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Inexact and Stochastic Generalized Conditional Gradient with
Augmented Lagrangian and Proximal Step

Antonio Silveti-Falls∗ Cesare Molinari∗ Jalal Fadili∗

Abstract. In this paper we propose and analyze inexact and stochastic versions of the CGALP algorithm developed in
[25], which we denote ICGALP , that allow for errors in the computation of several important quantities. In particular
this allows one to compute some gradients, proximal terms, and/or linear minimization oracles in an inexact fashion
that facilitates the practical application of the algorithm to computationally intensive settings, e.g., in high (or possibly
infinite) dimensional Hilbert spaces commonly found in machine learning problems. The algorithm is able to solve
composite minimization problems involving the sum of three convex proper lower-semicontinuous functions subject
to an affine constraint of the form Ax = b for some bounded linear operator A. Only one of the functions in the
objective is assumed to be differentiable, the other two are assumed to have an accessible proximal operator and a
linear minimization oracle. As main results, we show convergence of the Lagrangian values (so-called convergence in
the Bregman sense) and asymptotic feasibility of the affine constraint as well as strong convergence of the sequence of
dual variables to a solution of the dual problem, in an almost sure sense. Almost sure convergence rates are given for
the Lagrangian values and the feasibility gap for the ergodic primal variables. Rates in expectation are given for the
Lagrangian values and the feasibility gap subsequentially in the pointwise sense. Numerical experiments verifying the
predicted rates of convergence are shown as well.

Key words. Conditional gradient; Augmented Lagrangian; Composite minimization; Proximal mapping; Moreau
envelope.

AMS subject classifications. 49J52, 65K05, 65K10.

1 Introduction

1.1 Problem Statement

We consider the following composite minimization problem,

min
x∈Hp

{f (x) + g (Tx) + h (x) : Ax = b} , (P)

and its associated dual problem,

min
µ∈Hd

(f + g ◦ T + h)∗ (−A∗µ) + 〈µ, b〉 , (D)

∗Normandie Université, ENSICAEN, UNICAEN, CNRS, GREYC, France. E-mail: tonys.falls@gmail.com, ce-
cio.molinari@gmail.com, Jalal.Fadili@ensicaen.fr.

1



where we have denoted by ∗ both the Legendre-Fenchel conjugate and the adjoint operator, to be understood
from context. We considerHp,Hd, andHv to be arbitrary real Hilbert spaces, possibly infinite-dimensional,
whose indices correspond to a primal, dual, and auxiliary space, respectively; A : Hp → Hd and T : Hp →
Hv to be bounded linear operators with b ∈ ran(A); functions f , g, and h to all be convex, closed, and proper
real-valued functions. Additionally, we will assume that the function f satisfies a certain differentiability
condition generalizing Lipschitz-smoothness, Hölder-smoothness, etc (see Definition 2.7), that the function
g has a proximal mapping which is accessible, and that the function h admits an accessible linearly-perturbed
minimization oracle with C def

= dom (h) a weakly compact subset ofHp.
In fact, the problem under consideration here is exactly the same as that of [25], however, in this work,

we consider an inexact extension of the algorithm presented and analyzed in [25] to solve (P). The exten-
sion amounts to allowing either deterministic or stochastic errors in the computation of several quantities,
including the gradient or proximal terms, e.g. ∇f , proxβg, and the linear minimization oracle itself.

1.2 Contribution and prior work

The primary contribution of this work is to analyze inexact and stochastic variants of the CGALP algorithm
presented in [25] to address (P). We coin this algorithm Inexact Conditional Gradient with Augemented
Lagrangian and Proximal-step (ICGALP ). Although there has been a great deal of work on developing and
analyzing Frank-Wolfe or conditional gradient style algorithms, first studied in the 1950’s in [10] and later in
[16], in both the stochastic and deterministic case, e.g. [13, 14, 23, 11, 9, 26, 19, 12], or [18], little to no work
has been done to analyze the generalized version of these algorithms for nonsmooth problems or problems
involving an affine constraint, as we consider here. To the best of our knowledge, the only such work is [17],
where the authors consider a stochastic conditional gradient algorithm applied to a composite problem of the
form

min
x∈X⊂Rn

E [f (x, η)] + g (Ax)

where the expectation is over the random variable η and with g possibly nonsmooth. The nonsmooth term
is possibly an affine constraint but, in such cases, it is addressed through smoothing rather than through an
augmented Lagrangian with a dual variable, in contrast to our work. They consider only finite-dimensional
problems and their problem formulation doesn’t allow for inexactness with respect to g.

We show asymptotic feasibility of the primal iterates for the affine constraint, convergence of the La-
grangian values at each iteration to an optimum value, strong convergence of the sequence of dual iterates,
and provide worst-case rates of convergence for the feasibility gap and the Lagrangian values; all these re-
sults are in an almost sure sense. The rates of convergence for both the Lagrangian and the feasibility gap are
given globally, i.e., for the entire sequence of iterates, in the ergodic sense where the Cesáro means are taken
with respect to the primal step size, in an almost sure sense. We also show rates in expectation which hold
pointwise but subsequentially. In the case where (P) admits a unique solution, we furthermore have that the
sequence of primal iterates converges weakly to the solution almost surely. These results are established for
a family of parameters satisfying abstract open loop conditions, i.e. sequences of parameters which do not
depend on the iterates themselves. We exemplify the framework on problem instances involving a smooth
risk minimization where the gradient is computed inexactly either with stochastic noise or a deterministic
error. In the stochastic case, we show that our conditions outlined in Section 3 for convergence are satisfied
via increasing batch size or variance reduction. In the deterministic setting for minimizing an empirical risk,
a sweeping approach is described.
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1.3 Organization

The remainder of the paper is divided into four sections. In Section 2 the necessary notation and prior results
are recalled, consisting primarily of convex analysis, real analysis, and elementary probability. In Section 3
the assumptions on the problem structure and the parameters are noted, the ICGALP algorithm itself is pre-
sented. In Section 4, the main results, e.g. feasibility, Lagrangian convergence, and rates, are established.
The analysis and results are far-reaching extensions of those in [25] to the inexact and stochastic setting, and
require quite delicate new arguments. In Section 5 and Section 6, we consider different problem instances
where inexact deterministic or stochastic computations are involved. Numerical results are reported in Sec-
tion 7 to support our theoretical findings. Finally, in Section 8, we summarize the work and provide some
closing remarks.

2 Notation and Preliminaries

Many of the following notations for probabilistic concepts are adopted from [8]. A sequence (xk)k∈N ∈ HN

will be called strongly convergent to x ∈ H, denoted xk → x, iff ‖xk − x‖ → 0; it will be called weakly
convergent to x ∈ H, denoted xk ⇀ x, iff, for any u ∈ H, 〈xk, u〉 → 〈x, u〉. We denote by (Ω,F ,P) a
probability space with set of events Ω, σ-algebra F , and probability measure P. When discussing random
variables we will assume that any Hilbert spaceH is endowed with the Borel σ-algebra, B (H). We denote a
filtration by F = (Fk)k∈N, i.e. a sequence of sub-σ-algebras which satisfies Fk ⊂ Fk+1 for all k ∈ N. Given
a set of random variables {a0, . . . , an}, we denote by σ (a0, . . . , an) the σ-algebra generated by a0, . . . , an.
An expression (P ) is said to hold (P-a.s.) if P ({ω ∈ Ω : (P ) holds}) = 1. Throughout the paper, both
equalities and inequalities involving random quantities should be understood as holding P-almost surely,
whether or not it is explicitly written.

Definition 2.1. Given a filtration F, we denote by `+ (F) the set of sequences of [0,+∞[-valued random
variables (ak)k∈N such that, for each k ∈ N, ak is Fk measurable. Then, we also define the following set,

`1+ (F)
def
=

{
(ak)k∈N ∈ `+ (F) :

∑
k∈N

ak < +∞ (P-a.s.)

}

Lemma 2.2. Given a filtration F and the sequences of random variables (rk)k∈N ∈ `+ (F), (ak)k∈N ∈
`+ (F), and (zk)k∈N ∈ `1+ (F) satisfying,

E [rk+1 | Fk]− rk ≤ −ak + zk (P-a.s.)

then (ak)k∈N ∈ `1+ (F) and (rk)k∈N converges (P-a.s.) to a random variable with value in [0,+∞[.

Proof. See [24, Theorem 1].

Lemma 2.3. Given a filtration F and a sequence of random variables (wk)k∈N ∈ `+ (F) and a sequence of
real numbers (γk)k∈N ∈ `+ such that (γkwk)k∈N ∈ `1+ (F) and (γk)k∈N 6∈ `1, then:

(i) There exists a subsequence
(
wkj
)
j∈N such that lim inf

k
wk = 0 (P-a.s.) ,

(ii) Furthermore, if there exists a constant α > 0 such that wk −E [wk+1 | Fk] ≤ αγk (P-a.s.) for every
k ∈ N, then

lim
k
wk = 0 (P-a.s.) .
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Proof. The second result is directly from [4, Lemma 2.2] and the first follows from [1] trivially extended to
the stochastic setting.

Lemma 2.4. Consider the real sequences (rk)k∈N ∈ `+, (pk)k∈N ∈ `+, (wk)k∈N ∈ `+, and (zk)k∈N ∈ `1+.
Suppose further that (pk)k∈N /∈ `1 and that, for some α > 0, the following inequalities are satisfied for every
k ∈ N:

rk+1 ≤ rk − pkwk + zk;

wk − wk+1 ≤ αpk.
(2.1)

Then,
(i) (rk)k∈N is convergent and (pkwk)k∈N ∈ `1+.
(ii) lim

k
wk = 0.

(iii) For every k ∈ N, inf1≤i≤k wi ≤ (r0 + E)/Pk, where, again, Pn =
∑n

k=1 pk and E =
∑+∞

k=1 zk.
(iv) There exists a subsequence

(
wkj
)
j∈N such that, for all j ∈ N, wkj ≤ P

−1
kj

.

Proof. See [1] for the proof.

We denote by Γ0 (H) the set of proper, convex, and lower semi-continuous functions f : H → R∪{+∞}.
We also consider the domain of a function f to be dom (f)

def
= {x ∈ H : f (x) < +∞} and the Legendre-

Fenchel conjugate of f to be the function f∗ : H → R ∪ {+∞} such that, ∀y ∈ H,

f∗ (y)
def
= sup

x∈H
{〈y, x〉 − f (x)} .

Throughout, differentiability will be intended in Fréchet sense, and we denote ∇f the (Fréchet) gradient of
a differentiable function f . The proximal mapping (or proximal operator) associated to the function f with
parameter β is given by,

proxβf (x)
def
= argmin

y∈H

{
f (y) +

1

2β
‖x− y‖2

}
.

The following elementary result from convex analysis regarding proximal mappings will be used in the proof
of optimality.

Proposition 2.5. Let f ∈ Γ0 (H) and denote x+ = proxf (x). Then, for all y ∈ H,

2
(
f
(
x+
)
− f (x)

)
+
∥∥x+ − y

∥∥2 − ‖x− y‖2 +
∥∥x+ − x

∥∥2 ≤ 0.

Proof. The result is classical and the proof is readily available, e.g. in [21, Chapter 6.2.1].

The subdifferential of a function f is the set-valued operator ∂f : H → 2H such that, for every x ∈ H,

∂f (x)
def
= {u ∈ H : f (y) ≥ f (x) + 〈u, y − x〉 ∀y ∈ H} (2.2)

We denote dom (∂f)
def
= {x ∈ H : ∂f (x) 6= ∅} as the domain of the subdifferential. For x ∈ dom (∂f),

the minimal norm selection of ∂f (x) is denoted by [∂f (x)]0
def
= argmin

y∈∂f(x)
‖y‖. The Moreau envelope of the

function f with parameter β is given by,

fβ (x)
def
= inf

y∈H

{
f (y) +

1

2β
‖x− y‖2

}
.
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The following proposition recalls some key properties of the Moreau envelope which we will utilize in the
analysis of the algorithm.

Proposition 2.6 (Moreau envelope properties). Given a function f ∈ Γ0 (H), the following holds:
(i) The Moreau envelope, fβ , is convex, real-valued, and continuous.
(ii) Lax-Hopf formula: the Moreau envelope is the viscosity solution to the following Hamilton Jacobi

equation: {
∂
∂β f

β (x) = −1
2

∥∥∇fβ (x)
∥∥2

(x, β) ∈ H × (0,+∞)

f0 (x) = f (x) x ∈ H.
(2.3)

(iii) The gradient of the Moreau envelope,∇fβ , is 1
β -Lipschitz continuous and is given by the expression

∇fβ (x) =
x− proxβf (x)

β
.

(iv) ∀x ∈ dom(∂f),
∥∥∇fβ (x)

∥∥ ↗ ∥∥∥[∂f (x)]0
∥∥∥ as β ↘ 0.

(v) ∀x ∈ H, fβ(x)↗ f(x) as β ↘ 0. In addition, given two positive real numbers β′ < β, for all x ∈ H
we have

0 ≤ fβ′ (x)− fβ (x) ≤ β − β′

2

∥∥∥∇fβ′ (x)
∥∥∥2

;

0 ≤ f (x)− fβ (x) ≤ β

2

∥∥∥[∂f (x)]0
∥∥∥2
.

Proof. (i): see [5, Proposition 12.15]. The proof for (ii) can be found in [3, Lemma 3.27 and Remark 3.32]
(see also [15] or [2, Section 3.1]). The proof for claim (iii) can be found in [5, Proposition 12.29] and the
proof for claim (iv) can be found in [5, Corollary 23.46]. For the first part in (v), see [5, Proposition 12.32(i)].
To show the first inequality in (v), combine (ii) and convexity of the function β 7→ gβ (x) for every x ∈ H.
The second inequality follows from the first one and (iv), taking the limit as β′ → 0.

Given a closed, convex set C, we write dC
def
= sup

x,y∈C
‖x− y‖ to denote the diameter of C. We denote the

Bregman divergence of a differentiable, function F by,

DF (x, y)
def
= F (x)− F (y)− 〈∇F (y) , x− y〉 .

Definition 2.7 ((F, ζ)-smoothness). Let F : H → R ∪ {+∞} and ζ :]0, 1]→ R+. The pair (f, C), where
f : H → R ∪ {+∞} and C ⊂ dom (f), is said to be (F, ζ)-smooth if there exists an open set C0 such that
C ⊂ C0 ⊂ int (dom (F )) and,

(i) F and f are differentiable on C0;
(ii) F − f is convex on C0;
(iii) it holds

K(F,ζ,C)
def
= sup

x,s∈C;γ∈]0,1]
z=x+γ(s−x)

DF (z, x)

ζ (γ)
< +∞. (2.4)
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Remark 2.8. An important consequence of Definition 2.7(i) and Definition 2.7(ii) in (F, ζ)-smoothness is
the following. Let (f, C) be (F, ζ) smooth. Then, for any x, y ∈ C, we have,

f (y) ≤ f (x) + 〈∇f (x) , y − x〉 +DF (y, x) .

