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Abstract

We propose Robust Lasso-Zero, an extension of the Lasso-Zero

methodology [Descloux and Sardy, 2018], initially introduced for sparse

linear models, to the sparse corruptions problem. We give theoreti-

cal guarantees on the sign recovery of the parameters for a slightly

simplified version of the estimator, called Thresholded Justice Pur-

suit. The use of Robust Lasso-Zero is showcased for variable selection
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with missing values in the covariates. In addition to not requiring

the specification of a model for the covariates, nor estimating their

covariance matrix or the noise variance, the method has the great

advantage of handling missing not-at random values without spec-

ifying a parametric model. Numerical experiments and a medical

application underline the relevance of Robust Lasso-Zero in such a

context with few available competitors. The method is easy to use

and implemented in the R library lass0.

Keywords: Lasso-Zero, support recovery, sparse corruptions, incomplete

data, informative missing values
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1 Introduction

Let us consider the widely used framework of sparse linear models for

high dimension,

y = Xβ0 + ε, (1)

where ε ∈ Rn is a (dense) Gaussian noise vector with variance σ2, X has a

number of columns p larger than the number of rows n, and the parame-

ters of interest β0 ∈ Rp is s-sparse (only s out of its p entries are different

from zero). To take into account additional occasional corruptions, the

sparse corruption problem is

y = Xβ0 +
√
nω0 + ε, (2)

where ω0 ∈ Rn is a k-sparse corruption vector; see for instance Chen et al.

[2013a]. Noting that (2) can be rewritten as

y =
[
X
√
nIn

]β0

ω0

+ ε,

the sparse corruption model can be seen as a sparse linear model with

an augmented design matrix and an augmented sparse vector. We are

interested in theoretical guarantees of support recovery for β0 in (2), with

interesting consequences for variable selection with missing covariates.

Related litterature. To recover β0 when ε = 0, several authors proposed

Justice Pursuit (JP), name coined by Laska et al. [2009], by solving

min
β∈Rp,ω∈Rn

‖β‖1 + ‖ω‖1 s.t. y = Xβ +
√
nω, (3)

which is nothing else than the Basis Pursuit (BP) problem, with the aug-

mented matrix
[
X In

]
(modulo the renormalization by

√
n in (3)) [Wright
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et al., 2009]. Wright and Ma [2010] analyzed JP for Gaussian measure-

ments, providing support recovery results when n ' p using cross-polytope

arguments. Besides, Laska et al. [2009] and Li et al. [2010] proved that if the

entries of X are i.i.d. standard Gaussian as well, then the matrix
[
X In

]
satisfies some restricted isometry property with high probability, implying

exact recovery of both β0 and ω0, provided that n & (s+k) log(p). However,

in these works, the sparsity level k of ω0 cannot be fixed to a proportion

of the sample size n. Therefore, Li [2013] and Nguyen and Tran [2013b]

introduced a tuning parameter λ > 0 and solve

min
β∈Rp,ω∈Rn

‖β‖1 + λ‖ω‖1 s.t. y = Xβ + ω. (4)

In a sub-orthogonal or Gaussian design, they both proved exact recovery,

even for a large proportion of corruption.

In the case of sparse (ω0 6= 0) and dense noise (ε 6= 0), Nguyen and Tran

[2013a] proposed to jointly estimate β0 and ω0 by solving

min
β∈Rp,ω∈Rn

1

2
‖y −Xβ − ω‖2

2 + λβ‖β‖1 + λω‖ω‖1. (5)

In the special case where λβ = λω, problem (5) boils down to the Lasso

[Tibshirani, 1996] applied to the response y and the design matrix
[
X In

]
.

Assuming a standard Gaussian design and the invertibility and incoher-

ence properties for the covariance matrix, they obtained sign recovery

guarantee for an arbitrarily large fraction of corruption, provided that n ≥

Ck log(p) log(n). In addition, the required number of samples is proven

to be optimal. More recently in the case of a Gaussian design with an

invertible covariance matrix, Dalalyan and Thompson [2019] obtained an

optimal rate of estimation of β0 when considering an `1-penalized Huber’s

M -estimator, which is actually equivalent to (5) [Sardy et al., 2001].
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Contributions. To estimate the support of the parameter vector β0 in

the sparse corruption problem, we study an extension of the Lasso-Zero

methodology [Descloux and Sardy, 2018], initially introduced for standard

sparse linear models, to the sparse corruptions problem. We provide the-

oretical guarantees on the sign recovery of β0 for a slightly simplified ver-

sion of Robust Lasso-Zero, that we call Thresholded Justice Pursuit (TJP).

These garantees are extensions of recent results on Thresholded Basis Pur-

suit. The first one extends a result of Tardivel and Bogdan [2019], provid-

ing a necessary and sufficient condition for consistent recovery in a setting

where the design matrix is fixed but the nonzero absolute coefficients tend

to infinity. The second one extends a result of Descloux and Sardy [2018],

proving sign consistency for correlated Gaussian designs when p, s and k

grow with n, allowing a positive fraction of corruptions.

Showing that missing values in the covariates can be reformulated into

a sparse corruption problem, we recommand Robust Lasso-Zero for deal-

ing with missing data. For support recovery, this approach requires nei-

ther to specify a model for the covariates or the missing data mechanism,

nor an estimation of the covariates covariance matrix or of the noise vari-

ance, and hence provides a simple method for the user. Numerical experi-

ments and a medical application also underline the effectiveness of Robust

Lasso-Zero with respect to few competitors.

Organization. After defining Robust Lasso-Zero in Section 2, we anal-

yse the sign recovery properties of Thresholded Justice Pursuit in Sec-

tion 2.3. Section 3.1 is dedicated to variable selection with missing values

and the selection of tuning parameters is discussed in Section 3.2. Numer-

ical experiments are presented in Section 4 and an application in Section 5.
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Notation. Define [p] := {1, . . . , p}, and the complement of a subset S ⊂

[p] is denoted S̄. For a matrix A of size u×v and a set T ⊂ [v], we use AT to

denote the submatrix of size n×|T |with columns indexed by T.We define

the missing value indicator matrix M ∈ Rn×p by Mij = 1{XNA
ij =NA}, and the

set of incomplete rows byM := {i ∈ [n] | Mij = 1 for some j ∈ [p]}.

2 Robust Lasso-Zero

2.1 Lasso-Zero in a nutshell

Under linear model (1), Thresholded Basis Pursuit (TBP) estimates β0

by setting the small coefficients of the BP solution to zero. Since BP fits the

observations y exactly, noise is generally overfitted. Lasso-Zero [Descloux

and Sardy, 2018] alleviates this issue by solving repeated BP problems,

respectively fed with the augmented matrices [X|G(k)], whereG(k) ∈ Rn×n,

k = 1, . . . ,M, are different i.i.d. Gaussian noise dictionaries. Hence, some

columns of G(k) can be used to fit the noise term. The obtained estimates

β̂(1), . . . , β̂(M) are then aggregated by taking the component-wise medians,

further thresholded at level τ > 0. Descloux and Sardy [2018] show that

Lasso-Zero tuned by Quantile Universal Thresholding [Giacobino et al.,

2017] achieves a very good trade-off between high power and low false

discovery rate compared to competitors.

