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I. INTRODUCTION

The diversity of immune repertoires plays an important role in the host's ability to recognize and control a wide range of pathogens. While actual recognition of an antigen depends on having a relatively specific T-cell or B-cell receptor (TCR or BCR), multiple experimental examples show that reduced receptor diversity may limit the efficacy of adaptive immune repertoires [START_REF] Yager | Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus[END_REF][START_REF] Muraro | T cell repertoire following autologous stem cell transplantation for multiple sclerosis[END_REF]. This effect becomes especially pronounced in individuals infected with cytomegalovirus [START_REF] Khan | Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals[END_REF][START_REF] Souquette | A constant companion: immune recognition and response to cytomegalovirus with aging and implications for immune fitness[END_REF][START_REF] Smithey | Lifelong CMV infection improves immune defense in old mice by broadening the mobilized TCR repertoire against third-party infection[END_REF], or with immunosenescence [START_REF] Qi | Diversity and clonal selection in the human T-cell repertoire[END_REF], when naive clonotypes are significantly reduced, and the organism is left to rely on reduced immune diversity.

The number of different clonotypes, called species richness in ecology, is thus an important quantity to estimate, both biologically and clinically. Here we review some of the experimental and theoretical approaches that have been used to estimate the number of distinct clonotypes in TCR and BCR repertoires, in naive, memory, or unfractionned repertoires. Based on existing repertoire data and computational models, we demonstrate that no statistical method can overcome the limitations of small sampling. We argue that this problem, which is inherent to all existing methods, could be overcome by combining repertoire data with stochastic models of lymphocyte population dynamics, taking into account the caveats of convergent recombination and experimental noise.

II. PAST ESTIMATES

The variable part of each TCR β (and BCR heavy) chain is composed by putting together variable (V), diverse (D) and joining (J) regions. TCR α (and BCR light) chains only have V and J genes and no D genes. Additionally each chain experiences additions and deletions of nucleotides at the gene junctions, which increases the diversity. This junctional rearrangements have been identified as the main contributor to sequence diversity [START_REF] Davis | T-cell antigen receptor genes and T-cell recognition[END_REF][START_REF] Murugan | Statistical inference of the generation probability of T-cell receptors from sequence repertoires[END_REF]. The α and β chain generations in TCR are separated in time, and have been shown to be independent [START_REF] Dupic | Genesis of the αβ T-cell receptor[END_REF][START_REF] Grigaityte | Single-cell sequencing reveals αβ chain pairing shapes the T cell repertoire[END_REF]. The total number of different αβ pairs that the generation machinery can produce is much greater than the total number of receptors in the whole human population [START_REF] Dupic | Genesis of the αβ T-cell receptor[END_REF][START_REF] Mora | Systems Immunology: An Introduction to Modeling Methods for Scientists[END_REF][START_REF] Elhanati | Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination[END_REF]. Thus, each person harbors only a small fraction of the potential diversity of receptors. To estimate the number of distinct receptors, we need to count them.

An early quantitative direct estimate of the size of the TCR repertoire dates back to Arstila et al [START_REF] Arstila | A direct estimate of the human alphabeta T cell receptor diversity[END_REF], following earlier considerations [START_REF] Davis | T-cell antigen receptor genes and T-cell recognition[END_REF][START_REF] Davis | Ligand recognition by alpha beta T cell receptors[END_REF]. Their approach was to focus on a subclass of receptors (either α or β) with a specific V-J class and length, and sequence them using low-throughput methods. The number of different sequences in that subclass is then extrapolated back to the get the full diversity by dividing by the known frequency of V-J and length usage. The authors were very careful to verify their estimate in different V-J classes and donors, and to account for rare clonotypes that might have escaped sequencing. A total of ∼ 10 6 different TCR β chains were thus estimated in a sample of 10 8 T-cells. Each β chain paired with 25 different α chains, resulting in ∼ 25 • 10 6 distinct TCRαβ. Much smaller TCR αβ diversity was reported in the memory subset, ∼ 2 • 10 5 , consistent with the idea that memory cells form a selected and thus restricted subset.

