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Abstract: Systems modelled in the context of molecular and cellular biology are difficult to represent
with a single calibrated numerical model. Flux optimisation hypotheses have shown tremendous promise
to accurately predict bacterial metabolism but they require a precise understanding of metabolic reactions
occurring in the considered species. Unfortunately, this information may not be available for more complex
organisms or non-cultured microorganisms such as those evidenced in microbiomes with metagenomic tech-
niques. In both cases, flux optimisation techniques may not be applicable to elucidate systems functioning.
In this context, we describe how automatic reasoning allows relevant features of an unconventional biological
system to be identified despite a lack of data. A particular focus is put on the use of Answer Set Program-
ming, a logic programming paradigm with combinatorial optimisation functionalities. We describe its usage
to over-approximate metabolic responses of biological systems and solve gap-filling problems. In this review,
we compare steady-states of Boolean abstractions of metabolic models and illustrate their complementarity
via applications to the metabolic analysis of macro-algae. Ongoing applications of this formalism explore the
emerging field of systems ecology, notably elucidating interactions between a consortium of microbes and a
host organism. As a first step in this field, we will illustrate how the reduction of microbiotas according to
expected metabolic phenotypes can be addressed with gap-filling problems.

Keywords: Metabolic networks — gap-filling — systems biology — systems ecology — community
selection — non-model organisms

1 Introduction

Systems biology and metabolism Systems biology consists in considering an organism or an interacting
group of organisms as a whole rather than studying its components individually [1]. This can be contem-
plated through the exploration of genome-scale metabolic networks (GSMs), which contain all biochemical
reactions and pathways that are expected to occur in a cell. The first published metabolic networks were asso-
ciated with model organisms characterised by low biological complexity or widely studied by the community:
Haemophilus influenzae [2], Escherichia coli [3], Arabidopsis thaliana [4]. The construction of these models
was enabled by extensive literature-based curation and expert knowledge together with experimentation,
including the possibility of genetic alterations.

Metabolic networks of unconventional organisms Since then, the rise of sequencing technologies
paved the way to the study of the metabolism of thousands of organisms, with strong heterogeneity between
and within taxonomic groups [5, 6]. Most of these sequenced genomes correspond to unconventional or
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non-model organisms, that is, species with little available background knowledge, or that are difficult to cul-
tivate so that most or all of the available information is derived from their genome sequence (possibly from
metagenomic studies). The de novo prediction of the functions of unknown proteins is generally not con-
templated for such organisms, and the large phylogenetic distance from related model organisms frequently
limits the transferability of predictions from these models [7]. In the same vein, the validation of predicted
functions is difficult and experiments involving unconventional organisms mostly involve perturbations of
their environment. In model organisms, on the contrary, it is possible to perform genetic modifications in
order to investigate the role of a targeted unknown protein. As a result, disentangling the metabolism of
unconventional organisms necessitates methods that differ from those applicable to well-studied organisms.

Metabolic network models are used to mathematically predict the growth rate [8, 9] or the optimum
yield (function of linear combination of rates) [10, 11] of the organism by solving optimisation problems
[12, 13]. A GSM reconstruction is obtained first by taking into account all genomic information related to
the organism and then by manually refining the draft according to specific knowledge about the organism
(adding missing reactions, removing the ones that were falsely inferred) until the mass-balanced equilibrium
of internal metabolites and co-factors is satisfied and growth can be adequately predicted [14].

In this framework, the so-called gap-filling step that consists in adding reactions to obtain a relevant
biomass prediction, is crucial. However, especially in unconventional organisms, this gap-filling step may
also bear negative impacts. A first drawback is the risk of adding reactions for which the considered organism
has no associated gene, either because the associated enzyme is not annotated, or because the considered
function is performed by a specific pathway that has not yet been identified. A second drawback is related
to the underlying hypothesis of ensuring biomass production. Indeed, GSMs are considered to be valid
when they accurately predict a biomass production. The composition of this biomass function can be
confirmed experimentally, or derived from models [15, 16, 17], in accordance with literature. However,
the objective is much more difficult to define when the organism cannot be cultured individually as is the
case for many unconventional organisms. One example is the difficulties to grow in axenic conditions one
of the most studied brown algae: Ectocarpus siliculosus. This alga, a model among the stramenopiles
[18, 19] was the first brown alga to be fully sequenced [20] and has been extensively studied, notably at
the metabolic scale [21, 22]. Yet, at least in standard culture media, E. siliculosus does not grow properly
in axenic conditions, that is individually, without its associated symbionts [23]. Axenic culture leads to
altered physiology and morphology of the alga, which can be restored after inoculation of bacterial isolates.
These biotic dependencies are commonly observed when trying to culture unconventional organisms. For
bacteria, in particular, the auxotrophies in their ecological niches are difficult to identify [24]. This advocates
for prudence in the interpretation of gap-filling results when focusing on a single unconventional organism,
and more generally, for organisms that live in symbiosis where several objective functions may have to be
combined [25].

Host-microbe interactions In the last decade, increasing knowledge about the wide range of interactions
occurring between hosts and microorganisms or between microorganisms in their natural environment has
led to expanding the concept of systems biology to what can be called ecosystems biology or microbial
systems ecology [26, 27]. Microbiotas are communities of microorganisms that can be found in a given
environment [28], or in association with a specific host species, such as the higly-studied human gut microbiota
[29]. The organisms that form these microbiotas are frequently unculturable using standard laboratory
techniques and fall into the definition of unconventional organisms [30]. As a consequence, they are less
studied experimentally, or even not studied at all with all information about them provided by omics data.
In addition to interacting with their abiotic environment, these symbiotic organisms have mutual interactions,
leading to communities with distinct physiology and phenotypes.

