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Abstract

In this paper, we propose to perform time-delay estimation (TDE) of coherent GPR signals by taking

into accout the radar pulse and noise pattern. The proposed method can process raw GPR data without

whitening procedure and decorrelate coherent signals properly with a Hankel matrix which contains the

signal eigenvector, the radar pulse and the noise characteristics. Simulations and a field experiment show

the effectiveness of the proposed method.
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1. Introduction

In civil engineering, ground penetrating radar (GPR) is a widely used non-destructive device in subsur-

face sensing in many aspects, such as building structure and quality assessment, buried targets localization

and so on [1, 2]. In the survey of horizontally stratified media, for example, pavement, time-delay estimation

(TDE) is important that provides structural information by using GPR [3, 4]. High resolution methods, in-5

cluding multiple signal classification (MUSIC) [5] and estimation of signal parameters via rational invariance

technique (ESPRIT) [6], are popular in parameter estimation, especially for thin layer pavements.

Nevertheless, most of the TDE algorithms assume ideal Dirac radar pulse, making the temporal whitening

of the GPR data indispensable. The whitening procedure, dividing the raw data by the radar pulse, modifies

implicitly the properities of the noise and might therefore affect the backscattered echoes through the signal10

to noise ratio (SNR) [7].

The authors in [7, 8] propose to take the radar pulse into account in the estimation. The work in

[8] supposes to deal with Gaussian white noise. While [7] considers any noise pattern but assumes null

correlation among the backscattered echoes, which is not valid in practical GPR applications. There are
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also a family of sparse deconvolution methods in TDE, for example, orthogonal matching pursuit (OMP)15

method [9], l1-norm deconvolution method [10, 11], without restrictions on the radar pulse or the noise.

However, OMP shows poor performance in terms of resolution power while l1-norm deconvolution method

has high computational burden and suffers performance degradation in low SNR scenarios, especially with

weak signals [11].

The radar pulse leads to a nonlinear frequency behavior in the exponent of the measured GPR echoes.20

Therefore, the conventional spatial smoothing preprocessing (SSP) and its variants [12, 13] can’t be applied

directly for the decorrelation, since they are based on the linear frequency behavior in the exponent of

the received signals. Besides, there are several methods constructing new matrices to decorrelate coherent

signals. In [14], the authors build a Toeplitz matrix with the elements in the data covariance matrix, whose

rank is independent of the coherency among signals. The structure of Hankel matrix is also exploited to25

decorrelate signals with enhanced performance [15, 16]. The construction of the Hankel matrix in [15] is based

on the received data while that in [16] is based on the data covariance matrix. In this correspondence, we

would like to modify [7] for coherent scenarios by using the matrix reconstruction approach and considering

both the noise pattern and radar pulse. The proposed method has the following merits: 1) it can directly

deal with raw GPR data without whitening procedure; 2) the decorrelation is achieved through a constructed30

Hankel matrix which contains the signal eigenvector, the radar pulse and the noise characteristics; 3) it has

enhanced performance especially for weak signals.

The rest of this paper is organized as follows. Section 2 gives the signal model. Section 3 describes the

proposed method. Section 4 presents the simulation results along with a field experiment. Conclusions are

drawn in Section 5.35

2. Signal Model

The stratified non-dispersive media model in [7] is adopted in this paper. Assume the media is composed

of K interfaces and the GPR observations are conducted with M equispaced frequencies. Therefore, the

backscattered echoes are time-shifted and attenuated replicas of the transmitted signal. Within frequency

bandwidth B, the backscattered echoes in vector form can be written as40

r = ΛAs + n (1)

with the following notations:
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• r = [r(f1), . . . , r(fM )]
T

is the M × 1 received GPR signal vector in frequency domain; fm = f1 + (m−

1)∆f , with f1 the beginning of bandwidth and ∆f the frequency shift, m = 1, . . . ,M ; superscript T

denotes transpose operation;

• s = [s1, . . . , sK ]
T

is the K × 1 source vector composed of echoes’ amplitudes;45

• n = [n1, . . . , nM ]
T

is the M × 1 noise vector with zero mean;

• Λ = diag{ẽ1, . . . , ẽM} is a M×M diagonal matrix with diagonal elements corresponding to the Fourier

transform of the radar pulse;

• A = [a(τ1), . . . ,a(τK)] is the mode matrix whose columns are defined as a(τk) =
[
e−j2πf1τk , . . . , e−j2πfMτk