Moreover, by Definition 2.7(iii), if y = x+ γ (s− x) for some s ∈ C and γ ∈]0, 1], we have,

DF (y, x) ≤ K(F,ζ,C)ζ (γ) . (2.5)

Definition 2.9 (ω-smoothness). Consider a function ω : R+ → R+ such that ω (0) = 0 and ξ (s)
def
=∫ 1

0 ω (st) dt is nondecreasing. A differentiable function g : H → R is said to be ω-smooth if, for every
x, y ∈ H,

‖∇g (x)−∇g (y)‖ ≤ ω (‖x− y‖)

Remark 2.10. A classical consequence of ω-smoothness is the following. If g : H → R is ω-smooth, for
every x, y ∈ H we have

f (y) ≤ f (x) + 〈∇f (x) , y − x〉 + ξ (‖y − x‖) ‖y − x‖ .

Remark 2.11. Note that being ω-smooth is a stronger condition than being (F, ζ)-smooth since every ω-
smooth function f is also (F, ζ)-smooth with F = f , ζ (t) = dCtξ (dCt) andK(F,ζ,C) ≤ 1. Additionally, the
assumptions on ξ being nondecreasing can be replaced by the sufficient condition that lim

t→0+
ω (t) = ω (0) =

0.

3 Algorithm and Assumptions

For each k ∈ N, we denote by λk and λsk random variables from (Ω,F ,P) to Hp and R+ respectively. In
this context, λk will represent the error in the gradient or proximal terms and λsk will represent the error in
the linear minimization oracle itself.
Algorithm 1: Inexact Conditional Gradient with Augmented Lagrangian and Proximal-step (IC-
GALP )
Input: x0 ∈ C

def
= dom (h); µ0 ∈ ran(A); (γk)k∈N, (βk)k∈N, (θk)k∈N , (ρk)k∈N ∈ `+.

k = 0
repeat

yk = proxβkg (Txk)

zk = ∇f(xk) + T ∗ (Txk − yk) /βk +A∗µk + ρkA
∗ (Axk − b) + λk

sk ∈ Argmins∈Hp {h (s) + 〈zk, s〉}

ŝk ∈ {s ∈ Hp : h (s) + 〈zk, s〉 ≤ h (sk) + 〈zk, sk〉 + λsk}

xk+1 = xk − γk (xk − ŝk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;
Output: xk+1.
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To improve readability, we list some notation for the functionals we will employ throughout the analysis
of the algorithm,

Φ (x)
def
= f (x) + g (Tx) + h (x) ;

L (x, µ)
def
= f (x) + g (Tx) + h (x) + 〈µ,Ax− b〉 ;

Lk (x, µ)
def
= f (x) + gβk (Tx) + h (x) + 〈µ,Ax− b〉 +

ρk
2
‖Ax− b‖2 ;

Ek (x, µ)
def
= f (x) + gβk (Tx) + 〈µ,Ax− b〉 +

ρk
2
‖Ax− b‖2 ;

Φk (x)
def
= f (x) + gβk (Tx) + h (x) .

(3.1)

We can recognizeL (x, µ) as the classical Lagrangian,Lk (x, µ) as the augmented Lagrangianwith smoothed
g, Ek (x, µ) as the smooth part of Lk (x, µ), and Φk (x) as the primal objective with smoothed g. With this
notation in mind, we can see zk as∇xEk (xk, µk) and λk as the error in the computation of∇xEk (xk, µk).

We define the filtration S
def
= (Sk)k∈N where Sk

def
= σ (x0, µ0, ŝ0, . . . , ŝk) is the σ-algebra generated by

the random variables x0, µ0, ŝ0, . . . , ŝk. Furthermore, due to the error terms being contained in the direction
finding step, we have that xk+1 and µk+1 are completely determined by Sk. Another noteworthy consequence
of the error terms being contained in the direction finding step is that the primal iterates (xk)k∈N remain in
C, as in the classical Frank-Wolfe algorithm, while the dual iterates (µk)k∈N remain in ran (A).

Finally, we define the notation for the set of solutions for (P) and (D) to be

SP
def
= Argmin

x∈Hp
{f (x) + g (x) + h (x) : Ax = b} and SD

def
= Argmin

µ∈Hd
{(f + g + h)∗ (−A∗µ) + 〈µ, b〉}

(3.2)

and the notation for the set of weak cluster points of a sequence (xk)k∈N inHp to be

W
[
(xk)k∈N

] def
=
{
x ∈ Hp : ∃

(
xkj
)
j∈N , xkj ⇀ x

}
. (3.3)

3.1 Assumptions

3.1.1 Assumptions on the functions

We impose the following assumptions on the problem we consider; for some results, only a subset of them
will be necessary:
(A.1) The functions f, g ◦ T , and h belong to Γ0 (Hp).
(A.2) The pair (f, C) is (F, ζ)-smooth (see Definition 2.7), where we recall C def

= dom (h).
(A.3) The set C is weakly compact (and thus contained in a ball of radius R > 0).
(A.4) It holds TC ⊂ dom(∂g) and sup

x∈C

∥∥∥[∂g (Tx)]0
∥∥∥ = M <∞.

(A.5) The function h is Lipschitz continuous relative to its domain C with constantLh ≥ 0, i.e., ∀(x, z) ∈ C2,
|h(x)− h(z)| ≤ Lh ‖x− z‖.

(A.6) There exists a saddle-point (x?, µ?) ∈ Hp ×Hd for the Lagrangian L.
(A.7) The set ran(A) is closed.
(A.8) One of the following holds:
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(a) A−1 (b) ∩ int (dom (g ◦ T )) ∩ int (C) 6= ∅, where A−1 (b) is the pre-image of b under A.
(b) Hp andHd are finite-dimensional and

A−1 (b) ∩ ri (dom (g ◦ T )) ∩ ri (C) 6= ∅
and

ran (A∗) ∩ par (dom (g ◦ T ) ∩ C)⊥ = {0} .
(3.4)

(A.9) The spaceHd is separable.
(A.10) The set-valuedmappings (∂ (Φ∗k ◦ (−A∗)))k∈N satisfy the following property: for any sequence ((pk, qk))k∈N

satisfying, for each k ∈ N,

pk ∈ ∂ (Φ∗k ◦ (−A∗)) (qk) ,

with pk → p and qk ⇀ q, the sequence (qk)k∈N admits a strong cluster point.
The following lemmas outline sufficient conditions ensure that assumption (A.4) holds for g and show

why it’s unnecessary to make a similar assumption for f in light of (A.1) and (A.2).

Lemma 3.1. Let T : Hp → Hv be a bounded linear operator. Assume that one of the following holds:
(i) g ∈ Γ0 (Hv), TC ⊂ int (dom (g)) and C is a nonempty compact subset ofHp.
(ii) g : Hv → R is continuous, convex and bounded on bounded sets ofHv, and C is a nonempty bounded

subset ofHp.
(iii) Hv and Hp are finite dimensional, and either g ∈ Γ0 (Hv), TC ⊂ int (dom (g)) and C is closed and

bounded, or g : Hv → R is continuous and convex and C is a nonempty bounded subset ofHp.
Then (A.4) holds.

Proof. (i) Since g ∈ Γ0 (Hp), it follows from [5, Proposition 16.21] that

TC ⊂ int (dom (g)) ⊂ dom(∂g).

Moreover, by [5, Corollary 8.30(ii) and Proposition 16.14], we have that ∂g is locally bounded on
int (dom (g)). In particular, as we assume that C is bounded, so is TC, and since TC ⊂ int (dom (g)),
it means that for each z ∈ TC there exists an open neighborhood of z, denoted byUz , such that ∂g (Uz)
is bounded. Since (Uz)z∈C is an open cover of TC and TC is compact, there exists a finite subcover
(Uzk)nk=1. Then,

⋃
x∈C

∂g (Tx) ⊂
n⋃
k=1

∂g (Uzk) .

Since the right-hand-side is bounded (as it is a finite union of bounded sets),

sup
x∈C, u∈∂g(Tx)

‖u‖ < +∞,

whence the desired conclusion trivially follows.
(ii) From the equivalence [5, Proposition 16.17(i) ⇐⇒ (iii)], it follows that dom(∂g) = Hv and thus

TC ⊂ dom(∂g) trivially holds. Moreover, ∂g is bounded on every bounded set ofHv, and in particular
on C.
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(iii) In finite dimension, the claim follows trivially from (i) for the first case by a simple compactness
argument, and from (ii) in the second case since a continuous and convex is bounded on bounded sets
in finite dimension; see [5, Proposition 16.17].

Lemma 3.2. The assumptions (A.1) and (A.2) are sufficient to ensure that

sup
x∈C
‖∇f (x)‖ ≤ D

for some D < +∞.

Proof. Fix s ∈ C and let x ∈ C. We have

f∗ (∇f (x)) + f (s)− 〈∇f (x) , s〉 = f (s)− f (x)− 〈∇f (x) , s− x〉 = Df (s, x) ≤ DF (s, x)

≤ K(F,ζ,C)ζ (1) ,

where we used the Fenchel identity ([5, Proposition 17.27]) in the first equality, Remark 2.8 in the first in-
equality and Definition 2.7 in the second one. By [5, Corollary 9.20], f is bounded from below on C which
entails

f∗ (∇f (x))− 〈∇f (x) , s〉 ≤ DF (s, x) ≤ K(F,ζ,C)ζ (1) + c,

for some real constant c. Now, since

s ∈ C ⊂ dom∇f ⊂ int (domf)

by Definition 2.7 and [5, Proposition 17.41], we infer from [5, Theorem 14.17 and Proposition 14.16] (recall
that s is fixed), that there exists a1 > 0 and a2 ∈ R such that, for all x ∈ C,

a1 ‖∇f (x)‖ + a2 ≤ K(F,ζ,C)ζ (1) + c.

Taking the supremum over x ∈ C entails the desired claim with D = a−1
1

(
K(F,ζ,C)ζ (1) + c− a2

)
.

Remark 3.3. If the dimension of Hd is finite, then (A.10) is satisfied because weakly compact sets are
compact in such spaces. Alternatively, another sufficient condition is to impose that the sublevel sets of the
functions (Φ∗k ◦ (−A∗))k∈N are compact, for instance if the functions are uniformly convex, uniformly in k.

3.1.2 Assumptions on the parameters and error terms

We impose the following assumptions on the parameters and error terms and, as with the assumptions above,
for some results only a subset will be necessary:
(P.1) (γk)k∈N ⊂]0, 1] and the sequences (ζ (γk))k∈N ,

(
γ2
k/βk

)
k∈N and (γkβk)k∈N belong to `1+.

(P.2) (γk)k∈N /∈ `1.
(P.3) (βk)k∈N ∈ `+ is nonincreasing and converges to 0.
(P.4) (ρk)k∈N ∈ `+ is nondecreasing with 0 < ρ ≤ ρk ≤ ρ < +∞.
(P.5) For some positive constantsM andM ,M ≤ (γk/γk+1) ≤M .
(P.6) (θk)k∈N satisfies θk = γk

c for some c > 0 such that Mc −
ρ

2 < 0.
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(P.7) (γk)k∈N and (ρk)k∈N satisfy ρk+1 − ρk − γk+1ρk+1 + 2
cγk −

γ2k
c ≤ γk+1 for c in (P.6).

(P.8) (γk+1E [‖λk+1‖ | Sk])k∈N ∈ `
1
+ (S) and

(
γk+1E

[
λsk+1 | Sk

])
k∈N ∈ `

1
+ (S).

(P.9) (γk+1E [‖λk+1‖])k∈N ∈ `
1
+ and

(
γk+1E

[
λsk+1

])
k∈N ∈ `

1
+.

Remark 3.4. We will also denote the gradient of Ek with errors as

∇̂xEk (x, µ)
def
= ∇xEk (x, µ) + λk.

It is possible to further decompose the error term λk, for instance, into λfk − T ∗λgk/βk where λfk is the
error in computing ∇f (xk) and λgk is the error in evaluating proxβkg (Txk). In this case, the condition
(γk+1E [‖λk+1‖ | Sk])k∈N ∈ `1+ (S) in (P.8) is sufficiently satisfied by demanding that(
γk+1E

[∥∥∥λfk+1

∥∥∥ | Sk])
k∈N
∈ `1+ (S) and

(
γk+1

βk+1
E
[∥∥λgk+1

∥∥ | Sk])
k∈N
∈ `1+ (S).

4 Main Results

4.1 Preparatory Results

Lemma 4.1. Suppose (A.1), (A.2) and (P.1) hold. For each k ∈ N, define the quantity

Lk
def
=
‖T‖2

βk
+ ‖A‖2ρk. (4.1)

Then, for each k ∈ N, we have the following inequality,

Ek (xk+1, µk) ≤ Ek (xk, µk) + 〈∇xEk (xk, µk) , xk+1 − xk〉+DF (xk+1, xk)

+
Lk
2
‖xk+1 − xk‖2.

Proof. See [25, Lemma 4.5]

Lemma 4.2. Suppose (A.1) and (A.2) hold. Then, for each k ∈ N and for every x ∈ Hp,

Ek (x, µk) ≥ Ek (xk, µk) + 〈∇xEk (xk, µk) , x− xk〉+
ρk
2
‖A(x− xk)‖2.

Proof. See [25, Lemma 4.6].

Lemma 4.3. Assume that (A.3) and (P.4) hold. Let (xk)k∈N be the sequence of primal iterates generated by
Algorithm 1 and S = (Sk)k∈N as before. Then, for each k ∈ N, we have the following estimate,

ρk
2
‖Axk − b‖2 −

ρk+1

2
E
[
‖Axk+1 − b‖2 | Sk−1

]
≤ ρdC ‖A‖ (‖A‖R+ ‖b‖) γk (P-a.s.) .

