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We perform systematic particle dynamics simulations of granular flows composed of breakable particles in
a 2D rotating drum to investigate the evolution of the mean particle size and specific surface as a function of
system parameters such as drum size, rotation speed, filling degree, and particle shape and size. The specific
surface increases at a nearly constant rate up to a point where particle breakage begins to slow down. The
rates of particle breakage for all values of system parameters are found to collapse on a master curve when the
times are scaled by the characteristic time defined in the linear regime. We determine the characteristic time
as a function of all system parameters, and we show that the rate of particle breakage can be expressed as a
linear function of a general scaling parameter that incorporates all our system parameters. This scaling behavior
provides a general framework for the upscaling of drum grinding process from laboratory to industrial scale.
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I. INTRODUCTION

Rotating drums or tumbling mills are used in numerous
industrial applications for grinding, mixing and particle
agglomeration [1–6]. The system consists of a hollow drum
subjected to a rotation velocity around its principal axis. In
the grinding process, particle breakage occurs as a result of
frictional and collisional interactions between particles and
with the drum walls. Since most of these devices operate
in the rapid-flow regime, i.e. the so-called cascading or
cataracting regimes, the granular flow has an inertial nature
and develops a complex geometry with inhomogeneous flow
patterns and curved free surface. For this reason, the
grinding mechanisms in rotating drums are complex and
poorly understood from physical and mechanical points of
view, and their scaling with operating parameters is an open
issue.

Previous studies of the grinding process in rotating
drums have been performed by means of experimental
measurements, numerical simulations, and mechanistic or
stochastic models. Experimentally, the test conditions impede
a continuous track of particle breakage. Some properties
such as particle size distribution are therefore measured from
samples taken at different instants of the test [7–9]. The
numerical simulations have the advantage of allowing for
different particle shapes to be considered and continuous track
of the particles and their mechanical interactions [10, 11], but
the existing particle dynamics methods that take into account
particle breakage require high numerical performance, and the
computational limitation in the number of particles impedes
statistical representativity of the samples [12–14]. Finally, the
population balance models (PBM) combine particle breakage
probability, usually obtained from single impact tests, with
a mass transfer function to sequentially predict the evolution
of particle size distribution during grinding [15, 16]. One
disadvantage of this method is the large number of parameters
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that must be tuned for each specific case. In most cases,
the calibration is based on experimental results, and some
functions such as the mass transfer are fully empirical as their
measurement in experiments is not possible. Furthermore,
these models do not directly account for the mechanics of
particle fracture in multicontact configurations, in which the
breakage mechanisms are substantially different from those in
a single particle impact test.

As an example of recent work in this field, it is worth
mentioning models that combine the Discrete Element
Method (DEM) for particle interactions and PBM for
predicting the size distribution of the fragments [17, 18].
Cleary et al. [19] performed numerical simulations of a
semi-autogenous mill in which the particles that reach a given
small size can escape through slots of the drum wall located
next to the lifters. In this work, the condition for particle
breakage and the generated fragments were determined from
the incremental breakage theory proposed by Vogel and
Peukert [20]. The breakage probability was thus determined
by a Weibull probability function whose parameters were
fitted to the data of single particle impact tests. This
survival probability function has been used by several authors
to determine the evolution of particle distribution [21–23].
Despite their genuine character, it is generally difficult to
evaluate the success of such models and their calibration
by direct comparison with the real mechanisms that lead to
particle breakage in dense granular flows.

In practice, we believe that a realistic model of the grinding
process based on multicontact interactions should make it
possible to reach an upscaling model for rotating drums, as
a challenging problem for industrial purposes. Nearly all
attempts to find relationships for the upscaling of drum size
are either based on a dimensional analysis of the relevant
physical quantities [24] or on the performance of the processes
that take place inside rotating drums [25]. However, a fully
predictive model should be able to discern the generic and
specific features of the grinding process and to link the system
parameters with the overall performance.

In this paper, we use numerical simulations to investigate
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the effect of system parameters on the grinding process in a
2D rotating drum. We rely on the contact dynamics method
as a DEM algorithm and the discretization of the particles into
bonded polygonal cells that an break apart, known as Bonded
Cell Method (BCM) [10, 26–30]. The particles can thus break
into fragments of different sizes down to the smallest cell size.
We vary system parameters such as drum size, rotation speed
and filling degree, to quantify the effect of each parameter on
the granular flow and evolution of grinding in terms of the
mean particle size and specific surface of the material. The
specific surface is defined as the sum of the surface areas (the
perimeter in 2D) of all particles divided by their total weight.
We also consider the spatial map of the breakage events in
correlation with drum flow parameters. Then, we examine
the possibility of expressing the rate of particle breakage in
terms of a single scaling parameter accounting for all system
parameters. As we shall see, the results can be interpreted in
terms of a characteristic time with a nontrivial dependence on
system parameters.