With the onset of high-throughput sequencing of immune receptor repertoires [START_REF] Weinstein | High-throughput sequencing of the zebrafish antibody repertoire[END_REF][START_REF] Robins | Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells[END_REF][START_REF] Boyd | Measurement and clinical monitoring of human lymphocyte clonality by massively parallel {VDJ} pyrosequencing[END_REF][START_REF] Six | The past, present and future of immune repertoire biology -the rise of next-generation repertoire analysis[END_REF][START_REF] Robins | Immunosequencing: applications of immune repertoire deep sequencing[END_REF][START_REF] Georgiou | The promise and challenge of high-throughput sequencing of the antibody repertoire[END_REF][START_REF] Heather | High-throughput sequencing of the T-cell receptor repertoire: pitfalls and opportunities[END_REF][START_REF] Minervina | TCR and BCR repertoire profiling in adaptive immunity[END_REF] came the realization of the importance of the sampling problem. In sequenced repertoires, many clonotypes are seen just once, suggesting that there are possibly many more that have similar or slightly smaller sizes but were not sequenced, simply by chance. This issue does not only affect "small" clones. A clone of 10 5 cells among a total of 3 • 10 11 T cells will often not be seen even once in a typical sample of 10 6 cells. To deal with this issue, a commonly adopted approach has been to use statistical estimators (see [START_REF] Laydon | Estimating T-cell repertoire diversity: limitations of classical estimators and a new approach[END_REF] for a overview).

Using the Poisson abundance statistical method [START_REF] Fisher | The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population[END_REF], Robins et al [START_REF] Robins | Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells[END_REF] obtained estimates of ∼ 10 6 TCRβ nucleotide clonotypes for CD8 and CD4 naive cells, and ∼ 5 • 10 5 -10 6 for CD8 and CD4 memory TCRβ. Qi et al. [START_REF] Qi | Diversity and clonal selection in the human T-cell repertoire[END_REF] used another method called the Chao2 estimator [START_REF] Chao | Estimating the number of species in a stochastic abundance model[END_REF], which uses multiple replicates of the sequencing experiment, to estimate TCR species richness. They obtained much larger estimates than Robins et al.: ∼ 2 • 10 8 TCRβ nucleotide clonotypes in CD4 and CD8 naive repertoires, ∼ 1.5 • 10 6 clonotypes in CD4 memory repertoires, and about 5-10 times fewer in CD8 memory. All those numbers decreased with age. Using the Poisson abundance method, diversities of ∼ 1-2 • 10 9 for naive and ∼ 5 • 10 7 -10 8 for memory BCR heavy chains were reported [START_REF] Dewitt | A Public Database of Memory and Naive B-Cell Receptor Sequences[END_REF]. Recent estimates of BCR heavy-chain species richness using an advanced statistical estimator [START_REF] Kaplinsky | Robust estimates of overall immune-repertoire diversity from high-throughput measurements on samples[END_REF] yielded smaller diversities, ranging from ∼ 10 7 [28] to 10 7 -10 9 [START_REF] Briney | Commonality despite exceptional diversity in the baseline human antibody repertoire[END_REF], presumably because they focused on amino acid rather than nucleotide clonotypes and ignored hypermutations in the V and J segments.

III. THE SAMPLING PROBLEM

The approaches described above share the common problem that it is impossible to extrapolate what happens for small clones from small samples, which capture the largest clones [START_REF] Laydon | Estimating T-cell repertoire diversity: limitations of classical estimators and a new approach[END_REF][START_REF] Kaplinsky | Robust estimates of overall immune-repertoire diversity from high-throughput measurements on samples[END_REF]. Getting information on the small clonse is in fact impractical: it would require sequencing essentially all lymphocytes in an organism. Humans harbor of the order of 3 • 10 11 T cells (and roughly the same order of B cells). Of these, only a few percents are contained in blood, of which a small fraction (∼ 10 6 ) is sampled in typical experiments (Fig. 1A). Even in mice, which contain fewer lymphocytes (∼ 10 8 T cells) and can be sacrificed to isolate all the body's lymphocytes, cell loss during the experiment hampers this approach.