2.2 Definition of Robust Lasso-Zero

Robust Lasso-Zero arises by applying Lasso-Zero to Justice Pursuit, in-

stead of Basis Pursuit. Consider the sparse corruption model (2), for which

S0 and T 0 denote the respective supports of β0 and ω0, and s := |S0| and
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k := |T 0| denote their respective sparsity degrees. To fix notation, we then

consider the following parametrization of Justice Pursuit (JP):

(β̂JP
λ , ω̂JP

λ ) ∈ arg min
β∈Rp, ω∈Rn

‖β‖1 + λ‖ω‖1 s.t. y = Xβ +
√
nω. (6)

Renormalization by
√
n balances the augmented design matrix

[
X
√
nIn

]
:

in practice the columns of X are often standardized so that ‖Xj‖2
2 = n for

every j ∈ [p], and this way, all columns of
[
X
√
nIn

]
have same norm.

Robust Lasso-Zero applied to (6) is fully described in Algorithm 1. At-

tention has been drawn to the estimation of the support of β0. However

the estimation of the corruption support is also possible by computing the

corresponding vectors ω̂med
λ and ω̂Rlass0

(λ,τ) , at stages 2) and 3).

Algorithm 1 Robust Lasso-Zero
Given data (y,X), for fixed hyper-parameters λ > 0, τ ≥ 0 and M ∈ N∗ :

1) For k = 1, . . . ,M :

i) generate a matrix G(k) of size n× n with i.i.d. N (0, 1) entries

ii) compute the solution (β̂
(k)
λ , ω̂

(k)
λ , γ̂

(k)
λ ) to the augmented JP problem

(β̂
(k)
λ , ω̂

(k)
λ , γ̂

(k)
λ ) ∈ arg min

β∈Rp, ω∈Rn, γ∈Rn
‖β‖1 + λ‖ω‖1 + ‖γ‖1

s.t. y = Xβ +
√
nω +G(k)γ.

(7)

2) Define the vector β̂med
λ by

β̂med
λ,j := median{β̂(k)

λ,j , k = 1, . . . ,M} for every j ∈ [p].

3) Calculate the estimate β̂Rlass0
(λ,τ) := ητ (β̂

med
λ ), where ητ (x) = x1(τ,+∞)(|x|)

hard-thresholds component-wise.
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Since the minimization problem (7) in Algorithm 1 can be recast as a

linear program, any relevant solver can be used (e.g., proximal methods).

Algorithm 1 includes two hyper-parameters: the regularization parame-

ter λ of (6), and the thresholding parameter τ of the Robust Lasso-Zero

methodology. Their choice in practice is discussed in Section 3.2.

2.3 Theoretical guarantees on Thresholded Justice Pursuit

Discarding the noise dictionaries in Algorithm 1 amounts to thresh-

olding the solution (β̂JP
λ , ω̂JP

λ ) to the Justice Pursuit problem (6). Robust

Lasso-Zero can therefore be regarded as an extension of this simpler esti-

mator, which we call Thresholded Justice Pursuit (TJP):

β̂TJP
(λ,τ) = ητ (β̂

JP
λ ) and ω̂TJP

(λ,τ) = ητ (ω̂
JP
λ ). (8)

We present two results about sign consistency of TJP.

2.3.1 Identifiability as a necessary and sufficient condition for consis-

tent sign recovery

First introduced in Tardivel and Bogdan [2019] for the TBP, we propose

the following extension of the identifiability notion for the TJP.

Definition 1. The pair (β0, ω0) ∈ Rp × Rn is said to be identifiable with re-

spect to X ∈ Rn×p and the parameter λ > 0 if it is the unique solution to

JP (6) when y = Xβ0 +
√
nω0.

It is worth noting that identifiability of (β0, ω0) can be shown to depend

only on sign(β0) and sign(ω0), as highlighted in the following result.
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Lemma 1. The pair (β0, ω0) ∈ Rp × Rn is identifiable with respect to X ∈ Rn×p

and the parameter λ > 0 if and only if for every pair (β, ω) 6= (0, 0) such that

Xβ +
√
nλ−1ω = 0,

| sign(β0)Tβ + sign(ω0)Tω| < ‖βS0‖1 + ‖ωT 0‖1.

Proof. See Appendix A.

In order to show that identifiability is necessary and sufficient for TJP

to consistently recover sign(β0) and sign(ω0), assume that for a fixed matrix

X ∈ Rn×p and a sequence {(β(r), ω(r))}r∈N∗ , the following holds:

(i) there exist sign vectors θ ∈ {1,−1, 0}p and θ̃ ∈ {1,−1, 0}n such that

sign(β(r)) = θ and sign(ω(r)) = θ̃ for every r ∈ N∗,

(ii) limr→+∞min{β(r)
min, ω

(r)
min} = +∞, where βmin := minj∈supp(β) |βj|,

(iii) there exists q > 0 such that min{β(r)
min,ω

(r)
min}

max{‖β(r)‖∞,‖ω(r)‖∞}
≥ q.

These assumptions are similar to the ones of Tardivel and Bogdan [2019].

We use the notation S0 := supp(θ) = supp(β(r)) and T 0 := supp(θ̃) =

supp(ω(r)). We denote by (β̂
JP(r)
λ , ω̂

JP(r)
λ ) the JP solution when y = y(r) :=

Xβ(r) +
√
nω(r) + ε, and (β̂

TJP(r)
(λ,τ) , ω̂

TJP(r)
(λ,τ) ) the corresponding TJP estimates.

Theorem 1. Let λ > 0 and let X be a matrix of size n× p such that for any y ∈

Rn, the solution to JP (6) is unique. Let {(β(r), ω(r))}r∈N∗ be a sequence satisfying

assumptions (i)-(iii) above. If the pair of sign vectors (θ, θ̃) is identifiable with

respect to X and λ, then for every ε ∈ Rn, there exists R = R(ε) > 0 such that

for every r ≥ R there is a threshold τ = τ(r) > 0 for which

sign(β̂
TJP(r)
(λ,τ) ) = θ and sign(ω̂

TJP(r)
(λ,τ) ) = θ̃. (9)

Conversely, if for some ε ∈ Rn and r ∈ N∗ there is a threshold τ > 0 such

that (9) holds, then (θ, θ̃) is identifiable with respect to X and λ.
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Proof. See Appendix A.

Remark 1. One might be interested in recovering the signs of the sparse

corruption. If ω(r) is considered as noise, then only the recovery of sign(β(r))

matters. In this case one could weaken assumptions (ii) and (iii) above by

replacing min{β(r)
min, ω

(r)
min} by β(r)

min, and identifiability of (θ, θ̃) would be suf-

ficient for recovering sign(β0). However, recovery of both sign(β(r)) and

sign(ω(r)) is needed for proving necessity of identifiability.

Identifiability of sign vectors is necessary and sufficient for sign recov-

ery when the nonzero coefficients are large. However, Theorem 1 does not

provide a lower bound indicating how large these coefficients should scale

to be correctly detected. In the next section, we make this explicit in par-

ticular for (correlated) Gaussian designs and prove that sign consistency

holds, allowing p, s and k to grow with the sample size n.