The recent technical improvements in metataxonomics and metagenomics have allowed for an increased
focus on these complex communities including the unculturable part of living organisms [31]. This led
to an expansion of the limits of the tree of life [32] and is now providing biologists and modellers with an
unprecedented amount of genomic data regarding host-microbial systems [33], inducing a change of paradigm
in the study of biological species. Recent research advocates that an organism can no longer be considered
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as an independent individual but rather as a member of a complex ecosystem [34]. Highly studied host-
microbial systems include the human gut [35], the rhizosphere [36], arthropods [37] or marine organisms [38].
The impact of this change of paradigm on the field of metabolic networks is high in systems biology. The
goal of this mini-review is to revisit the role of gap-filling methods introduced in the process of construction
of a metabolic network. We discuss in particular how the study of species communities can be reformulated
as a gap-filling problem and why the steady-state hypothesis may have to be leveraged by a more qualitative
system abstraction. This leads us to introduce new optimisation problems derived from the gap-filling
problem that can be efficiently applied to the study of the metabolism for individuals and communities of
unconventional organisms.

As the reader will find, the translation of biological concepts and insights into formal problems is highly
dependent on slight differences in mathematical abstraction that can result in divergent predictions. This
necessitates the use of precise notation to accurately specify different abstractions. We accept that not all
readers will be familiar with such notation, but we expect that the accompanying text will make the general
principles and aims of the approaches accessible.

2 Steady-state and Boolean frameworks

A metabolic network is composed of reactions that transform metabolic compounds into other metabolic
compounds. From the information associated with a metabolic network, mathematical approaches should
theoretically enable modelling the dynamic response of a cellular metabolism in a given medium with ordinary
differential equation (ODE) models [39]. In practice, the parameters of these models cannot be numerically
fitted because of both non-linearities and a lack of experimental possibilities of manipulating a metabolic
system. Kinetic models therefore target parts of the metabolism [40] but are not contemplated at genome-
scale. In order to overcome this obstacle, several modelling abstractions have been introduced, such as the
steady-state abstraction [41] relying on Flux Balance Analysis (FBA) [9] and the Boolean abstraction based
on network expansion [42]. Both abstractions predict the family of reactions (and compounds) that can be
activated (produced) from the compounds of the extracellular medium.

Formal definition of a metabolic network Let us introduce several notations for the sake of clarity
of the theoretical background. We formally describe a metabolic network by a bipartite directed graph
G = (R∪M,E, stc), where R and M stand for reaction and metabolite nodes. When (m, r) ∈ E (respectively
(r,m) ∈ E), with m ∈M and r ∈ R, the metabolite is called a substrate (respectively product) of the reaction
r. The edge labels stc : E → R describe the stoichiometric coefficients of the considered compounds in the
considered reactions. Such coefficients are gathered in the stoichiometric matrix S. Each reaction r ∈ R is
associated with a variable vr which represents the reaction flux activity. The complete vector v(m) is known
as the rate laws of the system [43]. It is bounded by a vector of lower bounds bl and upper bounds bu [44].
Media compounds representing available nutrients are formally denoted by S, with S ⊆M .

Steady-state abstraction Here, internal compounds are assumed not to be accumulated so that the

system behaviour is constrained by linear relations 0 = dm(t)
dt = S v(m(t)) = S v, where the v(m(t))

function represents the rate laws of the system [43]. The steady-state hypothesis is known to be valid for
relatively short time slots (several minutes) assuming that regulatory transcriptional and signalling timescales
are disjoint [45]. In this context, activated reactions from a medium are those for which an admissible flux
can be carried in at least one flux distribution of the system. The steady-state abstraction is widely used to
construct and analyse metabolic models [46, 47, 48] and their association in small communities [49, 50, 51].
In the following, as detailed in Fig. 1, activated reactions from a medium S will be denoted by the set
actives

G(S).

Boolean abstraction In the growth phase, the steady-state hypothesis of equilibrium for internal metabo-
lites is not expected to be met [52, 53], although FBA-based predictions can be accurate [54]. The Boolean
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steady-state abstraction Boolean abstraction

Underlying dynamics dm(t)
dt = S v(m(t)) φ(m) = ∨

r ∈ R|
m ∈ product(r)

∧
s ∈ substrate(r)

s

robj is activated robj ∈ actives
G(S) robj ∈ activeb

G(S)

if there exists v ∈ Rsize(R) m ∈ {0, 1}size(M)

such that
(steady-state) Sv = 0 φ(m) = m

(activation) vrobj > 0 mobj = 1, for all mobj ∈ substrate(robj)
(culture medium) vimport(s) ≥ 0 for all s ∈ S φ(s) = 1 for all s ∈ S

(boundaries) bl ≤ v ≤ bu m has the smallest number of 1’s with the
above properties

(a)

(b)

Reactions Activated reaction
in the steady-state
abstraction

activated re-
action in the
Boolean ab-
straction

r1, r2, r3 , re1 no yes

r4, r5, r6, r7, re2 yes iff s(r4,B)
s(r4,A) = 1/2 yes

r8, r9, r10, r11,re3 yes iff s(r9, N) 6= 1 no

(c)