In the following, we first introduce the methodology and
simulation parameters in Secs. II A and II B. In Sec. III, we
present the evolution of particle size distribution and specific
surface as a function of rotation speed, filling degree, and
drum size, and their scaling with a characteristic time. Then,
in Sec. IV, we derive an expression for this time and breakage
rate in terms of system parameters. We will conclude with a
discussion of the results and outlooks of this work.

II. NUMERICAL PROCEDURES

A. Contact Dynamics method and BCM

The numerical simulations were performed by means of
the contact dynamics method together with the Bonded-cell
method (BCM) for particle breakage. Contact dynamics is
a discrete-element method in which perfectly rigid particles
interact through frictional contacts, and the particle motions
are calculated by a step-wise implicit scheme [31–33]. In
contrast to soft-particle DEM, the nonlocal strains are defined
from particle overlaps, and the velocities and contact forces
are calculated at the same time by an iterative process
accounting for the contacts as unilateral constraints. As the
particle overlaps do not need to be resolved, the time step can
be much larger than in soft-particle DEM but a large number
of iterations are required at each time step to converge to
a solution for velocities and forces. The particle positions
and contact network are then updated from the calculated
velocities.

In the BCM, each particle is subdivided into smaller
independent primary elements or cells by means of a Voronoı̈
tessellation, and thus the particle volume is exactly equal to
the sum of cell volumes [26, 27, 29, 30, 34]. During the
generation process, the average cell size dcell is fixed, but the
cell shapes are random. For the sake of geometric consistency,
we choose also polygonal particle shapes as shown in Fig. 1.
We used regular polygon-shaped particles of different nmber
of sides (nsides) such as pentagons (nsides = 5), hexagons

(a) (b)

(c) (d)

FIG. 1. Voronoı̈ tessellation applied to (a) pentagonal particles
(nsides = 5), (b) hexagonal particles (nsides = 6), (c) nonagonal
particles (nsides = 9), (d) dodecagonal particles (nsides = 12). The
cells are represented by different arbitrary colors.

(a) (b)

FIG. 2. (a) Side-side double-bond contact, (b) vertex-side
single-bond contact.

(nsides = 6), heptagons (nsides = 7), nonagons (nsides = 9)
and dodecagons (nsides = 12).

As the drum rotates, different types of contact can arise
between particles: side-side, vertex-side, and vertex-vertex,
as displayed in Fig. 2. The geometrical detection and
representation of these contacts involves the definition of a
common line for each pair of particles whose orientation
determines the contact reference frame (normal and tangential
directions). To each side-side contact we attribute two bond
points located on the common line that can be projected
onto each of the sides in contact. The total contact force
at a side-side interface is therefore the sum of the forces
acting at the two bonds attributed to the contact. At the
vertex-side contacts a common line is also defined, but the
contact involves a single bond [32].

By construction, in the initial configuration all the cell-cell
interfaces belonging to each particle are side-side contacts,
and each interface is represented by two cohesive bonds. The
breakage requires in the first place a mechanical condition
expressed as a stress threshold representing the material
strength above which a crack can be initiated. But,



FIG. 3. Behavior of a cohesive contact between cells (a) in the
normal direction, (b) in the tangential direction. ` is the side length,
and δn and δt denote the local displacements between the two cells in
the normal and tangential directions, respectively.

thermodynamically, a crack will not propagate unless an
amount of mechanical energy, corresponding to the fracture
energy or the toughness of the material is supplied. Hence,
we assume that the fracture of a bond is controlled by two
criteria [29]. The first criterion is a tensile stress threshold
Cn in the normal direction and a shear stress threshold Ct
in the tangential direction. In either direction, below the
corresponding stress threshold, which represents the internal
cohesion or strength of the particle, the relative movement
of the two cells is forbidden. The second criterion is a
fracture energy W that must be consumed by the relative
displacements at the stress threshold as in the classical fracture
mechanics. This energy criterion implies that the normal
separation εn at a bond should reach a threshold given by

εn =
W

`Cn
, (1)

where ` is the area (length in 2D) of the interface. At this
distance the bond breaks, and a surface (length in 2D) equal
to ` is created. In a similar vein, a bond can break when the
tangential displacement reaches the critical distance

εt =
W

`Ct
. (2)

We assume that an inter-cell double-bond interface breaks as
a whole if only one of its two bonds breaks following the two
above criteria.

