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A B S T R A C T

Combining data from different analytical sources could be a way to improve the performances of chemometric
models by extracting the relevant and complementary information for food authentication. In this study, several
data fusion strategies including concatenation (low-level), multiblock and hierarchical models (mid-level), and
majority vote (high-level) are applied to near- and mid-infrared (NIR and MIR) spectral data for the varietal
discrimination of olive oils from six French cultivars by partial least square discriminant analysis (PLS1-DA). The
performances of the data fusion models are compared to each other and to the results obtained with NIR or MIR
data alone, with a choice of chemometric pre-treatments and either an arbitrarily fixed limit or a control chart
decision rule. Concatenation and hierarchical PLS1-DA fail to improve the prediction results compared to in-
dividual models, whereas weighted multiblock PLS1-DA models with the control chart approach provide a more
efficient differentiation for most, but not all, of the cultivars. The high-level models using a majority vote with
the control chart decision rule benefit from the complementary results of the individual NIR and MIR models
leading to more consistently improved results for all cultivars.

1. Introduction

The increasing availability of multivariate data from various ana-
lytical sources and large numbers of samples makes it necessary to
develop statistical tools that can extract the relevant information from
these big datasets. For this purpose, a variety of chemometric models
have been developed to predict either quantitative or qualitative
properties. In the field of food authentication, the goal is often to de-
termine if the actual characteristics of the samples agree with the in-
formation provided by their label. Thus, supervised methods can be
used to classify new samples as authentic or non-authentic based on the
known characteristics of previous samples. Several approaches have
been developed including class-modeling algorithms, which focus on
the similarities within a class, and discriminant analysis algorithms,
which focus on the differences between classes [1,2]. One of the most
relevant methods in this latter approach is the partial least square
discriminant analysis (PLS-DA), which has been applied to various
authentication cases [3–6] but could be optimized to better deal with
complex datasets, as pointed out in a recent review [7]. Amongst the
proposed improvements, the choice of a decision rule is of great im-
portance to better interpret the results. In a previous article, a new
decision rule based on the control chart approach was developed and
allowed better predictions of olive oil varietal origin using data from

chromatographic analyses [8]. Here, this control chart rule is tested on
PLS1-DA models using infrared spectroscopic data to confirm its effi-
ciency.

Moreover, since a lot of different analytical techniques can be ap-
plied to assess the authenticity of food products [2,9], combining data
from complementary analyses is expected to improve the performances
of the statistical models. Data fusion strategies are divided into three
categories: low-level, mid-level and high-level [10]. Low-level fusion
consists in the simple concatenation of the matrices containing the data
from the different sources, followed by the analysis of the concatenated
data by the chosen chemometric model [11–13]. However, this method
suffers from the very large number of variables in the concatenated
matrix with the risk of increasing noise which may cancel out the ad-
vantages of adding sources of information. To solve this issue, mid-level
fusion uses a first step of dimension reduction to extract the relevant
information from the original data matrices and only the selected fea-
tures are then combined to build the chemometric model [14–17]. Fi-
nally, high-level fusion builds separate models on each original dataset
and these prediction results are then combined for the final decision
where the class assignment is made according to probability rules or
majority vote [18–20]. Previous studies have reported mixed outcomes
from the use of data fusion. In most cases the results were improved by
low-level [11–13,15,16,20], mid-level [15,16,20] or high level [18–20]
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strategies, but some studies have also reported that data fusion failed to
improve the results compared to models built with individual datasets
[14,16,17].

In this article, one low-level strategy with concatenation, two mid-
level strategies with hierarchical and multiblock models, and one high-
level strategy with majority vote are applied to the discrimination of
olive oil varietal origin by PLS1-DA using near- and mid-infrared (NIR
and MIR) spectral data. The performances of the data fusion models
using either arbitrary fixed threshold or control chart decision rules are
compared to each other and to individual models using only NIR or MIR
data.