Figure 1: Different abstractions of metabolism. (a) Formal constraints associated with the steady-state
and the Boolean abstractions of a metabolic network. In both cases, the system response is computed by
first searching for fixed points of equations on real or Boolean values and then constraining the search with
conditions related to the metabolic network properties. (b and c) A metabolic network consisting of eleven
internal reactions, two import reactions, and three export reactions. All the stoichiometric coefficients are
assumed to be equal to 1 except for the products of r4 (s(r4, A), s(r4, B) are left free) and the input of r9
(s(r9, N) is left free). Then activation of each reaction depends both on the chosen abstraction and on the
values of the stoichiometric coefficients.

hypothesis is modelled by rules which activate each reaction as soon as all its substrates have been made
available by the activation of former reactions. In this framework, activated or inactivated reactions, as well
as producible or unproducible compounds can have either 0 or 1 as discrete values. A metabolic compound
is producible either if it is a medium compound or if it is the product of an activated reaction. A reaction
is activated only if all its substrates are producible. This rule is applied until no additional reaction can be
activated, leading to a steady-state of the system that models the capability of metabolic activation from the
medium compounds. This is the main concept underlying network expansion introduced by Ebenhöh and
colleagues [42, 55] that has been applied to the study of metabolic networks both individually [56, 57, 58, 59]
and in communities [60, 61, 62, 63]. Please note that, according to Boolean rules, reversing a flux requires
to change the value of the input fluxes, so that the Boolean hypothesis implicitly assumes that metabolic
fluxes cannot be reversed during the response to a perturbation.

Formally, this hypothesis can be modelled as follows. Let m ∈ {0, 1} be a Boolean variable associated
with each metabolic compound m ∈ M in the network. The associated Boolean dynamic is defined by
φ(m) =

∨
r∈R|m∈product(r)

∧
s∈substrate(r) s. Metabolic compounds that are producible from nutrients S are

those whose associated Boolean variable equals 1 for any fixed point of φ having nonzero values for nutrients.
Equivalently, they are obtained by computing the fixed point of φ having the minimum number of nonzero
values while having nonzero values for nutrients. A reaction is considered activated if all its substrates are
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producible. Such reactions are denoted by actives
G(S) (see the formalisation in Fig. 1). As shown in [42],

activated reactions in a Boolean framework can be computed recursively.

Differences between abstractions Although these two concepts of activated reactions seem close in
terms of dynamics, it appears that they differ slightly in the way they model the impact of internal cycles.
Differences are shown in Fig. 1. Reactions ri1 and ri2 ensure the import of nutrients S1 and S2 from the
extracellular medium. In the Boolean abstraction, imports initiate the production of I and E through the
activation of the reactions r3 and r7. In the steady-state abstraction, however, I is not producible because
the activation of r2 would prevent the mass-balance equilibrium of G, that constitutes a dead-end metabolite.

In addition, E can be produced if and only if the ratio s(r4,B)
s(r4,A) = 1/2; otherwise, internal metabolites would

accumulate. Another difference between the Boolean and the steady-state abstractions is related to the
production of K. In the monotonous abstraction, the reaction r8 cannot be activated because it requires the
production of L, which depends on r8 itself and therefore cannot be directly produced from the medium.
Therefore, compound K cannot be produced. On the contrary, K can be produced by the system under the
steady-state abstraction because the cycle {r8, r9, r10} can be self-activated and produces K, as well as L
as soon as the linear constraints allow v11 to have a nonzero value. According to the linear constraints, this
is possible is and only if s(r9, N) 6= 1, which correspond to the case when the cycle does not require all the
produced compounds to self-regenerate.

In order to reconcile these different interpretations we can introduce a concept of hybrid activation
corresponding to verifying both the steady-state and the Boolean activation conditions. This is the most
stringent notion of activation which verifies both that fluxes can occur in a metabolic network according
to mass-balance but also that all internal cycles can be fed by import reactions. However, Fig. 1 shows
that only a few reactions in a metabolic network may satisfy these properties. Formally, we define that
robj ∈ activeh

G(S) if robj ∈ activeb
G(S) ∩ actives

G(S).
These examples confirm, as discussed in [64, 65], that the steady-state abstraction of a metabolic network

is highly sensitive to the network stoichiometry and to putative accumulations of internal metabolites. Under
the assumption that a few cofactors are present at the initiation of the system, the Boolean abstraction
has similar predictions as the steady-state abstraction in terms of metabolite production while being more
resilient to network inaccuracies. In this sense, it appears suitable for a preliminary study of the metabolism
of unconventional organisms. However, the Boolean abstraction fails to take into account de novo synthesis
of compounds involved in cycles (for example co-factors) and mass-balance equilibrium. The treatment of
these metabolites differs between studies: they can be added into the list of available metabolites or removed
from reactions [66, 67, 68, 69]. Therefore, while the main characteristics of a metabolic network can be
identified with network expansion, the steady-state abstraction is required to elucidate behaviours linked to
stoichiometry constraints.

3 Gap-filling problems for individual and community modelling

As explained in the introduction, a metabolic network built from genome annotations or orthology searches
is often unable to predict either biomass production or the production of experimentally observed metabolic
compounds. This is either due to errors or missing knowledge in the genome annotation procedures or
denotes the inability of a species to grow without other symbiotic species. In this section, we detail why the
extended concept of the gap-filling procedure is useful to address both the issue of curating a single-species
metabolic network and of studying the role of metabolic complementarities between species.