A graphical representation of this breakable interface law
is shown in Fig. 3 as a relation between normal force and
local displacement or gap δ between cells. Once a cohesive
interface breaks, it turns into a frictional contact governed
by the relation represented in Fig. 4. The same contact law
governs also the vertex-side and vertex-vertex contacts, as
well as the interactions with the walls. All the collisions are
assumed to be perfectly inelastic. Further details about the
implementation of the Bonded-cell method in the framework
of Contact Dynamics can be found in [29].

FIG. 4. Behavior of a purely frictional contact (a) Signorini relation
in the normal direction, (b) Coulomb friction law in the tangential
direction. un and ut denote the contact relative velocities in the
normal and tangential directions, respectively.

FIG. 5. Geometrical, mechanical and kinematic parameters of the
simulated drums.

B. Sample generation and test preparation

We consider a smooth drum such that the particles inside
the drum interact only through frictional contacts with the
drum walls. No grinding media are added (as in ball mills),
and the particle breakage is a consequence of granular flow
(self-grinding as in autogenous mills). The initial particle
diameters are distributed in a range between dmin

0 and dmax
0

with a uniform distribution of their volumes. Among all
possible particle size distributions for a given size span
(ratio dmax

0 /dmin
0 ), this distribution yields one of the highest

packing fractions [35, 36]. Different particle shapes were also
considered, as shown in Fig. 1. The cells belonging to each
particle were generated such that the average size of cells
dcell is proportional to particle size with around 20 cells per
particle. The values of all parameters considered in this work
are presented in Table I.

The generated sample is deposited inside a hollow drum
(ring in 2D) of internal radius R under the action of gravity g;
See Fig. 5. Once all particles reach a state of force balance, a
constant angular velocity ω is applied to the drum. Since the
system is constantly evolving as a result of particle breakage,
a steady state cannot be fully reached; See Fig. 6. However,
a nearly steady flow state is reached after ' 3 rotations. The
simulation is stopped when most particles are broken down



TABLE I. Simulation parameters

Parameter Symbol Value Unit
Geometrical parameters
Number of particles Np [147;2350]
Number of cells per particle ncells [16;36]
Number of cells (total) Ncells [2008;33574]
Particle density ρ 2030 kg m−3

Drum internal radius R [0.05;0.2] m
Initial mean particle diameter 〈d0〉 2.5 or 6 mm
Cell size dcell 0.5 or 1.2 ·10−3 mm
Filling degree f = h0/R [0.2;0.5]
Mechanical parameters
Friction coefficient µ 0.4
Normal restitution coefficient en 0
Tangential restitution coefficient et 0
Normal stress threshold Cn 1 MPa
Tangential stress threshold Ct 1 MPa
Critical normal distance εn 5 · 10−5 m
Critical tangential distance εt 5 · 10−5 m
Kinematic parameters
Rotation speed ω [1.57;10.47] rad/s
Froude number Fr [0.019;0.838]
Time step δt 1 · 10−5 s
Gravity acceleration g 9.81 m/s2

to the smallest possible fragment size dcell. This condition
can also be identified by following the mean particle size and
specific surface, which evolves with time and level off after a
number of drum rotations. For the value of strength threshold
Cn used in the simulations, the total simulated physical time
for reaching significant particle breakage is of the order of
60 seconds, requiring most of time long-run simulations. It
should be noted that self-grinding occurs when the particle
strength is low-enough to allow for particle breakage in the
cascading regime as a result of particle weights or collisional
energies. The scaling that will be derived in this paper from
the simulations quantifies the effect of particle strength on the
breakage rate.

Since this work is focused on the effect of system
parameters on the grinding process, we performed several
sets of simulations, each time changing one parameter while
keeping constant values for other parameters. In a set of
runs, the drum radius was fixed to R = 0.075 m, for different
rotation speeds ω ∈ [3.14, 5.24, 7.33, 10.47] rad/s and filling
degrees f ∈ [0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]. The filling
degree is the ratio of the filling height measured in the initial
state (h0) to the drum radius, as shown in Fig. 5. In these
simulations, pentagonal particles (nsides = 5) was considered).
We also simulated systems with polygonal particle shapes
with different numbers of their sides nsides, which is a measure
of their roundness. In this set of simulations, the mean particle
size was 2.5 mm.