In Fig. 1B-D, we illustrate with simulations what happens when one analyses samples of 10 6 cells from three synthetic repertoires. These repertoires are described by different clone size distributions, corresponding to a widely different number of clones: a pure power law (Fig. 1B), a mixture of a power law and neutral model [START_REF] Hubbell | The Unified Neutral Theory of Biodiversity and Biogeography[END_REF] (Fig. 1C), and a power law with a low-frequency cut-off (Fig. 1D). Their species richness are widely different, ranging from N ∼ 7 • 10 5 to 1.6 • 10 10 . Yet, the sampled repertoires show similar clone size distributions, and comparable observed diversity (10 5 -10 6 ), because they behave similarly for large clone sizes, but drastically differ in the tail of small clone sizes.

Any statistical method that extrapolates from observations assumes, knowingly or implicitly, an underlying model for how the clone size distribution behaves for the smallest clones. The Poisson abundance and Chao estimators [START_REF] Fisher | The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population[END_REF][START_REF] Chao | Estimating the number of species in a stochastic abundance model[END_REF][START_REF] Chao | Nonparametric estimation of the number of classes in a population[END_REF] discussed earlier both assume a well peaked distribution of clone sizes, which is not the case in our examples. As a result, the Chao1 estimator [START_REF] Chao | Nonparametric estimation of the number of classes in a population[END_REF] can underestimate species richness by up to a 1,000-fold factor (Fig. 1B).

Real repertoires are likely affected by this problem. The sampled (large clone) part of their clone size distribution has been shown to follow a power law both for TCR and BCR [START_REF] Mora | Systems Immunology: An Introduction to Modeling Methods for Scientists[END_REF]. Naive subsets display shorter tails of large clones [START_REF] Oakes | Quantitative Characterization of the t Cell Receptor Repertoire of Naïve and Memory subsets Using an Integrated experimental and Computational Pipeline Which Is Robust, Economical, and Versatile[END_REF], suggesting that the power-law behaviour in unfractioned repertoires is dominated by memory clones. Our three synthetic examples are consistent with power laws for large clones, but differ greatly for small clones, yielding very different species richness. Extrapolating the distribution of clone sizes is the key idea behind DivE [START_REF] Laydon | Quantification of HTLV-1 Clonality and TCR Diversity[END_REF] and Recon [START_REF] Kaplinsky | Robust estimates of overall immune-repertoire diversity from high-throughput measurements on samples[END_REF], which were proposed to estimate diversity in TCR subsets. However, these approaches assume that the behaviour at large clones is informative for small clones, which may not always be true.

IV. PROPOSED SOLUTION: STOCHASTIC MODELING

To access small clones that cannot be directly probed experimentally, we need to explicitly model the biological processes that shape these distributions, without having to take a leap of faith. Unlike extrapolation, such models might predict behaviours for small clones that are quantitatively different than the trend suggested by large clones. Of course, model assumptions should be tested experimentally, their parameters estimated from measurements, and confidence intervals put on their predictions. We now briefly review two simple models that have been proposed to describe the dynamics and clone size distributions of naive and memory repertoires.

Cells in naive repertoires have not experienced strong proliferation due to antigen recognition. Nevertheless not all clones are of the same size, in part because clones leave the thymus with different initial sizes, and in part because they undergo stochastic division and death. The simplest model of naive repertoires is Hubbell's neutral model of ecology [START_REF] Hubbell | The Unified Neutral Theory of Biodiversity and Biogeography[END_REF], which assumes constant division and death rates (ν < µ) for each cell, with new clones introduced with rate θ and constant initial size k (Fig. 2A, left). More complex variants of that model may include intrinsic fitness differences between clones or cells, e.g. through competition for self-antigens [START_REF] Lythe | How many TCR clonotypes does a body maintain ?[END_REF] or cytokines [START_REF] Desponds | Fluctuating fitness shapes the clone size distribution of immune repertoires[END_REF].

Under that simple model, the steady state distribution of clones can be computed analytically [START_REF] Desponds | Fluctuating fitness shapes the clone size distribution of immune repertoires[END_REF][START_REF] Greef | The naive T-cell receptor repertoire has an extremely broad distribution of clone sizes[END_REF][START_REF] Altan-Bonnet | Quantitative Immunology for Physicists[END_REF], and falls off exponentially for clones larger than k (Fig. 2A, right), meaning that large clones are rare. The total number of clones N can also be calculated analytically as a function of the model parameters µ, ν, and k, as well as the total number of cells T (Fig 2C). Unless cell division almost exactly balances death (ν ∼ µ), or the introduction clone size k is large, the typical naive clone size is fairly small. This means that the total number of clones is very large, and comparable to the total number of cells. To get a more precise estimate would require to measure the division rate of naive T cells ν, and initial clone size k.

