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Immune repertoires rely on diversity of T-cell and B-cell receptors to protect us

against foreign threats. The ability to recognize a wide variety of pathogens is

linked to the number of different clonotypes expressed by an individual. Out of the

estimated ∼ 1012 different B and T cells in humans, how many of them express

distinct receptors? We review current and past estimates for these numbers. We

point out a fundamental limitation of current methods, which ignore the tail of small

clones in the distribution of clone sizes. We show that this tail strongly affects the

total number of clones, but it is impractical to access experimentally. We propose

that combining statistical models with mechanistic models of lymphocyte clonal

dynamics offers possible new strategies for estimating the number of clones.
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I. INTRODUCTION

The diversity of immune repertoires plays an important role in the host’s ability to recog-
nize and control a wide range of pathogens. While actual recognition of an antigen depends
on having a relatively specific T-cell or B-cell receptor (TCR or BCR), multiple experimental
examples show that reduced receptor diversity may limit the efficacy of adaptive immune
repertoires [1, 2]. This effect becomes especially pronounced in individuals infected with cy-
tomegalovirus [3–5], or with immunosenescence [6], when naive clonotypes are significantly
reduced, and the organism is left to rely on reduced immune diversity.

The number of different clonotypes, called species richness in ecology, is thus an important
quantity to estimate, both biologically and clinically. Here we review some of the experi-
mental and theoretical approaches that have been used to estimate the number of distinct
clonotypes in TCR and BCR repertoires, in naive, memory, or unfractionned repertoires.
Based on existing repertoire data and computational models, we demonstrate that no statis-
tical method can overcome the limitations of small sampling. We argue that this problem,
which is inherent to all existing methods, could be overcome by combining repertoire data
with stochastic models of lymphocyte population dynamics, taking into account the caveats
of convergent recombination and experimental noise.

II. PAST ESTIMATES

The variable part of each TCR β (and BCR heavy) chain is composed by putting to-
gether variable (V), diverse (D) and joining (J) regions. TCR α (and BCR light) chains
only have V and J genes and no D genes. Additionally each chain experiences additions and
deletions of nucleotides at the gene junctions, which increases the diversity. This junctional
rearrangements have been identified as the main contributor to sequence diversity [7, 8].
The α and β chain generations in TCR are separated in time, and have been shown to be
independent [9, 10]. The total number of different αβ pairs that the generation machinery
can produce is much greater than the total number of receptors in the whole human popu-
lation [9, 11, 12]. Thus, each person harbors only a small fraction of the potential diversity
of receptors. To estimate the number of distinct receptors, we need to count them.

An early quantitative direct estimate of the size of the TCR repertoire dates back to
Arstila et al [13], following earlier considerations [7, 14]. Their approach was to focus on a
subclass of receptors (either α or β) with a specific V-J class and length, and sequence them
using low-throughput methods. The number of different sequences in that subclass is then
extrapolated back to the get the full diversity by dividing by the known frequency of V-J
and length usage. The authors were very careful to verify their estimate in different V-J
classes and donors, and to account for rare clonotypes that might have escaped sequencing.
A total of ∼ 106 different TCR β chains were thus estimated in a sample of 108 T-cells. Each
β chain paired with 25 different α chains, resulting in ∼ 25 · 106 distinct TCRαβ. Much
smaller TCR αβ diversity was reported in the memory subset, ∼ 2 · 105, consistent with the
idea that memory cells form a selected and thus restricted subset.

With the onset of high-throughput sequencing of immune receptor repertoires [15–22]
came the realization of the importance of the sampling problem. In sequenced repertoires,
many clonotypes are seen just once, suggesting that there are possibly many more that have
similar or slightly smaller sizes but were not sequenced, simply by chance. This issue does
not only affect “small” clones. A clone of 105 cells among a total of 3 · 1011 T cells will often
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not be seen even once in a typical sample of 106 cells. To deal with this issue, a commonly
adopted approach has been to use statistical estimators (see [23] for a overview).