In another set of runs, drums of different sizes R/r ∈
[16, 25, 33, 50, 66] were simulated. For these simulations,

FIG. 6. Snapshots of a rotating drum simulation for different
numbers of rotations n for ω = 5.24 rad/s. The color is proportional
to the damage, defined by the number of cells detached from a
particle, represented on color scale from bright green for intact
particles to black for highly-damaged particles.

particles of a larger mean size d0 = 6 mm, but with the
same size distribution and shape as in the first set were used.
Consistently, the cell size was also modified to 〈dcell〉 = 1.2
mm so that the number of cells per particle remains equal
to 20. The largest drum was filled with 2350 particles,
corresponding to a total number of 33574 cells. Finally, we
also performed a set of simulations with constant values of
the Froude number

Fr =
Rω2

g
, (3)

by changing both the rotation speed ω and drum size R.

III. EFFECTS OF SYSTEM PARAMETERS ON PARTICLE
BREAKAGE

A. Rotation speed

We analyze here the simulations with varying rotation
speeds ω, which is the most influential parameter on the
flow regime [37]. Figure 7 shows the flow patterns in a
drum with increasing rotation speed but the same size of
R = 0.075 m and filling degree f = 0.51. We see that
by increasing ω from 1.57 to 12 rad/s, the granular material
flows successively in the rolling (ω = 1.57 and 3.14 rad/s),
cascading (ω = 5.24 and 7.85 rad/s), cataracting (ω = 10.47
rad/s), and centrifuging regimes (ω = 12 rad/s). The average
free surface profiles in this set of simulations are shown in
Fig. 8. The evolution of the free surface from a nearly flat
surface flow to a curved S-shape indicates a transition from
the rolling regime to the cascading regime. In the rolling
regime, the centrifugal forces at the drum surface are low
compared to the inertial forces inside the flow, and therefore
the particles roll down the slope as a flat free surface granular
flow. In the cascading and cataracting regimes the centrifugal



FIG. 7. Flow regimes displayed after 13.75 rotations, for R = 0.075
m, f = 0.51, and increasing rotation velocity ω. By increasing ω,
the Froude number varies from 0.02 to 1. The color is proportional
to particle damage, from bright green for intact particles to black for
highly-damaged fragments.
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FIG. 8. Free surface profiles for different values of ω.

forces become more important. In these regimes, the particles
reach higher positions from which they feed a S-shape free
surface in the case of a cascading flow or are thrown into
the granular bed along ballistic trajectories in the cataracting
regime. In the centrifugal regime the centrifugal forces prevail
and consequently the particles stick to the walls. The amount
of damaged particles for the same number of drum rotations
is not the same in different regimes. In the following, we
consider only the rolling and cascading regimes, as well as the
beginning of the cataracting regime for the analysis of particle
breakage.

Figure 9(a) shows the evolution of the mean particle
diameter 〈d〉 as a function of time for different values of
ω. The diameters are normalized by their initial mean
value 〈d0〉. The mean size begins to decrease slowly, but
at an increasing rate. At some point in time when the rate
reaches its maximum value, which depends on ω, the size
reduction continues at decreasing rate until the minimum
fragment size, i.e. the mean cell size 〈dcell〉, is reached.
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FIG. 9. (a) Evolution of the mean particle size 〈d〉 normalized by
the initial mean particle size 〈d0〉 for different values of the rotation
speed ω. The dashed lines correspond to a tangent hyperbolic
form 〈d〉/〈d0〉 ∼ tanh(t). (b) Evolution of the specific surface S
normalized by the initial specific surface S 0. The dashed lines are
linear fits up to a transition point to nonlinear regime.

This slowdown reflects the decreasing number of breakable
fragments in the system. The evolution of the specific surface
S normalized by its initial value S 0 is shown in Fig. 9(b).
Its maximum value is 4, corresponding to the limit where
all particles are fully broken into fragments of cell size.
The initial evolution is nearly linear with a slight waviness
in all cases but more pronounced for small values of ω
where the evolution is slower. This feature reflects the initial
adjustment of the granular flow to drum rotation since the
rotation speed is applied instantaneously to an initially static
bed. The evolution of the specific surface slows down after
the transition point.