2.3.2 Sign consistency of TJP for correlated Gaussian designs

We make the following assumptions:

(iv) the rows of X ∈ Rn×p (with n < p) are random and i.i.d. N (0,Σ);

(v) The smallest eigenvalue of the covariance matrix Σ is assumed to be

positive: λmin(Σ) > 0,

(vi) the variance of the covariates is equal to one: Σii = 1 for every i ∈ [p];

(vii) the noise is assumed to be Gaussian: ε ∼ N (0, σ2In).

Assumptions (iv) and (v) imply that almost surely rankX = n.
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Theorem 2. Under Assumptions (iv)-(vii), choosing λ = 1√
log p

ensures with

probability greater than 1 − ce−c′n − 1.14−n − 2e−
1
8

(
√
p−
√
n)2 , that there exists a

value of τ > 0 such that

sign(β̂TJP
(λ,τ)) = sign(β0),

provided that

n ≥ C
κ(Σ)

λmin(Σ)
s log p, (10)

n

k
≥ max

{
1

C ′
,
κ(Σ)

C ′′

}
, (11)

β0
min >

10
√

2 max{1, λ}σ
√
p+ n(

λmin(Σ)
4

(
√
p/n− 1)2 + 1

)1/2
, (12)

where κ(Σ) := λmax(Σ)
λmin(Σ)

is the conditioning number of Σ, and C,C ′, C ′′ are some

numerical constants with C ≥ 1442.

Proof. See Appendix B.

Theorem 2 ensures that, for correlated Gaussian designs and signal-

to-noise ratios high enough, TJP successfully recovers sign(β0) with high

probability, even with a positive fraction of corruptions. As a consequence,

if Σ is well-conditioned, (i.e. the eigenvalues of Σ are bounded: 0 < γ1 ≤

λmin(Σ) ≤ λmax(Σ) ≤ γ2) and p/n → δ > 1, TJP achieves sign consis-

tency provided that n = Ω(s log p), k = O(n) and β0
min = Ω(

√
n). The

lower-bound required on β0
min in Theorem 2 is of the same order as the one

required for TBP in Descloux and Sardy [2018]. One can remark that the

analysis of TJP in the sparse corruption setting makes the condition num-

ber of Σ come into play in the lower-bounds required on n and k. This

quantity seems natural to arise in the sparse corruption problem helping

discriminating design instability from corruptions.



Model selection with missing covariates 12

3 Model selection with missing covariates

In practice the matrix of covariates X is often partially known due to

manual errors, poor calibration, insufficient resolution, etc., and one only

observes an incomplete matrix, denoted XNA.

Theoretical guarantees of estimation strategies or imputation methods

rely on assumptions regarding the missing-data mechanism, i.e. the cause

of the lack of data. Three missing-data mechanisms have been introduced

by Rubin [1976]: the restrictive assumptions of data (a) missing completely

at random (MCAR), and (b) missing at random (MAR), where the missing

data may only depend on the observed variables, and (c) the more general

assumption of data missing not at random (MNAR), when data missing-

ness depends on the values of other variables, but also on its own value.

Complete case analysis, which discards all incomplete rows, is the most

common method for facing missing values in applications. Additionally

to the induced estimation bias (especially under the MNAR missing mech-

anism (c)), with high-dimensional data this procedure has the big disad-

vantage that missingness of a single entry causes the loss of an entire row,

which contains a lot of information when p is large.

High dimensional variable selection with missing values turns out to

be a challenging problem and very few solutions are available, not to men-

tion implementations. Available solutions either require strong assump-

tions on the missing value mechanism, a lot of parameters tuning or strong

assumption on the covariates distribution which is hard in high dimen-

sions. They include the Expectation-Maximization algorithm [Dempster

et al., 1977] for sparse linear regression [Garcia et al., 2010] and regression

imputation methods [Van Buuren, 2018]. A method combining penalized

regression techniques with multiple imputation and stability selection has
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been developed [Liu et al., 2016]. Yet, aggregating different models for

the resulting multiple imputed data sets becomes increasingly complex as

the number of data grows. Rosenbaum et al. [2013] modified the Dantzig

selector by using a consistent estimation of the design covariance matrix.

Following the same idea, Loh and Wainwright [2012] and Datta and Zou

[2017] reformulated the Lasso also using an estimate of the design covari-

ance matrix, possibly resulting in a non-convex problem. Chen and Cara-

manis [2013] presented a variant of orthogonal matching pursuit which

recovers the support and achieves the minimax optimal rate. Jiang et al.

[2019] proposed Adaptive Bayesian SLOPE, combining SLOPE and Spike-

and-Slab Lasso. While some of these methods have interesting theoretical

guarantees, they all require an estimation of the design covariance matrix,

which is often obtained under the restrictive MCAR assumption.

3.1 Relation to the sparse corruption model

To tackle the problem of estimating the support when the design ma-

trix is incomplete, we suggest an easy-to-implement solution for the user,

which consists in imputing the missing entries in XNA with the imputa-

tion of his choice to get a completed matrix X̃ , and to take into account the

impact of the possibly occasional poor imputation as follows. Given the

matrix X̃ , the linear model (1) can be rewritten in the form of the sparse

corruption model (2), where ω0 := 1√
n
(X − X̃)β0 is the (unknown) corrup-

tion due to imputations. In classical (i.e. non-sparse) regression, one could

not say much about ω0 without any prior knowledge of the distribution of

the covariates or the missing data mechanism. Since the key point here is

that when β0 is sparse, then so is ω0, even if all rows of the design matrix
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contain missing entries. Indeed, for every i ∈ [n],

ω0
i =

1√
n

p∑
j=1

(Xij − X̃ij)β
0
j =

1√
n

∑
j∈S0

(Xij − X̃ij)β
0
j , (13)

so ω0
i is nonzero only if the ith row of XNA contains missing value(s) on

the support S0, since (Xij − X̃ij) = 0 if Xij is observed. So the problem

of missing covariates can be rephrased as a sparse corruption problem,

as already pointed out in Chen et al. [2013b]. We propose to use Robust

Lasso-Zero presented in Section 2.2, which comes with strong theoretical

guarantees, to tackle this sparse corruption reformulation, see Algorithm2.

Note that if the ith row of X is fully observed, then ω0
i = 0 by (13). Thus

the dimension of ω0 can be reduced by restricting it to the incomplete rows

of XNA. The corruption vector ω0 is now of size |M| and (2) becomes

y = Xβ0 +
√
nIMω

0 + ε. (14)

Algorithm 2 Robust Lasso-Zero for missing data
Given data (y,XNA), for fixed hyper-parameters λ > 0, τ ≥ 0 and M ∈ N∗:

1) Impute XNA and rescale the imputed matrix X such that all columns

have Euclidean norm equal to
√
n.

2) Run Algorithm 1 with the design matrix X .

3.2 Selection of tuning parameters

Algorithm 2 required selection of two hyper-parameters. Under the

null model, no sparse corruption exists: indeed if β0 = 0, so is ω0 since

ω0 = 1√
n
(X − X̃)β0 = 0. This property allows us to opt for the Quantile
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Universal Threshold (QUT) methodology [Giacobino et al., 2017], gener-

ally driven by model selection rather than prediction.