Proof. For each k ∈ N, by convexity of the function ρk+1

2 ‖A · −b‖
2 and the assumption (P.4) that (ρk)k∈N

is nondecreasing, we have,
ρk
2
‖Axk − b‖2 −

ρk+1

2
‖Axk+1 − b‖2 ≤

ρk+1

2
‖Axk − b‖2 −

ρk+1

2
‖Axk+1 − b‖2

≤
〈
∇
(ρk+1

2
‖A · −b‖2 (xk) , xk − xk+1

)〉
= ρk+1 〈Axk − b, A (xk − xk+1)〉 .
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Recall that, for each k ∈ N, xk+1 = xk − γk (xk − ŝk) and take the expectation to find,

ρk
2
‖Axk − b‖2 − E

[ρk+1

2
‖Axk+1 − b‖2 | Sk−1

]
≤ ργkE [〈Axk − b, A (xk − ŝk)〉 | Sk−1]

≤ ργkdC ‖A‖ (‖A‖R+ ‖b‖) ,

where we have used the Cauchy-Schwartz inequality and the boundedness of C, assumed in (A.3), in the last
inequality.

Remark 4.4. The above result still holds if we replace both ρk and ρk+1 by the constant 2 and shift the index
by 1, i.e., for each k ∈ N,

‖Axk+1 − b‖2 − E
[
‖Axk+2 − b‖2 | Sk

]
≤ 2dC ‖A‖ (‖A‖R+ ‖b‖) γk+1 (P-a.s.)

Lemma 4.5. Suppose that (A.1)-(A.6) hold. Let (xk)k∈N be the sequence of primal iterates generated by
Algorithm 1 and µ? a solution, which exists by (A.6), of the dual problem, and recall the constant D from
Lemma 3.2. Then, for each k ∈ N, we have the following estimate,

L (xk, µ
?)− E [L (xk+1, µ

?) | Sk−1] ≤ γkdC (M ‖T‖ +D + Lh + ‖µ?‖ ‖A‖) (P-a.s.) .

Proof. We recall the proof from [25, Lemma 4.7] with a slight modification to account for the inexactness of
the algorithm. Define uk

def
= [∂g(Txk)]

0 and recall that, by (A.4) and the fact that for all k ∈ N, xk ∈ C, we
have ‖uk‖ ≤M . By (A.1), the function Φ (x)

def
= f (x) + g (Tx) + h (x) is convex. Then, for each k ∈ N, ,

L (xk, µ
?)− L (xk+1, µ

?) = Φ(xk)− Φ(xk+1) + 〈µ?, A (xk − xk+1)〉
≤ 〈uk, T (xk − xk+1)〉+ 〈∇f(xk), xk − xk+1〉

+ Lh‖xk − xk+1‖+ ‖µ?‖ ‖A‖ ‖xk − xk+1‖,

where we used the subdifferential inequality (2.2) on g and f , the Lh-Lipschitz continuity of h relative to
C (see (A.5)), and the Cauchy-Schwartz inequality on the inner product. Since, for each k ∈ N, xk+1 =
xk + γk (ŝk − xk), we obtain, for each k ∈ N,

L (xk, µ
?)− L (xk+1, µ

?) ≤ γk
(
〈uk, T (xk − ŝk)〉+ 〈∇f(xk), xk − ŝk〉+ Lh‖xk − ŝk‖

+ ‖µ?‖ ‖A‖ ‖xk − ŝk‖
)

Now take the expectation with respect to the filtration Sk−1, such that xk is completely determined, to get,
for each k ∈ N,

L (xk, µ
?)− E [L (xk+1, µ

?) | Sk−1] ≤ γk
(
E [〈uk, T (xk − ŝk)〉 | Sk−1] + E [〈∇f(xk), xk − ŝk〉 | Sk−1]

+ LhE [‖xk − ŝk‖ | Sk−1] + ‖µ?‖ ‖A‖ E [‖xk − ŝk‖ | Sk−1]
)

≤ γkdC (M‖T‖+D + Lh + ‖µ?‖ ‖A‖) ,

where we have used the Cauchy-Schwartz inequality, the boundedness of the set C by (A.3), the boundedness
of uk byM by (A.4), and the boundedness of ‖∇f (x)‖ by D, the constant in (A.4).
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4.2 Asymptotic feasibility

Lemma 4.6 (Feasibility estimate). Suppose that (A.1) - (A.4) and (A.6) all hold. Consider the sequence of
iterates (xk)k∈N generated by Algorithm 1 with parameters satisfying (P.1) and (P.3)-(P.6). For each k ∈ N,
define the two quantities, ∆p

k and ∆d
k in the following way,

∆p
k

def
= Lk (xk+1, µk)− L̃k (µk) , ∆d

k
def
= L̃ − L̃k (µk) ,

where we have denoted L̃k (µk)
def
= minx Lk (x, µk) and L̃ def

= L (x?, µ?). Furthermore, for each k ∈ N,
denote the sum ∆k

def
= ∆p

k + ∆d
k. We then have, for each k ∈ N,

E [∆k+1 | Fk]−∆k ≤ −γk+1

(
M

c
‖Ax̃k+1 − b‖2 + δ ‖A (xk+1 − x̃k+1)‖2

)
+ γ2

k+1

Lk+1

2
d2
C

+K(F,ζ,C)ζ (γk+1) +
βk − βk+1

2
M2 + (ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

)
+ γk+1E

[
λsk+1 | Fk

]
+ dCγk+1E [‖λk+1‖ | Fk] .

(4.2)

Proof. The proof here is adapted from the analogous result found in [25, Theorem 4.1]. As before, the
quantity ∆p

k ≥ 0 and can be seen as a primal gap at iteration k while ∆d
k may be negative but is uniformly

bounded from below by our assumptions (see [25, Theorem 4.1]). We denote a minimizer of Lk (x, µk) by
x̃k ∈ Argmin

x∈Hp
Lk (x, µk), which exists and belongs to C by (A.1)-(A.3). We have, for each k ∈ N,

∆k+1 −∆k = Lk+1 (xk+2, µk+1)− Lk (xk+1, µk+1) + θk ‖Axk+1 − b‖2

+ 2 [Lk (x̃k, µk)− Lk+1 (x̃k+1, µk+1)] .

Recall that x̃k ∈ Argmin
x∈Hp

Lk (x, µk), that gβk ≤ gβk+1 due to (P.3) and Proposition 2.6(v), and that ρk ≤

ρk+1 by (P.4). Then, for each k ∈ N,

Lk (x̃k, µk)− Lk+1 (x̃k+1, µk+1) ≤ Lk (x̃k+1, µk)− Lk+1 (x̃k+1, µk+1)

=
[
gβk − gβk+1

]
(T x̃k+1) +

1

2
[ρk − ρk+1] ‖Ax̃k+1 − b‖2

+ 〈µk − µk+1, Ax̃k+1 − b〉
≤ −θk 〈Axk+1 − b, Ax̃k+1 − b〉 ,

where we have used the fact that µk+1 = µk + θk (Axk+1 − b) coming from Algorithm 1. So we get, for
each k ∈ N,

∆k+1 −∆k ≤ Lk+1 (xk+2, µk+1)− Lk (xk+1, µk+1) + θk ‖Axk+1 − b‖2

− 2θk 〈Axk+1 − b, Ax̃k+1 − b〉 .

Note that, for each k ∈ N,

Lk (xk+1, µk+1) = Lk+1 (xk+1, µk+1)−
[
gβk+1 − gβk

]
(Txk+1)−

(
ρk+1 − ρk

2

)
‖Axk+1 − b‖2 .

12



Then, for each k ∈ N,

∆k+1 −∆k ≤ Lk+1 (xk+2, µk+1)− Lk+1 (xk+1, µk+1) + gβk+1 (Txk+1)− gβk (Txk+1)

+

(
ρk+1 − ρk

2

)
‖Axk+1 − b‖2 + θk ‖Axk+1 − b‖2 − 2θk 〈Axk+1 − b, Ax̃k+1 − b〉 .

We denote by T1 def
= Lk+1 (xk+2, µk+1)− Lk+1 (xk+1, µk+1) and the remaining part of the right-hand side

by T2. For the moment, we focus our attention on T1. Recall that Lk (x, µk) = Ek (x, µk) +h (x) and apply
Lemma 4.1 between points xk+2 and xk+1, to get, for each k ∈ N,

T1 ≤ h (xk+2)− h (xk+1) + 〈∇xEk+1 (xk+1, µk+1) , xk+2 − xk+1〉

+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1) .

By (A.1) we have that h is convex and thus, since xk+2 is a convex combination of xk+1 and ŝk+1, we get,
for each k ∈ N,

T1 ≤ γk+1 (h (ŝk+1)− h (xk+1) + 〈∇xEk+1 (xk+1, µk+1) , ŝk+1 − xk+1〉)

+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

= γk+1

(
h (ŝk+1)− h (xk+1) +

〈
∇̂xEk+1 (xk+1, µk+1) , ŝk+1 − xk+1

〉
+
〈
∇xEk+1 (xk+1, µk+1)− ∇̂xEk+1 (xk+1, µk+1) , ŝk+1 − xk+1

〉 )
+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

= γk+1

(
h (ŝk+1)− h (xk+1) +

〈
∇̂xEk+1 (xk+1, µk+1) , ŝk+1 − xk+1

〉
− 〈λk+1, ŝk+1 − xk+1〉

)
+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

Applying the definition of ŝk as the approximate minimizer of the linear minimization oracle gives, for each
k ∈ N,

T1 ≤ γk+1

(
h (sk+1)− h (xk+1) +

〈
∇̂xEk+1 (xk+1, µk+1) , sk+1 − xk+1

〉
+ λsk+1

− 〈λk+1, ŝk+1 − xk+1〉
)

+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1) .

We can apply the definition of sk+1 as the minimizer of the linear minimization oracle and Lemma 4.2 to
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get, for each k ∈ N,

T1 ≤ γk+1

(
h (x̃k+1)− h (xk+1) +

〈
∇̂xEk+1 (xk+1, µk+1) , x̃k+1 − xk+1

〉
+ λsk+1

− 〈λk+1, ŝk+1 − xk+1〉
)

+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

= γk+1

(
h (x̃k+1)− h (xk+1) + 〈∇xEk+1 (xk+1, µk+1) , xk+1 − x̃k+1〉 + λsk+1

− 〈λk+1, ŝk+1 − x̃k+1〉
)

+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

≤ γk+1

(
h (x̃k+1)− h (xk+1) + Ek+1 (x̃k+1, µk+1)− Ek+1 (xk+1, µk+1)− ρk+1

2
‖A (xk+1 − x̃k+1)‖2

+ λsk+1 − 〈λk+1, ŝk+1 − x̃k+1〉
)

+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

= γk+1

(
Lk+1 (x̃k+1, µk+1)− Lk+1 (xk+1, µk+1)− ρk+1

2
‖A (xk+1 − x̃k+1)‖2 + λsk+1

− 〈λk+1, ŝk+1 − x̃k+1〉
)

+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1)

≤ −γk+1ρk+1

2
‖A (xk+1 − x̃k+1)‖2 + γk+1

(
λsk+1 + 〈λk+1, x̃k+1 − ŝk+1〉

)
+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1) ,

where we used that x̃k+1 is a minimizer of Lk+1 (·, µk+1) in the last inequality. Combining T1 and T2 and
using the Pythagoras identity we have, for each k ∈ N,

∆k+1 −∆k ≤ −θk ‖Ax̃k+1 − b‖2 +
(
θk − γk+1

ρk+1

2

)
‖A (xk+1 − x̃k+1)‖2

+
Lk+1

2
‖xk+2 − xk+1‖2 +DF (xk+2, xk+1) +

[
gβk+1 − gβk

]
(Txk+1)

+
ρk+1 − ρk

2
‖Axk+1 − b‖2 + γk+1

(
λsk+1 + 〈λk+1, x̃k+1 − ŝk+1〉

)
.

(4.3)

Now take the expectation with respect to Fk = Sk = σ (x0, µ0, ŝ0, . . . , ŝk), which completely determines
xk+1, x̃k+1, and µk+1. We are also going to perform the following estimations.
• Under (P.5) and (P.6), we have that, for each k ∈ N, θk = γk/c withMγk+1 ≤ γk and so that

−θk ≤ −M
c γk+1.

• Again by (P.6), we have, for each k ∈ N, θk = γk/c for some c > 0 such that

∃δ > 0,
M

c
−
ρ

2
= −δ < 0,

whereM is the constant such that, for each k ∈ N, γk ≤ Mγk+1 (see (P.5)). Then, using again (P.5)
and the above inequality, for each k ∈ N,

θk − γk+1
ρk+1

2
≤
(
M

c
− ρk+1

2

)
γk+1 ≤

(
M

c
−
ρ

2

)
γk+1 = −δγk+1. (4.4)
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• By Algorithm 1, for each k ∈ N, xk+2 − xk+1 = γk+1 (ŝk+1 − xk+1). Since ŝk+1 and xk+1 are both
in C and C is bounded due to (A.3), for each k ∈ N,

Lk+1

2
E
[
‖xk+2 − xk+1‖2 | Fk

]
=
Lk+1

2
γ2
k+1E

[
‖ŝk+1 − xk+1‖2 | Fk

]
≤ Lk+1

2
γ2
k+1d

2
C .

• Recall that, by (A.2), f is (F, ζ)-smooth and invoke Remark 2.8, to get

E [DF (xk+2, xk+1) | Fk] ≤ K(F,ζ,C)ζ (γk+1) .

• By Proposition 2.6(v) and assumption (A.4),

E
[[
gβk+1 − gβk

]
(Txk+1) | Fk

]
≤ βk − βk+1

2
E
[∥∥∥[∂g (Txk+1)]0

∥∥∥2
| Fk

]
≤ βk − βk+1

2
M2.

• We also have, using Jensen’s inequality and (A.3), for each k ∈ N,(
ρk+1 − ρk

2

)
E
[
‖Axk+1 − b‖2 | Fk

]
≤ (ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

)
.

In total, for each k ∈ N,

E [∆k+1 | Fk]−∆k ≤ −M
c γk+1 ‖Ax̃k+1 − b‖2 − δγk+1 ‖A (xk+1 − x̃k+1)‖2

+
Lk+1

2
γ2
k+1d

2
C +K(F,ζ,C)ζ (γk+1)

+
βk − βk+1

2
M2 + (ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

)
+ γk+1

(
E
[
λsk+1 | Fk

]
+ E [〈λk+1, x̃k+1 − ŝk+1〉 | Fk]

)
.