2. Material and methods

2.1. Olive oil samples

A total of 230 samples from six monovarietal extra-virgin olive oils
produced over three harvest years (2016, 2017 and 2018) were used for
this study. The samples came from olives picked manually in several
orchards and whose cultivars were clearly identified: Aglandau (AG,
n = 63), Cailletier (CA, n = 29), Olivière (OL, n = 30), Picholine (PI,
n = 35), Salonenque (SA, n = 39) or Tanche (TA, n = 34). All the
samples were produced using the same extraction method in the pilot
plant of the professional association France Olive (Aix-en-Provence,
France) and belonged to the extra-virgin olive oil category [21].

2.2. Near-infrared spectroscopy

FT-NIR spectra were obtained with an Antaris II spectrometer
(Thermo Scientific, Waltham, MA, USA) in transmission mode, in a
temperature-controlled room at 21 °C. The oil was poured in a QX
Quartz Suprasil 300 cell (Hellma Analytics, Mülheim, Germany) with
an optical path of 2 mm and an empty quartz cell was used to take a
background reference before each measurement. Between each sample,
the quartz cell was cleaned with isooctane, dried with air, rinsed with
dichloromethane and dried again with air. Each spectrum was recorded
between 10000 and 4500 cm−1 by the accumulation of 16 scans with a
resolution of 4 cm−1. The analysis was repeated two time for each
sample and the resulting spectra were averaged. The NIR range be-
tween 10000 and 6100 cm−1, a noisy area containing non-informa-
tional or redundant absorbances, was not included in the chemometric
models. Thus the remaining NIR spectra consisted of 831 variables
between 6100 and 4500 cm−1.

2.3. Mid-infrared spectroscopy

FT-MIR spectra were obtained using a Nicolet Avatar spectrometer
(Thermo Scientific, Waltham, MA, USA) with a nitrogen-cooled MCT
detector, Ever-Glo source and KBr/Ge beam splitter. The measurements
were conducted in a temperature-controlled room at 21 °C and air was
taken as a background reference before each spectrum. A drop of EVOO
was placed on the diamond crystal of a Golden Gate ATR accessory
(Specac, Orpington, UK). Its spectrum was recorded between 4000 and
600 cm−1 by the accumulation of 64 scans with a resolution of 4 cm−1.
The ATR plate was cleaned with ethanol before each acquisition. This
process was repeated three times for each EVOO sample, and the three
resulting spectra were averaged prior to data analysis. The MIR range
between 4000 and 1800 cm−1, a noisy area containing non-informa-
tional or redundant absorbances, was not included in the models. Thus
the remaining MIR spectra consisted of 571 variables between 1800 and
700 cm−1.

2.4. Chemometrics

Exploratory analyses were conducted with the Unscrambler X soft-
ware (CAMO Software, Oslo, Norway), to visualize the repartition of

the samples with a principal component analysis (PCA) [22,23]. The
spectra were pre-treated with either standard normal variate (SNV) or
Savitzky-Golay (SG) first derivative (polynomial order 2; 3 smoothing
points) to improve the signal to noise ratio and reduce the undesirable
additive or multiplicative effects. The outliers identified on the influ-
ence plot of the PCA were removed (with SNV: 1 Aglandau, 2 Cailletier,
1 Olivière, 1 Picholine, 1 Salonenque, 1 Tanche / with SG first derivative:
1 Aglandau, 4 Cailletier, 1 Olivière, 1 Picholine, 1 Salonenque). For the rest
of the study, the best pre-treatment was selected based on the perfor-
mance of each prediction model.