Using the Poisson abundance statistical method [24], Robins et al [16] obtained estimates
of ∼ 106 TCRβ nucleotide clonotypes for CD8 and CD4 naive cells, and ∼ 5 · 105-106

for CD8 and CD4 memory TCRβ. Qi et al. [6] used another method called the Chao2
estimator [25], which uses multiple replicates of the sequencing experiment, to estimate
TCR species richness. They obtained much larger estimates than Robins et al.: ∼ 2 · 108

TCRβ nucleotide clonotypes in CD4 and CD8 naive repertoires, ∼ 1.5 · 106 clonotypes in
CD4 memory repertoires, and about 5-10 times fewer in CD8 memory. All those numbers
decreased with age. Using the Poisson abundance method, diversities of ∼ 1-2 · 109 for
naive and ∼ 5 · 107-108 for memory BCR heavy chains were reported [26]. Recent estimates
of BCR heavy-chain species richness using an advanced statistical estimator [27] yielded
smaller diversities, ranging from ∼ 107 [28] to 107-109 [29], presumably because they focused
on amino acid rather than nucleotide clonotypes and ignored hypermutations in the V and
J segments.

III. THE SAMPLING PROBLEM

The approaches described above share the common problem that it is impossible to
extrapolate what happens for small clones from small samples, which capture the largest
clones [23, 27]. Getting information on the small clonse is in fact impractical: it would
require sequencing essentially all lymphocytes in an organism. Humans harbor of the order
of 3 · 1011 T cells (and roughly the same order of B cells). Of these, only a few percents
are contained in blood, of which a small fraction (∼ 106) is sampled in typical experiments
(Fig. 1A). Even in mice, which contain fewer lymphocytes (∼ 108 T cells) and can be
sacrificed to isolate all the body’s lymphocytes, cell loss during the experiment hampers this
approach.

In Fig. 1B-D, we illustrate with simulations what happens when one analyses samples of
106 cells from three synthetic repertoires. These repertoires are described by different clone
size distributions, corresponding to a widely different number of clones: a pure power law
(Fig. 1B), a mixture of a power law and neutral model [30] (Fig. 1C), and a power law with
a low-frequency cut-off (Fig. 1D). Their species richness are widely different, ranging from
N ∼ 7 · 105 to 1.6 · 1010. Yet, the sampled repertoires show similar clone size distributions,
and comparable observed diversity (105-106), because they behave similarly for large clone
sizes, but drastically differ in the tail of small clone sizes.

Any statistical method that extrapolates from observations assumes, knowingly or implic-
itly, an underlying model for how the clone size distribution behaves for the smallest clones.
The Poisson abundance and Chao estimators [24, 25, 31] discussed earlier both assume a
well peaked distribution of clone sizes, which is not the case in our examples. As a result,
the Chao1 estimator [31] can underestimate species richness by up to a 1,000-fold factor
(Fig. 1B).

Real repertoires are likely affected by this problem. The sampled (large clone) part of
their clone size distribution has been shown to follow a power law both for TCR and BCR
[11]. Naive subsets display shorter tails of large clones [32], suggesting that the power-law
behaviour in unfractioned repertoires is dominated by memory clones. Our three synthetic
examples are consistent with power laws for large clones, but differ greatly for small clones,
yielding very different species richness. Extrapolating the distribution of clone sizes is the
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key idea behind DivE [33] and Recon [27], which were proposed to estimate diversity in TCR
subsets. However, these approaches assume that the behaviour at large clones is informative
for small clones, which may not always be true.

IV. PROPOSED SOLUTION: STOCHASTIC MODELING

To access small clones that cannot be directly probed experimentally, we need to explicitly
model the biological processes that shape these distributions, without having to take a leap
of faith. Unlike extrapolation, such models might predict behaviours for small clones that
are quantitatively different than the trend suggested by large clones. Of course, model as-
sumptions should be tested experimentally, their parameters estimated from measurements,
and confidence intervals put on their predictions. We now briefly review two simple models
that have been proposed to describe the dynamics and clone size distributions of naive and
memory repertoires.