]T
,

k = 1, . . . ,K; τk is the time of arrival of the kth echo.50

Assuming the noise to be independent of the backscattered echoes, the data covariance matrix of r can be

expressed as

R = E(rrH) = ΛARsA
HΛH + σ2Σ (2)

where E(.) denotes the ensemble average; Rs = E(ssH) and σ2Σ are the signal sources and noise covariance

matrix, respectively; superscript H denotes transpose conjugate operation. In this paper, the signal model

is under the following assumptions:55

1. The backscattered echoes are coherent; the signal covariance matrix Rs is rank one;

2. The noise is statistically independent, zero mean complex Gaussian random process, and can be

spatially white or colored;

3. The radar pulse Λ and noise covariance matrix Σ are known beforehand;

4. The noise is independent of all the backscattered echoes.60

3. Methodology

3.1. Generalized eigenvalue decomposition

The generalized eigenvalue decomposition (GEVD) of the matrix pair (R,Σ) is defined as in [17, 18]

Rem = λmΣem,m = 1, . . . ,M (3)
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with λm the mth eigenvalue in descending order and em the corresponding eigenvector with dimension

M × 1.65

In contrast to [7], the backscattered GPR echoes in this paper are coherent. In this case, the eigenvalues

after the generalized eigenanalysis are distributed as λ1 > λ2 = · · · = λM = σ2.

Referring to the largest eigenvalue λ1, (3) can be expressed as

Re1 = λ1Σe1. (4)

Substituting (2) into (4) and after some mathematical manipulations, we deduce

ARsA
HΛHe1 = (λ1 − σ2)Λ−1Σe1. (5)

Let t = RsA
HΛHe1, (5) can be reformulated as follows:

g = At = (λ1 − σ2)Λ−1Σe1 (6)

where t is a K × 1 vector whose elements are non-zero; g is a M × 1 vector.

3.2. Proposed method for TDE70

In [19, 20], the authors only make use of the signal eigenvector e1 in the decorrelation with enhanced

performance. It implies that in coherent scenarios, the signal eigenvector corresponding to the largest

eigenvalue contains all the information of signals and can be used for decorrelation. Unlike [19, 20], we

propose to exploit not only the information of e1 but also the radar pulse and noise characteristics to

decorrelate the coherent backscattered echoes, which is achieved by transforming g into a Hankel matrix X

as in [15, 16], [21]:

X =




g1 g2 . . . gL

g2 g3 . . . gL+1

...
...

...

gM−L+1 gM−L+2 . . . gM




(M−L+1)×L

(7)

where gm is the mth element of vector g, m = 1, . . . ,M and K ≤ L ≤M −K + 1.

Matrix X in (7) can be reformulated as

X = A1TAT
2 (8)
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where

A1 =




1 1 . . . 1

z1 z2 . . . zK
...

...
...

zM−L
1 zM−L

2 . . . zM−L
K




(M−L+1)×K

, (9)

A2 =




1 1 . . . 1

z1 z2 . . . zK
...

...
...

zL−1
1 zL−1

2 . . . zL−1
K




L×K

, (10)

and T = diag{e−j2πf1τ1t1, e−j2πf1τ2t2, . . . , e−j2πf1τK tK} with zk = e−j2π∆fτk and tk the kth element of t.

Matrices A1 and A2 have Vandermonde structure and they are therefore non-singular. We can also

prove that T is of full rank, since tk and e−j2πf1τk are non-zero. The rank of matrix X is K, which is not

affected by the coherency. In this case, the truncated singular value decomposition (SVD) of matrix X is75

X = UsΦsV
H
s (11)

where Φs is a diagonal matrix whose elements are the K largest non-zero singular values of X; Us and Vs

are respectively the left and right singular vector matrices of X, corresponding to the K dominant singular

values. Define the singular vector matrices associated with the remaining smaller singular values as Un and

Vn , respectively. We can multiply (11) by Vn under the concept of orthogonality:

XVn = UsΦsV
H
s Vn = 0. (12)

Substituting (8) into (12) yields:

XVn = A1TAT
2 Vn = 0. (13)

Since A1 is a Vandermonde matrix and T is non-singular, the above formula implies:

AH
2 V∗

n = 0 (14)

where ∗ denotes conjugate operation.80

According to (14), the time-delays can be estimated by finding the zeros of ā(τ)V∗
n, with ā(τ) =
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[1, e−j2π∆fτ , . . . , e−j2π∆f(L−1)τ ]H . In theory, it is identical to evaluate the polynomial D(z) on the unit

circle, like in Root-MUSIC [22]. The expression of D(z) is

D(z) =

L−1∑

l=−L+1

αlz
−l (15)

where αl is the sum of entries of P along the lth diagonal and P = V∗
nVT

n . The time-delays can be derived

by the K roots that are inside and closest to the unit circle.