QUT selects the tuning parameter so that under the null model (β0 =

0), the null vector β̂ = 0 is recovered with probability 1 − α. Under the

null model, y = ε whatever the missing data pattern is. Then given a fixed

value of λ and a fixed imputed matrix X̃ , the corresponding QUT value

of τ is the upper α-quantile of ‖β̂med
λ (ε)‖∞, where β̂med

λ (ε) is the vectors

of medians obtained at stage 2) of Algorithm 1 applied to X̃ and y = ε.

To free ourselves from preliminary estimation of the noise level σ, we ex-

ploit the noise coefficients γ̂(k) of Robust Lasso-Zero to pivotize the statistic

‖β̂med
λ (ε)‖∞, as explained in Descloux and Sardy [2018].

For every λ > 0, there is a pair of QUT parameters (λ, τQUT
α (y;λ)) at

level α. The remaining question is how to choose λ. For a fair isotropic

penalty on β, ω and γ, we fix λ = 1.

4 Numerical experiments

We evaluate the performance of Robust-Lasso Zero when missing data

affect the design matrix. The code reproducing these experiments is avail-

able at https://github.com/pascalinedescloux/robust-lasso-zero-NA.

4.1 Simulation settings

Simulation scenarios. We generate data according to model (1) with the

covariates matrix obtained by drawing n = 200 observations from a Gaus-

sian distributionN (0,Σ), whereΣ ∈ R200×200 is a Toeplitz matrix, such that

Σij = ρ|i−j|; the variance of the noise σ = 0.5 and the coefficient β0 are

drawn uniformly from {±1}. We vary the following parameters:

https://github.com/pascalinedescloux/robust-lasso-zero-NA
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• Correlation structures indexed by ρ with ρ = 0 (uncorrelated) and

ρ = 0.75 (correlated);

• Sparsity degrees indexed by s with s ∈ {3, 10}.

Before generating the response vector y, all columns ofX are mean-centered

and standardized; Missing data are then introduced inX according to two

different mechanisms, MCAR or MNAR, and in two different proportions.

Any entry of X is missing according to the following logistic model

P(XNA
ij = NA | Xij = x) =

1

1 + e−a|x|−b
,

where a ≥ 0 and b ∈ R. Choosing a = 0 yields MCAR data, whereas a = 5

leads to MNAR setting in which high absolute entries are more likely to be

missing. For a fixed a, the value of b is chosen so that the overall average

proportion of missing values is π, with π = 5% and π = 20%.

Two sets of simulations are run. The first one is “s-oracle”, meaning

that the tuning parameters of the different methods are chosen so that the

estimated support has correct size s. In the second set, no knowledge of

s, β0 or σ is provided.

Estimators considered. We compare the following estimators:

• Rlass0: the Robust Lasso-Zero described in Algorithm 2 using M

equal to 30. The tuning parameters are obtained using λ = 1 and

selecting τ by quantile universal threshold (QUT) at level α = 0.05.

• lass0: the Lasso-Zero proposed in Descloux and Sardy [2018]. The

automatic tuning is performed by QUT, at level α = 0.05.

• lasso: the Lasso [Tibshirani, 1996] performed on the mean-imputed

matrix whre the regularization parameter is tuned by cross-validation.
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• NClasso: the nonconvex `1 estimator of Loh and Wainwright [2012].

It is only included under the s-oracle setting, as selection of the tun-

ing parameter in practice is not discussed in their work.

• ABSLOPE: Adaptive Bayesian SLOPE of Jiang et al. [2019].

Performance evaluation. The performance of each estimator is assessed

in terms of the following criteria, averaged over 100 replications:

• the Probability of Sign Recovery (PSR), PSR = P(sign(β̂)= sign(β0)),

• the signed True Positive Rate (sTPR), where s-TPR = E(s-TPP) with

s-TPP :=
|{j | β0

j > 0, β̂j > 0}|+ |{j | β0
j < 0, β̂j < 0}|

|S0|
, (15)

which is the proportion of nonzero coefficients whose sign is cor-

rectly identified;

• the signed False Discovery Rate (sFDR): s-FDR = E(s-FDP) with

s-FDP :=
|Ŝ| − |{j | β0

j > 0, β̂j > 0}| − |{j | β0
j < 0, β̂j < 0}|

max{1, |Ŝ|}
, (16)

which is the proportion of incorrect signs among all discoveries.

4.2 Results

4.2.1 With s-oracle hyperparameter tuning

Under the s-oracle tuning, an s-TPP (15) of one means that the signs

of β0 are exactly recovered, and the s-TPP is related to the s-FDP (16)

through s-FDP = 1 − s-TPP. That is why, in Figure 1, only the average

s-TPP and the estimated probability of sign recovery are reported.
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Small missingness – High sparsity (5% of NA and s = 3). In the non-

correlated case, in Figure 1 (a) and (c), MCAR and MNAR results are sim-

ilar across methods. With correlation, in Figure1 (b) and (d), Rlass0 im-

proves PSR and sTPR, specially with MNAR data.

Increasing missingness – High sparsity (20% of NA and s = 3). The

benefit of Rlass0 is noticeable when increasing the percentage of missing

data to 20%, for both performance indicators. Indeed, with no correla-

tion (Figure 1 (a)(c)(bottom left)), the improvement is clear when dealing

with MNAR. With correlation (Figure 1 (b)(d)(bottom left)), Rlass0 outper-

forms the other methods: while the improvement can be marginal when

compared to lass0 for MCAR, it becomes significant for MNAR.

Lower sparsity (s = 10). The performance of all estimators tends to de-

teriorate. One can identify two groups of estimators: Rlass0 and lass0

generally outperforms lasso and NClasso, except with a high proportion

(20%) of MNAR missing data for which they all behave the same. While

comparable when s = 10, Rlass0 proves to be better than lass0 in the case

of a small proportion of MNAR missing data (5%).

4.2.2 With automatic hyperparameter tuning

Figures 2 and 3 point to the poor performance of lasso in terms of PSR

for all experimental settings. The automatic tuning, being done by cross-

validation, is known to lead to support overestimation. Indeed, its very

good performance in sTPR is made at the cost of a very high sFDR.

Small missingness – High sparsity (5% of NA and s = 3). In Figures

2(a)(top left) and 3(a)(c)(top left), for the non-correlated case, Rlass0, lass0
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Figure 1: PSR and s-TPR with an s-oracle tuning, for sparsity levels , s = 3

and s = 10 (subplots columns), proportions of missing values 5% or 20%

(subplots rows), and two missing data mechanisms (MCAR vs MNAR).
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and ABSlope performs very well, providing a PSR and s-TPR of one, and a

s-FDR of zero, either when dealing with MCAR or MNAR data (the lasso

being already out of the game). In Figures 2(b)(top left) and 3(b)(d)(top

left), adding correlation in the design matrix seems beneficial for ABSlope,

at the price of high FDR, however.

Increasing missingness – High sparsity (20% of NA and s = 3). With

no correlation, one sees in Figure 2(a)(bottom left) that Rlass0 provides the

best PSR, whatever the type of missing data is. One could also note that the

performances in terms of PSR of either lass0 or ABSLOPE are extremely

variable depending on the type of missing data (MCAR or MNAR) con-

sidered: the PSR of lass0 is comparable to the one of Rlass0 when facing

MCAR data and is much lower than the one of Rlass0 when facing MNAR

data; the converse is true for ABSLOPE.