A limitation of this approach is the assumption that the clone size distribution quickly reaches a steady state. Naive T cells are very long-lived µ -1 ∼ 3 years [START_REF] Boer | Quantifying T lymphocyte turnover[END_REF], and the size of the naive pool changes with age, so that steady state may never be reached. Transient models of naive repertoires remain to be explored in more detail. A recent experimental study suggests that some T-cell naive clones are much larger than predicted by the neutral theory [START_REF] Greef | The naive T-cell receptor repertoire has an extremely broad distribution of clone sizes[END_REF]. However the origin of these outliers is not yet well understood, and may have to do with the inadequacy of our current definitions of naive and memory cells through surface markers.

Modeling memory repertoires requires taking into account the expansion and then contraction dynamics after an infection. These dynamics are driven by new pathogens that infect the host, are recognized and then cleared [START_REF] Boer | Towards a general function describing T cell proliferation[END_REF], which leads to a constantly changing antigenic landscape [START_REF] Desponds | Fluctuating fitness shapes the clone size distribution of immune repertoires[END_REF]. This random encounter with antigens can be simply modeled by bursts of division events for all cells of the same clone, with rate r, causing each cell to effectively multiply m times into memory following antigen clearance (Fig. 2B,left). Again, this model can be solved exactly in the continuous limit at steady state. The clone size distribution follows a power law for large clones (Fig. 2B, right). The predicted number of clones N depends critically on the power law exponent α, and can be calculated as a function of the model parameters (Fig. 2D). N drops to zero for power law exponent α close to 1. Interestingly, measured exponents α from unfractioned T cell β chain repertoires (whose large-clone tail is believed to be dominated by memory clones) range from 1 to ∼ 1.5 [START_REF] Mora | Systems Immunology: An Introduction to Modeling Methods for Scientists[END_REF]. This high sensitivity to parameters makes estimates from data very difficult.

Extensions of this model include the emergence of antigenic "niches" [START_REF] Desponds | Population dynamics of immune repertoires[END_REF], where clonal expansion is limited by antigen availability, leading to diminishing returns upon multiple stimulation events [START_REF] Mayer | How a well-adapting immune system remembers[END_REF]. Such mechanisms would limit the size of the largest clones and would cut off the power law behaviour, which is not observed in data.

V. CONNECTING MODELS TO DATA

Several caveats and corrections must be taken into account when linking stochastic models of population dynamics such as discussed above to repertoire data. Of importances are the issues of convergent recombination and experimental noise.

Population dynamics models focus on clones, defined as the set of cells originating from a common recombination event. However, two recombination events can lead to exactly the same sequence. The two corresponding clones would be indistinguishable, and form a single clonotype in the repertoire. This effect can be corrected for by using models of recombination [START_REF] Marcou | High-throughput immune repertoire analysis with IGoR[END_REF][START_REF] Sethna | OLGA: fast computation of generation probabilities of B-and T-cell receptor amino acid sequences and motifs[END_REF]. These models, which are inferred from data, can predict the distribution of generation probabilities of full receptors, or of single chains, both at the level of nucletoide or amino acid sequences, as shown in Fig. 3A for TCR. From this distribution, the probability of convergent recombination can be computed to predict the number of distinct clonotypes as a function of the number of "clones", defined as independent recombination events (Eq. 7 of [START_REF] Elhanati | Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination[END_REF]). In Fig. 3B we plot that prediction for the α, β, and αβ TCR in humans, for both nucleotide and amino acid clonotypes. These computations show that, for the full TCRαβ clonotypes, convergent recombination is so rare that it hardly affects species richness. For the α and β chains alone, however, the effect is substantial. Since most repertoire data are of single chains, this correction should be applied when linking data to the type of models discussed above, as was done in Ref. [START_REF] Greef | The naive T-cell receptor repertoire has an extremely broad distribution of clone sizes[END_REF].

