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A simple approach is described for computing spatially extended, weakly nonlinear opti-
mal disturbances, apt at maintaining a disturbance-regeneration cycle in a simple shear
flow. Weakly nonlinear optimals, computed over a short time interval for the expan-
sion used to remain tenable, are oblique waves which display a shorter streamwise and
a longer spanwise wavelength than their linear counterparts. Threshold values of the
initial excitation energy, separating the region of damped waves from that where distur-
bances grow without bounds, are found. Weakly nonlinear optimal solutions of varying
initial amplitudes are then fed as initial conditions to direct numerical simulations of
the Navier-Stokes equations and it is shown that the weakly nonlinear model permits to
identify flow states which cause rapid breakdown to turbulence.

1. Introduction

Optimal perturbations represent a fundamental concept of the linear stability the-
ory of shear flows and one highly cited textbook (Schmid & Henningson 2001) centers
much of the discussion on this concept and on the associated idea of transient growth
of disturbances for systems ruled by non-normal linear operators. It has been thought
for quite some time that, under nominally stable conditions, the most dangerous ini-
tial disturbances computed in a linear setting might undergo a substantial amplification,
eventually capable of bringing the fluid system outside of the domain of attraction of the
laminar solution (and also outside of the domain of validity of the linearized equations),
so that transition can occur because of nonlinear interactions. This has provided the
rationale for studying linear optimal disturbances, via a number of approaches including
eigenfunction expansion (Butler & Farrell 1992), expansion in periodic functions (Crim-
inale et al. 1997) and adjoint equations (Andersson et al. 1999; Luchini 2000; Corbett &
Bottaro 2001).

Linear, optimal perturbations in simple parallel shear flows, such as Couette, Poiseuille
or Hagen-Poiseuille flows, take the form of streamwise or quasi-streamwise vortices (the
streamwise wavenumber α either vanishes or is very small, in the latter case decreasing
like Re−1, with Re the Reynolds number), and their downstream evolution turns them
into spanwise-periodic streaks, elongated along the main flow direction, x. While the
presence of vortices and streaks seems appropriate in view of experimental observations of
transitional flow features, their very early presence in the flow field is unwarranted since
x−invariant flow structures trigger nonlinear interactions very slowly and only when
their amplitude is large, through the onset and growth of a traveling wave instability
(Andersson et al. 2001; Gustavsson 2009).

The traditional concept of optimal disturbances (those which give rise to the largest
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disturbance energy growth over a given time window, or over a given spatial development
length, should one consider flows developing in space) is thus misleading if one searches
for the initial waveform most suited to provoke transition, at least for the simplest shear
flows. This has been understood for a few years now, and has produced a rising num-
ber of contributions on non-linear optimals (Zuccher et al. 2006; Cherubini et al. 2011;
Cherubini & De Palma 2013; Pringle & Kerswell 2010; Monokrousos et al. 2011; Pringle
et al. 2012; Rabin et al. 2012; Duguet et al. 2013) which have highlighted the profound
differences between linear and nonlinear transient growth. In the abstract of their contri-
bution Rabin et al. (2012) state that all of their results ”highlight the irrelevance of the
linear energy gain optimal perturbation for predicting or describing the lowest-energy
flow structure which triggers turbulence.” Nonlinear optimals are typically found via ad-
joint looping (Luchini & Bottaro 2014) and are very demanding in terms of computer
memory and CPU time, because of the need to carry out several direct simulations of
the Navier-Stokes equations and to store (or recompute, via a checkpointing procedure)
the whole flow field at all times for use in the adjoint equations. Thus, a thorough para-
metric search (in terms of wavenumbers, disturbance amplitude and target time of the
optimization) is still out of reach.

A weakly nonlinear alternative, much cheaper computationally than the full nonlinear
optimization approach, is explored in the present paper. The approach pursued aims
at identifying initial perturbations which distort efficiently – via primary nonlinear in-
teractions – the main flow. It will be shown that such optimal solutions take the form
of oblique structures. It has been known since Schmid & Henningson (1992) that the
early appearance of oblique waves elicits faster transition than either optimal streamwise
vortices or Tollmien-Schlichting waves (see also Schmid & Henningson, 2001). The mech-
anism described by Schmid & Henningson (1992) has been called oblique transition; they
have expressed the generic disturbance field, φ, in Fouries series, e.g.