Matrix Un can also be applied in TDE but with similar performance, which is not included here. In

addition, X can be extended into a forward-backward version as in [13]:

Y =




X

J1X
∗J2


 (16)

where J1 and J2 are anti-identity matrices with dimensions (M−L+1)×(M−L+1) and L×L, respectively.

The other estimation steps with matrix Y are the same as those with X. In the following, the estimation

with matrices X and Y are referred as the ’Proposed method-F’ and ’Proposed method-FB’, respectively.85

To sum up, the proposed procedures are as follows:

1. Estimate the data covariance matrix R;

2. Perform GEVD on the matrix pair (R,Σ);

3. Calculate g according to (6);

4. Construct matrices X and Y and apply SVD on them;90

5. Build polynomial D(z) and estimate the time-delays with the roots inside and closest to the unit circle.

4. Numerical and experimental results

In order to evaluate the performance of the proposed method, several simulations and an experiment are

carried out in this section.

In the simulations, the stratified medium is assumed to have three layers, as shown in Figure 1. The95

dielectric constants of these layers are ε1 = 3, ε2 = 8 and ε3 = 9, respectively. The thickness of Layers 1

and 2 are H1 = 25 mm and H2 = 50 mm, respectively. The frequency range of the step frequency GPR is

B = 2 GHz, with f ∈ [1, 3] GHz and M = 21 frequency samples. The amplitudes of backscattered echoes

are respectively S1=0.267, S2=0.223 and S3=0.026, with the corresponding time of arrivals [τ1, τ2, τ3] =

[6.67, 6.96, 7.90] ns.100
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For a given bandwidth B, the time resolution of a technique is defined as the minimal time interval

∆τ between two distinguishable echoes [3]. Conventional FFT-based methods are restricted to distinguish

non-overlapping echoes, and its time resolution is about B∆τ = 1. The time-delays within Layers 1 and

2 are ∆τ1 = τ2 − τ1 = 0.29 ns, ∆τ2 = τ3 − τ2 = 0.94 ns. In consequence, the corresponding products are

B∆τ1 = 0.58 and B∆τ2 = 1.88, which means S0 and S1 are overlapped while S1 and S2 are not. L is set as105

11.

The relative-root-mean-square-error (RRMSE) is used to evaluate the statistical performance of the

proposed method:

RRMSE =

√
1
Q

∑Q
q=1(∆̂τkq −∆τk)2

∆τk
(17)

where ∆̂τkq denotes the estimate of the time-delay within the kth layer for the qth run; ∆τk is the true

value; Q is the number of Monte Carlo trials.

The radar pulse is modeled as a Ricker pulse in this paper, which is a common pattern in GPR [7].

During the Monte Carlo process, the colored noise is generated as in [23]:

σ2Σ = 10−
SNR
20

GGH

‖GGH‖ (18)

where the elements of matrix G with dimension M ×M are generated with a sequence of independent and

identically distributed zero mean gaussian random variables with unit standard deviation.110

Figures 2 and 3 show the TDE results for ∆τ1 and ∆τ2 with respect to SNR through 200 Monte Carlo

trials, respectively. The data covariance matrix is estimated with 500 snapshots. The estimates of Root-

MUSIC with MSSP and a second-order cone programming (SOCP) based l1-norm deconvolution method

are recorded for comparison, called Root-MUSIC-MSSP and l1-norm, respectively. In order to apply MSSP,

the echoes are whitened by the radar pulse. The size of elements in the sub-band of MSSP is 11, equal to115

L. In the comparison, Root-MUSIC-MSSP doesn’t take into account the colored noise. Given the noise

distribution and SNR, the optimal regularization parameter of the l1-norm method is set according to [11].

As shown in Figures 2 and 3, the RRMSEs of all the methods are descreasing with the increasing of

SNR. The statistical curves are closer to each other in the estimation of the first time-delay, than those of

the second time-delay. It’s specially true for the curves of l1-norm. The reason may lie in the presence of120

weak signal, since the amplitude of the third echo is only 0.026 while the other two are 0.267 and 0.223,

respectively. The proposed method with forward only operation and Root-MUSIC-MSSP are less effective

in TDE, compared with the proposed method with both forward and backward operation, no matter B∆τ
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is greater than 1 or not. The proposed method shows enhanced performance by considering the radar pulse

and the noise, especially for weak signals.125

In the second simulation, we evaluate the accuracy of the proposed method in terms of the number of

snapshots. SNR is 15 dB. The other settings are the same with the first simulation. In Figures 4 and 5,

the RRMSEs are getting smaller when the number of snapshots gets larger. The proposed method with

forward and backward operation outperforms the others for each number of snapshots. In Figure 4, the

curves of the proposed method with forward operation, the l1-norm method and Root-MUSIC-MSSP are130

similar when the number of snapshots is small; when the number of snapshots increases, larger than 600 in

this case, the proposed method with forward operation achieves better result than Root-MUSIC-MSSP and

l1-norm. Similar to Figures 2 and 3, l1-norm has smaller RRMSEs in the estimation of ∆τ1 than that of

∆τ2, for each number of snapshots.