Using Cauchy-Schwarz together with the fact that x̃k+1 and ŝk+1 are in C, which is bounded by (A.3), we
also have, for each k ∈ N,

γk+1E [〈λk+1, x̃k+1 − ŝk+1〉 | Fk] ≤ γk+1dCE [‖λk+1‖ | Fk] , (4.5)

which gives, for each k ∈ N,

E [∆k+1 | Fk]−∆k ≤ −
M

c
γk+1 ‖Ax̃k+1 − b‖2 − δγk+1 ‖A (xk+1 − x̃k+1)‖2 + γ2

k+1

Lk+1

2
d2
C

+K(F,ζ,C)ζ (γk+1) +
βk − βk+1

2
M2 + (ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

)
+ γk+1E

[
λsk+1 | Fk

]
+ γk+1dCE [‖λk+1‖ | Fk] ,

(4.6)

and (4.2) follows by trivial manipulations.

Theorem 4.7 (Feasibility). Suppose that (A.1)-(A.4) and (A.6) all hold and recall Γk
def
=

k∑
i=0

γi. For a

sequence (xk)k∈N generated by Algorithm 1 using parameters satisfying (P.1) - (P.6) and (P.8) we have,
(i) Asymptotic feasibility: lim

k→∞
‖Axk − b‖ = 0 (P-a.s.)
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(ii) Ergodic rate: let x̄k
def
=
∑k

i=0 γixi/Γk. Then

‖Ax̄k − b‖ = O

(
1√
Γk

)
(P-a.s.) . (4.7)

(iii) It holds
(
γk ‖Ax̃k − b‖2

)
k∈N
∈ `1+ (F) and

(
γk ‖Axk − b‖2

)
k∈N
∈ `1+ (F).

Additionally, if (P.9) also holds then we have the following pointwise rates in expectation,
(iv) It holds inf

0≤i≤k
E [‖Axi − b‖] ∈ O

(
1√
Γk

)
.

(v) There exists a subsequence
(
xkj
)
j∈N such that E

[∥∥Axkj − b∥∥] ≤ 1√
Γkj

.

(vi) It holds
(
γkE

[
‖Ax̃k − b‖2

])
k∈N
∈ `1+ and

(
γkE

[
‖Axk − b‖2

])
k∈N
∈ `1+.

Proof. Our goal is to first apply Lemma 2.2 and then apply Lemma 2.3. By Lemma 4.6, we have, for each
k ∈ N,

E [∆k+1 | Fk]−∆k ≤ −γk+1

(
M

c
‖Ax̃k+1 − b‖2 + δ ‖A (xk+1 − x̃k+1)‖2

)
+ γ2

k+1

Lk+1

2
d2
C

+K(F,ζ,C)ζ (γk+1) +
βk − βk+1

2
M2 + (ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

)
+ γk+1E

[
λsk+1 | Fk

]
+ dCγk+1E [‖λk+1‖ | Fk] .

(4.8)

Because of (P.1) and (P.4), and in view of the definition of Lk+1 in (4.1), we have the following,(
Lk+1

2
γ2
k+1d

2
C

)
k∈N

=

(
1

2

(
‖T‖2

βk+1
+ ‖A‖2 ρk+1

)
γ2
k+1d

2
C

)
k∈N

∈ `1+.

For the telescopic terms from the right hand side of (4.8) we have(
βk − βk+1

2
M2

)
k∈N
∈ `1+ and

(
(ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

))
k∈N
∈ `1+,

where R is the constant arising from (A.3). Under (P.1) we also have that(
K(F,ζ,C)ζ (γk+1)

)
k∈N ∈ `

1
+.

Finally, due to (P.8), we also have(
γk+1E

[
λsk+1 | Fk

])
k∈N ∈ `

1
+ (F) and (dCγk+1E [‖λk+1‖ | Fk])k∈N ∈ `

1
+ (F) .

Using the notation of Lemma 2.2, we set, for each k ∈ N,

rk = ∆k, ak = γk+1

(
M

c
‖Ax̃k+1 − b‖2 + δ ‖A (xk+1 − x̃k+1)‖2

)
, and

zk =
Lk+1

2
γ2
k+1d

2
C +K(F,ζ,C)ζ (γk+1) +

βk − βk+1

2
M2 +

(
ρk+1 − ρk

2

)
‖Axk+1 − b‖2

+ γk+1E
[
λsk+1 | Fk

]
+ dCγk+1E [‖λk+1‖ | Fk] .
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We have shown above that , for each k ∈ N,

E [rk+1 | Fk]− rk ≤ −ak + zk,

where (zk)k∈N ∈ `1+ (F), and rk is bounded from below. We then deduce using Lemma 2.2 that (rk)k∈N is
convergent (P-a.s.) and(

γk ‖Ax̃k − b‖2
)
k∈N
∈ `1+ (F) and

(
γk ‖A (xk − x̃k)‖2

)
k∈N
∈ `1+ (F) (4.9)

satisfying (iii). Consequently, (
γk ‖Axk − b‖2

)
k∈N
∈ `1+ (F) , (4.10)

since by the Cauchy-Schwarz inequality,

∞∑
k=1

γk ‖Axk − b‖2 ≤ 2

∞∑
k=1

γk

(
‖A (xk − x̃k)‖2 + ‖Ax̃k − b‖2

)
< +∞.

To finish proving (i) we simply apply Lemma 4.3 (with Remark 4.4) and the conditions of Lemma 2.3 are
satisfied. Then, (ii) follows directly from the application of Jensen’s inequality as in the results of [25,
Theorem 4.1].

We now assume that (P.9) holds. By Lemma 4.6, we can take the total expectation and use the law of total
expectation to have, for each k ∈ N,

E [∆k+1]− E [∆k] ≤ −γk+1

(
M

c
E
[
‖Ax̃k+1 − b‖2

]
+ δE

[
‖A (xk+1 − x̃k+1)‖2

])
+ γ2

k+1

Lk+1

2
d2
C

+K(F,ζ,C)ζ (γk+1) +
βk − βk+1

2
M2 + (ρk+1 − ρk)

(
‖A‖2R2 + ‖b‖2

)
+ γk+1E

[
λsk+1

]
+ dCγk+1E [‖λk+1‖] .

Define the following, for each k ∈ N,

r̃k = E [∆k] , p̃k = γk+1, w̃k =

(
M

c
E
[
‖Ax̃k+1 − b‖2

]
+ δE

[
‖A (xk+1 − x̃k+1)‖2

])
, and

z̃k =
Lk+1

2
γ2
k+1d

2
C +K(F,ζ,C)ζ (γk+1) +

βk − βk+1

2
M2 +

(
ρk+1 − ρk

2

)
E
[
‖Axk+1 − b‖2

]
+ γk+1E

[
λsk+1

]
+ dCγk+1E [‖λk+1‖] .

By the argument of the previous paragraph, in conjunction with (P.9), we have that (z̃k)k∈N ∈ `1+. We can
apply the total expectation to the results of both Lemma 4.3 and Lemma 4.5 and then the claims of interest
follow from Lemma 2.4 applied with (r̃k)k∈N, (p̃k)k∈N, (w̃k)k∈N, and (z̃k)k∈N defined as above.

4.3 Optimality

The following lemmas regard the boundedness of the sequence of dual iterates (µk)k∈N and the uniform
boundedness of the Lagrangian. They were shown in the deterministic setting in [25] and easily extend to
the stochastic case in light of Theorem 4.7.
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Lemma 4.8. Suppose that (A.1)-(A.3), (A.6)-(A.8), and (P.1)-(P.6) all hold and define, for each k ∈ N,

ϕk (µ)
def
= − inf

x∈Hp
Lk (x, µ) and ϕ̄

def
= f (x) + g (Tx) + h (x) +

ρ

2
‖Ax− b‖2 . (4.11)

Then the sequence of dual iterates (µk)k∈N generated by Algorithm 1 is bounded (P-a.s.), for each k ∈ N
the function ϕk (µ) is convex and differentiable with gradient

∇ϕk (µ) = ρ−1
k

(
µ− proxρkΦ∗k◦(−A∗)

(µ− ρkb)
)
, (4.12)

and it holds, for each k ∈ N,

∇ϕk (µk) = Ax̃k − b. (4.13)

Proof. Note that here we have denoted, for each k ∈ N, Φk (x) = f (x) + gβk (x) + h (x) while in [25] it
is defined differently with φk (x) = f (x) + gβk (x) + h (x) and Φk (x) having different meaning.
For brevity, we defer to the proof in [25, Lemma 4.11], noting that since

(
γk ‖x̃k − b‖2

)
k∈N
∈ `1+ (F) and(

γk ‖xk − b‖2
)
k∈N
∈ `1+ (F), there exists Ω̃ ⊂ F with P

(
Ω̃
)

= 1 such that (ϕk (µk (ω)))k∈N is convergent
and thus bounded, and the uniform coercivity of (ϕk)k∈N is unaffected by the inexactness, i.e., (µk (ω))k∈N
is bounded.

Lemma 4.9. Under (A.1)-(A.8) and (P.1)-(P.6), the composite function f + g ◦ T + h is uniformly bounded
on C and we have

M̃
def
= sup

x∈C
|f (x) + g (Tx) + h (x)|+ sup

k∈N
‖µk‖ (‖A‖R+ b) < +∞ (P-a.s.) , (4.14)

where R is the radius from (A.3).

Proof. The proof follows in a (P-a.s.) sense from [25, Lemma 4.12] with the addition of Theorem 4.7.

We now begin with the main energy estimate needed to show the convergence of the Lagrangian values
to optimality.

Lemma 4.10 (Optimality estimate). Recall the constants c, Lk, M , D, and Lh from (P.6), Lemma 4.1,
(A.4), Lemma 4.3, and (A.5), respectively. Define, for each k ∈ N,

rk
def
= (1− γk)Lk (xx, µk) +

c

2
‖µk − µ?‖2

and

Ck
def
=
Lk
2
d2
C + dC (M‖T‖+D + Lh + ‖µ?‖ ‖A‖) .

Then, under (A.1)-(A.8) and (P.1)-(P.7) withM ≥ 1, for the sequences (xk)k∈N and (µk)k∈N generated by
Algorithm 1, using the filtration F = (Fk)k∈N with Fk = Sk−1, the following inequality holds, for each
k ∈ N,

E [rk+1 | Fk]− rk ≤ −γk
(
L (xk, µ

?)− L (x?, µ?) +
ρk
2
‖Axk − b‖2

)
+
γk+1

2
E
[
‖Axk+1 − b‖2 | Fk

]
+ (βk − βk+1)

M2

2
+ (γk − γk+1) M̃ + γkβk

M2

2
+K(F,ζ,C)ζ (γk) + γ2

kCk

+ dCγkE [‖λk‖ | Fk] + γkE [λsk | Fk] (P-a.s.) .
(4.15)
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Proof. Applying Lemma 4.2 to the points x? and xk we have, for each k ∈ N,

Ek (x?, µk) ≥ Ek (xk, µk) + 〈∇xEk (xk, µk) , x
? − xk〉+

ρk
2
‖A(x? − xk)‖2

= Ek (xk, µk) +
〈
∇̂xEk (xk, µk) , x

? − xk
〉

+ 〈λk, xk − x?〉 +
ρk
2
‖A(x? − xk)‖2

= Ek (xk, µk) +
〈
∇̂xEk (xk, µk) , x

? − xk
〉

+ h (x?)− h (x?) + 〈λk, xk − x?〉

+
ρk
2
‖A(x? − xk)‖2 .

By the definition of sk as a minimizer and the definition of ŝk we further have, for each k ∈ N,

Ek (x?, µk) ≥ Ek (xk, µk) +
〈
∇̂xEk (xk, µk) , sk − xk

〉
+ h (sk)− h (x?) + 〈λk, xk − x?〉

+
ρk
2
‖A(x? − xk)‖2

≥ Ek (xk, µk) +
〈
∇̂xEk (xk, µk) , ŝk − xk

〉
+ h (ŝk)− λsk − h (x?) + 〈λk, xk − x?〉

+
ρk
2
‖A(x? − xk)‖2 .

(4.16)

From Lemma 4.1 applied to the points xk+1 and xk and by definition of xk+1
def
= xk + γk (ŝk − xk) in

Algorithm 1, we also have, for each k ∈ N,

Ek (xk+1, µk) ≤ Ek (xk, µk) + 〈∇xEk (xk, µk) , xk+1 − xk〉+DF (xk+1, xk) +
Lk
2
‖xk+1 − xk‖2

= Ek (xk, µk) + γk〈∇xEk (xk, µk) , ŝk − xk〉+DF (xk+1, xk) + γ2
k

Lk
2
‖ŝk − xk‖2

= Ek (xk, µk) + γk〈∇̂xEk (xk, µk) , ŝk − xk〉+ γk 〈λk, xk − ŝk〉 +DF (xk+1, xk)

+ γ2
k

Lk
2
‖ŝk − xk‖2 .

We combine the latter with (4.16), to get, for each k ∈ N,

Ek (xk+1, µk) ≤ Ek (xk, µk) + γk 〈λk, x? − ŝk〉 +DF (xk+1, xk) + γ2
k

Lk
2
‖ŝk − xk‖2

+ γk

(
Ek (x?, µk) + h(x?)− Ek (xk, µk)− h(ŝk)−

ρk
2
‖Axk − b‖2 + λsk

)
.

(4.17)

By convexity of h from (A.1) and the definition of xk+1, we have, for each k ∈ N,

Lk (xk+1, µk)− Lk (xk, µk) = Ek (xk+1, µk)− Ek (xk, µk) + h (xk+1)− h (xk)

≤ Ek (xk+1, µk)− Ek (xk, µk) + γk (h (ŝk)− h (xk))
(4.18)

Combining (4.17) and (4.18), we obtain, for each k ∈ N,

Lk (xk+1, µk)− Lk (xk, µk) ≤ γk (Ek (x?, µk) + h(x?)− Ek (xk, µk)− h (xk)) +DF (xk+1, xk) +

γ2
k

Lk
2
‖ŝk − xk‖2 + γk

(
〈λk, x? − ŝk〉 −

ρk
2
‖Axk − b‖2 + λsk

)
= γk (Lk (x?, µk)− Lk (xk, µk)) +DF (xk+1, xk) + γ2

k

Lk
2
‖ŝk − xk‖2

+ γk

(
〈λk, x? − ŝk〉 −

ρk
2
‖Axk − b‖2 + λsk

)
(4.19)
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Recalling the definition of µk+1
def
= µk +A (xk+1 − b) in Algorithm 1, we have, for each k ∈ N,

Lk (xk+1, µk+1)− Lk (xk+1, µk) = 〈µk+1 − µk, Axk+1〉 = θk ‖Axk+1 − b‖2 .