The generic principle underlying gap-filling algorithms of metabolic networks is to perform a selection
of reactions within a reactions database in order to restore the functionality of a model with respect to
an expected objective. The selection of reactions is often performed according to a parsimonious principle
aiming at minimising the number of modifications of the system. When possible, predicted reactions to be
added to the system are validated with genome-based or knowledge-based studies, so that the algorithms
can be run iteratively if the predicted reactions appear to be irrelevant [70]. The result of the gap-filling
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method is both dependent on the framework used to define a functional model (steady-state or Boolean)
and on the database in which reactions are picked-up.

Formalisation of the gap-filling problem Following a parsimony principle, the metabolic gap-filling
problem aims at selecting, in a database of putative reactions, a set of reactions with a minimum size such
that all reactions that are experimentally known or expected to be activated are predicted in silico to be
activated from the growth medium according to the new metabolic network.

The formal description of this problem is as follows. We denote by active () the abstraction of reaction
activation in a metabolic network. It can rely on the steady-state formalism or the Boolean one. The
following definitions are independent from the chosen formalism. We consider a metabolic network G =
(R ∪M,E, stc). We denote by G′ = (R′ ∪M ′, E′, stc′) a database of putative reactions, that is, formally,
another metabolic network. For any set of reactions R′′ ⊂ R′ \ R, the extended metabolic network of G
according to R′′ is naturally defined to be: extension(G,G′, R′′) = ((R ∪ R′′) ∪ (M ∪M ′′), E ∪ E′′, stc′′)
with M ′′ = {m ∈ M ′ | r ∈ R′′,m ∈ substrate(r) ∪ product(r)}, E′′ = E′ ∩ ((M ′′ × R′′) ∪ (R′′ ×M ′′)) and
stc′′ = stc ∪ stc′. Let us assume that the growth medium is composed of the metabolic compounds S ⊆ M
and that RT ⊆ R is a set of reactions that are experimentally known or expected to be activated. To avoid
too many solutions, the metabolic gap-filling problem selects a set of reactions R′′ ⊆ R′ \R with a minimum
size such that all reactions in RT are activated from the growth medium, in the extension of the initial
metabolic network G with respect to the new reaction set R′′.

Gap-filling optimisation problem minimize
R′′⊆R′

size(R′′)

subject to RT ⊆ activeextension(G,G′,R′′)(S).

In this optimisation problem, the search space to explore is the set of the 2size(R′) combinations of
reactions present in the completion database R′. Several frameworks have been introduced to solve this
problem or its derivatives [71]. In the steady-state abstraction, the problem is solved as a linear program-
ming (LP) optimisation problem [72, 73]. Regarding the Boolean abstraction, Boolean satisfiability problem
(SAT)-based algorithms can be used to efficiently solve the underlying combinatorial optimisation problem
[58]. Constraint propagation approaches are used to solve the problem associated with the hybrid activation
framework [74] that associates steady-state and Boolean abstractions. As a direct consequence of the differ-
ences between the abstractions highlighted in the previous section, the result of the gap-filling procedure is
highly sensitive to the considered algorithm: gap-filling based on Boolean abstractions does not take internal
cycles into account, whereas steady-state abstractions focus on appropriately handling import and export
reaction to balance mass-equilibria.

An underlying hypothesis of gap-filling algorithms is that the considered species are able to sustain
their growth with the available nutrients. Although this hypothesis is valid for many prokaryotes studied
experimentally, it is less straightforward, especially for animals and plants, which harbour major biotic
interactions [75]. This is further evidenced by the difficulties encountered in cultivating unconventional
organisms, notably eukaryotes, in axenic conditions, highlighting the metabolic dependency of those species
to other organisms [76, 23]. Microbial interactions can provide their host or other symbionts with metabolic
compounds that are otherwise costly to produce [77]. Such interactions are then suspected to be involved in
the evolution of metabolic interdependencies within symbiotic communities [78, 24].

Gap-filling a gene-soup microbiota to select reduced communities Revisiting metabolism at the
systems ecology scale consists in studying complementarities between species enabling a community to col-
lectively operate metabolic functions. This can also be viewed as a gap-filling problem in which interactions
between species are expected to be identified within several metabolic networks which each serve as a database
of metabolic functions to fill gaps in the other networks. Similar to other analyses of communities [79], several
levels of modelling can be considered for such gap-filling. The community model can be compartmentalised
or grouped together. The latter is described as gene-soup (or lumped or mixed-bag): a microbiota is repre-
sented as a meta-organism or pan-metabolism in which all metabolites and all reactions of the organisms are
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gathered in a unique abstracted compartment. This gene-soup framework allowed for instance the evalua-
tion of the effect of obesity and inflammatory bowel disease in the gut microbiota [67]. This framework is
also very useful for the selection of artificial communities based on metabolic complementarities, in order to
reduce the complexity of native microbiota and to test biological hypotheses on symbiotic interactions. To
that end, we define a reduced microbiota to be a family of species that has the equivalent targeted metabolic
properties as a complete microbiota.

Formally, we assume that G1, ..., GN are the metabolic networks of the organisms constituting a specific
community and that we aim at activating a family of metabolic functions RT ⊂ ∪Ri from a growth medium
S ⊂ ∪Mi. The gene-soup metabolic network is defined by geneSoup(G1..GN ) = (∪Mi

⋃
∪Ri,∪Ei,∪stci). In

this framework, the community selection problem corresponds to selecting the minimal number of organisms
whose gene-soup metabolic network is collectively able to activate the objective reaction(s).

Community selection problem minimize
{Gi1

..GiL
} ⊂{G1..GN}

size({Gi1 ..GiL})

subject to RT ⊆ activegeneSoup(Gi1
..GiL

)(S).

