow here is
no longer purely gravity driven, it is actually dragged along by a non zero basal velocity. The
idea here is that our pseudo-plastic fluid is a very crude model of some planetary lithosphere,
below which lies the mantle. The basal velocity is the upper trace of convection currents in
the mantle, which are supposed to be the main drivers of plate tectonics. The initial thickness
is constant equal to 1, and we use two basal velocities Ub(x) = (ub(x), 0), where

ub(x) = − sin(2πx)/10 · 1I]−0.5,0.5[(x), ub(x) = sin(2πx)/10 · 1I]−0.5,0.5[(x). (49)

These velocities crudely correspond respectively to the vertical motion of a magma bubble,
which generates local perturbations of the velocity. The first one corresponds to some bubble
lift, with negative velocity on the left and positive on the right. It generates some kind of a

13



valley surrounded by mountains, see Figure 8. Conversely, the descent of a bubble reverses
the velocities, and produces a mountain surrounded with valleys, Figure 9. We notice in both
cases that the small viscosity model has very little influence on the time evolution, and that
the two viscosity model leads to rather sharp angles in the thickness.
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Figure 4: Comparison between the three models, time evolution. Yield stress B = 0.1,
νB = 100
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Figure 5: Comparison between the three models, time evolution. Yield stress B = 0.5,
νB = 100
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Figure 6: Influence of the yield stress B. νB = 100. Color code in pictures - plain lines: total
thickness h, dashed lines: small viscosity zone thicness h∗.
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Figure 8: Lift of a magma bubble - Yield stress B = 1.25 - νB = 100 -Top left: basal velocity -
Top right: Timelapse of thickness h and low viscosity layer h∗ - Next 6 pictures: time evolution
of the three models
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Figure 9: Descent of a magma bubble - Yield stress B = 1.25 - νB = 100 - Top left: basal
velocity - Top right: Timelapse of thickness h and low viscosity layer h∗ - Next 6 pictures:
time evolution of the three models

20


	Introduction
	Mathematical model
	Rheology
	Scalings

	Lubrication equation
	Numerical illustrations