Multivariate statistical analyses were performed by several varia-
tions of the partial least square – discriminant analysis (PLS1-DA) [3]
developed with Matlab R2014b software (The MathWorks, Natick, MA,
USA). For each model, the samples were assigned a binary coding in-
dicating if they belonged (value of 1) or not (value of 0) to the modelled
cultivar. Two thirds of the samples from each cultivar and each harvest
year were randomly selected to compose a calibration set and the re-
maining third served as a validation set to test the predictive abilities of
the models. With the fixed threshold decision rule [24], a sample was
considered as belonging to the modelled cultivar if its predicted value
was between 0.6 and 1.4, belonging to the other cultivars if predicted
between −0.4 and 0.4, and suspect if predicted outside of these
boundaries. With the control chart decision rule [8], warning and
control limits were calculated at respectively 95% and 99% confidence
intervals around the mean calibration scores of the modelled cultivar. A
sample was accepted as belonging to the modelled cultivar if its pre-
dicted value was inside the warning limits, rejected if predicted outside
the control limits, and suspect if predicted between the warning and
control limits. The performances of the models were evaluated by three
quality parameters, namely sensitivity, specificity and area under the
receiver operating curve (AUC) [25]. Moreover, to avoid over-fitting,
the calibration included a full leave-one-out cross-validation procedure
in order to select the optimal number of latent variables (LV) as the
lowest number of LV giving an AUC of cross-validation over 90%.

First, individual PLS1-DA models were developed using either the
NIR or the MIR data. Then, several data fusion strategies were applied.

- Low-level:
NIR and MIR data were appended in a single matrix and PLS1-DA

models were developed using this concatenated dataset.

- Mid-level:
o Hierarchical models (PLS-PLS1-DA): individual NIR and MIR da-
tasets were subjected to a first step of dimension reduction by
PLS1-DA. Then the scores obtained with the optimal number of LV
for each individual model were combined and used to develop the
final PLS1-DA model [15].

o Multiblock models (MB-PLS1-DA): for each iteration the PLS
scores were calculated from the individual NIR and MIR data
blocks, weighted according to their number of variables, and
combined into a « super-matrix » used in the final PLS1-DA step.
The super-matrix and the two individual blocks were deflated
using the « super-scores » instead of the individual scores [26].

- High-level:
Separate PLS1-DA models were developed with the NIR and MIR

data, and the minimum, maximum and average of the predicted values
from both models were included in a majority vote to reach the final
prediction [18]. For instance, with the fixed threshold, a sample with a
predicted value of 0.55 with the NIR model (suspect) and 0.67 with the
MIR model (accepted) would have an average value of 0.61 (accepted)
and by combining these three values the sample would be accepted as
belonging to the modelled cultivar after majority vote. On the contrary,
if the predicted values were 0.55 with NIR (suspect) and 0.63 with MIR
(accepted), giving an average value of 0.59 (suspect), the majority vote
would classify this sample as suspect.
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In order to explore the influence of both NIR and MIR data and their
respective contribution to the discrimination of the studied olive oil
varietal origin, variable importance in projection (VIP) values were
calculated for each data fusion model using the formula from Mehmood
et al. [27]. Since the average of the squared VIP values is equal to 1,
variables with a VIP greater than 1 are usually considered as more re-
levant to the model, but some studies suggest that this threshold could
vary [27,28].

3. Results and discussion

The NIR and MIR spectra obtained from all the studied olive oil
samples, with identification of the spectral bands, are shown as
Supplementary Information (Figure A).

3.1. Exploratory analysis

Fig. 1 presents the scores (Fig. 1-A) and loadings (Fig. 1-B, 1-C and
1-D) of the PCA on concatenated NIR and MIR data after SNV pre-
treatment. The best separation according to cultivars was obtained
using the first three PCs. The first component (PC1) represents 45% of
the information. It is strongly influenced by the NIR band around
5865 cm−1 that corresponds to the first overtone of C–H bond vibra-
tions (-CH3, -CH2) and could be related to the degree of unsaturation of
triacylglycerols (-CH]CH-), as well as by the MIR band around
710 cm−1 that is attributed to fundamental C–H bending vibrations
[29]. PC1 separates OL and AG samples which have mostly negative
scores, from PI, SA and TA samples which have mostly positive scores
on this component, and CA samples which have medium values. The
second component (PC2) represents 17% of the information and is more
influenced by MIR data, especially by the region between 1105 and
1081 cm−1 attributed to the fundamental vibrations of C–O (ester) and
C–C bonds, and could also be influenced by the degree and type of
unsaturation of fatty acids [29]. PC2 separates TA, OL and CA samples
which have mostly positive scores, from SA samples which have ne-
gative scores, while AG and PI samples have rather medium values on
this component. The third component (PC3) represents 16% of the in-
formation. It is mostly influenced by the NIR band around 5255 cm−1