Regarding the s-TPR and s-FDR results in Figure 3 (a-d)(bottom left),

the following observations hold in both correlated or non-correlated cases:

(i) With MCAR data, all the methods behave similarly in terms of s-

TPR, identifying correctly signs and coefficient locations in the sup-

port of β0, see Figure 3(a)(b)(bottom left);

(ii) With MNAR data, lasso and ABSLOPE remain stable in terms of s-

TPR, providing an s-TPR of one, whereas the s-TPR of Rlass0 deterio-

rates (to 0.6 and 0.5 respectively for the non-correlated and correlated

cases), and even worse for lass0, see Figure 3(a)(b)(bottom left);

(iii) Lasso and ABSLOPE lead to high s-FDR, while lass0 and Rlass0 al-

ways give the best s-FDR, see Figure 3(c)(d)(bottom left).
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(a) PSR in the non-correlated case (b) PSR in the correlated case

Figure 2: PSR with automatic tuning, for sparsity levels s = 3 and s = 10

(subplots columns), proportions of missing values 5% or 20% (subplots

rows), and two missing data mechanisms (MCAR vs MNAR).

Lower sparsity (s = 10). For low missingness (5%), see Figure 2 (a)(b)

(top right), ABSLOPE gives high PSR. In terms of s-TPR, lasso and ABS-

LOPE have high TPR. Moreover Rlass0 improves s-TPR compared to lass0

specially for a small proportion of MNAR missing data. In terms of s-

FDR, lass0 and Rlass0 bring very low s-FDR, proving their FDR stability

with respect to MCAR/MNAR data, and correlation.

4.2.3 Summary and discussion

The results of experiments with s-oracle tuning (Section 4.2.1) show

that Robust Lasso-Zero performs better than competitors for sign recovery,

and is more robust to MNAR data compared to its nonrobust counterpart
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Figure 3: s-FDR and s-TPR with automatic tuning, for sparsity levels s = 3

and s = 10 (subplots columns), proportions of missing values 5% or 20%

(subplots rows), and two missing data mechanisms (MCAR vs MNAR).
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when the sparsity index and/or proportion of missing entries is low. In

particular, Robust Lasso-Zero performs better than NClasso, one of the

rare existing `1-estimator designed to handle missing values.

While not designed to handle MNAR data, ABSLOPE appears to be

a valid competitor in terms of s-TPR or PSR when the model complexity

increases, and when dealing with MNAR data. Its poor performance in

FDR in such settings reveals its tendency to overestimate the support of β0,

under higher sparsity degrees, and with informative MNAR missing data.

With automatic tuning (Section 4.2.2), Robust Lasso-Zero is the best

method overall. Moreover, our results show that the choice of Robust

Lasso-Zero tuned by QUT, with its low s-FDR, is particularly appropriate

in cases where one wants to maintain a low proportion of false discoveries.

5 Application to the Traumabase dataset

We illustrate our approach on the public health APHP (Assistance Publique

Hopitaux de Paris) TraumaBase R© Group for traumatized patients. Effec-

tive and timely management of trauma is crucial to improve outcomes, as

delays or errors entail high risks for the patient.

In our analysis, we focuse on one specific challenge: selecting a sparse

model from data containing missing covariates in order to explain the

level of platelet. This model can aid creating an innovative response to

the public health challenge of major trauma. Explanatory variables for the

level of platelet consist in fifteen quantitative variables containing missing

values, which have been selected by doctors. They give clinical measure-

ments on 490 patients. In Figure 4, one sees the percentage of missing

values in each variable, varying from 0 to 45% and leading to 20% is the
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Figure 4: Percentage of missing values in the Traumbase dataset.

Variable Rlass0 lass0 lasso ABSLOPE

Age − 0 − −

SI 0 0 0 −

Delta.hemo 0 0 0 +

Lactates 0 0 0 +

Temperature 0 0 0 +

VE − 0 − 0

RBC − 0 0 −

DBP.min 0 0 − +

HR.max 0 0 − 0

SI.amb 0 0 0 +

Table 1: Sign of estimated effects on the platelet for Rlass0, lass0, lasso or

ABSLOPE. Variables not shown here are not selected by any method.
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whole dataset. Based on discussions with doctors, some variables may

have informative missingness (M(N)AR variables). Both percentage and

nature of missing data demonstrate the importance of taking appropriate

account of missing data. More information can be found in Appendix C.

We compare Robust Lasso-Zero to Lasso-Zero, Lasso and ABSLOPE.

The signs of the coefficients are shown in Table 1. Lass0 does not select

any variable, whereras its robust counterpart selects three. According to

doctors, Robust Lasso-Zero is the most coherent. Indeed, a negative ef-

fect of age (Age), vascular filling (VE) and blood transfusion (RBC) was

expected, as they all result in low platelet levels and therefore a higher

risk of severe bleeding. Lasso similarly selects Age and VE, but also min-

imum value of diastolic blood pressure DBP.min and the maximum heart

rate HR.max. The effect of DBP.min is not what doctors expected. For

ABSLOPE, the effects on platelets of delta Hemocue (Delta.Hemocue), the

lactates (Lactates), the temperature (Temperature) and the shock index mea-

sured on ambulance (SI.amb), at odds with the effect of the shock index at

hospital (SI), are not in agreement with the doctors opinion either.

A Proof of Theorem 1

Lemma 1 implies that under the sign invariance assumption (i), identi-

fiability of (β(r), ω(r)) is equivalent to identifiability of (θ, θ̃).

Proof of Lemma 1. Note that (β̂JP
λ , ω̂JP

λ ) is a solution to JP (6) if and only if

(β̂JP
λ , ω̂JP

λ ) = (β̃, λ−1ω̃), where (β̃, ω̃) is a solution to

min
(β, ω)∈Rp×Rn

‖β‖1 + ‖ω‖1 s.t. y = Xβ +
√
nλ−1ω. (17)

So (β0, ω0) is identifiable with respect to X and λ > 0 if and only if the pair
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(β0, λω0) is the unique solution of (17) when y = Xβ0 +
√
nω0. But (17)

is just Basis Pursuit with response vector y ∈ Rn and augmented matrix[
X
√
nλ−1In

]
, so by a result of Daubechies et al. [2010] this is the case if

and only if for every (β, ω) 6= (0, 0) such that Xβ +
√
nλ−1ω = 0, we have

| sign(β0)Tβ + sign(ω0)Tω| < ‖βS0‖1 + ‖ωT 0‖1, which proves our statement.

We will need the following auxiliary lemma.

Lemma 2. Under assumptions (i) and (ii), if the pair (θ, θ̃) is identifiable with

respect to X and λ, then for any ε ∈ Rn,

lim
r→+∞

1

ur

β̂JP(r)
λ − β(r)

ω̂
JP(r)
λ − ω(r)

 =

0

0

 ,
where ur := ‖β(r)‖1 + λ‖ω(r)‖1.