In the linear regime, the effect of ω and other system
parameters can be quantified by using the average grinding
rate Ṡ /S 0. Figure 10(a) shows Ṡ /S 0 as a function of ω.
The rate increases as ω3/2. This means that the effect of
rotation rate is not simply a change of timescale, in which
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Ṡ
/
S
0
(s

−
1
)

Ṡ/S0 ∼ ω3/2

(a)

2 4 6 8 10

ω(rad/s)

0

10

20

30

40

50

t∗
(s
)

t∗ ∼ ω−3/2

(b)

FIG. 10. (a) Rate of increase of specific surface [dashed lines in Fig.
9(b)]; (b) Characteristic time t∗ as a function of rotation speed ω.

case the grinding rate would simply increase proportionally
to ω. However, the shapes of the evolution curves suggest
that the transition to the nonlinear regime occurs always for
S/S 0 ' 2.75. This value is nearly half of the maximum
specific surface that can be generated in our system. A
characteristic time t∗ can thus be defined by

S (t∗) = 2.75S 0. (4)

Figure 10(b) shows that this characteristic time varies as ∼
ω−3/2. Hence, we expect that all the data will collapse on a
single curve when normalizing time by t∗. The mean particle
size and specific surface are displayed in Fig. 11 as a function
of normalized time. We see that, up to the aforementioned
small waviness, we obtain a nice collapse of the data for both
〈d〉 and S .

Figure 12 shows the maps of the local densities of breakage
events for three values of ω. These maps were built by
tracking the position of each bond prior to its breakage. The
density at each point represents the probability of breakage at
that point. In general, it is assumed that breakage events take
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FIG. 11. The normalized specific surface S/S 0 (a), and normalized
mean particle size (b) as a function of time normalized by the
characteristic time t∗ for drums rotating at different speeds ω.

place mostly at the toe of the flow, near to free surface, where
the particles ejected from the shoulder impact the bed surface
or roll down the steepest descent. We see that, although
the probability is higher at the toe of the free surface, many
breakage events occur also in the bulk of the flow as ω
is increased. In all cases, the volume involved in particle
breakage is small compared to the overall volume of the
granular material. Part of the breakage events may be due to
impacts in fluidized zones, but particles can also break inside
the flow by shearing.

To get a better idea of the texture of granular flow, it is also
interesting to map the local particle connectivity. Figure 13
shows in grayscale the number of contacts per particle. We
see that the flow is globally less connected when ω increases.
Moreover, the particles are much less connected inside the
flowing layer as a result of inertial effects. This map makes
clearly appear the borderline between the active and passive
layers. We also observe that the volume of the active layer
increases with ω.



FIG. 12. Maps of local densities of breakage events during the whole
simulation for ω =5.24, 7.85, 9.11 and 10.47 rad/s.

FIG. 13. Maps of particle connectivity after 13.75 rotations for
ω =5.24, 7.85, 9.11 and 10.47 rad/s. This snapshot corresponds to
the instants 0.73t∗, 0.9t∗, 0.96t∗ and 1.16t∗, respectively. The particle
gray level is proportional to the number of contacts of the particle.

B. Filling degree

We now consider drums for the same rotation speed ω =

5.24 rad/s and size R = 0.075 m, but filled at different levels
f = h0/R. The evolution of the mean particle size and specific
surface are shown in Figs. 14(a) and 14(b). We observe here
the same features as in the last subsection for all values of
f . Figure 16(a) shows the grinding rate Ṡ /S 0 as a function
of f . Except for f = 20% and f = 25%, the grinding
rate declines as f increases. The flow at low filling rates
is in the ‘sliding’ regime: As the drum begins to rotate, the
granular bed is sheared, but at the same time its center of

mass swings back and forth along the drum wall around a
mean position. This regime was also identified by Chou et
al. [38] for filling degrees below f =25%. We observe this
initial swinging of the bed, albeit to a much lesser extent,
also at higher filling degrees. At low filling degrees, the
swinging behavior continues during several drum rotations at
the expense of reduced shearing of the bed and thus reduced
breakage of particles. Lower shearing leads also to a reduced
curved free surface. Figure 15 displays the free surface
profiles for all the simulated filling degrees. The profiles are
similar for all values of f except for f = 20% and f = 25%.
In the following, we consider only the filling degrees above
25%.

The characteristic time t∗, defined by Eq. (4), is a linear
function of f as shown in Fig. 16(b). In Fig. 17, the
evolution of the mean particle size and specific surface are
plotted against time normalized by t∗. Hence, for all filling
degrees above f = 25%, the only effect of the filling degree
is to increase the characteristic time. No other feature of the
grinding process seems to depend in any way on the filling
degree.