Apart from the simulations, the proposed method is tested with a field experiment on IFSTTAR fatigue135

carousel [24]. The IFSTTAR’s pavement fatigue carrousel is a circular outdoor test track which allows various

loading capabilities and speeds (refer to Fig. 1 in [24] for more details). There are three different types of

artificial debondings: sand, geotextile and uncoated interface. In this experiment, only the measurements

on the sand zone are used. The probed pavement is composed of two layers of asphalt, whose structure is

shown in Figure 6. The observation radar system is composed of a vector network analyzer (VNA) and a140

quasi-monostatic step frequency radar with closely located transmitter (Tx) and receiver (Rx). The distance

between Tx and Rx is fixed at 20 cm during the B-scan (obtained from 21 A-scans). Antennas are 70 cm

above the pavement in order to collect the backscattered echoes in the far-field. The radar pulse is measured

with a metal plane [3]. Since there are two layers, Rx receives two backscattered echoes from the interfaces

of pavement. Figure 7 shows the A-scan at the 6th sample point without air wave and Figure 8 shows the145

B-scan along the 21 A-scans, within a large frequency band f ∈ [0.8, 10.8] GHz. In order to validate the

high resolution power of our proposed method, the used frequency bandwidth for the tested algorithms is

f ∈ [3.4, 4.1] GHz with M = 29 samples. The product B∆τ is about 0.75, which indicates the overlapping

echoes. According to Figures 7 and 8, the time-delay between the first and second echoes within Layer 1 is

about 1.07 ns.150

In order to evaluate the performance of the Proposed method-FB and Root-MUSIC-MSSP, several pre-

processing techniques are needed: 1) temporal filtering: filter out the air wave; 2) data whitening: divide the

raw GPR data by the radar pulse; 3) spatial smoothing: apply MSSP to decorrelate coherent backscattered

echoes. Root-MUSIC-MSSP requires all the preprocessing techniques while the Proposed method-FB only
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needs temporal filtering.155

The noise in the experiment is considered as Gaussian white noise. Both the Proposed method-FB and

Root-MUSIC-MSSP apply root operation in TDE and the statistical estimation results over 21 A-scans

are listed in Table 1. Parameter L is set as 14. As shown in Table 1, both methods allow estimating the

time-delay within the first layer. Nevertheless, the proposed method with forward and backward operation

provides a more accurate and robust result with smaller relative error and standard deviation.160

5. Conclusion

This paper proposes a TDE method for coherent GPR signals by taking into account of the noise

pattern and radar pulse. A Hankel matrix containing the signal eigenvector, the noise and the radar pulse

is generated to decorrelate the coherent backscattered echoes. Then, the SVD technique together with

the root of a polynomial are applied in the estimation of time-delays. The performance of the proposed165

method is validated by numerical simulations and a field experiment in coherent scenarios with colored or

white noise and different time resolutions. The proposed method with forward and backward operation

shows good performance in the simulations and the field experiment, compared with the proposed forward

only operation, the Root-MUSIC-MSSP and l1-norm. The consideration of radar pulse and noise in the

decorrelation step improves the estimation results with coherent GPR signals, especially for weak signals.170

Future work includes the evaluation of the proposed method on measurements of real roads.
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Figure 1: Stratified layers for a simulated setup.
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Figure 2: RRMSEs of ∆τ1 versus SNR. B∆τ1 = 0.58, number of snapshots = 500.
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Figure 3: RRMSEs of ∆τ2 versus SNR. B∆τ2 = 1.88, number of snapshots = 500.
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Figure 4: RRMSEs of ∆τ1 versus the number of snapshots. B∆τ = 0.58, SNR = 15 dB.
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Figure 5: RRMSEs of ∆τ2 versus the number of snapshots. B∆τ = 1.88, SNR = 15 dB.
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Figure 8: GPR data, B-scan within frequency band (f ∈ [0.8, 10.8] GHz).
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Table 1: Statistical estimation results of the Proposed method-FB and Root-MUSIC-MSSP over 21 A-scans.

Mean (ns) Std*(ns) Relative error (%)

Proposed method-FB 1.04 0.031 3.02

Root-MUSIC-MSSP 1.13 0.055 5.80

* Standard deviation.
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