An additionnal issue complicates the comparison of models to data: experimental noise in the observed frequencies of clonotypes. In practice the number of reads (or unique molecular identifiers when they are used) n observed in data for a given clonotype is not simply the result of random sampling, and is not distributed according to a Poisson law, as was assumed in Fig. 1 and in all previous work on diversity estimation. Instead, noise is over-dispersed, due to additional noise caused by DNA amplification and library preparation prior to sequencing. This noise model can be fitted using replicates of the repertoire sequencing experiment. This inference is impossible to separate from the inference of the clone size distribution ρ(f ). The two must thus be learned simultaneously from replicates by maximizing the likelihood of observed abundances, which depend on both the clone size distribution and the noise properties [START_REF] Pogorelyy | Precise tracking of vaccine-responding T-cell clones reveals convergent and personalized response in identical twins[END_REF]. Applying this approach to the β chain of unpartioned T cells with ρ(f ) ∝ f -1-α , yields species richness of N ∼ 10 8 -10 9 , with power-law exponent α ≈ 1-1.2 [START_REF] Pogorelyy | Precise tracking of vaccine-responding T-cell clones reveals convergent and personalized response in identical twins[END_REF]. In this estimate, the power law is taken as a given, and not linked to a model of clonal dynamics. A full mechanistic model treatment combined with the statistical model remains an interesting direction to explore, which could help shed light on the differences between memory and naive repertoires.

VI. SAMPLING AND REPERTOIRE SHARING

Several recent papers have focused on shared immune receptors from high throughput BCR repertoire data [START_REF] Soto | High frequency of shared clonotypes in human B cell receptor repertoires[END_REF][START_REF] Briney | Commonality despite exceptional diversity in the baseline human antibody repertoire[END_REF][START_REF] Greiff | Systems Analysis Reveals High Genetic and Antigen-Driven Predetermination of Antibody Repertoires throughout B Cell Development[END_REF]. These high profile analyses report absolute percentages of shared clonotypes. However, it was shown in the context of TCR (but the same holds for BCR) that these fractions are not absolute properties of the repertoires, but rather depend on sampling depth and the number of individuals that share the clonotypes [START_REF] Mora | Systems Immunology: An Introduction to Modeling Methods for Scientists[END_REF][START_REF] Elhanati | Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination[END_REF]. Sharing estimates based on samples of the repertoire are bound to grossly underestimate the true sharing fraction. Therefore, reporting sharing percentages without appropriate information about sample sizes is meaningless.

To assess the true overlap between the repertoires of two or more individuals, we would need to sequence all their lymphocytes, which is impractical. However, statistical model of sequence probabilities can be used to extrapolate sharing estimates to the full repertoire size N , provided that number is known [START_REF] Elhanati | Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination[END_REF]. For instance, clonotypes whose probability p is larger than 1/N are expected to be present in 1e -pN > 63% of individuals, and can be considered "public". Recombination models such as the one of Fig. 3A can be used to estimate the fraction of clonotypes that are public. For example, for N = 10 10 , the model predicts that about 15% of TCRβ amino acid clonotypes expressed by human individuals are public [START_REF] Elhanati | Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination[END_REF].

VII. CONCLUSIONS

While we have focused our review on the number of distinct clonotypes, what really matters for biological function is the number of different specificities. Due to cross-reactivity, each receptor can recognize many antigens and each antigen can be recognized by many receptors with different strengths. To account for this degeneracy, we would need to define a functional coverage of the antigenic space [START_REF] Zarnitsyna | Estimating the diversity, completeness, and cross-reactivity of the T cell repertoire[END_REF]. However, we currently do not have a comprehensive sequence-to-function maps for TCR and BCR that would allow us to estimate such a quantity.

Simply counting clonotypes also ignores their relative abundances. Clonotypes expressed by very few cells may not be as relevant for immune protection as very frequent clonotypes. Other diversity measures such as Hill numbers account for differences in frequencies [START_REF] Mora | Systems Immunology: An Introduction to Modeling Methods for Scientists[END_REF][START_REF] Yaari | Practical guidelines for B-cell receptor repertoire sequencing analysis[END_REF]. Some of these measures are in fact more robust than species richness, because they put more focus on large clones and are less susceptible to sampling noise. Depending on the question, these measures may be better suited than species richness.