We combine the above and (4.19) to get, for each k ∈ N,

Lk (xk+1, µk+1)− Lk (xk, µk) ≤ θk ‖Axk+1 − b‖2 + γk (Lk (x?, µk)− Lk (xk, µk)) +DF (xk+1, xk)

+ γ2
k

Lk
2
‖ŝk − xk‖2 + γk

(
〈λk, x? − ŝk〉 −

ρk
2
‖Axk − b‖2 + λsk

)
.

(4.20)

Notice that the update of the dual variable µ can be interpreted as a proximal operator in the following way,

µk+1 = argmin
µ∈Hd

{
−Lk (xk+1, µ) +

1

2θk
‖µ− µk‖2

}
.

Then, using Lemma 2.5, we get, for each k ∈ N,

0 ≥ θk (Lk (xk+1, µ
?)− Lk (xk+1, µk+1)) +

1

2

(
‖µk+1 − µ?‖2 − ‖µk − µ?‖2 + ‖µk+1 − µk‖2

)
= θk (Lk (xk+1, µ

?)− Lk (xk+1, µk+1)) +
1

2

(
‖µk+1 − µ?‖2 − ‖µk − µ?‖2 + θ2

k ‖Axk+1 − b‖2
)
.

(4.21)

Recall that, by (P.6), θk = γk/c. Multiply (4.21) by c and sum with (4.20), to obtain, for each k ∈ N,

(1− cθk)Lk (xk+1, µk+1)− (1− cθk)Lk (xk, µk) + c
2

(
‖µk+1 − µ?‖2 − ‖µk − µ?‖2

)
≤
(
θk −

cθ2k
2

)
‖Axk+1 − b‖2 + γk (Lk (x?, µk)− Lk (xk, µk))− cθk (Lk (xk+1, µ)− Lk (xk, µk))

−ρkγk
2 ‖Axk − b‖

2 +DF (xk+1, xk) + γ2
k
Lk
2 ‖ŝk − xk‖

2 + γk (〈λk, x? − ŝk〉 + λsk) .

The previous inequality can be re-written, by trivial manipulations, as, for each k ∈ N,

(1− cθk+1)Lk+1 (xk+1, µk+1)− (1− cθk)Lk (xk, µk) +
c

2

(
‖µk+1 − µ?‖2 − ‖µk − µ?‖2

)
≤ (1− cθk+1)Lk+1 (xk+1, µk+1)− (1− cθk)Lk (xk+1, µk+1) +

(
θk −

cθ2
k

2

)
‖Axk+1 − b‖2

+ γk (Lk (x?, µk)− Lk (xk, µk))− cθk (Lk (xk+1, µ
?)− Lk (xk, µk))−

ρkγk
2
‖Axk − b‖2

+DF (xk+1, xk) + γ2
k

Lk
2
‖ŝk − xk‖2 + γk (〈λk, x? − ŝk〉 + λsk)

= c (θk − θk+1) (f + h+ 〈µk+1, A · −b〉) (xk+1) +
(

(1− cθk+1) gβk+1 − (1− cθk) gβk
)

(Txk+1)

+
1

2

(
(1− cθk+1) ρk+1 − (1− cθk) ρk + 2θk − cθ2

k

)
‖Axk+1 − b‖2 + γk (Lk (x?, µk)− Lk (xk, µk))

− cθk (Lk (xk+1, µ
?)− Lk (xk, µk))−

ρkγk
2
‖Axk − b‖2 +DF (xk+1, xk) + γ2

k

Lk
2
‖ŝk − xk‖2

+ γk (〈λk, x? − ŝk〉 + λsk) .

(4.22)
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By (P.5), (P.6) and the assumption that M ≥ 1, we have θk+1 ≤ M−1θk ≤ θk. In view of (P.3), we also
have βk+1 ≤ βk. In particular, gβk ≤ gβk+1 ≤ g pointwise. By Proposition 2.6(iv) and assumption (A.4),
we are able to, for each k ∈ N, estimate the quantity(

(1− cθk+1) gβk+1 − (1− cθk) gβk
)

(Txk+1)

=
(
gβk+1 − gβk

)
(Txk+1) + c

(
θkg

βk − θk+1g
βk+1

)
(Txk+1)

≤ 1

2
(βk − βk+1)

∥∥∥(∂g(Txk+1))0
∥∥∥2

+ c
(
θkg

βk − θk+1g
βk
)

(Txk+1)

≤ 1

2
(βk − βk+1)

∥∥∥(∂g(Txk+1))0
∥∥∥2

+ c (θk − θk+1) g(Txk+1).

Then, for each k ∈ N,

c (θk − θk+1) (f + h+ 〈µk+1, A · −b〉) (xk+1) +
(

(1− cθk+1) gβk+1 − (1− cθk) gβk
)

(Txk+1)

≤ c (θk − θk+1)L (xk+1, µk+1) +
1

2
(βk − βk+1)

∥∥∥(∂g(Txk+1))0
∥∥∥2
.

(4.23)

Recall the definition of rk in (4.10). Coming back to (4.22) and using (4.23), we obtain, for each k ∈ N,

rk+1 − rk ≤
1

2

(
(1− γk+1) ρk+1 − (1− γk) ρk +

2

c
γk −

γ2
k

c

)
‖Axk+1 − b‖2

+ γk (Lk (x?, µk)− Lk (xk+1, µ
?))− ρkγk

2
‖Axk − b‖2 +

βk − βk+1

2

∥∥∥(∂g(Txk+1))0
∥∥∥2

+ (γk − γk+1)L (xk+1, µk+1) +DF (xk+1, xk) + γ2
k

Lk
2
‖ŝk − xk‖2 + γk (〈λk, x? − ŝk〉 + λsk) .

(4.24)

Recall that, by feasibility of x? for the affine constraint, L (x?, µk) = L (x?, µ?) and thus, for each k ∈ N,

Lk (x?, µk)− Lk (xk+1, µ
?) = L (x?, µ?)− L (xk+1, µ

?) +
(
gβk − g

)
(Tx?) +

(
g − gβk

)
(Txk+1)

− ρk
2
‖Axk+1 − b‖2

= L (x?, µ?)− L (xk, µ
?) + L (xk, µ

?)− L (xk+1, µ
?)(

gβk − g
)

(Tx?) +
(
g − gβk

)
(Txk+1)− ρk

2
‖Axk+1 − b‖2

≤ L (x?, µ?)− L (xk, µ
?) + L (xk, µ

?)− L (xk+1, µ
?) +

βk
2

∥∥∥(∂g(Txk+1))0
∥∥∥2

− ρk
2
‖Axk+1 − b‖2 ,

where in the inequality we have used the fact that gβk ≤ g pointwise and that, by Proposition 2.6(v), for each
k ∈ N, (

g − gβk
)

(Txk+1) ≤ βk
2

∥∥∥(∂g(Txk+1))0
∥∥∥2
.
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Substituting the above into (4.24) we have, for each k ∈ N,

rk+1 − rk ≤
1

2

(
(1− γk+1) ρk+1 − ρk +

2

c
γk −

γ2
k

c

)
‖Axk+1 − b‖2

+ γk (L (x?, µ?)− L (xk, µ
?)) + γk (L (xk, µ

?)− L (xk+1, µ
?))

− ρkγk
2
‖Axk − b‖2 +

βk − βk+1

2

∥∥∥(∂g(Txk+1))0
∥∥∥2

+ (γk − γk+1)L (xk+1, µk+1)

+ γk
βk
2

∥∥∥(∂g(Txk+1))0
∥∥∥2

+DF (xk+1, xk) + γ2
k

Lk
2
‖ŝk − xk‖2

+ γk (〈λk, x? − ŝk〉 + λsk) .

(4.25)

Take the expectation with respect toFk = Sk−1 = σ (x0, µ0, ŝ0, . . . , ŝk−1), which will completely determine
xk and µk, and we perform the following estimations.
• From (P.7), we have, for each k ∈ N,

(1− γk+1) ρk+1 − ρk +
2

c
γk −

γ2
k

c
≤ γk+1.

• By assumption (A.4), for each k ∈ N,

E
[∥∥∥(∂g(Txk+1))0

∥∥∥2
| Fk

]
≤M2.

• By Lemma 4.9, for each k ∈ N,

E [L (xk+1, µk+1) | Fk] ≤ M̃.

• Recall that, by (A.2), f is (F, ζ)-smooth and invoke Remark 2.8, to get, for each k ∈ N,

E [DF (xk+1, xk) | Fk] ≤ K(F,ζ,C)ζ (γk) .

• Since, for each k ∈ N, ŝk and xk are both in C, we have

E [‖ŝk − xk‖ | Fk] ≤ dC .

We have, for each k ∈ N,

E [rk+1 | Fk]− rk ≤
γk+1

2
E
[
‖Axk+1 − b‖2 | Fk

]
+ γk (L (x?, µ?)− L (xk, µ

?))

+ γk (L (xk, µ
?)− E [L (xk+1, µ

?) | Fk])−
ρkγk

2
‖Axk − b‖2 +

βk − βk+1

2
M2

+ (γk − γk+1) M̃ + γk
βk
2
M2 +K(F,ζ,C)ζ (γk) + γ2

k

Lk
2
d2
C + γkE [〈λk, x? − ŝk〉 + λsk | Fk] .

We can bound the inner product involving the error terms using the Cauchy-Schwartz inequality and the
boundedness of C. Applying Lemma 4.5 and regrouping terms with γ2

k we get, for each k ∈ N,

E [rk+1 | Fk]− rk ≤
γk+1

2
E
[
‖Axk+1 − b‖2 | Fk

]
+ γk (L (x?, µ?)− L (xk, µ

?))− ρkγk
2
‖Axk − b‖2

+ (βk − βk+1)
M2

2
+ (γk − γk+1) M̃ + γkβk

M2

2
+K(F,ζ,C)ζ (γk) + γ2

kCk

+ γkE [dC ‖λk‖ + λsk | Fk] .

We conclude by trivial manipulations.
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We now proceed to prove the main theorem regarding optimality, recalling the notation of (3.2) for the
terms SP and SD and (3.3) for W

[
(xk)k∈N

]
. The convergence and rates of the Lagrangian values will

be shown in terms L (xk, µ
?) − L (x?, µ?), which is non-negative since (x?, µ?) is a saddle point. This is

however not a primal-dual gap. Nevertheless, observe that in view of [5, Proposition 19.21(v)], we have

L (xk, µ
?)− L (x?, µ?) = Φ(x)− Φ(x?) + 〈A∗µ?, xk − x?〉,

which is nothing but the Bregman divergence of Φ with the subgradient −A∗µ between xk and x?. This
Bregman divergence appears then as a good candidate to quantify the convergence rate of Algorithm 1 given
that it captures both the discrepancy of the primal objective to the optimal value and violation of the affine
constraint.

Theorem 4.11 (Optimality). Suppose that (A.1)-(A.10) and (P.1)-(P.8) hold, withM ≥ 1. Let (xk)k∈N be
the sequence of primal iterates generated by Algorithm 1 and (x?, µ?) a saddle-point pair for the Lagrangian.
Then, in addition to the results of Theorem 4.7, the following holds

(i) Convergence of the Lagrangian:

lim
k→∞

L (xk, µ
?) = L (x?, µ?) (P-a.s.) . (4.26)

(ii) The sequence (xk)k∈N satisfiesW
[
(xk)k∈N

]
⊂ SP (P-a.s.) and there exists µ̄, anSD-valued random

variable, such that µk → µ̄ (P-a.s.).
(iii) Ergodic rate: for each k ∈ N, let x̄k

def
=
∑k

i=0 γixi+1/Γk. Then, for each k ∈ N,

L (x̄k, µ
?)− L (x?, µ?) ∈ O

(
1

Γk

)
(P-a.s.) . (4.27)

(iv) If the problem (P) admits a unique solution x?, then (xk)k∈N converges weakly (P-a.s.) to x? a
solution of (P). Moreover, if Φ is uniformly convex on C with modulus of convexity ψ : R+ → [0,∞],
then (xk)k∈N converges strongly (P-a.s.) to x? at the ergodic rate, for each k ∈ N,

ψ (‖x̄k − x?‖) ∈ O
(

1

Γk

)
(P-a.s.) .

Furthermore, if (P.9) holds then we have the following pointwise rates in expectation, for any (x?, µ?) ∈
SP × SD,
(v) It holds inf

0≤i≤k
E [L (xk, µ

?)]− L (x?, µ?) ∈ O
(

1
Γk

)
.

(vi) There exists a subsequence
(
xkj
)
j∈N such that E

[
L
(
xkj , µ

?
)]
− L (x?, µ?) ≤ 1

Γkj
.

Proof. As in the proof of Theorem 4.7, our goal is to first apply Lemma 2.2 and then apply Lemma 2.3. By
(4.15) in Lemma 4.10 we have, using the same notation, for each k ∈ N,

E [rk+1 | Fk]− rk ≤ −γk
(
L (xk, µ

?)− L (x?, µ?) +
ρk
2
‖Axk − b‖2

)
+
γk+1

2
E
[
‖Axk+1 − b‖2 | Fk

]
+ (βk − βk+1)

M2

2
+ (γk − γk+1) M̃ + γkβk

M2

2
+K(F,ζ,C)ζ (γk) + γ2

kCk

+ dCγkE [‖λk‖ | Fk] + γkE [λsk | Fk] .

Let, for each k ∈ N, ak = γk

(
L (xk, µ

?)− L (x?, µ?) + ρk
2 ‖Axk − b‖

2
)
and denote what remains on the

r.h.s. by zk. Then, to apply Lemma 2.2, we must show (zk)k∈N ∈ `1+ (F). The first term,

23



γk+1E
[
‖Axk+1 − b‖2 | Fk

]
, is in `1+ (F) by 4.7. The terms (βk − βk+1) M

2

2 and (γk − γk+1) M̃ are bounded

and telescopic, hence in `1+. The terms γkβk M
2

2 andK(F,ζ,C)ζ (γk) are in `1+ by (P.1). Recalling the definition
of Ck, we have, for each k ∈ N,

γ2
kCk = γ2

k

(
Lk
2
d2
C + dC (M‖T‖+D + Lh + ‖µ?‖ ‖A‖)

)
=

(
d2
C ‖T‖

2

2

)
γ2
k

βk
+

(
d2
C ‖A‖

2 ρk
2

+ dC (M‖T‖+D + Lh + ‖µ?‖ ‖A‖)

)
γ2
k

≤

(
d2
C ‖T‖

2

2

)
γ2
k

βk
+

(
d2
C ‖A‖

2 ρ

2
+ dC (M‖T‖+D + Lh + ‖µ?‖ ‖A‖)

)
γ2
k

which is in `1+ by (P.1) and (P.3). The remaining terms,

dCγkE [‖λk‖ | Fk] + γkE [λsk | Fk] ,

coming from the inexactness of the algorithm, are in `1+ (F) by (P.8). Thus, the r.h.s. belongs to `1+ (F) and
so by Lemma 2.2 we have,

ak = γk

(
L (xk, µ

?)− L (x?, µ?) +
ρk
2
‖Axk − b‖2

)
∈ `1+ (F) (P-a.s.) ,

and also that (rk)k∈N converges (P-a.s.).
The first claim (i) follows by applying Lemma 2.3, the conditions of which are satisfied directly from

Lemma 4.3 and Lemma 4.5.
The second claim, (ii), follows from the same arguments as in [25, Theorem 4.2(ii)] but adapted to the

stochastic case. For the claims about (xk)k∈N, the proof is trivially extended to the stochastic setting (P-a.s.).
However, the claims about (µk)k∈N are more delicate to adapt so we write explicitly the arguments below.