Proof. First note that by assumption (ii), limr→+∞ ur = +∞.Now let ε ∈ Rn

and denote by (β̂JP
λ (ε), ω̂JP

λ (ε)) the JP solution when y = ε. In particular, one

has ε = Xβ̂JP
λ (ε) +

√
nω̂JP

λ (ε), so for every r ∈ N∗,

y(r) = X(β(r) + β̂JP
λ (ε)) +

√
n(ω(r) + ω̂JP

λ (ε)).

Hence (β(r) + β̂JP
λ (ε), ω(r) + ω̂JP

λ (ε)) is feasible for JP when y = y(r), so

‖β̂JP(r)
λ ‖1 + λ‖ω̂JP(r)

λ ‖1

ur

≤ ‖β
(r) + β̂JP

λ (ε)‖1 + λ‖ω(r) + ω̂JP
λ (ε)‖1

ur

≤ (‖β(r)‖1 + λ‖ω(r)‖1) + (‖β̂JP
λ (ε)‖1 + λ‖ω̂JP

λ (ε)‖1)

ur

= 1 +
‖β̂JP

λ (ε)‖1 + λ‖ω̂JP
λ (ε)‖1

ur
.

(18)
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Therefore

1

ur
(‖β̂JP(r)

λ − β(r)‖1 + λ‖ω̂JP(r)
λ − ω(r)‖1)

≤ 1

ur
((‖β(r)‖1 + λ‖ω(r)‖1) + (‖β̂JP(r)

λ ‖1 + λ‖ω̂JP(r)
λ ‖1))

= 1 +
‖β̂JP(r)

λ ‖1 + λ‖ω̂JP(r)
λ ‖1

ur

≤ 2 +
‖β̂JP

λ (ε)‖1 + λ‖ω̂JP
λ (ε)‖1

ur
,

(19)

using (18) for last inequality. Since limr→+∞
‖β̂JP
λ (ε)‖1+λ‖ω̂JP

λ (ε)‖1
ur

= 0, and

since

β
ω

 7→ ‖β‖1 + λ‖ω‖1 defines a norm on Rp+n, one deduces that the

sequence 1
ur

β̂JP(r)
λ − β(r)

ω̂
JP(r)
λ − ω(r)

 is bounded. Therefore we need to check that

every convergent subsequence converges to zero. Let

1

uφ(r)

β̂JP(φ(r))
λ − β(φ(r))

ω̂
JP(φ(r))
λ − ω(φ(r))


(with φ : N∗ → N∗ strictly increasing) be an arbitrary convergent subse-

quence. Since
‖β(r)‖1 + λ‖ω(r)‖1

ur
= 1 (20)

for every r, and by (18), the sequences 1
ur

β(r)

ω(r)

 and 1
ur

β̂JP(r)
λ

ω̂
JP(r)
λ

 are bounded

as well. Hence without loss of generality (otherwise, reduce the subse-

quence),

lim
r→+∞

1

uφ(r)

β(φ(r))

ω(φ(r))

 =

ν1

ν2

 , (21)

and

lim
r→+∞

1

uφ(r)

β̂JP(φ(r))
λ

ω̂
JP(φ(r))
λ

 =

ν ′1
ν ′2

 (22)
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for some

ν1

ν2

 ,
ν ′1
ν ′2

 ∈ Rp+n. By (20), one necessarily has

‖ν1‖1 + λ‖ν2‖1 = 1, (23)

and (18) implies that

‖ν ′1‖1 + λ‖ν ′2‖1 ≤ 1. (24)

Now

lim
r→+∞

X(β̂
JP(r)
λ − β(r)) +

√
n(ω̂

JP(r)
λ − ω(r))

ur
= lim

r→+∞

y(r) − (Xβ(r) +
√
nω(r))

ur

= lim
r→+∞

ε

ur
= 0,

so one deduces that

lim
r→+∞

[
X
√
nIn

]β̂JP(φ(r))
λ /uφ(r)

ω̂
JP(φ(r))
λ /uφ(r)

 = lim
r→+∞

[
X
√
nIn

]β(φ(r))/uφ(r)

ω(φ(r))/uφ(r)

 ,
so by (21) and (22),

[
X
√
nIn

]ν ′1
ν ′2

 =
[
X
√
nIn

]ν1

ν2

 . (25)

Assuming for now that (ν1, ν2) is identifiable with respect to X and λ,

equality (25) together with (23) and (24) imply that

ν ′1
ν ′2

 =

ν1

ν2

 , hence

lim
r→+∞

1

uφ(r)

β̂JP(φ(r))
λ − β(φ(r))

ω̂
JP(φ(r))
λ − ω(φ(r))

 =

ν ′1
ν ′2

−
ν1

ν2

 =

0

0

 .
It remains to check that (ν1, ν2) is identifiable with respect to X and λ,

which we will do using Lemma 1. Note that (21) and assumption (i) imply

sign(ν1) = θ − θ′, (26)

sign(ν2) = θ̃ − θ̃′, (27)
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where θ′j := θj1{ν1,j=0,θj 6=0}, and θ̃′j = θ̃j1{ν2,j=0,θ̃j 6=0}, and hence

supp(ν1) = supp(θ) t supp(θ′) = S0 t supp(θ′), (28)

supp(ν2) = supp(θ̃) t supp θ̃′ = T 0 t supp θ̃′. (29)

Consider a pair (β, ω) 6= (0, 0) such thatXβ+
√
nλ−1ω = 0. By (26) and (27),

| sign(ν1)Tβ + sign(ν2)Tω| = |(θ − θ′)Tβ + (θ̃ − θ̃′)Tω|

≤ |θTβ + θ̃Tω|+ |(θ′)Tβ|+ |(θ̃′)Tω|.
(30)

But since (θ, θ̃) is identifiable with respect to X and λ, Lemma 1 implies

|θTβ + θ̃Tω| < ‖βS0‖1 + ‖ωT 0‖1. Plugging this into (30) gives

| sign(ν1)Tβ + sign(ν2)Tω| < ‖βS0‖1 + ‖ωT 0‖1 + |(θ′)Tβ|+ |(θ̃′)Tω|

≤ ‖βS0‖1 + ‖βsupp(θ′)‖1 + ‖ωT 0‖1 + ‖ωsupp(θ̃′)‖1

= ‖βsupp(ν1)‖1 + ‖ωsupp(ν2)‖1,

where the equality comes from (28) and (29). By Lemma 1, one concludes

that (ν1, ν2) is identifiable with respect to X and λ.