Our discussion has focused mostly on T cells, and has ignored the complications of hypermutations in BCR, which cause lineages to split into many clonotypes. Whether diversity is defined at the level of lineages or clonotypes will lead to different answers [START_REF] Dewitt | A Public Database of Memory and Naive B-Cell Receptor Sequences[END_REF][START_REF] Soto | High frequency of shared clonotypes in human B cell receptor repertoires[END_REF][START_REF] Briney | Commonality despite exceptional diversity in the baseline human antibody repertoire[END_REF]. Developping specialized population dynamics models of B cell development and affinity maturation that include hypermutations is an interesting research direction.

We emphasized that estimating species richness cannot be disentangled from estimating the full distribution of clone sizes. As we gain insight into various aspects of lymphocyte dynamics, from thymic output to infection and memory formation, better mathematical descriptions can be leveraged to propose refined forms for the clone size distribution, and to fit their parameters to observations. Only with such a combination of modeling and data will we be able to get a better picture of repertoire diversity and immune coverage.
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 210101 FIG. 1.Estimating the total number of B or T cell clonotypes from small samples is generally impossible. A. Orders of magnitude for the number of T cells. Only one or a few percent of all T =∼ 3 • 10 11 T cells circulate in blood at any given time. Among these, typical sequenced samples contain about a million cells, which is a tiny fraction of the total repertoire. The number of T cells in a mouse is shown for comparison. Similar numbers hold for B cells. B.-D. Rank-frequency plots of three synthetic repertoires showing the frequency of B-or T-cell clones versus their rank (from most frequent to least frequent). The corresponding clone size distribution is shown in the inset: B) power-law distribution; C) mixture of power-distribution and neutral distribution (see main text); D) power-law distribution with low-frequency cutoff. A random of sample of 10 6 cells (in red) fails to capture most of the true rank-frequency relation (in blue). While the sampled distribution looks similar in all three cases, the true distributions are very different in the domain of low clonal frequencies, and correspond to a widely different number of clones N true . That number is very poorly estimated by the number of sampled clones (N sample ), or by the Chao1 statistical estimator[START_REF] Chao | Nonparametric estimation of the number of classes in a population[END_REF] (N Chao ).
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 12 FIG. 2. Lymphocyte population models can be used to estimate the number of clones. A. Neutral model for lymphocyte dynamics. New clones come out of the thymus (for T cells) or bone marrow (for B cells) with rate θ, with initial clone size k. Then each cell may divide with rate ν, and die with rate µ > ν. The clone size distribution at steady state can be calculate and falls off rapidly (right). B.A minimal clonal selection model. Instead of dividing randomly, cells of the same clone all proliferate m-fold upon immune stimulation, which occurs with rate r. The clone size distribution of this process behaves as a power law for large clones. The exponent of the power law can be expressed as a function of the model parameters. C.-D. The total number of clones can be expressed as a function of the model parameters for C) the neutral model D) the clonal selection model, and the total number of cells in the body, T = 3 • 10 11 . In the neutral model, the typical size of clones increases and diverges when division and death balance each other, µ ∼ ν, leading to reduced diversity for a fixed number of cells. In the selection model, a similar divergence is observed as the power law exponent α gets close to 1.
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 [START_REF] Sethna | OLGA: fast computation of generation probabilities of B-and T-cell receptor amino acid sequences and motifs[END_REF]. Most clonotypes have very low probability and are therefore unlikely to occur in two clones independently. High-probability clonotypes, however, will be generated several times in distinct T-cell clones (convergent recombination), reducing their diversity. B. Impact of convergent recombination on clonotype diversity. The ratio of the number of clonotypes to the number of clones is calculated using a model of recombination using OLGA, with the additional assumption that a random fraction q of recombination events fail to pass selection [START_REF] Elhanati | Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination[END_REF]. This ratio decreases as the number of clones increases, as redundant recombination events become more likely. The magnitude of this effect depends on the definition of clonotype (single chains or αβ pairs, amino acids or nucleotides). It is small for full αβ pairs. Inset: number of distinct clonotypes as a function of the number of clones. Selection parameter q: q α = 0.046, q β = 0.0091, and q αβ = q α q β (taken from Refs. [START_REF] Dupic | Genesis of the αβ T-cell receptor[END_REF][START_REF] Elhanati | Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination[END_REF]).