By Theorem 4.7(iii) we have
(
γk ‖Ax̃k − b‖2

)
k∈N

∈ `1+ (F) which, by Lemma 2.4 implies that there

exists a subsequence
(
Ax̃kj

)
j∈N with

∥∥Ax̃kj − b∥∥ → 0 (P-a.s.). Since the sequence (µk)k∈N is bounded (P-
a.s.) by Lemma 4.8, the subsequence

(
µkj
)
j∈N is bounded (P-a.s.) as well and thus admits a weakly (P-a.s.)

convergent subsequence
(
µkji

)
i∈N

with µkji ⇀ µ̄ for someHd-valued random variable µ̄. By Fermat’s rule
([5, Theorem 16.2]), the weak (P-a.s.) sequential cluster point µ̄ is a solution to (D) iff

0 ∈ ∂ (Φ∗ ◦ (−A∗)) (µ̄) + b (P-a.s.) .

The proximal operator is the resolvent of the subdifferential and so it follows that (4.12) is equivalent, for
each i ∈ N, to

∇ϕkji
(
µkji

)
− b ∈ ∂

(
Φ∗kji

◦ (−A∗)
)(

µkji − ρkji∇ϕkji
(
µkji

))
(P-a.s.) . (4.28)

Since
(
Ax̃kj

)
j∈N converges strongly to b (P-a.s.), and in view of (4.13), it holds that ∇ϕkj

(
µkj
)
converges

strongly to 0 (P-a.s.). However, µkji − ρkji∇ϕkji
(
µkji

)
converges weakly to µ̄ (P-a.s.). We henceforth

argue that we can pass to the limit in (4.28) by sequential closedness using aMosco convergence (weak-strong
epigraphical convergence) argument (see [6] and [3, Definition 3.7]). Indeed, it was shown in the proof of
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[25, Theorem 4.2], which defer to for brevity, that Φ∗kji
◦ −(A∗) Mosco-converges to (Φ)∗ ◦ (−A∗). This

implies, via [3, Theorem 3.66], that ∂Φ∗kji
◦(−A∗) graph-converges to ∂Φ∗◦(−A∗), and [3, Proposition 3.59]

shows that
(
∂Φkji

◦ (−A∗)
)
i∈N

is sequentially closed for graph-convergence in the weak-strong topology on

Hd, i.e., for any sequence
((
vkji , ηkji

))
i∈N

in the graph of ∂
(

Φ∗kji
◦ (−A∗)

)
i∈N

such that vkji converges
weakly to v̄ and ηkji converges strongly to η̄, we have η̄ ∈ ∂Φ∗ ◦ (−A∗)(v̄). Let, for each i ∈ N, vkji =

∇ϕkji
(
µkji

)
−b and ηkji = µkji −ρkji∇ϕkji

(
µkji

)
, which converge strongly (P-a.s.) and weakly (P-a.s.)

respectively, and let Ω̃ ⊂ F such that P
(

Ω̃
)

= 1 and, for all ω ∈ Ω̃, vkji (ω) → b and ηkji (ω) ⇀ µ̄ (ω).
We conclude that, for each ω ∈ Ω̃,

0 ∈ ∂ (Φ∗ ◦ (−A∗)) (µ̄ (ω)) + b (P-a.s.) ,

i.e., µ̄ is a solution of the dual problem (D) (P-a.s.).
We now prove the existence of a set Ω̃ ⊂ F such that P

(
Ω̃
)

= 1 and, for all ω ∈ Ω̃, for any µ? ∈ SD,

Θ (µ?, ω)
def
= lim

k
‖µk (ω)− µ?‖2

exists. This does indeed hold (P-a.s.) for each fixed µ? ∈ SD by the argument in the proof of [25, Theorem
4.2] but SD may be uncountable and so the entire statement for any µ? ∈ SD may not necessarily hold
(P-a.s.) . To rectify this situation, we make the assumption (A.9) and argue as in [7, Proposition 2.3(iii)].

First repeat the argument made in the proof of [25, Theorem 4.2] to show that, for each fixed µ? ∈ SD,
there exists Ωµ? ⊂ F with P (Ωµ?) = 1 such that, for any ω ∈ Ωµ? , Θ (µ?, ω) exists. Let µ? ∈ SD and
recall (rk)k∈N in (4.10), for each k ∈ N,

rk
def
= (1− γk)Lk (xk, µk) +

c

2
‖µk − µ?‖2 .

We have already shown that (rk)k∈N is convergent (P-a.s.). We also have, for each k ∈ N,

−Lk (xk, µk) = (L(xk, µ
?)− Lk (xk, µk))− L(xk, µ

?)

= g(Txk)− gβk(Txk) + 〈µ? − µk, Axk − b〉 −
ρk
2
‖Axk − b‖2

− L(xk, µ
?).

We have from Theorem 4.7 that ρk2 ‖Axk − b‖
2 → 0 (P-a.s.). Therefore,

〈µ? − µk, Axk − b〉 → 0

since (µk)k∈N is bounded (P-a.s.). We also have, by claim (i) of this theorem, that L (xkµ
?) → L (x?, µ?)

(P-a.s.). By Lemma 2.6 and (A.4), we get

0 ≤
(
g (Txk)− gβk (Txk)

)
≤ βk

2
M2 (P-a.s.)

which implies, in light of (P.3), that g (Txk)−gβk (Txk)→ 0 (P-a.s.). Altogether, it holds thatLk (xk, µk)→
L (x?, µ?) (P-a.s.) and thus the limit

lim
k
‖µk − µ?‖2 = 2/c

(
lim
k
rk − L (x?, µ?)

)
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exists (P-a.s.) for each µ? ∈ SD.
SinceHd is separable by (A.9), there exists a countable set S such that S̄ = SD. The previous paragraph

has shown that, for every µ? ∈ SD, there exists Ωµ? ⊂ F such that P (Ωµ?) = 1 and, for any ω ∈ Ωµ? ,
Θ (µ?, ω) exists. Set Ω̃ =

⋂
µ?∈S

Ωµ? and let Ω̃c be its set-theoretic complement. By the countability of S,

P
(

Ω̃
)

= 1− P
(

Ω̃c
)

= 1− P

 ⋃
µ?∈S

Ωc
µ?

 ≥ 1−
∑
µ?∈S

P
(
Ωc
µ?
)

= 1,

i.e., P
(

Ω̃
)

= 1. Fix µ? ∈ SD; since S̄ = SD, there exists a sequence (µ?n)n∈N such that, for each n ∈ N,
µ?n ∈ S and µ?n → µ?. As was already shown, for each n ∈ N, for any ω ∈ Ωµ?n , Θ (µ?n, ω) exists. Let
ω ∈ Ω̃, then we have, for each n ∈ N, for each k ∈ N,

−‖µ?n − µ?‖ ≤ ‖µk (ω)− µ?‖ − ‖µk (ω)− µ?n‖ ≤ ‖µ?n − µ?‖

and thus, for each n ∈ N,

−‖µ?n − µ?‖ ≤ lim inf
k
‖µk (ω)− µ?‖ − lim

k
‖µk (ω)− µ?n‖

= lim inf
k
‖µk (ω)− µ?‖ −Θ (µ?n, ω)

≤ lim sup
k
‖µk (ω)− µ?‖ −Θ (µ?n, ω)

= lim sup
k
‖µk (ω)− µ?‖ − lim

k
‖µk (ω)− µ?n‖

≤ ‖µ?n − µ?‖ .

Taking the limit as n → ∞ then gives that the sequence (Θ (µ?n, ω))n∈N converges to Θ (µ?, ω) for any
ω ∈ Ω̃ where Ω̃ does not depend on µ?.

We now aim to use (A.10), for which we denote (pi)i∈N =
(
∇ϕkji

(
µkji

)
− b
)
i∈N

and (qi)i∈N =(
µkji − ρkji∇ϕkji

(
µkji

))
i∈N

. We’ve shown that (pi)i∈N converges strongly to 0 (P-a.s.) and that (qi)i∈N

converges weakly to µ̄ (P-a.s.) and so there exists Ω̃ ⊂ F with P
(

Ω̃
)

= 1 such that, for any ω ∈ Ω̃,
pi (ω)→ p (ω) and qi (ω) ⇀ q (ω). Due to (4.28), we furthermore have, for each ω ∈ Ω̃, for each i ∈ N,

pi (ω) ∈ ∂
(

Φ∗kji
◦ (−A∗)

)
(qi (ω)) (P-a.s.) ,

and thus by (A.10), for each ω ∈ Ω̃, (qi (ω))i∈N admits a subsequence (qil (ω))i∈N such that qil (ω)→ q̄ (ω),
i.e., the sequence

(
µkjil

− ρkjil∇ϕkjil

(
µkjil

))
i∈N

is strongly convergent (P-a.s.). Thus, the subsequence(
µkjil

)
i∈N

is strongly convergent to µ̄ (P-a.s.). Since µ̄ is a solution to (D), it holds that lim
k
‖µk − µ̄‖ exists

(P-a.s.). At the same time, we have shown that lim
l

∥∥∥µkjil − µ̄∥∥∥ = 0 (P-a.s.) and so the whole sequence
(µk)k∈N converges strongly to µ̄ ∈ SD (P-a.s.).

Meanwhile the third claim, (iii), follows from the argument of [25, Theorem 4.2(iv)] directly applied to
the (P-a.s.) setting and similarly for (iv) following from the argument of [25, Corollary 4.3].
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Finally, assume that (P.9) holds. By taking the total expectation of (4.15) in Lemma 4.10 and using the
law of total expectation we have, for each k ∈ N,

E [rk+1]− E [rk] ≤ −γk
(
E [L (xk, µ

?)]− L (x?, µ?) +
ρk
2
E
[
‖Axk − b‖2

])
+
γk+1

2
E
[
‖Axk+1 − b‖2

]
+ (βk − βk+1)

M2

2
+ (γk − γk+1) M̃ + γkβk

M2

2
+K(F,ζ,C)ζ (γk) + γ2

kCk

+ dCγkE [‖λk‖] + γkE [λsk] (P-a.s.) .

Define the following, for each k ∈ N,

r̃k = E [rk] and p̃k = γk and w̃k = E [L (xk, µ
?)]− L (x?, µ?) +

ρk
2
E
[
‖Axk − b‖2

]
and denote what remains, for each k ∈ N,

z̃k =
γk+1

2
E
[
‖Axk+1 − b‖2

]
+ (βk − βk+1)

M2

2
+ (γk − γk+1) M̃

+ γkβk
M2

2
+K(F,ζ,C)ζ (γk) + γ2

kCk + dCγkE [‖λk‖] + γkE [λsk] .

By repeating the arguments of the previous paragraph, we have that (z̃k)k∈N ∈ `1+ (recall that(
γkE

[
‖Axk − b‖2

])
k∈N
∈ `1+ by Theorem 4.7). Invoking Lemma 2.4, again noting Lemma 4.3 and Lemma 4.5

hold with the total expectation as well, with (r̃k)k∈N, (p̃k)k∈N, (w̃k)k∈N, and (z̃k)k∈N defined as above, we
obtain the remaining claims.

Remark 4.12. The assumption (A.9) is only necessary for showing that the sequence of dual variables
(µk)k∈N admits an optimal weak cluster point. The other results, e.g., convergence of the Lagrangian values,
the containment W

[
(xk)k∈N

]
⊂ SP (P-a.s.) , etc, do not require the separability imposed by (A.9). Like-

wise, something similar can be said for (A.10), which is only necessary for ensuring the strong convergence
of the sequence of dual variables (µk)k∈N and can otherwise be omitted.

5 Stochastic Examples

We examine the problem of risk minimization using two different ways to inexactly calculate the gradient
with stochastic noise to demonstrate that the assumptions on the error can be satisfied in order to apply
ICGALP .

Consider the following,
min
x∈C⊂H
Ax=b

{
f (x)

def
= E [L (x, η)]

}
, (P1)

where L (·, η) is differentiable for every η, and η is a random variable.
We will impose the following assumptions, or a subset of them depending on the context.Indeed, only

(E.1) and (E.2) will be used for risk minimization with increasing batch size while (E.3) and (E.4) will be
needed for the results on risk minimization with variance reduction.
(E.1) It holds, for all x ∈ Hp, ∇f (x) = E [∇xL (x, η)].
(E.2) For all η, the function L (·, η) is ω-smooth (see Definition 2.9) with ω nondecreasing.
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(E.3) The function f is ω-smooth with ω nondecreasing.
(E.4) The function f is Hölder-smooth with constant Cf and exponent τ .

Remark 5.1. In practical contexts, it’s unrealistic that one will have access to the function f or knowledge of
its regularity. To this end, we note that the assumptions (E.1) and (E.2), which depend only on the function
L (x, η), are sufficient to ensure that (E.3) holds and similarly for (E.4) if one adjusts (E.2) for Hölder-
smoothness. Moreover, since Hölder-smoothness is a special case of ω-smoothness, (E.4) =⇒ (E.3).

Remark 5.2. With the above choice for λk, the terms in ∇xEk (xk, µk) coming from the augmented La-
grangian are computed exactly, however our analysis extends to the case where ∇x

(
ρk
2 ‖Axk − b‖

2
)

=

ρkA
∗ (Axk − b) is computed inexactly as well, as this function is always Lipschitz-continuous. We demon-

strate this alternative choice in Section 7 by sampling the components ρkA∗ (Axk − b)(i) in the numerical
experiments.

For the sake of clarity, we demonstrate only the case where, for each k ∈ N, λk ≡ λfk with λfk =

∇̂fk−∇f (xk) and ∇̂fk is our inexact computation of∇f (xk), to be defined in the following subsections.