Proof of Theorem 1. Let us assume that (θ, θ̃) is identifiable with respect to

X and λ, and let ε ∈ Rn. By Lemma 2,

lim
r→+∞

1

ur

β̂JP(r)
λ − β(r)

ω̂
JP(r)
λ − ω(r)

 =

0

0

 . (31)

Since

min{1, λ}max{‖β(r)‖∞, ‖ω(r)‖∞} ≤ ur ≤ (|S0|+λ|T 0|) max{‖β(r)‖∞, ‖ω(r)‖∞},

(31) is equivalent to limr→+∞
1

max{‖β(r)‖∞,‖ω(r)‖∞}

β̂JP(r)
λ − β(r)

ω̂
JP(r)
λ − ω(r)

 =

0

0

 . There-

fore there exists R > 0 such that for every r ≥ R,

‖β̂JP(r)
λ − β(r)‖∞ <

q

2
max{‖β(r)‖∞, ‖ω(r)‖∞} (32)
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and

‖ω̂JP(r)
λ − ω(r)‖∞ <

q

2
max{‖β(r)‖∞, ‖ω(r)‖∞}. (33)

Setting τ := q
2

max{‖β(r)‖∞, ‖ω(r)‖∞}, (32) implies that |β̂JP(r)
λ,j | < τ for ev-

ery j /∈ S0, hence β̂TJP(r)
(λ,τ),j = 0. If j ∈ S0, assumption (iii) implies

|β(r)
j | ≥ β

(r)
min ≥ 2τ, (34)

and by (32), we have

|β̂JP(r)
λ,j − β(r)

j | < τ, (35)

so (34) and (35) together imply |β̂JP(r)
λ,j | > τ and sign(β̂

JP(r)
λ,j ) = sign(β

(r)
j ).

So we conclude that sign(β̂
TJP(r)
(λ,τ) ) = sign(β(r)). Analogously, (33) implies

sign(ω̂
TJP(r)
(λ,τ) ) = sign(ω(r)).

Conversely, let us assume that for some ε ∈ Rn, r ∈ N∗ and τ > 0,

sign(β̂
TJP(r)
(λ,τ) ) = θ, sign(ω̂

TJP(r)
(λ,τ) ) = θ̃. (36)

Note that the JP solution (β̂
JP(r)
λ , ω̂

JP(r)
λ ) is unique by assumption, hence

(β̂
JP(r)
λ , ω̂

JP(r)
λ ) is identifiable with respect to X and λ. Now by (36), all

nonzero components of θ and θ̃ must have the same sign as the corre-

sponding entries of β̂JP(r)
λ and ω̂

JP(r)
λ respectively. Hence

θ = sign(θ) = sign(β̂
JP(r)
λ )− δ,

θ̃ = sign(θ̃) = sign(ω̂
JP(r)
λ )− δ̃,

(37)

where δj = sign(β̂
JP(r)
λ,j )1{β̂JP(r)

λ,j 6=0,θj=0} and δ̃i = sign(ω̂
JP(r)
λ,i )1{ω̂JP(r)

λ,i 6=0,θ̃i=0},

and
S0 = supp(θ) = supp(β̂

JP(r)
λ ) t supp(δ)

T 0 = supp(θ̃) = supp(ω̂
JP(r)
λ ) t supp(δ̃).

(38)
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In order to apply Lemma 1, let us consider a pair (β, ω) 6= (0, 0) such that

Xβ +
√
nλ−1ω = 0. By (37), one has

|θTβ + θ̃Tω| = | sign(β̂
JP(r)
λ )Tβ − δTβ + sign(ω̂

JP(r)
λ )Tω − δ̃Tω|

≤ | sign(β̂
JP(r)
λ )Tβ + sign(ω̂

JP(r)
λ )Tω|+ |δTβ|+ |δ̃Tω|

≤ ‖β
supp(β̂

JP(r)
λ )
‖1 + ‖ω

supp(ω̂
JP(r)
λ )
‖1 + ‖βsupp(δ)‖1 + ‖ωsupp(δ̃)‖1

= ‖βS0‖1 + ‖ωT 0‖1,

where we have used Lemma 1 and the fact that (β̂
JP(r)
λ , ω̂

JP(r)
λ ) is identi-

fiable with respect to X and λ in the last inequality, and (38) for the last

equality. Lemma 1 concludes our proof.

B Proof of Theorem 2

Proof of Theorem 2. We define X̃ :=
[
X
√
nIn

]
, and ν̃ =

β̃
ω̃

 := X̃T (X̃X̃T )−1ε.

We will assume for now that the following properties hold.

a) Every pair (β, ω) such that Xβ +
√
nω = 0 satisfies

‖βS0‖1 + λ‖ωT 0‖1 ≤
1

3
(‖βS0‖1 + λ‖ωT 0‖1),

b) ‖ν̃‖2 ≤
√

2σ(
λmin(Σ)

4
(
√
p/n−1)2+1

)1/2 .

Since X̃ν̃ = Xβ̃ +
√
nω̃ = ε, one can rewrite model (2) as

y = X(β0 + β̃) +
√
n(ω0 + ω̃).

By property a) and Lemma 3 below, one has

‖β̂JP
λ − (β0 + β̃)‖1 + λ‖ω̂JP

λ − (ω0 + ω̃)‖1 ≤ 4(‖β̃S0‖1 + λ‖ω̃T 0‖1), (39)
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and therefore ‖β̂JP
λ − (β0 + β̃)‖1 ≤ 4(‖β̃‖1 + λ‖ω̃‖1). Consequently, for any

j ∈ [p] one has

|β̂JP
λ,j − β0

j | ≤ |β̂JP
λ,j − (β0

j + β̃j)|+ |β̃j| ≤ ‖β̂JP
λ − (β0 + β̃)‖1 + ‖β̃‖1

≤ 4(‖β̃‖1 + λ‖ω̃‖1) + ‖β̃‖1 ≤ 5(‖β̃‖1 + λ‖ω̃‖1)

≤ 5 max{1, λ}(‖β̃‖1 + ‖ω̃‖1) = 5 max{1, λ}‖ν̃‖1

≤ 5 max{1, λ}
√
p+ n‖ν̃‖2 ≤

5
√

2 max{1, λ}σ
√
p+ n

(λmin(Σ)
4

(
√
p/n− 1)2 + 1)1/2

where we have used property b) in the last inequality. Now setting

τ :=
5
√

2 max{1, λ}σ
√
p+ n

(λmin(Σ)
4

(
√
p/n− 1)2 + 1)1/2

,

one gets

|β̂JP
λ,j − β0

j | ≤ τ (40)

for every j ∈ [p]. If j ∈ S0, we have |β̂JP
λ,j| ≤ τ, hence β̂TJP

(λ,τ),j = 0. If

j ∈ S0, assumption (12) implies |β0
j | > 2τ, which together with (40) gives

sign(β̂TJP
(λ,τ),j) = sign(β0

j ).

It remains to prove that properties a) and b) hold with high probability.

First, Lemma 1 in Nguyen and Tran [2013a], implies that with probability

greater than 1− ce−c′n the matrix X satisfies the extended restricted eigen-

value property

‖βS0‖1 + λ‖ωT 0‖1 ≤ 3(‖βS0‖1 + λ‖ωT 0‖1)

⇓
1

n
‖Xβ +

√
nω‖2

2 ≥ γ2(‖β‖2
2 + ‖ω‖2

2),

(41)

with γ2 = min{λmin(Σ),1}
162 . Property (41) clearly implies a). Finally, Lemma 4

below proves that b) holds with probability at least 1−1.14−n−2e−
1
8

(
√
p−
√
n)2
,

which concludes our proof.
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Lemma 3. Assume that for some sets S0 ⊂ [p] and T 0 ⊂ [n], and some constant

ρ ∈ (0, 1), the matrix X ∈ Rn×p satisfies

‖βS0‖1 + λ‖ωT 0‖1 ≤ ρ(‖βS0‖1 + λ‖ωT 0‖1), (42)

for every pair (β, ω) ∈ Rp × Rn such that Xβ +
√
nω = 0. Then for every pair

(β̃, ω̃) ∈ Rp×Rn, the solution (β̂JP
λ , ω̂JP

λ ) to JP (6) with y = Xβ̃+
√
nω̃ satisfies

‖β̂JP
λ − β̃‖1 + λ‖ω̂JP

λ − ω̃‖1 ≤
2(1 + ρ)

1− ρ
(‖β̃S0‖1 + λ‖ω̃T 0‖1).