φ(x, y, z, t) =

M∑
m=−M

N∑
n=−N

φ̃m,n(y, t)ei(mαx+nβz),

where x, y and z indicate, respectively, the streamwise, wall-normal and spanwise direc-
tion; α and β are the streamwise and spanwise wavenumbers; M and N are positive
integers that define the truncation of their direct numerical simulation. By imposing at
t = 0 a disturbance field in the form of a pair of oblique waves with (m,n) = (1,±1),
Schmid & Henningson (1992) have observed a rapid amplification of the mean flow dis-
tortion, mode (0, 0), accompanied by a growth (equally rapid but less vigorous) of the
streamwise-independent component, (0,±2); conversely, the (±2, 0) mode remained an
order of magnitude smaller. The (0,±2) component is ruled by a nonnormal evolution
operator, very sensitive to external forcing, and can thus be enhanced linearly by a tran-
sient growth mechanism, yielding large amplitude streaks via the lift-up effect (Landahl
1975). Much attention has been paid to the instability of such streaks, with lower empha-
sis placed on the fact that the streaks develop on top of a base flow which is being strongly
distorted. The predominance of the (0, 0) non-linearly generated component, even above
the (1,±1) mode, is, however, evident in figs. 1 and 2 of the paper by Schmid & Henning-
son (1992). It is thus clear the interest of studying the optimal linear (modal or nonmodal)
growth of an oblique disturbance developing over a base flow which is being deformed
nonlinearly by the primary wave itself. This calls for an autonomous cycle, schematized
in fig. 1, with the first generation of non-linear interactions (the Reynolds stresses), which
feeds onto the mean flow. The present paper describes the simplest possible model of such
a cycle: the creation of harmonics, past the (0, 0) mode which concentrates in itself the
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Figure 1. Self-sustaining cycle centered on the optimal amplification of oblique waves.

majority of growth, is neglected. We thus study the rapid transient growth of an oblique
wave and search for that optimal initial disturbance capable of creating and maintaining
the self-sustained, neutral cycle sketched in fig. 1. The appropriateness of the present
minimal model will be demonstrated by comparisons with direct numerical simulations.

2. Formulation of the weakly non-linear problem

A self-sustained cycle can be created decomposing velocity and pressure into a steady,
laminar parallel state, a traveling wave and a slowly varying time-dependent base flow
distortion. The idea for this decomposition stems from Biau & Bottaro (2009); however,
other papers in the recent literature (Hall & Sherwin 2010; Blackburn et al. 2013; Beaume
et al. 2015) have also split the disturbance field in a streamwise-invariant (i.e. mean) and
a streamwise-varying (i.e. fluctuations) component, reaching a set of equations in which
the Reynolds stresses force the growth of the mean flow. The decomposition employed
here assumes no a priori scaling on the Reynolds number and reads:

U(y)
0
0

P (x)

+ ε


ũ(x, y, z, t)
ṽ(x, y, z, t)
w̃(x, y, z, t)
p̃(x, y, z, t)

+ ε2


u00(y, t)
v00(y, t)
w00(y, t)
p00(y, t)

 , (2.1)

where ε ∈ R denotes the wave amplitude. In the following, the simplest wall-bounded
flow is considered but the procedure is general and can easily be applied to semi-infinite
or infinite domains. The O(ε) terms correspond to the traveling wave which we wish
to optimize for; those of O(ε2) are the mean flow distortion terms which dominate the
nonlinear interactions at early times. Clearly the decomposition proposed is insufficient
at large times when higher modes are created and interact; it is however adequate, as
we will show, to approximate the lower bound of the amplitude ε beyond which the flow
can undergo transition to turbulence. The flow decomposition (2.1) is introduced into
the Navier-Stokes equations and like-order terms are collected. At order O(1) we obtain

Px =
1

Re
Uyy, (2.2)



with subscripts denoting partial differentiation, plus no-slip boundary conditions for U .
The Reynolds number, Re, is based on the half-channel thickness and the wall velocity.
For the case of the Couette flow treated here P is constant and U = y, for y ∈ [−1, 1].
The disturbance at O(ε) is taken to be a simple monochromatic wave which travels along
a direction inclined by tan−1(β/α) with respect to the x-axis:

(ũ, p̃)(x, y, z, t) = (u11, p11)(y, t)ei(αx+βz) + (u11
∗, p∗11)(y, t)e−i(αx+βz), (2.3)

where superscript ∗ denotes complex conjugation, ũ = (ũ, ṽ, w̃), and α, β ∈ R are the
streamwise and spanwise wave numbers, respectively. Using expression (2.3), the gov-
erning equations, linearized around the perturbed and time-varying mean flow [U(y) +
ε2 u00(y, t), 0, ε2 w00(y, t)], are given by

iαu11 + v11y + iβw11 = 0, (2.4)

u11t + iα(U + ε2 u00)u11 + v11(U + ε2 u00)y + iβ(ε2 w00)u11 + iαp11 =
1

Re
∆ku11, (2.5)

v11t + iα(U + ε2 u00)v11 + iβ(ε2 w00)v11 + p11y =
1

Re
∆kv11, (2.6)

w11t + iα(U + ε2 u00)w11 + v11(ε2 w00y) + iβ(ε2 w00)w11 + iβp11 =
1

Re
∆kw11,(2.7)

where ∆k = ∂2/∂y2 − k2 and k2 = α2 + β2. Equations (2.4)-(2.7) are accompanied by
no-slip conditions on both the upper and lower walls and an initial condition u11(y, t = 0)
which we will optimize for. At order O(ε2) the equations read

v00 = 0, (2.8)

u00t −
1

Re
u00yy = −[v11u

∗
11y + iβw∗

11u11 + c.c.], (2.9)

p00y = −[iαu∗11v11 + v11v
∗
11y + iβw∗

11v11 + c.c.], (2.10)

w00t −
1

Re
w00yy = −[iαu∗11w11 + v11w

∗
11y + c.c.], (2.11)

plus the usual no-slip conditions on both walls. The key point of the analysis is the fact of
retaining the x- and z−component of the velocity at O(ε2) in the expression of the base
state above which the mode (1, 1) is superposed (note also that we have anticipated the
fact that v00 = 0 in writing equations 2.5-2.7). The fact of having lifted a higher order
term to equations at lower order is motivated by the need to allow for a distorted base
state. From the mathematical point of view, this corresponds to replacing the original
series (2.1) in powers of ε into a sequence of unknown (and decreasing) functions of ε
(Van Dyke 1975; Cousteix & Mauss 2007). The Orr-Sommerfeld stability equation for
the Blasius boundary layer flow is the best-known example of one such instance.

System (2.4)-(2.7) plus equations (2.9) and (2.11) are solved by maximising the energy
of the oblique mode at the target time t = T , defined as

e(T ) =
ε2

2

∫ 1

−1

(u11u
∗
11 + v11v

∗
11 + w11w

∗
11)dy

∣∣∣∣
t=T

. (2.12)

Alternative measures of growth could have been considered, for example based on the
r.h.s. terms of equations (2.9-2.11). In light of previous experience (e.g., Bottaro et al.
2006; Monokrousos et al. 2011; Rabin et al. 2012), the conclusions reached here would
probably be but mildly affected; this remains however to be verified. For assigned ε the
nonlinear problem is solved iteratively in the following manner:

(a) Maximise the energy e(T ), constrained by equations (2.4)-(2.7), over a given time



span T , to find u11, v11, w11. The optimization procedure is performed via adjoint looping;
in the first iteration set u00 = w00 = 0 ∀y, t.

(b) Compute the right hand side of equations (2.9) and (2.11), and solve for u00(y, t)
and w00(y, t) under the initial condition u00(y, 0) = w00(y, 0) = 0; equations (2.9) and
(2.11) are heat equations with Reynolds stress terms acting as source. Then, go back to
(a).

(c) Convergence is declared when the final wave energy e(T ) converges to within a
defined precision. The normalization employed is e(0) = ε2.
In order to quantify the results, suitable quantities are defined which can also be used in
the limit ε→ 0 to compare with linear optimal results from the literature. The gain G is

G(ε, Re, α, β, T ) =
e(T )

e(0)
, (2.13)

and is obtained from the converged solution of the procedure outlined above, for given
values of α, β,Re and ε in a defined temporal interval [0, T ]. Finally, the mean-flow
distortion is quantified by evaluating its ”energy”:

EU (t) =
ε4

4

∫ 1

−1

u200(y, t)dy and EW (t) =
ε4

4

∫ 1

−1

w2
00(y, t)dy. (2.14)

2.1. Numerical procedure

The problem outlined at step (a) in the solution procedure is a constrained maximization
problem which can be solved using Lagrange multipliers. The governing equations are
written in primitive variable form and the resulting adjoint equations are derived using
a discrete approach (see Luchini & Bottaro 2014). The spatial derivatives are discretized
using second order finite differences and a semi-implicit second-order scheme is used to
advance in time. A uniform grid is used in the y-direction and 300 discrete points are
sufficient to obtain a converged solution. The code has been tested on several cases found
in the literature for ε → 0 (i.e. the mean flow is not distorted); in particular, the value
of the optimal gain G̃ = 0.00118Re2 and the corresponding time at which it is achieved,
T = 0.117Re, with α = 35/Re and β = 1.60, are recovered with less than 0.1% error
(Schmid & Henningson 2001). Results are obtained imposing that convergence is reached
when the relative difference in gain between two consecutive iterations is less than 10−8.