Cells in naive repertoires have not experienced strong proliferation due to antigen recog-
nition. Nevertheless not all clones are of the same size, in part because clones leave the
thymus with different initial sizes, and in part because they undergo stochastic division and
death. The simplest model of naive repertoires is Hubbell’s neutral model of ecology [30],
which assumes constant division and death rates (ν < µ) for each cell, with new clones
introduced with rate θ and constant initial size k (Fig. 2A, left). More complex variants
of that model may include intrinsic fitness differences between clones or cells, e.g. through
competition for self-antigens [34] or cytokines [35].

Under that simple model, the steady state distribution of clones can be computed analyt-
ically [35–37], and falls off exponentially for clones larger than k (Fig. 2A, right), meaning
that large clones are rare. The total number of clones N can also be calculated analytically
as a function of the model parameters µ, ν, and k, as well as the total number of cells T
(Fig 2C). Unless cell division almost exactly balances death (ν ∼ µ), or the introduction
clone size k is large, the typical naive clone size is fairly small. This means that the total
number of clones is very large, and comparable to the total number of cells. To get a more
precise estimate would require to measure the division rate of naive T cells ν, and initial
clone size k.

A limitation of this approach is the assumption that the clone size distribution quickly
reaches a steady state. Naive T cells are very long-lived µ−1 ∼ 3 years [38], and the size
of the naive pool changes with age, so that steady state may never be reached. Transient
models of naive repertoires remain to be explored in more detail. A recent experimental
study suggests that some T-cell naive clones are much larger than predicted by the neutral
theory [36]. However the origin of these outliers is not yet well understood, and may have to
do with the inadequacy of our current definitions of naive and memory cells through surface
markers.

Modeling memory repertoires requires taking into account the expansion and then con-
traction dynamics after an infection. These dynamics are driven by new pathogens that
infect the host, are recognized and then cleared [39], which leads to a constantly changing
antigenic landscape [35]. This random encounter with antigens can be simply modeled by
bursts of division events for all cells of the same clone, with rate r, causing each cell to
effectively multiply m times into memory following antigen clearance (Fig. 2B, left). Again,
this model can be solved exactly in the continuous limit at steady state. The clone size
distribution follows a power law for large clones (Fig. 2B, right). The predicted number of
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clones N depends critically on the power law exponent α, and can be calculated as a func-
tion of the model parameters (Fig. 2D). N drops to zero for power law exponent α close to
1. Interestingly, measured exponents α from unfractioned T cell β chain repertoires (whose
large-clone tail is believed to be dominated by memory clones) range from 1 to ∼ 1.5 [11].
This high sensitivity to parameters makes estimates from data very difficult.

Extensions of this model include the emergence of antigenic “niches” [40], where clonal
expansion is limited by antigen availability, leading to diminishing returns upon multiple
stimulation events [41]. Such mechanisms would limit the size of the largest clones and
would cut off the power law behaviour, which is not observed in data.

V. CONNECTING MODELS TO DATA

Several caveats and corrections must be taken into account when linking stochastic models
of population dynamics such as discussed above to repertoire data. Of importances are the
issues of convergent recombination and experimental noise.