C. Drum size

To examine the effect of drum size R on the grinding
process, we simulated drums of five different sizes. We
performed two different sets of simulations. In the first set,
ω was kept equal to 3.7 rad/s whereas in the second set the
Froude number [Eq. (3)] was kept at 0.21. Figures 18 and 19
show the mean particle size and specific surface, respectively,
as a function time for the two sets of simulations. The same
features are observed as before, and we see that the grinding
is increasingly faster when the drum size is increased for both
sets of simulations. At constant Froude number, the time
series of 〈d〉 and S are quite close for different values of
R. With a constant value of ω the evolution is much more
dependent on R.

Figure 20(a) shows the grinding rate Ṡ /S 0 as a function of
drum size for the two sets of simulations. The behavior is
well fit by linear functions. The slope is higher for constant
ω as compared to the case of constant Froude number. This
shows that the Froude number is a good scaling parameter as
far as the drum size and rotation speed are involved. But for
different filling degrees and particle sizes this scaling fails as
clearly shown by the results of the previous subsection. The
evolution of the characteristic time t∗ is shown in Fig. 20(b). It
declines with increasing drum size in both cases. If we plot all
the data as a function of time normalized by t∗, then they will
naturally collapse (not shown here), as seen in the previous
subsections.

D. Particle shape

Since in all the simulations for the scaling of particle
breakage with system parameters we used pentagons, it is
important to evaluate the influence of particle shape on the



0 10 20 30 40 50

t(s)

0.4

0.6

0.8

1.0
〈d
〉/
〈d

0
〉

f =20%

f =25%

f =30%

f =35%

f =40%

f =45%

f =50%

(a)

0 10 20 30 40 50

t(s)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
/
S
0

f =20%

f =25%

f =30%

f =35%

f =40%

f =45%

f =50%

(b)

FIG. 14. (a) Mean particle size measured as a function of time for
different values of the filling degree f for the same drum size R =

0.075 m and rotation speed ω = 5.24 rad/s. (b) Normalized specific
surface S/S 0 as a function of time. The dashed lines are linear fits
up to the transition point.
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FIG. 16. (a) Rate of increase of specific surface as a function of the
filling degree f . (b) Characteristic time t∗ as a function of f .

time evolution of specific surface and mean particle size for a
few values of system parameters. Figure 1 displays examples
of samples composed of regular polygons with increasing
number of sides nsides. In addition to nsides = 5, which is
the reference shape used in all our simulations, we carried
out simulations for nsides= 6, 7, 9, and 12, in a drum of
size R = 0.075 m, with rotation speed ω = 5.24 rad/s and
filling degree f = 0.51. Figure 21 shows both the mean
particle size and specific surface as a function of time for
these different shapes. We see that the time series are similar,
and the grinding rate before transition to the nonlinear regime
quite weakly depends on the number of sides. The slightly
higher grinding rate of rounder particles means that they are
subject to higher force fluctuations or shear stresses. Higher
forces can be a consequence of the fact that rounder particles
can more easily roll down the free surface and therefore they
acquire larger impact energies.
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FIG. 17. (a) The normalized mean particle size 〈d〉/d0 and (b) the
normalized specific surface S/S 0, as a function of normalized time
for different filling degrees.

IV. GENERAL SCALING LAW

The partial parametric studies reported in the previous
section suggest a power-law dependence of the grinding rate
with respect to nearly all system parameters. We may thus
look for a general scaling parameter Γ combining all system
parameters such that the grinding rate Ṡ /S 0 would be an
unique function of Γ. Alternatively, this scaling may be
expressed in terms of the characteristic time t∗ as a function of
Γ. The parameter Γ may be defined as a general function of ω,
R, d0, h0, ρ, and g. However, to define a physically meaningful
parameter, it is more convenient to work with dimensionless
parameters that reflect the competing effects of various system
parameters. The relevant dimensionless parameters are Fr=
Rω2/g (centrifugal force versus gravity), R/d0 (finite size
effect), and f = h0/R (filling degree). Although we did
not change the internal cohesion Cn of the particles, it is
obvious that its value compared to the static stress induced by
particle weights is an important factor for particle breakage
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FIG. 18. Normalized mean particle size 〈d〉/d0 as a function of time
for drums of different sizes R/r for a constant value of ω (a) and for
a constant value of the Froude number (b).

rate. The mass m is proportional to ρd2
0 and the static stress

due to the weight of a single particle is m/d0 ∼ ρgd0 (in two
dimensions). Hence, the dimensionless number contributing
to breakage is ρgd/Cn.