5.1 Risk minimization with increasing batch size

Consider (P1) and define, for each k ∈ N,

∇̂fk
def
=

1

n (k)

n(k)∑
i=1

∇xL (xk, ηi)

where n (k) is the number of samples to be taken at iteration k. We assume that each ηi is i.i.d., according
to some fixed distribution, and that n is a function of k, i.e., the number of samples taken to estimate the
expectation is dependent on the iteration number itself.

Lemma 5.3. Under assumptions (E.1) and (E.2), denote

C = 2
(
ω (dC)

2 + E
[
‖∇L (x?, η)‖2

])
where x? is a solution to (P1) and, for each k ∈ N, Sk = σ (x0, µ0, ŝ0, . . . , ŝk) as before. Then, for each
k ∈ N, the following holds,

E
[∥∥∥λfk+1

∥∥∥ | Sk] ≤
√

C

n (k + 1)
.

Proof. By Jensen’s inequality, for each k ∈ N,

E
[∥∥∥λfk+1

∥∥∥ | Sk]2
≤ E

[∥∥∥λfk+1

∥∥∥2
| Sk
]

= E
[∥∥∥∇f (xk+1)− ∇̂fk+1

∥∥∥2
| Sk
]
.
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Then, since ∇̂fk+1 is an unbiased estimator for∇f (xk+1), we have, for each k ∈ N,

E
[∥∥∥∇f (xk+1)− ∇̂fk+1

∥∥∥2
| Sk
]

= E
[∥∥∥E [∇̂fk+1

]
− ∇̂fk+1

∥∥∥2
| Sk
]

= Var
[
∇̂fk+1 | Sk

]
= Var

 1

n (k + 1)

n(k+1)∑
i=1

∇L (xk+1, ηi) | Sk


=

1

n (k + 1)
Var [∇L (xk+1, η) | Sk] ,

where the last equality follows from the independence and identical distribution of ηi. Applying the definition
of conditional variance yields, for each k ∈ N,

1

n (k + 1)
Var [∇L (xk+1, η) | Sk] =

1

n (k + 1)

(
E
[
‖∇L (xk+1, η)‖2 | Sk

]
− ‖E [∇L (xk+1, η) | Sk]‖2

)
≤ 1

n (k + 1)
E
[
‖∇L (xk+1, η)‖2 | Sk

]
.

We again use Jensen’s inequality, then ω-smoothness, and finally the fact that ω is nondecreasing together
with the fact that xk+1 and x? are both in C to find, for each k ∈ N,

1

n (k + 1)
E
[
‖∇L (xk+1, η)‖2 | Sk

]
≤ 2

n (k + 1)

(
E
[
‖∇L (xk+1, η)−∇L (x?, η)‖2 | Sk

]
+E

[
‖∇L (x?, η)‖2

])
≤ 2

n (k + 1)

(
E
[
ω (‖xk+1 − x?‖)2 | Sk

]
+ E

[
‖∇L (x?, η)‖2

])
≤ 2

n (k + 1)

(
ω (dC)

2 + E
[
‖∇L (x?, η)‖2

])
=

C

n (k + 1)
.

The above shows that, for each k ∈ N, E
[∥∥∥λfk+1

∥∥∥ | Sk]2
≤ C

n(k+1) and so E
[∥∥∥λfk+1

∥∥∥ | Sk] ≤√ C
n(k+1) as

desired.

Proposition 5.4. Under (E.1) and (E.2), assume that the number of samples n (k) at iteration k is lower

bounded by
(

γk
ζ(γk)

)2
, i.e. for some α > 0, n (k) ≥ α

(
γk
ζ(γk)

)2
. Then, the summability of the error in (P.8)

is satisfied; namely,

γk+1E
[∥∥∥λfk+1

∥∥∥ | Sk] ∈ `1 (S) .

Proof. By Lemma 5.3 we have, for each k ∈ N,

γk+1E
[∥∥∥λfk+1

∥∥∥ | Sk] ≤ γk+1

√
C

n (k + 1)
≤
√
C

α
ζ (γk+1) .

The summability of ζ (γk+1) is given by (P.1) and thus γk=1E
[∥∥∥λfk+1

∥∥∥ | Sk] ∈ `1 (S)
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Remark 5.5. The lower bound n (k) ≥ α
(

γk
ζ(γk)

)2
is sufficient but not necessary; one can alternatively

choose n (k) to be lower bounded by α
(
βk
γk

)2
or α

(
1
βk

)2
and, due to (P.1), the result will still hold.

5.2 Risk minimization with variance reduction

We reconsider (P1) as before but now with a different ∇̂f . We define a stochastic-averaged gradient, which
will serve as a form of variance reduction, such that the number of samples at each iteration need not increase
as in the previous subsection. For each k ∈ N, let νk ∈ [0, 1] and define

∇̂fk
def
= (1− νk) ∇̂fk−1 + νk∇xL (xk, ηk) (5.1)

with ∇̂f−1 = 0 and with each ηi i.i.d.. We call ∇̂fk the stochastic average of sampled gradients with weight
νk.

In the previous section, we have used the number of batches n(k) to ensure the error summability condi-
tion. This in turn means that the number of gradient evaluations increases with k (in particular, for finite-sum
objectives, one has to evaluate all gradients after finitely many iterations). This is in stark contrast with vari-
ance reduction proposed in this section where we are able to take a single (or a larger but fixed batch size)
gradient sample at each iteration, while taking full advantage of the flexibility offered by the choice of νk to
reduce the stochastic error variance as we now show.

Lemma 5.6. Under (E.1) and (E.3), denote, for each k ∈ N,

σ2
k

def
= E

[
‖∇xL (xk, ηk)−∇f (xk)‖2 | Sk−1

]
(5.2)

and assume that σ2 = supk σ
2
k <∞. Then, for each k ∈ N, the following inequality holds,

E
[∥∥∥λfk+1

∥∥∥2
| Sk
]
≤
(

1− νk+1

2

)∥∥∥λfk∥∥∥2
+ ν2

k+1σ
2 + 2

ω (dCγk)
2

νk+1
.

Remark 5.7. Since (E.2) implies (E.3), see Remark 5.1, it is clear that Lemma 5.6 holds under (E.1)-(E.2).
Moreover, by arguing similarly to the end of the proof of Lemma 5.3, it can be easily shown that the uniform
boundedness assumption on σ2

k is in force under (E.2).

Proof. The proof of this theorem is inspired by a similar construction found in [20, Lemma 2]. By definition
of λfk+1 and ∇̂fk+1, we have, for all k ∈ N,

∥∥∥λfk+1

∥∥∥2
=
∥∥∥∇̂fk+1 −∇f (xk+1)

∥∥∥2
=
∥∥∥(1− νk+1) ∇̂fk + νk+1∇xL (xk+1, ηk+1)−∇f (xk+1)

∥∥∥2
.

We add and subtract (1− νk+1)∇f (xk) to get,∥∥∥λfk+1

∥∥∥2
=
∥∥∥(1− νk+1)λfk + νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1)) + (1− νk+1) (∇f (xk)−∇f (xk+1))

∥∥∥2
.
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Applying the pythagorean identity then gives,∥∥∥λfk+1

∥∥∥2
= (1− νk+1)2

∥∥∥λfk∥∥∥2
+ ν2

k+1 ‖∇xL (xk+1, ηk+1)−∇f (xk+1)‖2

+ (1− νk+1)2 ‖∇f (xk)−∇f (xk+1)‖2

+ 2
〈

(1− νk+1)
(
λfk +∇f (xk)−∇f (xk+1)

)
, νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1))

〉
+ 2

〈
(1− νk+1)λfk , (1− νk+1) (∇f (xk)−∇f (xk+1))

〉
.

Using Young’s inequality on the last inner product, we find,∥∥∥λfk+1

∥∥∥2
≤ (1− νk+1)2

∥∥∥λfk∥∥∥2
+ ν2

k+1 ‖∇xL (xk+1, ηk+1)−∇f (xk+1)‖2

+ (1− νk+1)2 ‖∇f (xk)−∇f (xk+1)‖2

+ 2
〈

(1− νk+1)
(
λfk +∇f (xk)−∇f (xk+1)

)
, νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1))

〉
+
νk+1

2

∥∥∥λfk∥∥∥2
+

2

νk+1

∥∥∥(1− νk+1)2 (∇f (xk)−∇f (xk+1))
∥∥∥2
.

Notice that 1− νk+1 ≤ 1 and thus (1− νk+1)2 ≤ 1− νk+1 for all k ∈ N. This leads to∥∥∥λfk+1

∥∥∥2
≤
(

1− νk+1

2

)∥∥∥λfk∥∥∥2
+ ν2

k+1 ‖∇xL (xk+1, ηk+1)−∇f (xk+1)‖2 + ‖∇f (xk)−∇f (xk+1)‖2

+ 2
〈

(1− νk+1)
(
λfk +∇f (xk)−∇f (xk+1)

)
, νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1))

〉
+

2 (1− νk+1)

νk+1
‖(∇f (xk)−∇f (xk+1))‖2

≤
(

1− νk+1

2

)∥∥∥λfk∥∥∥2
+ ν2

k+1 ‖∇xL (xk+1, ηk+1)−∇f (xk+1)‖2 +

(
2

νk+1

)
‖∇f (xk)−∇f (xk+1)‖2

+ 2
〈

(1− νk+1)
(
λfk +∇f (xk)−∇f (xk+1)

)
, νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1))

〉
.

Recall that, by (E.3), f is ω-smooth with ω is nondecreasing. Furthermore, using the fact that xk+1 =
xk − γk (xk − ŝk), we find∥∥∥λfk+1

∥∥∥2
≤
(

1− νk+1

2

)∥∥∥λfk∥∥∥2
+ ν2

k+1 ‖∇xL (xk+1, ηk+1)−∇f (xk+1)‖2 +

(
2

νk+1

)
ω (‖xk − xk+1‖)2

+ 2
〈

(1− νk+1)
(
λfk +∇f (xk)−∇f (xk+1)

)
, νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1))

〉
≤
(

1− νk+1

2

)∥∥∥λfk∥∥∥2
+ ν2

k+1 ‖∇xL (xk+1, ηk+1)−∇f (xk+1)‖2 +

(
2

νk+1

)
ω (dCγk)

2

+ 2
〈

(1− νk+1)
(
λfk +∇f (xk)−∇f (xk+1)

)
, νk+1 (∇xL (xk+1, ηk+1)−∇f (xk+1))

〉
We take the expectation on both sides, recalling the definition of σk (see (5.2)), σ, and that

E [∇xL (xk, ηk) | Sk−1] = ∇f (xk) ,
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to find,

E
[∥∥∥λfk+1

∥∥∥2
| Sk
]
≤
(

1− νk+1

2

)∥∥∥λfk∥∥∥2
+ ν2

k+1σ
2 +

(
2

νk+1

)
ω (dCγk)

2 .

In the following proposition, we analyze a particular case of parameter choices under the assumption (E.4)
of Hölder smoothness of f , i.e. ∃Cf , τ > 0 such that ω : t→ Cf t

τ .

Proposition 5.8. Under (E.1) and (E.4), for each k ∈ N, let ∇̂fk be defined as in (5.1) with weight νk = γαk
for some α ∈]0, τ [. If the following conditions on the sequence (γk)k∈N hold,(

γ
1+min{α2 ,τ−α}
k

)
k∈N
∈ `1, (5.3)

and, for k sufficiently large,
γk
γk+1

≤ 1 + o (γαk ) , (5.4)

then the summability condition in (P.8) is satisfied; namely,

γk+1E
[∥∥∥λfk+1

∥∥∥ | Sk] ∈ `1 (S) .

Proof. Since (E.4) =⇒ (E.3), the assumptions (E.1) and (E.3) are satisfied and Lemma 5.6 gives, for all
k ∈ N,

E
[∥∥∥λfk+1

∥∥∥2
| Sk
]
≤
(

1−
γαk+1

2

)∥∥∥λfk∥∥∥2
+ σ2γ2α

k+1 +
2C2

fd
2τ
C γ

2τ
k

γαk+1

.

By (P.5) we have, for all k ∈ N, γk ≤Mγk+1. It follows that, for each k ∈ N,

E
[∥∥∥λfk+1

∥∥∥2
| Sk
]
≤
(

1−
γαk+1

2

)∥∥∥λfk∥∥∥2
+ σ2γ2α

k+1 + 2M
2τ
C2
fd

2τ
C γ

2τ−α
k+1 .

Consolidating higher order terms gives, for each k ∈ N,

E
[∥∥∥λfk+1

∥∥∥2
| Sk
]
≤
(

1−
γαk+1

2

)∥∥∥λfk∥∥∥2
+
(
σ2 + 2M

2τ
C2
fd

2τ
C

)
γ

min{2α,2τ−α}
k+1 .

Since α < τ ≤ 1 by 5.3, it holds that α < min {1, 2τ − α}, and the first condition of Lemma 9.1 is satisfied.
Additionally, by (5.4), we have that the second condition, (9.2), of Lemma 9.1 is satisfied as well and we can
apply Lemma 9.1 with

uk =
∥∥∥λfk∥∥∥2

, c =
1

2
, s = α, d =

(
σ2 + 2M

2τ
C2
fd

2τ
C

)
, and t = min {2α, 2τ − α} ,

to find, for k sufficiently large,

E
[∥∥∥λfk+1

∥∥∥2
| Sk
]
≤ 2C̃γ

min{α,2(τ−α)}
k+1 + o

(
γ

min{α,2(τ−α)}
k+1

)
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and, by extension, for k sufficiently large,

E
[∥∥∥λfk+1

∥∥∥ | Sk] ≤√2C̃γ
min{α2 ,τ−α}
k+1 + o

(
γ

min{α2 ,τ−α}
k+1

)
.

Then, for k sufficiently large,

γk+1E
[∥∥∥λfk+1

∥∥∥ | Sk] ≤ γk+1

(√
2C̃γ

min{α2 ,τ−α}
k+1 + o

(
γ

min{α2 ,τ−α}
k+1

))
≤
√

2C̃γ
1+min{α2 ,τ−α}
k+1 + o

(
γ

1+min{α2 ,τ−α}
k+1

)
.

Under the assumptions 5.3 we have γ1+min{α2 ,τ−α}
k ∈ `1 and thus the summability condition of (P.8) is

satisfied.

Example 5.9. The condition (5.3) in Proposition 5.8 can be satisfied, for example, by taking γk = 1
(k+1)1−b

,
b > 0. In this case, the condition (5.3) reduces to picking b such that the following holds,

(1− b)
(

1 + min
{α

2
, τ − α

})
> 1.