Population dynamics models focus on clones, defined as the set of cells originating from
a common recombination event. However, two recombination events can lead to exactly the
same sequence. The two corresponding clones would be indistinguishable, and form a single
clonotype in the repertoire. This effect can be corrected for by using models of recombina-
tion [42, 43]. These models, which are inferred from data, can predict the distribution of
generation probabilities of full receptors, or of single chains, both at the level of nucletoide or
amino acid sequences, as shown in Fig. 3A for TCR. From this distribution, the probability
of convergent recombination can be computed to predict the number of distinct clonotypes
as a function of the number of “clones”, defined as independent recombination events (Eq. 7
of [12]). In Fig. 3B we plot that prediction for the α, β, and αβ TCR in humans, for both
nucleotide and amino acid clonotypes. These computations show that, for the full TCRαβ
clonotypes, convergent recombination is so rare that it hardly affects species richness. For
the α and β chains alone, however, the effect is substantial. Since most repertoire data are
of single chains, this correction should be applied when linking data to the type of models
discussed above, as was done in Ref. [36].

An additionnal issue complicates the comparison of models to data: experimental noise in
the observed frequencies of clonotypes. In practice the number of reads (or unique molecular
identifiers when they are used) n observed in data for a given clonotype is not simply the
result of random sampling, and is not distributed according to a Poisson law, as was assumed
in Fig. 1 and in all previous work on diversity estimation. Instead, noise is over-dispersed, due
to additional noise caused by DNA amplification and library preparation prior to sequencing.
This noise model can be fitted using replicates of the repertoire sequencing experiment.
This inference is impossible to separate from the inference of the clone size distribution
ρ(f). The two must thus be learned simultaneously from replicates by maximizing the
likelihood of observed abundances, which depend on both the clone size distribution and
the noise properties [44]. Applying this approach to the β chain of unpartioned T cells with
ρ(f) ∝ f−1−α, yields species richness of N ∼ 108 − 109, with power-law exponent α ≈ 1-
1.2 [44]. In this estimate, the power law is taken as a given, and not linked to a model of
clonal dynamics. A full mechanistic model treatment combined with the statistical model
remains an interesting direction to explore, which could help shed light on the differences
between memory and naive repertoires.
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VI. SAMPLING AND REPERTOIRE SHARING

Several recent papers have focused on shared immune receptors from high throughput
BCR repertoire data [28, 29, 45]. These high profile analyses report absolute percentages of
shared clonotypes. However, it was shown in the context of TCR (but the same holds for
BCR) that these fractions are not absolute properties of the repertoires, but rather depend
on sampling depth and the number of individuals that share the clonotypes [11, 12]. Sharing
estimates based on samples of the repertoire are bound to grossly underestimate the true
sharing fraction. Therefore, reporting sharing percentages without appropriate information
about sample sizes is meaningless.

To assess the true overlap between the repertoires of two or more individuals, we would
need to sequence all their lymphocytes, which is impractical. However, statistical model
of sequence probabilities can be used to extrapolate sharing estimates to the full repertoire
size N , provided that number is known [12]. For instance, clonotypes whose probability p
is larger than 1/N are expected to be present in 1 − e−pN > 63% of individuals, and can
be considered “public”. Recombination models such as the one of Fig. 3A can be used to
estimate the fraction of clonotypes that are public. For example, for N = 1010, the model
predicts that about 15% of TCRβ amino acid clonotypes expressed by human individuals
are public [12].

VII. CONCLUSIONS

While we have focused our review on the number of distinct clonotypes, what really
matters for biological function is the number of different specificities. Due to cross-reactivity,
each receptor can recognize many antigens and each antigen can be recognized by many
receptors with different strengths. To account for this degeneracy, we would need to define
a functional coverage of the antigenic space [46]. However, we currently do not have a
comprehensive sequence-to-function maps for TCR and BCR that would allow us to estimate
such a quantity.

Simply counting clonotypes also ignores their relative abundances. Clonotypes expressed
by very few cells may not be as relevant for immune protection as very frequent clonotypes.
Other diversity measures such as Hill numbers account for differences in frequencies [11, 47].
Some of these measures are in fact more robust than species richness, because they put more
focus on large clones and are less susceptible to sampling noise. Depending on the question,
these measures may be better suited than species richness.