3. Weakly non-linear results

To illustrate results, the case Re = 400 is chosen. We take four values of ε and fix the
wavenumbers α and β as well as the final time T ; all parameters selected are given in the
caption of figure 2, which displays the curves of gain (equation 2.13) together with the
energies of the mean flow modification for the cases in which ε > 0. We choose a rather
small value of the final time in order to avoid situations in which the nonlinear effects
become dominant for which an expansion of the waves including higher harmonics would
be necessary.

For ε < 0.0153 all solutions are damped for t > 15. For ε ≈ 0.0153 a limit condition
is reached, with the different energy measures neither increasing nor decreasing. This
corresponds to a threshold between initial disturbance states which relaminarize and
states which might lead the flow to turbulence. When ε > 0.0153 the measure of energy
in figure 2 shows a monotonic increase. We can note that the two components of the
energy of the mean flow distortion differ by almost one order of magnitude. This fact
might lead to the idea that including the ε2w00 terms in the wave equations, (2.5)-(2.7),
yields a negligible effect. This will be further discussed in section 3.1.
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Figure 2. (a) Gain G as a function of the final time t for ε → 0, ε = 0.015, 0.0153, 0.016,
for αopt = 0.93, βopt = 1.44 (obtained by choosing T = 20 as target time for the optimiza-
tion) and Re = 400. (b) Energy of the mean flow modification, EU (−) and EW (−−), for
ε = 0.015, 0.0153, 0.016. The arrows display increasing values of ε.

Figure 3. Components of the mean flow U + ε2u00 (a) and ε2w00 (b) at t = 0, 10, 15, 20 for the
case Re = 400, ε = 0.0153, αopt = 0.93 and βopt = 1.44. The arrows display increasing values of
t.

Figure 3 shows, for ε = 0.0153, the mean flow U and its distortion at t = 0, 10, 15, 20,
highlighting the presence of an inflection point, in both the streamwise and the spanwise
velocity components, at y = 0.

The optimal disturbance wave at t = 0 is displayed in modulus and phase in figure 4,
and through isocontours of u11 and (v11, w11) vectors in figure 5. The modulus of the
optimal disturbance peaks, both at t = 0 and at the target time, in correspondence of
the inflection point of the mean flow. The initial perturbation is tilted in the (y, z) plane
at t = 0, and grows in time developing a slant in the opposite sense, under the forcing of
the mean flow distortion shown in figure 3.

Figure 6 displays the gain G at T = 20 in the Fourier plane, for four different values
of ε. For ε = 0 the results are those from the classical optimal perturbation theory and
the maximum value of G is found for (α, β) = (0.34, 1.72). As the value of ε exceeds
≈ 0.015 a second region emerges for larger values of α and smaller values of β. This is
more evident in figure 6(c) with ε = 0.0153, while in figure 6(d) this new peak, with
(α, β) = (0.93, 1.44), is clearly dominant. If ε is further increased (not shown here) the
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Figure 4. Modulus of velocity components and phase of the optimal oblique wave at t = 0
(a,b) and its output at the target time T = 20 (c,d). The u11, v11 and w11 components of the
velocity are presented in (a,c) as solid, dashed and dash-dotted lines, respectively. The phase,
in radians, of the u11, v11 and w11 components are shown in (b,d) as ◦, + and ∗, respectively,
and the parameters are those of figure 3.

Figure 5. Vectors and contours, in the (y, z) plane, of the optimal oblique wave at t = 0
(top) and at the target time T = 20 (bottom), shown over two spanwise periods. The shaded
contours represent the positive and negative streamwise velocity component, whereas the vectors
represent wall-normal and spanwise components. Same parameters as in figure 3.

values of α and β, where the peak of G is found, remain at 0.93 and 1.44, respectively.
We denote these weakly nonlinear optimal values of the wave numbers as αopt and βopt.