and the MIR region around 1731 cm−1, which can be attributed to
vibrations of the C]O bond of carbonyl groups [29]. PC3 separates SA
and CA samples which have mostly positive scores from TA samples
which have mostly negative scores while AG, OL and PI have medium
values. Thus, even though the groups of cultivars are overlapping on
these three PCs, chemometric models should be able to discriminate the
samples according to their varietal origin. Samples from the AG, CA and
PI cultivars may be more difficult to identify since their characteristics
place them in the middle of all the other cultivars.

3.2. PLS1-DA on individual data

The results of the prediction models based on the individual NIR (A)
or MIR (B) datasets for each cultivar, with the pre-treatment (SNV or SG
first derivative) giving the highest AUC, are presented in Fig. 2. The
values of sensitivity, specificity and AUC of the best models are also
detailed in Table 1. More results with confusion matrices for all the
models are available in the Supplementary Information (Tables A and
B).

Using the fixed limit decision rule, MIR data gives similar or better
results than NIR for most of the cultivars, except Aglandau. Indeed, the
models built with NIR data have optimal numbers of LV between 7 for
Olivière and Salonenque and 12 for Cailletier and Picholine, and reach
AUC between an acceptable value of 0.86 for Tanche and an excellent
value of 1.00 for Salonenque. The models using MIR data have optimal
numbers of LV ranging from 6 for Salonenque to 13 for Cailletier, and
their AUC all reach satisfying values from 0.90 for Aglandau and Tanche
to 1.00 for Picholine and Salonenque.

Using the control chart decision rule reduces the difference between
the results obtained with each source of data, homogenizes the per-
formances of prediction between the 6 cultivars, and can also moderate
the optimal number of LV for some models. Regarding the models using
NIR data, the control chat approach improves the sensitivity but slightly
decreases the specificity. Nevertheless, the overall AUC values are im-
proved for most of the cultivars compared to the fixed limit, with sa-
tisfying values between 0.91 for Olivière and 0.99 for Cailletier, while
lower optimal numbers of LV are used (from 4 for Olivière to 12 for
Picholine). The control chart approach brings less improvement to the

Fig. 1. A: PCA scores, B: loadings for PC1, C: loadings for PC2 and D: loadings for PC3, obtained with the concatenated NIR (6100-4500 cm−1) and MIR (1800-
700 cm−1) data after SNV, with samples represented according to their cultivar on the scores plot (○: Aglandau, Δ: Cailletier, ■: Olivière, □: Picholine, ▲: Salonenque,
●: Tanche) and most influential bands identified on the loadings plots.
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models based on MIR data. However, the results remain very satisfying
with AUC between 0.92 for Aglandau and 0.99 for Cailletier, and with
also lower optimal numbers of LV between 4 for Olivière and 13 for
Cailletier.

With each data source and each decision rule, the high number of
LV required for the models predicting the Cailletier and Picholine culti-
vars confirms the observation from the exploratory analysis regarding
the difficulty of their discrimination. Moreover, even though the per-
formances of the models using either NIR or MIR data are close for most
of the cultivars, the main differences can be observed for Aglandau,
which is better predicted with NIR, whereas Olivière is better predicted
with MIR.

3.3. PLS1-DA with data fusion

NIR and MIR spectra contain some redundant but also some com-
plementary information and combining both data is expected to im-
prove the prediction of olive oil cultivars. The results of the prediction
models with the pre-treatment giving the highest AUC are presented in

Fig. 3, while sensitivity, specificity and AUC values are detailed in
Table 2. Confusion matrices for all the models are available in the
Supplementary Information (Tables C to F).