This problem is nothing but a gap-filling problem applied to an empty network and considering the
full gene-soup metabolic network as a database. Instead of considering the effect of adding reactions from
an external database to an initial network as we did before, we explore how combining several metabolic
networks impacts the activation of the targeted reactions. Organisms are selected to be added to an empty
system (alternatively, to the metabolic network of a host organism) such that the targeted reactions are
activated in the mixed-bag selected community. Therefore, instead of minimising the number of reactions
added to the network, we optimise the number of organisms whose metabolic networks contain the relevant
reactions to ensure the targeted objective. The search space is therefore the 2N sub-families of the microbiota
species G1, ..., GN .

In practice, solving this problem is often less complex than solving the gap-filling problem for individ-
ual organisms, and notably, one solution can be found in a simplified steady-state model [66]. However,
many different combinations of bacteria are expected to realise the targeted metabolic objective due to the
functional redundancy of microbiotas [80, 81], therefore the space of solutions can be large. We confirmed
this hypothesis in [63] by performing a complete enumeration of solutions to the optimisation problem in
the Boolean framework, evidencing a strong redundancy in artificially-reduced communities associated with
the gut microbiota. 86.5% of source-product pairs connected by a metabolic pathway in the gene-soup gut
microbiota could be equivalently operated by more than 100 minimal artificial communities, and 49.8% could
be operated by more than 1,000 equivalent minimal communities.

Gap-filling a compartmentalised microbiota to identify metabolic complementarity The gene-
soup framework is intrinsically limited by the fact that the cost of interactions between species is not taken
into account, nor are they precisely identified. To address this obstacle, the compartmentalised framework
is designed such that all metabolic networks of the microbiota form compartments that additionally share
an external compartment. Exchange reactions between compartments operate the export and import of
metabolic compounds between the different metabolic networks. Compartmentalised communities have been
modelled for the design of growth media [82], the inference of interactions in communities [51, 83], or the
study of microbiota evolution [25, 84]. In this framework, compartmentalised reduced microbiota are defined
to be families of organisms that have metabolic properties equivalent to the initial community, while taking
into account the energetic cost of metabolic exchanges between species (import and export). The weight of
exchange reactions can be a transport cost (if available) or they can be considered to have equal weights if
no information allows differentiating them.

Formalising this concept requires introducing E ⊂ exchg(G1..GN ) = {(rm, i, j)|m ∈ Mi ∩Mj , i 6= j} a
family of metabolic exchanges allowed in the microbiota and possibly the host. The associated compart-
mentalised metabolic network, denoted by cptModel(G1..GN , E) = (M,R,E, stc) is defined by associating
each metabolite and reaction with the index of the organism it belongs to: metabolites in M are denoted
by (m, i), reactions in R are denoted by (r, j), and edges in E are denoted by (e, i, j). The stoichiometric
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function is naturally deduced from the individual species’ metabolic networks. Compartmentalising seeds,
through the operation cptSeed(G1..GN , S) = ∪1..N (S ∩Mi × {i}) models the fact that not all organisms
have all the seeds in their individual metabolic networks. The reduced microbiota is characterised by the
fact that it requires a minimal weight of exchange reactions in E to ensure the activation of the targeted
reactions.

Exchange reactions problem minimize
E⊂exchg(G1..GN )

weight(E)

subject to ∀rT ∈ RT , ∃i ≤ N,
(rT , i) ∈ activecptModel(G1..GN ,E)(cptSeed(G1..GN , S))

Differences between gene-soup and compartmentalised microbiota for community reduction are illustrated
in [63]. As before, this problem can be seen as a gap-filling problem: the reference database in which
reactions are searched for is now the family E of all possible exchanges between organisms. The size of

the search space is 4
∑

i<j size(Mi∩Mj), which is larger than the search spaces considered in the two previous
optimisation problems. This problem was solved in [69] by using a Steiner graph approach and applied
to small size communities. For larger size communities, a heuristic has been introduced by combining the
solving of the gene-soup and the compartmentalised gap-filling problems, with good results on microbiota
containing hundreds of species [63].

4 Solving optimisation problems associated with gap-filling

The three optimisation problems stated above can be addressed with logic solving approaches. Answer
Set Programming (ASP) [85] is a declarative approach oriented toward both knowledge processing with a
non-monotonous logic programming approach and combinatorial optimisation problem-solving, such as the
optimisation problems presented above when considering the Boolean abstraction. Similarly to the solving
of linear problems using LP, the problem is formulated in a dedicated language while the solving of the
problem is left to the solver [85]. A first advantage of ASP is its high-level modelling language: problems
are formulated according to a first-order propositional logic which provides expressive power and flexibility
in problem descriptio. As shown in [57, 74], this flexibility for extending a problem statement allowed
formulating an ASP program to solve the three gap-filling problems in a unified framework [86]. A second
advantage of ASP is the high performance underlying solvers [87], designed to take advantage of SAT-based
solving techniques, enriched with the capability of exploring the space of solutions, for instance by performing
the intersection or the union of all solutions in addition to the more computationally demanding alternative
of enumerating them. This appeared to be very useful for exploring the search space of the gap-filling
problems instead of selecting a single solution [58, 63].