We thus consider a scaling parameter of the following form:

Γ = Frα f β
(

R
d0

)γ (
ρgd0

Cn

)ζ
. (5)

We must determine the four exponents α, β, γ, and ζ so
that the values of the grinding rate Ṡ /S 0 for all simulations
collapse on a master curve as a function of Γ. Obviously, if
for these values of the exponents Γ is the scaling parameter
for the grinding rate, then any function of Γ, including Γp for
arbitrary p is also a scaling parameter. This means that only
the ratios of the exponents α, β, γ, and ζ are relevant. Hence,
in practice we have three exponents to fix.

If we use the values of the exponents evidenced by the
partial parametric studies of the last section for the grinding
rate, then we may obtain a linear dependence between the
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FIG. 19. Normalized specific surface S/S 0 for drums of different
sizes R/r for a constant value of ω (a) and for a constant value of
the Froude number (b). The dashed lines are linear fits below the
transition point.

latter and Γ. For rotation speed ω, a dependence Ṡ /S 0 ∼ ω
3/2

[see Fig. 10(a)] was observed. We therefore set α = 3/4. For
the filling degree f , we have Ṡ /S 0 ∼ 1/ f [by judging from the
behavior of t∗ in Fig. 16(a)] so that we may set β ' −1. For the
drum size R/r, according to Fig. 20(a), we have Ṡ /S 0 ∼ R/d0
at a constant value of ω. By accounting for the values of α
and β, given that f = h0/R and Froude number is linear in R,
we should set γ ' 1/4. Finally, to determine ζ, we use two
sets of simulations with the two values of d0, and choose the
value of ζ in such a way to make the grinding rates collapse
as a function of Γ. This procedure yields ζ ' 3/2.

As Γ is a dimensionless parameter, we need a timescale to
transform also the grinding rate, which has the inverse time
dimension, to a dimensionless parameter. This time can not
be t∗, which is defined from the grinding rate. We have three
different times in the system: ω−1 (driving time), (d0/g)1/2

(rearrangement time due to gravity), and (Cn/ρ)1/2/g. We may
refer to the latter as ‘breaking time’. A particle should gain
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Ṡ
/
S
0
(s

−
1
)

ω = 3.7rad/s

Fr = 0.21
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FIG. 20. (a) The rate of increase of the normalized specific surface
shown in Fig. 19. (b) Characteristic time as a function of drum
size ratio R/r for the two sets of simulations. The dashed lines are
power-law fits to the data.

enough kinetic energy between two impact events to be able
to exert a stress larger than Cn for particle breakage. If τ is the
typical time between two events, the the order of magnitude
of the velocity gained by a particle is gτ. The corresponding
energy per unit volume is ∼ ρ(gτ)2. Equaling this energy with
Cn, we get

τ =
1
g

(
Cn

ρ

)1/2

(6)

The only timescale that does not interfere with the selected
values of the aforementioned exponents is τ. For this reason,
we consider below the dimensionless grinding rate τṠ /S 0 and
its scaling with Γ.

Figure 22 displays the dimensionless grinding rate as a
function of Γ for all our simulations. Remarkably, all the data
points collapse on a linear function,

τṠ
S 0
' 37.73Γ = 37.73

1
f

(
Rω2

g

)3/4 (
R
d0

)1/4 (
ρgd0

Cn

)3/2

. (7)
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FIG. 21. The normalized mean particle size 〈d〉/d0 (a) and
normalized specific surface S/S 0 (b) as a function of time in drum
flows composed of regular polygons of different numbers of sides for
fixed drum size, rotation speed and filling degree.

This scaling involves all control parameters and material
parameters of the system. It predicts the dependence of
the grinding rate with respect to parameters such as Cn, g,
and ρ, which were not varied in this work. The validity of
this scaling can thus be easily tested by performing further
simulations with different values of these parameters. Note
that the dependence on particle size d0 in the above expression
is not a finite size effect. The grinding rate increases as
τṠ /S 0 ∝ d5/4

0 g3/4. In combination with ρ, this can be written
as m(d0/g)−3/4 where m = ρd2

0 . This means that d0 is involved
through both the mass of the particles and microscopic time
(d0/g)1/2 although in the initial search of the scaling parameter
we used the ratio R/d0, which is a finite size factor. It should
also be noted that the decrease of grinding rate Ṡ /S 0 with
increasing filling degree does not mean that the absolute rate
of grinding Ṡ decreases since S 0 increases in 2D as h3/2

0 ,
implying Ṡ ∼ f 1/2.