Rearranging, we find that this is equivalent to,

b < 1−
(

1 + min
{α

2
, τ − α

})−1
. (5.5)

The condition (5.4) in Proposition 5.8 can be satisfied under this choice of γk as well. We have,

γk
γk+1

=

(
k + 2

k + 1

)1−b
=

(
1 +

1

k + 1

)1−b
≈ 1 +

1− b
k + 1

= 1 + o (γεk)

for any 0 < ε < 1, for k sufficiently large.
Using [25, Example 19], the predicted convergence rates for the ergodic iterates x̄k given by Theorem 4.7

and Theorem 4.11 under the above choice of γk read,

‖Ax̄k − b‖ = O

(
1

(k + 2)b

)
(P-a.s.) and L (x̄k, µ

?)− L (x?, µ?) = O

(
1

(k + 2)b

)
(P-a.s.) .

Thus, choosing b to be as large as possible is desired. For a given value of τ corresponding to the Hölder
exponent of the gradient, the best choice for α is 2

3τ . In turn, the largest possible choice of b is τ/(3 + τ).
If the function f is Lipschitz-smooth, then τ = 1, and we get α = 2

3 and b = 1/4 (to be compared with the
strict upper-bound 1/3 in the exact case, see [25, Example 15]).

Notice that the choice of α does not directly affect the predicted rates of convergence, which now depends
only on the constant b. However, the choice of α dictates the largest possible choice for b which satisfy the
assumptions and thus, indirectly, the rates of convergence as well.
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6 Sweeping

We now consider an example in which the errors in the computation of ∇f are deterministic; a finite sum
minimization problem,

min
x∈C⊂H
Ax=b

1

n

n∑
i=1

fi (x) (P2)

where n > 1 is fixed. We assume that:
(F.1) fi is ω-smooth (see Definition 2.9) for 1 ≤ i ≤ n with ω nondecreasing.
(F.2) (γk)k∈N a nonincreasing sequence.

As in the previous section, Section 5, we examine only the case where, for each k ∈ N, λk ≡ λfk =

∇f (xk) − ∇̂fk, with ∇̂fk to be defined below, although our analysis is straightforward to adapt to the
more general case where one computes ρkA∗ (Axk − b) inexactly as well, at the expense of brevity (see Re-
mark 5.2). We will sweep, or cycle, through the functions fi, taking the gradient of a single one at each itera-
tion and recursively averaging with the past gradients. For notation, fixed n, we takemod (k)

def
= (k mod n)

with the convention thatmod (n)
def
= n. We define the inexact gradient in the following way,

∇̂fk
def
=

1

n

k∑
i=1

∇fi (xi) (∀k ≤ n)

and

∇̂fk
def
= ∇̂fk−1 +

1

n

(
∇fmod(k) (xk)−∇fmod(k) (xk−n)

)
(∀k ≥ n+ 1) .

For k ≥ n+ 1 it can also be written in closed form as,

∇̂fk =
1

n

mod(k)∑
i=1

∇fi
(
xi+k−mod(k)

)
−

n∑
i=mod(k)+1

∇fi
(
xi+k−n−mod(k)

) .

Lemma 6.1. Let B = 1
n (n (n− 1) + (n− 1) (2n− 1)). Under (F.1) and (F.2), we then have, for all k ≥

2n− 1, the following, ∥∥∥λfk+1

∥∥∥ ≤ Bω (γk+2−2ndC) .

Proof. Using the definition of λfk+1 for k ≥ 2n− 1 ≥ n+ 1, we have∥∥∥λfk+1

∥∥∥ =
∥∥∥∇f (xk+1)− ∇̂fk+1

∥∥∥
=

1

n

∥∥∥∥∥∥
mod(k+1)∑

i=1

∇fi (xk+1)−∇fi
(
xi+k+1−mod(k+1)

)
+

 n∑
i=mod(k+1)+1

∇fi (xk+1)−∇fi
(
xi+k+1−n−mod(k+1)

)∥∥∥∥∥∥ .
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Then, we apply the triangle inequality and ω-smoothness of fi assumed in (F.1),

∥∥∥λfk+1

∥∥∥ ≤ 1

n

mod(k+1)∑
i=1

∥∥∇fi (xk+1)−∇fi
(
xi+k+1−mod(k+1)

)∥∥
+

n∑
i=mod(k+1)+1

∥∥∇fi (xk+1)−∇fi
(
xi+k+1−n−mod(k+1)

)∥∥
≤ 1

n

mod(k+1)∑
i=1

ω
(∥∥xk+1 − xi+k+1−mod(k+1)

∥∥)

+

n∑
i=mod(k+1)+1

ω
(∥∥xk+1 − xi+k+1−n−mod(k+1)

∥∥) .

Now we add and subtract the iterates in between xk+1 and xi+k+1−mod(k+1) then use the definition xk+1 =
xk + γk (ŝk − xk) and the fact that, for all k ∈ N, ŝk and xk are in C,∥∥∥λfk+1

∥∥∥ ≤ 1

n

mod(k+1)∑
i=1

mod(k+1)−i∑
j=1

ω
(
‖xk+2−j − xk+1−j‖

)

+
n∑

i=mod(k+1)+1

mod(k+1)−i+n∑
j=1

ω
(
‖xk+2−j − xk+1−j‖

)
≤ 1

n

mod(k+1)∑
i=1

mod(k+1)−i∑
j=1

ω (γk+1−jdC)

+

n∑
i=mod(k+1)+1

mod(k+1)−i+n∑
j=1

ω (γk+1−jdC)

 .

Recall that, by (F.2), (γk)k∈N is nonincreasing, by (F.1), ω is a nondecreasing function, and, for each k ∈ N,
mod (k) ≤ n. Then,

∥∥∥λfk+1

∥∥∥ ≤ 1

n

mod(k+1)∑
i=1

(−i+mod (k + 1))ω
(
γk+1+i−mod(k+1)dC

)

+

n∑
i=mod(k+1)+1

(−i+ n+mod (k + 1))ω
(
γk+1+i−n−mod(k+1)dC

)
≤ 1

n

(
mod (k + 1) (−1 +mod (k + 1))ω

(
γk+2−mod(k+1)dC

)
+ (n−mod (k + 1)) (−1 + n+mod (k + 1))ω

(
γk+2−n−mod(k+1)dC

))
≤ 1

n
(n (n− 1)ω (γk+2−ndC) + (n− 1) (2n− 1)ω (γk+2−2ndC))

≤ 1

n
(n (n− 1) + (n− 1) (2n− 1))ω (γk+2−2ndC) .
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Proposition 6.2. Under (F.1) and (F.2), and assuming that (γkω (dCγk))k∈N ∈ `1, the summability condition
of (P.8) holds; namely,

γk+1

∥∥∥λfk+1

∥∥∥ ∈ `1.
Proof. By Lemma 6.1, we have, for all k ≥ 2n− 1,

γk+1

∥∥∥λfk+1

∥∥∥ ≤ Bγk+1ω (dCγk+2−2n) ≤ Bγk+2−2nω (dCγk+2−2n)

where we have used the fact that (γk)k∈N is a nonincreasing sequence by (F.2). Since (γkω (dCγk))k∈N ∈ `1,
the desired claim follows.

7 Numerical Experiments

We apply the sweeping method and the variance reduction method to solve the following projection problem,

min
‖x‖1≤1
Ax=0

1

2n
‖x− y‖2 , (7.1)

where x and y are in Rn. Notice that this problem fits both the risk minimization and the sweeping problem
structures. By choosing fi (x) = 1

2 (xi − yi)2 we can rewrite the problem to apply the sweeping method
of Section 6. Alternatively, we can let η be a random variable taking values in the set {1, . . . , n} and write
L(x, η) = 1

2 (xη − yη)2 to cast the problem as risk minimization as in Section 5. In both of these cases, it
is possible by our analysis to consider also sampling components of the components of the gradient term
∇x ρk2 ‖Axk‖

2 = ρkA
∗Axk.

The assumptions (E.1) - (E.4) and (F.1) all hold as the function f is Lipschitz-smooth and the functions
L (·, η) are all Lipschitz-smooth for every η as well. The assumptions ((A.1)) to ((a)) all hold as f is Lipschitz-
smooth and has full domain.

For parameters, we take γk = 1/ (k + 1)1−b, ρk ≡ ρ = 22−b + 1, θk = γk. If we take b < 1
2 then

all the assumptions (P.1) to (P.7) are satisfied, as well as (F.2). In particular, to satisfy (P.8) in the variance
reduction case, we will take b ∈

{
1
4 − 0.15, 1

3 − 0.01
}
. The weight νk in the variance reduction is chosen to

be νk = γαk with α = 2/3 since the problem is Lipschitz-smooth, i.e. the Hölder exponent is τ = 1. With
this choice, the condition (5.3) in Proposition 5.8 is satisfied as was discussed in Example 5.9.

Since the problem (7.1) is strongly convex, we show ‖x̄k − x?‖2 in addition to the feasibility gap, ‖Ax̄k‖2
where x̄k is the ergodic variable, for each k ∈ N,

x̄k
def
=

k∑
i=0

γixi+1/Γk.

We initialize y ∈ Rn and A ∈ R2×n randomly. To find the solution x? to high precision, we use generalized
forward-backward before running the experiments. As a baseline, we run CGALP, the exact counterpart to
ICGALP , and display the results. We run the sweepingmethod on∇f (xk) for two different step size choices,
displayed in Figures 1 and 2. For the variance reduction, we examine both the case where ∇L (xk, ηk) is
sampled and the case including the gradient of the quadratic term is sampled (see Remark 5.2), for two
different step size and weight choices as well as different batch sizes (1, 64, or 256), displayed in Figures 1
and 2.
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Optimality
CGALP
Sweep̄∇xfi(xk)
VR  ingle ∇xfi(xk)
VR  mall batch ∇xfi(xk)
VR big batch ∇xfi(xk)
VR  mall batch ∇xfi(xk) + ρk(A *Axk)(i)

VR big batch ∇xfi(xk) + ρk(A *Axk)(i)

O( 1
(k+1)0.24)

102 103 104 105

k
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Feasibility
CGALP
Sweep ∇xfi(xk)
VR  ingle ∇xfi(xk)
VR 64 batch ∇xfi(xk)
VR 256 batch ∇xfi(xk)
VR 64 batch ∇xfi(xk) + ρk(A *Axk)(i)

VR 256 batch ∇xfi(xk) + ρk(A *Axk)(i)

O( 1
(k+1)0.24)

Figure 1: Ergodic convergence profiles for ICGALP applied to the projection problem (7.1) with n = 1024.
The step size is, for each k ∈ N, γk = (k + 1)−(1− 1

4
+0.01) and the weight for variance reduction is, for each

k ∈ N, νk = γ
2/3
k .
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Figure 2: Ergodic convergence profiles for ICGALP applied to the projection problem (7.1) with n = 1024.
The step size is, for each k ∈ N, γk = (k + 1)−(1− 1

4
+0.15) and the weight for variance reduction is, for each

k ∈ N, νk = γ
2/3
k .
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8 Conclusion

We introduced an inexact extension of the CGALP algorithm, given in [25], which allows for either stochastic
or deterministic errors in the computation of several important quantities. The main benefit of this extension
will be in the high-dimensional setting, where computing the terms ∇f , proxβg, or the linear minimization
oracle can be impractical. Several different methods were considered which demonstrated how the gradient
∇f could be computed in such a way that the summability conditions of ICGALPwould be satisfied. The
main drawbacks of using the inexact variant of the algorithm emerge from the restrictions on the parameters
one is free to choose. Indeed, here the choices of step sizes are more strict than in the CGALP setting. How-
ever, the predicted convergence rates for both the optimality and feasibility maintain the same dependence
on parameters as was observed for CGALP in an almost sure sense.

9 Appendix

Lemma 9.1. Consider a positive sequence (uk)k∈N which satisfies, for each k ∈ N,

uk+1 ≤ (1− cγsk)uk + dγtk, (9.1)

for some real numbers s and t satisfying 0 < s < min {1, t}. If, in addition, the sequence (γk)k∈N satisfies,
for each k ∈ N,

γk
γk+1

≤ 1 + o (γsk) , (9.2)

then, for k sufficiently large, it holds,

uk ≤
d

c
γt−sk + o

(
γt−sk

)
Proof. For each k ∈ N, we denote νk

def
= γs−tk uk − d

c such that uk = γt−sk

(
νk + d

c

)
. Then, by (9.1),

νk+1 = γs−tk+1uk+1 −
d

c
≤ γs−tk+1

(
(1− cγsk)uk + dγtk

)
− d

c
= γs−tk

(
γk
γk+1

)t−s (
(1− cγsk)uk + dγtk

)
− d

c
.

By (9.2), we then have, for each k ∈ N,

νk+1 ≤ γs−tk (1 + o (γsk))
t−s ((1− cγsk)uk + dγtk

)
− d

c
.

Substituting for uk using the definition of νk we find, for each k ∈ N,

νk+1 ≤ γs−tk (1 + o (γsk))
t−s
(

(1− cγsk)
(
νk +

d

c

)
γt−sk + dγtk

)
− d

c
.

Now, we take a Taylor expansion for the term (1 + o (γk)
s)t−s ≈ (1 + o (γsk)) to get, for k sufficiently large,

νk+1 ≤ γs−tk (1 + o (γsk))

(
(1− cγsk)

(
νk +

d

c

)
γt−sk + dγtk

)
− d

c
.
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We distribute the γs−tk and then expand parentheses,

νk+1 ≤ (1 + o (γsk))

(
(1− cγsk)

(
νk +

d

c

)
+ dγsk

)
− d

c

= (1− cγsk) νk + (1− cγsk)
d

c
+ dγsk + o (γsk)

(
(1− cγsk)

(
νk +

d

c

)
+ dγsk

)
− d

c

= (1− cγsk) νk + (1− cγsk)
d

c
+ dγsk + o (γsk) (1− cγsk) νk + o (γsk) (1− cγsk)

d

c
+ o (γsk) dγ

s
k −

d

c
= (1− cγsk + o (γsk)) νk + o (γsk) .

Fix 0 < c̃ < c. Then, by definition of o (γsk), ∃k0 ∈ N such that, ∀k > k0, o (γsk) ≤ (c− c̃)γsk. Then,

(1− cγsk + o (γsk)) νk ≤ (1− c̃γsk) νk.

From this we conclude, by [22, Ch.2, Lemma 3], that lim sup
k

νk ≤ 0. Thus, by definition of νk,

uk+1 ≤
d

c
γt−sk + o

(
γt−sk

)
.
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