Roughly, in ASP, the focus is on the problem specification and reasoning rather than the algorithmic
part. A problem is expressed as a set of logical rules (clauses) h : −b1, . . . , bm not bm+1, . . . , notbn, where
each bi and h are literals. In fact, each proposition is a predicate, encoded by a function whose arguments
can be constant atoms or variables over a finite domain. A rule states that the head h is proven to be true
if the body of the rule is satisfied, i.e. b1, . . . , bm are true and it cannot be proven that bm+1, . . . , bn are
true. By default, all atoms are supposed to be false unless a rule proves that it is true. Optimisation rules
can be described with specific predicates. Together, the syntax allows for formulating a very large panel of
combinatorial optimisation problems and possibly to combine them in a unified formalism.

The main limitation of ASP resides in the fact that is ill-suited for solving linear problems such as
those yielded by the steady-state abstraction. This limitation has been partially solved in [86] by relying
on the theory reasoning capacities of an ASP solver that allows extending ASP to express and solve linear
constraints in addition to combinatorial constraints. These technologies are therefore very promising to
provide a general framework to model and solve all optimisation problems related to metabolism.
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5 Applications to unconventional organisms: the example of macroal-
gae

The example of macroalgal metabolism illustrates how the combinations of different semantics and different
gap-filling problems can help elucidate the characteristics of unconventional species at the metabolic scale,
from their individual metabolism to host-microbial interactions.

Using Boolean abstraction to shed light on the evolution of the algal metabolic processes
Brown algae (part of the stramenopiles) are important members of marine ecosystems. E. siliculosus is a
model to study the biology of these organisms [18]. Following the publication of its genome in [20], a first
reconstruction of its metabolic network was published four years later [21]. The authors used the Boolean
abstraction to gap-fill the network resulting in 44 reactions identified as sufficient to activate the production
of all the targeted metabolic compounds and the algal biomass. Such computation of Boolean gap-filling
can be calculated in a computational time of a few minutes [58]. The study of the metabolic network shed
light on the evolution of metabolic processes. It suggested that E. siliculosus has the potential to produce
phenylalanine and tyrosine from prephenate and arogenate, but does not possess a phenylalanine hydroxylase
as found in other stramenopiles. It also possesses the complete eukaryote molybdenum cofactor biosynthesis
pathway, as well as a second molybdopterin synthase that was most likely acquired via horizontal gene
transfer from cyanobacteria.

Combining abstractions of metabolism to capture algal properties Applied to other macroalgae,
we noticed, however, that the Boolean abstraction may not always be sufficient to model the metabolic
properties of a network. In [88], the study of the Cladosiphon okamuranus metabolic network highlighted
that, although 67 reactions were sufficient to produce biomass according to the Boolean abstraction, they
failed to explain the biomass production according to a steady-state framework. A method for solving
the hybrid (Boolean and steady-state) problem was implemented [74] and enabled the identification of a
single missing reaction needed to degrade one component that was not part of the biomass function, but
accumulated during biomass production. Orthologues of proteins known to catalyse this reaction in other
organisms were identified in C. okamuranus. The complete approach allowed studying biosynthetic pathways
for carotenoids production, highlighting both reactions preserved through evolution and the specificities
related to brown algae.

Similar difficulties were encountered in the study of the red alga Chondrus crispus [89]. For this or-
ganism, an exhaustive confrontation of the experimentally detected metabolites and knowledge databases
of metabolic reactions evidenced that for many compounds, biosynthetic pathways could not be inferred
with gap-filling algorithms, because of incomplete biochemical knowledge and incomplete conservation of
biochemical pathways during evolution. Specific methods based on the Boolean abstraction were required
to infer reactions by analogy with metabolic transformations occurring in other plants. Results suggest
that even metabolic pathways previously considered as conserved, like sterol or mycosporine-like amino acid
(MAA) synthesis, undergo substantial turnover, evidencing a phenomenon termed ’metabolic pathway drift ’
- i.e. the fact that a given phenotype can be conserved even if the underlying molecular mechanisms are
changing.

An observation from these examples and more generally from the study of high-quality GSM reconstruc-
tions is the persistence of the need for curation and the use of several semantics, methods and tools combined
with each others [90, 91, 92, 22]. The development of new automatic procedures [93, 94, 95, 96] (compared
in [97]) facilitates reconstructions but cannot fully substitute refinements operated by experts [14]. Indeed,
the publications of high-quality GSMs mention the curation effort and literature-based improvements made
to the models [98, 99]. For the algal GSMs presented above, the combination of abstractions was crucial as
it enabled the assessment of the completeness of the model at each reconstruction step, thereby pinpointing
the metabolic pathways that required curation.
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From metabolic network gap-filling to suggestions of host-microbial metabolic complementari-
ties The study of the metabolic network of E. siliculosus also shed light on the importance of symbionts for
the metabolism of the algal host. As explained in [21], a gap-filling algorithm was used to fill the metabolic
network of E. siliculosus. The GSM was further analysed in [58], and the coenzyme A biosynthesis pathway
was notably scrutinised. Gap-filling suggested that the reaction producing beta-alanine was required to ini-
tiate the production of vitamin B5 (pantothenic acid), a precursor of the pathway. However, genome-based
studies concluded that no corresponding gene could be identified in the algal genome for the enzyme EC
4.1.1.11 producing beta-alanine. The corresponding gene was nonetheless present in a bacterium, Candi-
datus Phaeomarinobacter ectocarpi, known to live symbiotically with the alga [100], suggesting a putative
host-microbial complementarity regarding beta-alanine and other putative interactions. The absence of EC
4.1.1.11 in brown algae was confirmed in [22], although this study also highlighted a potential alternative
biosynthetic pathway from 3-aminopropanal.