Equivalently, from Eq. (7) we get the characteristic time t∗
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The symbols refer to different sets of simulations in which every time
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and the same data plotted as function of Λ [39] and Q∗ [40]. A
prefactor was applied to bring the data to the same range.

as a function of system parameters:

t∗

τ
' 0.073

(
Rω2

g

)− 3
4
(

R
d0

)− 1
4
(
ρgd0

Cn

)− 3
2
(

h0

R

)
(8)

The characteristic time decreases with increasing R, ω, g, ρ,
and d0, and it increases with increasing Cn and h0.

Several authors have proposed scaling parameters for
rotating drums. For example, Taberlet et al. [39] proposed
the parameter

Λ =

(
Fr

d
R

)1/4 R
W
, (9)

which involves Fr, R/d, and R/W, where W is the width of the
drum in 3D. Pignatel et al. [40] introduced the parameter

Q∗ =
1
2

Fr1/2
(R

d

)3/2

. (10)



Although Λ and Q∗ were introduced for granular flow rather
than particle breakage, it is interesting to see how these
parameters scale our data. In Fig. 23 we have plotted the
dimensionless grinding rate as a function of Γ, Λ (by setting
W = 1) and Q∗ by multiplying Λ and Q∗ by a scale factor to
bring all the points to the range of values of Γ. We see that our
data points as a function of both Λ and Q∗ are widely scattered
while they collapse for Γ.

V. CONCLUSIONS

In this paper, we analyzed the evolution of particle breakage
in a 2D rotating drum for a broad range of values of rotation
speed, drum size, filling degree, and particle size and shape.
Each particle can break down to an unbreakable primary
volume as a constant fraction of the volume of the mother
particle. We were interested in the influence of each system
parameter on the evolution of specific surface and mean
particle size. The specific surface increases almost linearly
with time up to a transition point to a nonlinear regime
where many unbreakable fragments are generated, and thus
the probability of breakage declines. For all values of system
parameters, this point corresponds to the same amount of
specific surface equal to slightly more than half the maximum
specific surface that can be generated in the simulations. This
point was used to define a characteristic time.

When time is normalized by the characteristic time, all the
data points collapse on the same master curve. By analyzing
the dependence of this time or the grinding rate on the system
parameters, we arrived at a scaling parameter incorporating all
system parameters. This parameter has nontrivial exponents,
and it implies an increase of the breakage rate with increasing
rotation speed, drum size, particle size and density, and a
decrease of breakage rate with increasing filling degree and
internal cohesion of the particles. This scaling is a result of
the combined effects of multicontact mechanical interactions
inside the flow, granular flow regimes in a rotating drum with
their geometrical features, and operating parameters.

The scaling parameter is dimensionless and fully
constrained by all the available dimensional parameters
of the system. For this reason, it would be interesting to

further check its predictions of the grinding rate by means of
simulations with modified particle density, particle strength,
and gravity. Another line of research is the correlation
between the scaling parameter and granular flow variables
such as the shape of the free surface and slip at the walls.
Indeed, we previously characterized the flow of unbreakable
particles in a rotating drum in 3D where a single scaling
parameter was found to describe the flow variables. However,
the scaling of particle breakage, as evidenced in this work, is
very different from that parameter. This difference indicates
that, besides flow variables such as free surface shape, particle
breakage depends on the flow patterns inside the drum. For
example, intense breakage of particles may occur in a small
volume of the drum located at the toe of the cascading flow.
But due to lower volume involved, it does not lead to a
globally higher breakage rate. This aspect regarding local
breakage probabilities merits further work in the future.

Another important aspect of particle breakage is size
segregation while smaller fragments are generated. We
did not perform a quantitative investigation of this effect
because of its complexity, deserving a minute analysis. This
complexity involves the timescales of the particle breakage
and segregation processes. The breakage events are localized
in some parts of the drum depending on the values of the
parameters, as shown in Fig. 12, but the flow tends to spread
the generated fragments throughout the granular bed, and thus
we observe a nearly homogeneous distribution of damaged
particles as shown in Fig. 6. This is a continuous process
in which because of continuous change of particle sizes no
clear pattern of segregation emerges. Of course, this does not
prove that there is no size segregation at all. For example, we
observe that larger fragments are mostly found at the drum
wall or at the free surface in the last two snapshots of Fig. 6.
In general, particle breakage seems to enhance mixing rather
than segregation. However, more work is needed to quantify
such effects for the range of system parameters investigated in
this paper.

Finally, in this work the influence of wall friction and
roughness was not considered. We believe that the sliding at
the drum wall can be partially eliminated by wall roughness,
as often used in industrial applications. Note that the sliding
at the walls can also occur as a thin shear band even in the
presence of rough walls. This point needs to be investigated
for the whole range of parameters considered in this work.
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