Our discussion has focused mostly on T cells, and has ignored the complications of hyper-
mutations in BCR, which cause lineages to split into many clonotypes. Whether diversity
is defined at the level of lineages or clonotypes will lead to different answers [26, 28, 29].
Developping specialized population dynamics models of B cell development and affinity
maturation that include hypermutations is an interesting research direction.

We emphasized that estimating species richness cannot be disentangled from estimating
the full distribution of clone sizes. As we gain insight into various aspects of lymphocyte
dynamics, from thymic output to infection and memory formation, better mathematical
descriptions can be leveraged to propose refined forms for the clone size distribution, and to
fit their parameters to observations. Only with such a combination of modeling and data
will we be able to get a better picture of repertoire diversity and immune coverage.
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FIG. 1. Estimating the total number of B or T cell clonotypes from small samples is

generally impossible. A. Orders of magnitude for the number of T cells. Only one or a few

percent of all T =∼ 3 · 1011 T cells circulate in blood at any given time. Among these, typical

sequenced samples contain about a million cells, which is a tiny fraction of the total repertoire. The

number of T cells in a mouse is shown for comparison. Similar numbers hold for B cells. B.-D.

Rank-frequency plots of three synthetic repertoires showing the frequency of B- or T-cell clones

versus their rank (from most frequent to least frequent). The corresponding clone size distribution

is shown in the inset: B) power-law distribution; C) mixture of power-distribution and neutral

distribution (see main text); D) power-law distribution with low-frequency cutoff. A random of

sample of 106 cells (in red) fails to capture most of the true rank-frequency relation (in blue). While

the sampled distribution looks similar in all three cases, the true distributions are very different in

the domain of low clonal frequencies, and correspond to a widely different number of clones Ntrue.

That number is very poorly estimated by the number of sampled clones (Nsample), or by the Chao1

statistical estimator [31] (NChao).
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FIG. 2. Lymphocyte population dynamics models can be used to estimate the number

of clones. A. Neutral model for lymphocyte dynamics. New clones come out of the thymus (for T

cells) or bone marrow (for B cells) with rate θ, with initial clone size k. Then each cell may divide

with rate ν, and die with rate µ > ν. The clone size distribution at steady state can be calculate

and falls off rapidly (right). B.A minimal clonal selection model. Instead of dividing randomly,

cells of the same clone all proliferate m-fold upon immune stimulation, which occurs with rate r.

The clone size distribution of this process behaves as a power law for large clones. The exponent

of the power law can be expressed as a function of the model parameters. C.-D. The total number

of clones can be expressed as a function of the model parameters for C) the neutral model D)

the clonal selection model, and the total number of cells in the body, T = 3 · 1011. In the neutral

model, the typical size of clones increases and diverges when division and death balance each other,

µ ∼ ν, leading to reduced diversity for a fixed number of cells. In the selection model, a similar

divergence is observed as the power law exponent α gets close to 1.
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FIG. 3. Convergent recombination. A. Distributions of generation probabilities for the α and

β chains as well as αβ pairs of T-cell receptors, for both nucleotide and amino-acid sequences,

calculated using the OLGA software [43]. Most clonotypes have very low probability and are

therefore unlikely to occur in two clones independently. High-probability clonotypes, however,

will be generated several times in distinct T-cell clones (convergent recombination), reducing their

diversity. B. Impact of convergent recombination on clonotype diversity. The ratio of the number

of clonotypes to the number of clones is calculated using a model of recombination using OLGA,

with the additional assumption that a random fraction q of recombination events fail to pass

selection [12]. This ratio decreases as the number of clones increases, as redundant recombination

events become more likely. The magnitude of this effect depends on the definition of clonotype

(single chains or αβ pairs, amino acids or nucleotides). It is small for full αβ pairs. Inset: number

of distinct clonotypes as a function of the number of clones. Selection parameter q: qα = 0.046,

qβ = 0.0091, and qαβ = qαqβ (taken from Refs. [9, 12]).