Proof. This proof is a simple extension of the one of Theorem 4.14 in Fou-

cart and Rauhut [2013]. Let us consider y = Xβ̃+
√
nω̃ for an arbitrary pair

(β̃, ω̃), and define β′ := β̂JP
λ − β̃ and ω′ := ω̂JP

λ − ω̃. Clearly Xβ′+
√
nω′ = 0,

so by (42),

‖β′S0‖1 + λ‖ω′T 0‖1 ≤ ρ(‖β′
S0‖1 + λ‖ω′

T 0‖1). (43)

We also have

‖β̃‖1 + λ‖ω̃‖1 = ‖β̃S0‖1 + ‖β̃S0‖1 + λ(‖ω̃T 0‖1 + ‖ω̃T 0‖1)

= ‖β̂JP
λ,S0 − β′S0‖1 + ‖β̃S0‖1 + λ(‖ω̂JP

λ,T 0 − ω′T 0‖1 + ‖ω̃T 0‖1)

≤ ‖β̂JP
λ,S0‖1 + ‖β′S0‖1 + ‖β̃S0‖1 + λ(‖ω̂JP

λ,T 0‖1 + ‖ω′T 0‖1 + ‖ω̃T 0‖1),

and

‖β′
S0‖1 + λ‖ω′

T 0‖1 ≤ (‖β̂JP
λ,S0‖1 + ‖β̃S0‖1) + λ(‖ω̂JP

λ,T 0‖1 + ‖ω̃T 0‖1).

Adding the last two inequalities yields

‖β′
S0‖1 + λ‖ω′

T 0‖1 + ‖β̃‖1 + λ‖ω̃‖1 ≤ ‖β̂JP
λ ‖1 + ‖β′S0‖1 + 2‖β̃S0‖1

+ λ(‖ω̂JP
λ ‖1 + ‖ω′T 0‖1 + 2‖ω̃T 0‖1),

and rearranging terms gives

‖β′
S0‖1 + λ‖ω′

T 0‖1 ≤ (‖β̂JP
λ ‖1 + λ‖ω̂JP

λ ‖1)− (‖β̃‖1 + λ‖ω̃‖1)

+ (‖β′S0‖1 + λ‖ω′T 0‖1) + 2(‖β̃S0‖1 + λ‖ω̃T 0‖1).
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Using (43) and the fact that ‖β̂JP
λ ‖1+λ‖ω̂JP

λ ‖1 ≤ ‖β̃‖1+λ‖ω̃‖1 by minimality

of the JP solution, we get

‖β′
S0‖1 + λ‖ω′

T 0‖1 ≤ ρ(‖β′
S0‖1 + λ‖ω′

T 0‖1) + 2(‖β̃S0‖1 + λ‖ω̃T 0‖1),

hence

‖β′
S0‖1 + λ‖ω′

T 0‖1 ≤
2

1− ρ
(‖β̃S0‖1 + λ‖ω̃T 0‖1). (44)

Now inequality (43) also implies

‖β′‖1 + λ‖ω′‖1 = ‖β′S0‖1 + λ‖ω′T 0‖1 + ‖β′
S0‖1 + λ‖ω′

T 0‖1

≤ (1 + ρ)(‖β′
S0‖1 + λ‖ω′

T 0‖1)
(45)

and continuing (45) with (44) gives the desired inequality.

Lemma 4. Let X̃ :=
[
X
√
nIn

]
. Under assumptions iv), v), vi) and vii),

‖X̃T (X̃X̃T )−1ε‖2 ≤
√

2σ

(λmin(Σ)
4

(
√
p/n− 1)2 + 1)1/2

,

with probability at least 1− 1.14−n − 2e−
1
8

(
√
p−
√
n)2
.

Proof. We have

‖X̃T (X̃X̃T )−1ε‖2
2 = εT (X̃X̃T )−1ε ≤ ‖ε‖2

2

λmin(X̃X̃T )
=

σ‖ 1
σ
ε‖2

2

λmin(X̃X̃T )
.

Since ‖ 1
σ
ε‖2

2 ∼ χ2
n, it is upper bounded by 2n with probability larger than

1− 1.14−n (a corollary of Lemma 1 in Laurent and Massart [2000]). So

P

(
‖ν̃‖2 ≤

√
2nσ

σmin(X̃)

)
≥ 1− 1.14−n. (46)

Let us now bound σmin(X̃). One has

σ2
min(X̃) = λmin(X̃X̃T ) = λmin(XXT + nIn) = σ2

min(X) + n. (47)
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One can write X = GΣ1/2 where G ∈ Rn×p with Gij
i.i.d.∼ N(0, 1), thus

σmin(X) ≥ σmin(G)σmin(Σ1/2) = σmin(G)
√
λmin(Σ). (48)

Now it is known (see Rudelson and Vershynin [2010], eq. (2.3)) that

σmin(G) ≥ 1

2
(
√
p−
√
n) =

√
n

2
(
√
p/n− 1)

with probability at least 1 − 2e−
1
8

(
√
p−
√
n)2
. Together with (47) and (48) this

gives

P

(
σmin(X̃) ≥

(
nλmin(Σ)

4
(
√
p/n− 1)2 + n

)1/2
)
≥ 1− 2e−

1
8

(
√
p−
√
n)2

.

With (46), this implies

P

(
‖ν̃‖2 ≤

√
2σ

(λmin(Σ)
4

(
√
p/n− 1)2 + 1)1/2

)
≥ 1− 1.14−n − 2e−

1
8

(
√
p−
√
n)2

.

C Variables in the Traumabase dataset

The variables of the Traumabase dataset are:

• Time.amb: Time spent in the ambulance, i.e., transportation time from

accident site to hospital, in minutes.

• Lactate: The conjugate base of lactic acid.

• Delta.Hemo: The difference between the homoglobin on arrival at

hospital and that in the ambulance.

• RBC: A binary index which indicates whether the transfusion of Red

Blood Cells Concentrates is performed.
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• SI.amb: Shock index measured on ambulance.

• DBP.min: Minimum value of measured diastolic blood pressure in

the ambulance.

• SBP.min: Minimum value of measured systolic blood pressure in the

ambulance.

• HR.max: Maximum value of measured heart rate in the ambulance.

• VE: A volume expander is a type of intravenous therapy that has the

function of providing volume for the circulatory system.

• MBP.amb: Mean arterial pressure measured in the ambulance.

• Temp: Patient’s body temperature.

• SI: Shock index SI = HR/SBP indicates level of occult shock based

on heart rate and systolic blood pressure on arrival at hospital.

• MBP: Mean arterial pressureMBP = (2DBP+SPB)/3 is an average

blood pressure in an individual during a single cardiac cycle.

• HR: Heart rate measured on arrival of hospital.

• Age: Age.
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