3.3.1. Low-level concatenation
Applying simple PLS1-DA to a low-level concatenated dataset con-

taining both NIR and MIR data does not bring much improvement to the
results compared to the individual datasets (Fig. 3-A).

Indeed, with the fixed limit decision rule the optimal numbers of
LVs are still ranging from 7 for Olivière and Salonenque to 13 for
Cailletier, and the AUC values are between 0.90 for Aglandau and 0.98
for Olivière. The only improvement is obtained for the model predicting
the Tanche cultivar, with an AUC of 0.94 instead of 0.90 with MIR and
0.86 with NIR data only.

The control chart decision rule improves the sensitivity for most
cultivars, but decreases the specificity for some, resulting in overall
higher AUC values for Aglandau, Cailletier and Tanche but lower values
for Olivière and Salonenque. The AUC remain satisfying for all the cul-
tivars, between 0.93 for Salonenque and 0.99 for Cailletier, even though
only the prediction of the Tanche cultivar is improved compared to the
models using individual NIR or MIR data.

The variable importance in projection (VIP) scores for the PLS1-DA
models using concatenated NIR and MIR data with the control chart
decision rule (Supplementary Information - Figure B) indicate that both
sources provide some useful information, but the most important
variables differ depending on the modelled cultivar. For instance, NIR
data seems to have more influence on the model predicting the Olivière
cultivar, whereas MIR data brings more information to the model pre-
dicting Cailletier. The most influential bands for each model can also be
identified [29]. For the NIR spectra part, the area bringing the most
information to all the models is between 5910 and 5750 cm−1 corre-
sponding to the first overtone of C–H vibrations. Its influence is even
stronger for the Salonenque, Olivière and Tanche cultivars. The region
between 5290 and 5220 cm−1, related to the combination of O–H vi-
brations from water, also plays a part in most models except for the
Olivière and Salonenque cultivars. The region between 4685 and
4645 cm−1, attributed to the combination of C–H vibrations from un-
saturation, brings additional information, mostly for the Olivière and
Tanche cultivars. As for the MIR spectra part, the two most influential

Fig. 2. AUC values for the PLS1-DA models using A:
NIR data or B: MIR data, with the best pre-treatment,
optimal number of LV, fixed limit (blue, left) or
control chart (orange, right) decision rules, for each
predicted cultivar (AG: Aglandau, CA: Cailletier, OL:
Olivière, PI: Picholine, SA: Salonenque, TA: Tanche).
(For interpretation of the references to colour in this
figure legend, the reader is referred to the Web ver-
sion of this article.)

Table 1
Performance parameters of the PLS1-DA models using NIR or MIR datasets with
the best pre-treatment and with fixed limit or control chart decision rule (SENS:
sensitivity, SPEC: specificity, AUC: area under the curve, AG: Aglandau, CA:
Cailletier, OL: Olivière, PI: Picholine, SA: Salonenque, TA: Tanche).

NIR MIR

SENS SPEC AUC SENS SPEC AUC

AG Fixed Limit 95% 98% 0.97 86% 94% 0.90
Control Chart 100% 94% 0.97 95% 89% 0.92

CA Fixed Limit 100% 98% 0.99 89% 97% 0.93
Control Chart 100% 98% 0.99 100% 98% 0.99

OL Fixed Limit 75% 98% 0.87 100% 98% 0.99
Control Chart 88% 95% 0.91 100% 94% 0.97

PI Fixed Limit 82% 100% 0.91 100% 100% 1.00
Control Chart 100% 94% 0.97 91% 95% 0.93

SA Fixed Limit 100% 100% 1.00 100% 100% 1.00
Control Chart 100% 97% 0.98 100% 95% 0.98