Computation and indirect validation of reduced microbiota The above example confirms that
the result of gap-filling algorithms at the individual scale should be considered cautiously, in light of a
putative role of biotic interactions. This is consistent with the results of [23] which stated that, cultured
in axenic condition, E. siliculosus evidenced alteration of its morphology and physiology. A main objective
in the context of this brown alga but more broadly for host-microbial systems, is to identify the precise
mechanisms of metabolic interactions.

In this direction, the non-compartmentalised community selection problem was applied to E. siliculosus
and ten bacteria isolated from the algal microbiome to identify metabolic complementarities. As shown in
[101], the algorithm allowed predicting consortia of three bacteria that would best complement the algal
metabolism. Co-culture experiments were set up with a subset of these consortia to monitor algal growth
as well as the presence of key metabolites. Although bacterial communities were only modified (and not
fully controlled) in the experiments, the data demonstrated a significant increase in algal growth in cultures
inoculated with the selected consortia, suggesting that metabolic complementarity is a good indicator for
beneficial metabolite exchanges in microbiota. These results constitute a promising application of commu-
nity reduction and selection of microorganisms based on metabolic complementarity. However, this study
also experimentally observed the evolution of the algal microbiome after bacterial inoculation, demonstrating
the presence of bacteria that were undetected in the axenic medium. This highlights new experimental chal-
lenges to test the predictions made by automated reasoning approaches when working with unconventional
organisms.

6 Perspectives

The rise of high-throughput and cost-effective sequencing paved the way for the study of the metabolism of
thousands of organisms with little available background knowledge, many of which are difficult to cultivate.
A change of paradigm is occurring in GSM reconstruction with the extensive use of automatic methods that
are under active development in order to reduce the need for manual curation and costly experiments to
refine the networks, and to account for the limited knowledge on non-cultured organisms. From now on,
metabolic modelling appears conceivable for ’unconventional’ or ’non-model’ organisms for which the main
available data is the genomic sequence. In such cases, the precision of GSM reconstruction is impaired by
the lack of data available for these organisms or close relatives, impeding the use of modelling approaches
based on flux optimisation and compelling the development of new approaches for their analysis.

The combination of several abstractions of metabolism (Boolean, steady-state and hybrid) can be a re-
sponse to investigate the metabolic capabilities of an unconventional organism, and should be combined when
possible to better understand its metabolism. In particular, approaches of logic programming and Boolean
abstractions of metabolic networks are promising to predict the metabolic capacities of these organisms as
well as their biological roles in symbiotic communities.

Efforts are still needed in the direction of facilitating metabolic inference for non-model organisms. In
particular, the field of metabolism will benefit from methods dedicated to infer reactions beyond those present
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in knowledge databases, and thereby account for the still-unknown pool of functional sequences in less-studied
genomes. In addition, the microbiota context in which unconventional organisms are mostly studied has to
be taken into account. Building and refining models for microorganisms that cannot be cultured remains an
open challenge, and metagenomic data together with metagenome-assembled genomes need to be linked to
metabolic modelling. The existence of multiple and complementary formalisms to abstract metabolism will
certainly prove useful to address these challenges in the next few years.

7 Abbreviations

ASP Answer Set Programming
GSM Genome-Scale Metabolic network
LP Linear Programming
MAA Mycosporine-like amino acid
ODE Ordinary differential equations
SAT Boolean SATisfiability problem

8 Funding

This work was partially funded by ANR project IDEALG (ANR-10-BTBR-04) “Investissements d’Avenir,
Biotechnologies-Bioressources”

9 Competing interests

The authors declare that there are no competing interests associated with this manuscript.

References

[1] Kitano H. Systems biology: A brief overview. Science. 2002 mar;295(5560):1662–1664. Available from:
http://www.sciencemag.org/cgi/doi/10.1126/science.1069492.

[2] Edwards JS, Palsson BO. Systems properties of the Haemophilus influenzae Rd metabolic genotype.
Journal of Biological Chemistry. 1999;274(25):17410–17416. Available from: http://www.jbc.org/

content/274/25/17410.full.pdf.

[3] Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded genome-scale model of
Escherichia coli K-12 (iJR904 GSM/GPR). Genome biology. 2003;4(9):R54. Avail-
able from: http://www.ncbi.nlm.nih.gov/pubmed/12952533http://www.pubmedcentral.nih.

gov/articlerender.fcgi?artid=PMC193654.

[4] de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK. AraGEM,
a Genome-Scale Reconstruction of the Primary Metabolic Network in Arabidopsis. Plant Phys-
iology. 2010;152(2):579–589. Available from: http://www.plantphysiol.org/content/152/2/

579{%}5Cnhttp://www.plantphysiol.org/cgi/doi/10.1104/pp.109.148817.

[5] Ellegren H. Genome sequencing and population genomics in non-model organisms. Trends in Ecology
and Evolution. 2014 jan;29(1):51–63. Available from: https://www.sciencedirect.com/science/

article/pii/S0169534713002310.

[6] Liu H, Deutschbauer AM. Rapidly moving new bacteria to model-organism status. Current Opinion
in Biotechnology. 2018 jun;51:116–122. Available from: https://www.sciencedirect.com/science/
article/pii/S0958166917301714?via{%}3Dihub.