TA Fixed Limit 73% 100% 0.86 82% 98% 0.90
Control Chart 91% 98% 0.95 91% 100% 0.95
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areas are between 1760 and 1710 cm−1, related to C]O stretching
vibrations, for all the cultivars but Salonenque, and between 1200 and
1020 cm−1, attributed to C–O deformation vibrations, especially for
Salonenque. Other important information comes from the 1520-
1430 cm−1 region, attributed to C–H deformation vibrations, which has
less influence for Picholine, as well as 925-905 cm−1, that could be
related to cis unsaturation, which is less useful for the Olivière and
Tanche cultivars, 845-800 cm−1 attributed to C–C deformation vibra-
tions, which is more useful for the Aglandau and Salonenque cultivars,
and finally 750-700 cm−1, attributed to C–H deformation vibrations,
which is less useful for the Olivière and Tanche cultivars. Very similar
VIP scores are obtained with the fixed limit decision rule. However, the
lack of improvement observed with the low-level concatenation model
may be due to the fact that the relevant information is concealed in the
very large dataset, since only a few of the 1402 variables are really
useful in the discrimination of the cultivars. Thus, mid-level models
with an additional step condensing the appropriate information could
have better prediction abilities.

3.3.2. Mid-level hierarchical PLS-PLS1-DA
PLS-PLS1-DA models, using the scores obtained with the optimal

numbers of LV from NIR and from MIR individual models as a reduction
dimension step, do not lead to better prediction results for most of the

cultivars (Fig. 3-B).
With the fixed limit, the final numbers of LV are between 2 for

Salonenque and 8 for Cailletier and the AUC values for prediction are
between 0.86 for Aglandau and 1.00 for Picholine and Salonenque. With
the control chart, the final numbers of LV are reduced, between 2 for
Cailletier, Olivière and Salonenque and 6 for Picholine. The sensitivity is
improved for most models, but at the expense of the specificity, re-
sulting in AUC values between 0.89 for Aglandau and 0.99 for Olivière,
which is the only improvement compared to individual NIR and MIR
models (Table 2).

The VIP scores of the PLS-PLS1-DA models with the control chart
decision rule indicate both sources of information are used, although
NIR data is more important than MIR data in all these models
(Supplementary Information – Figure C). A similar pattern is observed
with the fixed limit decision rule. This imbalance between the con-
tributions of the two datasets could be corrected by another mid-level
approach using weighted multiblock models.

3.3.3. Mid-level multiblock MB-PLS1-DA
Applying a more complex mid-level MB-PLS1-DA algorithm gives

somewhat similar results to concatenation with the fixed limit decision
rule but brings more improvement with the control chart decision rule
(Fig. 3-C).

Fig. 3. AUC values for the data fusion models using A: concatenation, B: hierarchical, C: multiblock or D: majority vote, with the best pre-treatment, optimal number
of LV, fixed limit (blue, left) or control chart (orange, right) decision rules, for each predicted cultivar (AG: Aglandau, CA: Cailletier, OL: Olivière, PI: Picholine, SA:
Salonenque, TA: Tanche). A star (*) indicates that the results are better than with only NIR or MIR data. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Table 2
Performance parameters of the PLS1-DA models using data fusion strategies with the best pre-treatment and with fixed limit or control chart decision rule (SENS:
sensitivity, SPEC: specificity, AUC: area under the curve, AG: Aglandau, CA: Cailletier, OL: Olivière, PI: Picholine, SA: Salonenque, TA: Tanche).

Concatenation Hierarchical Multiblock Majority Vote

SENS SPEC AUC SENS SPEC AUC SENS SPEC AUC SENS SPEC AUC

AG Fixed Limit 80% 100% 0.90 75% 96% 0.86 80% 98% 0.89 85% 100% 0.93
Control Chart 90% 100% 0.95 80% 98% 0.89 80% 100% 0.90 95% 98% 0.97

CA Fixed Limit 89% 98% 0.94 89% 91% 0.90 89% 98% 0.94 100% 98% 0.99
Control Chart 100% 98% 0.99 100% 89% 0.95 100% 100% 1.00 100% 100% 1.00