11

http://www.sciencemag.org/cgi/doi/10.1126/science.1069492
http://www.jbc.org/content/274/25/17410.full.pdf
http://www.jbc.org/content/274/25/17410.full.pdf
http://www.ncbi.nlm.nih.gov/pubmed/12952533 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC193654
http://www.ncbi.nlm.nih.gov/pubmed/12952533 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC193654
http://www.plantphysiol.org/content/152/2/579{%}5Cnhttp://www.plantphysiol.org/cgi/doi/10.1104/pp.109.148817
http://www.plantphysiol.org/content/152/2/579{%}5Cnhttp://www.plantphysiol.org/cgi/doi/10.1104/pp.109.148817
https://www.sciencedirect.com/science/article/pii/S0169534713002310
https://www.sciencedirect.com/science/article/pii/S0169534713002310
https://www.sciencedirect.com/science/article/pii/S0958166917301714?via{%}3Dihub
https://www.sciencedirect.com/science/article/pii/S0958166917301714?via{%}3Dihub


[7] Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, et al. Fast genome-
wide functional annotation through orthology assignment by eggNOG-mapper. Molecular Biology and
Evolution. 2017 aug;34(8):2115–2122. Available from: https://academic.oup.com/mbe/article/

34/8/2115/3782716.

[8] Kauffman KJ, Prakash P, Edwards JS. Advances in flux balance analysis. Current Opinion in Biotech-
nology. 2003 oct;14(5):491–496.

[9] Orth JD, Thiele I, Palsson BØ. What is Flux Balance Analysis ? Nature biotechnology. 2010
mar;28(3):245–248. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108565/

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108565/pdf/nihms299330.pdf.
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[20] Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, et al. The Ectocarpus genome and
the independent evolution of multicellularity in brown algae. Nature. 2010 jun;465(7298):617–21.

[21] Prigent S, Collet G, Dittami SM, Delage L, De Corny FE, Dameron O, et al. The genome-scale
metabolic network of Ectocarpus siliculosus (EctoGEM): A resource to study brown algal physiology
and beyond. Plant Journal. 2014 oct;80(2):367–381. Available from: http://doi.wiley.com/10.

1111/tpj.12627.

[22] Aite M, Chevallier M, Frioux C, Trottier C, Got J, Cortés MP, et al. Traceability, reproducibility and
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[84] Garćıa-Jiménez B, Garćıa JL, Nogales J. FLYCOP: Metabolic modeling-based analysis and engineer-
ing microbial communities. In: Bioinformatics. vol. 34. Oxford University Press; 2018. p. i954–i963.
Available from: https://academic.oup.com/bioinformatics/article/34/17/i954/5093244.

[85] Gebser M, Kaminski R, Kaufmann B, Schaub T. Answer Set Solving in Practice. Synthesis
Lectures on Artificial Intelligence and Machine Learning. 2012;6(3):1–238. Available from: http:

//www.morganclaypool.com/doi/abs/10.2200/S00457ED1V01Y201211AIM019.

[86] Janhunen T, Kaminski R, Ostrowski M, Schellhorn S, Wanko P, Schaub T. Clingo goes linear con-
straints over reals and integers. In: Theory and Practice of Logic Programming; 2017. p. 872–888.
Available from: https://arxiv.org/pdf/1707.04053.pdf.

[87] Gebser M, Kaminski R, Kaufmann B, Schaub T. Clingo = ASP + Control: Preliminary Report. In:
Technical Communications of the Thirtieth International Conference on Logic Programming (ICLP’14);
2014. p. 1–9. Available from: http://arxiv.org/abs/1405.3694.
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[95] Wang H, Marcǐsauskas S, Sánchez BJ, Domenzain I, Hermansson D, Agren R, et al. RAVEN 2.0: A
versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor.
PLOS Computational Biology. 2018 oct;14(10):e1006541. Available from: http://dx.plos.org/10.

1371/journal.pcbi.1006541.

[96] Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of genome-scale
metabolic models for microbial species and communities. Nucleic Acids Research. 2018 sep;46(15):7542–
7553. Available from: https://academic.oup.com/nar/article/46/15/7542/5042022.

18

https://academic.oup.com/bioinformatics/article/34/17/i954/5093244
http://www.morganclaypool.com/doi/abs/10.2200/S00457ED1V01Y201211AIM019
http://www.morganclaypool.com/doi/abs/10.2200/S00457ED1V01Y201211AIM019
https://arxiv.org/pdf/1707.04053.pdf
http://arxiv.org/abs/1405.3694
http://dx.plos.org/10.1371/journal.pcbi.1003081
http://dx.plos.org/10.1371/journal.pcbi.1003081
http://www.ncbi.nlm.nih.gov/pubmed/26485611 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4715634
http://www.ncbi.nlm.nih.gov/pubmed/26485611 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4715634
http://www.sciencedirect.com/science/article/pii/S2214030116300098
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036846/pdf/bbv079.pdf https://arxiv.org/pdf/1510.03964.pdf https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbv079
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036846/pdf/bbv079.pdf https://arxiv.org/pdf/1510.03964.pdf https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbv079
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036846/pdf/bbv079.pdf https://arxiv.org/pdf/1510.03964.pdf https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbv079
http://www.nature.com/doifinder/10.1038/nbt.4163
http://dx.plos.org/10.1371/journal.pcbi.1006541
http://dx.plos.org/10.1371/journal.pcbi.1006541
https://academic.oup.com/nar/article/46/15/7542/5042022


[97] Mendoza SN, Olivier BG, Molenaar D, Teusink B. A systematic assessment of current genome-
scale metabolic reconstruction tools. Genome Biology. 2019 aug;20(1):158. Available from: https:

//genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1769-1.
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