OL Fixed Limit 100% 95% 0.98 100% 92% 0.96 100% 100% 1.00 75% 100% 0.88
Control Chart 100% 91% 0.95 100% 98% 0.99 100% 98% 0.99 100% 97% 0.98

PI Fixed Limit 91% 100% 0.95 100% 100% 1.00 91% 100% 0.95 91% 100% 0.95
Control Chart 91% 100% 0.95 100% 90% 0.95 91% 100% 0.95 100% 98% 0.99

SA Fixed Limit 92% 100% 0.96 100% 100% 1.00 92% 100% 0.96 100% 100% 1.00
Control Chart 100% 87% 0.93 100% 90% 0.95 100% 100% 1.00 100% 98% 0.99

TA Fixed Limit 91% 97% 0.94 82% 97% 0.89 82% 97% 0.89 82% 98% 0.90
Control Chart 100% 95% 0.98 100% 87% 0.94 100% 92% 0.96 100% 97% 0.98
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Indeed, using the fixed limit the optimal numbers of LV range from
7 for Salonenque to 14 for Picholine and the AUC values for prediction
are between 0.89 for Aglandau and Tanche and 1.00 for Olivière. This
latter model is the only one for which the performances are improved
compared to the individual NIR or MIR models. On the other hand, with
the control chart approach the numbers of LV are reduced, between 2
for Olivière and 13 for Cailletier and Picholine, while the AUC values are
improved for most of the cultivars, ranging from 0.90 for Aglandau to
1.00 for Cailletier and Salonenque. The predictions for the Cailletier,
Olivière, Salonenque and Tanche cultivars are also better than with the
models using either NIR or MIR data alone.

The global VIP scores of the MB-PLS1-DA models with the control
chart decision rule show that, contrary to the PLS-PLS1-DA models, the
most important information comes from the MIR data block for all the
multiblock models (Supplementary Information – Figure D). This dif-
ference is especially important for the models predicting the Aglandau
and Picholine cultivars, for which the results are not improved, con-
firming that a good balance between the amount of information from
the two data blocks is important to achieve better predictions.

3.3.4. High-level majority vote
The high-level models, based on a majority vote between the pre-

dicted values from the individual NIR and MIR models and their
average, give a good compromise for all the cultivars, especially with
the control chart decision rule (Fig. 3-D). Since the fusion takes place at
the decision level in these models, the optimal numbers of LV are those
used for the separate NIR and MIR models.

When using the fixed limit, the AUC values of prediction are in-
termediate between those of the individual NIR and MIR models, ran-
ging from 0.88 for Olivière to 1.00 for Salonenque. However, with the
control chart, better performances than those of the individual models
can be reached for all the cultivars except Aglandau. In this case, ex-
cellent AUC values are obtained, ranging from 0.97 for Aglandau to 1.00
for Cailletier. This fusion method gives the best overall results and is
also the easiest to implement.

4. Conclusion

NIR and MIR spectral data can be used separately to discriminate
monovarietal olive oils from six French cultivars, and the performance
of the models are influenced by the choice of chemometric pre-treat-
ment and decision rule. Indeed, the control chart decision rule allows
for overall more satisfying results with less heterogenicity between the
modelled cultivars. Combining NIR and MIR data does not always im-
prove the performances of the models. When using low-level con-
catenation, the complementary information appears to be lost in the
very large number of variables. Even mid-level hierarchical PLS1-DA,
with a dimension reduction first step, fails to improve the prediction
results. Using mid-level weighted multiblock PLS1-DA could be more
appropriate, especially with the control chart decision rule, provided
that a good balance of information from the two data blocks can be
reached. However, this strategy gives heterogenous results, improving
the discrimination for most cultivars but worsening it for others.
Finally, the high-level models using a majority vote benefit from the
complementary results of the individual NIR and MIR models. This data
fusion strategy, associated with the control chart decision rule, achieves
better and more homogeneous predictions for all the cultivars and is
also more user-friendly than the mid-level strategies.
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