In figure 7(a) we report αopt and βopt for different values of the final time T used in
the optimization procedure. For T < 15 the streamwise wavenumber is larger than the
spanwise wavenumber, in particular at T = 10 α ≈ 2β. For T > 15 the opposite is true
and both αopt and βopt have asymptotic behavior for large values of T . In particular the
asymptotic value of the spanwise wavenumber approaches its linear counterpart, i.e. 1.60.
The value of ε which indicates a limit condition is here denoted εcrit and its value as a
function of the target time T of the optimization is shown in figure 7(b). As one could
expect, εcrit decreases with T , reaching the asymptotic value εcrit ≈ 0.015 already for T
as low as 30.
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Figure 6. Gain G in the α− β plane for Re = 400 and T = 20; (a) ε→ 0 with contour values
from 20 to 120, (b) ε = 0.0145 with contour values from 20 to 240, (c) ε = 0.0153 with contour
values from 20 to 300, (d) ε = 0.01603 with contour values from 20 to 380. The interval among
adjacent isolines is ∆G=20 in frames. The maximum value of G for each ε is denoted by a filled
circle.
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Figure 7. (a) Optimal streamwise (αopt) and spanwise (βopt) wavenumbers as a function of T ;
(b) critical amplitude (εcrit) as a function of T . Re = 400.

3.1. Neglecting the correction to the transverse velocity

In figure 2 is was shown that the measure EW was about one order of magnitude smaller
than EU . This seems to imply that the mean-flow component w00 can be safely omitted
from the equations for the optimal oblique disturbance; such an approximation has been
made, for example, by Farrell & Ioannou (2012). This is, however, not true – at least in the
present model – as the example here will show. Let us consider the case in which Re = 400
and the terms ε2w00 are not included in equations (2.5)–(2.7). The corresponding optimal
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Figure 8. (a) Gain G as a function of time t for ε = 0.0078, 0.0084, 0.0086, and αopt = 0.27,
βopt = 1.083 (obtained in the case excluding the ε2w00 terms) and Re = 400. Lines (−) denote
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increasing values of ε. (b) Energy of the mean flow modification when ε = 0.0084 for both EU

and EW in the case (−−) without ε2w00 terms and (−) including ε2w00 terms.

wavenumbers, optimized also with respect to T , are αopt = 0.27 and βopt = 1.083. In
figure 8 we report the values of the gain G and energies EU and EW for three different
values of ε. A limiting condition is found for ε ≈ 0.0084, similar to what shown in figure 2.
Here, the value of w00 is not included in the governing equations and the value of EW is
only shown for comparison with the value of EU . Clearly EW is two orders of magnitude
smaller than EU . If we now include the ε2w00 terms in (2.5)–(2.7) and compute the gain
and energies due to the mean-flow distortion using the values of αopt and βopt previously
obtained, no limiting condition is found, and all solutions are damped for t > 40 (cf.
figure 8 (a), thick solid lines). This holds for all values of ε used and also for larger values
of ε (not shown here).

The result is somewhat unexpected and it confirms that acting on the spanwise mean
flow is an efficient strategy to control fluid motion (Gatti & Quadrio 2013).

4. Non-linear results and comparison

The weakly non-linear optimal solutions obtained for T = 20, αopt = 0.93 and βopt =
1.44, and different values of ε ranging from 0 to 0.016 have been used to initialize several
Direct Numerical Simulations (DNSs). The computational domain has length 2π/αopt
in the streamwise direction and 2π/βopt in the spanwise domain. The chosen domain
is discretized using a staggered grid and the Navier–Stokes equations are solved by a
fractional-step method with second-order accuracy in space and time (Verzicco & Or-
landi (1996)). In order to provide a measure of the perturbation energy in the whole
computational domain we define two integral energies, E and Ewavy, the former based
on the whole perturbation, u, and the latter only on its wavy part, uwavy = u − ε2u00.
The perturbation and wavy integral energies are thus defined as:

E =
1

2V

∫
V

u2 + v2 + w2 dV Ewavy =
1

2V

∫
V

u2wavy + v2wavy + w2
wavy dV, (4.1)

with V = 8π2

αoptβopt
the computational domain. As in the previous section, gains are defined

with respect to the energy at the initial time. In particular, the gain G predicted by the
weakly non-linear model will be compared with the wavy energy gain, Ewavy(t)/Ewavy(0)
provided by the DNS, which, for brevity, will be labeled G as well. Figure 9 (a) shows
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Figure 9. (a) Energy gain computed by the weakly non-linear model (dashed line) and by
the DNS (solid line) both initialized with the optimal solution obtained at t = 0 for T = 20,
ε = 0.014. (b) Energy gain versus time obtained by DNS (black solid line) and by the weakly
non-linear model (red dotted line) initialized with the initial optimal solutions for ε = 0.016. The
black dashed line represent the wavy energy gain for a DNS initialized by the optimal solution
extracted at t = 12 for the same value of ε.

the wavy energy gain obtained by DNS using the initial optimal solution for ε = 0.014,
compared with that predicted by the weakly non-linear model for the same value of ε. The
two curves show a remarkable agreement, indicating that the weakly non-linear expansion
succeeds in predicting the evolution of the perturbations, provided that non-linear effects
are not too strong. On the other hand, for considerably larger values of ε (in particular,
for ε > εcrit), the prediction provided by the weakly non-linear model for ε = 0.016, after
a finite time (equal to about 10 in figure 9 (b)), begins to differ from the DNS. This
can be observed in figure 9 (b) by comparing the red dotted and the solid black curves.
This discrepancy is clearly due to the fact that, for large enough amplitudes, non-linear
effects become too strong to be correctly approximated by a weakly non-linear expansion.
However, despite the differences in energy amplification, the perturbation resulting from
the weakly non-linear model is able to induce a self-sustaining cycle leading to turbulence.
The dashed line in figure 9 (b) shows that, when the field obtained at t = 12 by the
model is injected as initial perturbation into the DNS, sudden transition to turbulence
is observed. A similar behaviour is observed when using optimal solutions extracted at
larger times, provided that the initial value of ε is sufficiently large.

To determine the critical value of ε for transition to turbulence, we perform several
DNSs initializing the computations with fields extracted at t = 15; the initial conditions
providing the t = 15 solutions are the weakly nonlinear optimal disturbances found at
different values of ε for the same target time, T = 20. This choice is motivated by the
fact that the energy gain predicted by the model reaches a maximum at approximately
t ≈ 15, as shown, e.g., in figure 9.

Figure 10 shows the integral energy curves obtained by DNS for 4 values of ε ranging
from 0.0151 to 0.0154. For the lowest value of ε the perturbation energy decreases in
time, leading the flow to relaminarization. Whereas, for ε > 0.0152, the energy increases
reaching a statistically steady value, while the flow is characterized by a chaotic motion.
This critical value of ε for transition to turbulence, determined by DNS, is very close
to the critical one predicted by the model, εcrit = 0.0153. This result might have been
anticipated, considering that the strong increase of the energy gain observed by the
model for ε > εcrit is associated with the development of strong non-linear effects. In
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Figure 10. Disturbance energy E versus time measured by a DNS initialized with the weakly
nonlinear optimal states at t = 15, ε = 0.0151, 0.0152, 0.0153, 0.0154 (increasing from bottom to
top).
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Figure 11. Variation in time of the amplitude of the different modes extracted by Fourier
transform of the velocity snapshots obtained by DNS initialized with the weakly nonlinear
solutions at t = 15, ε = 0.0151 (a) and ε = 0.0152 (b). The legend indicates the streamwise and
spanwise wavenumbers, as multiples of the α and β values chosen for the optimisation.

order to investigate the mechanisms suddenly leading the optimal perturbation towards
a self-sustained state, we have performed a spatial Fourier transform of the streamwise
disturbance velocity on the y = −0.4 plane, at each 2.5 time units (by selecting a different
wall-normal position or variable the results change but marginally). We have tracked the
development in time of modes having different wavenumbers, using their amplitudes
Am,n =

√
<(ũm,n)2 + =(ũm,n)2. The Fourier amplitudes of the most relevant modes,

normalized with respect to the initial amplitude of the mode A0,0, are provided in Figure
11 for ε = 0.0151 and 0.0152. The mode (1, 1), corresponding to the oblique wave, is
represented by a dashed red line, the mean flow deformation (0, 0) is given by the solid
line, and streaky structures, (0, 2) and (0, 1) by the blue and green lines. For the lower



Figure 12. Isosurfaces of the streamwise perturbation to the base flow (yellow and blue for
u = ±0.3, respectively), extracted from a DNS initialized with the optimal solution at t = 15
for ε = 0.0152. The snapshots are extracted at t = 25, 30, 35, 45.

value of ε the scenario appears similar to the early phases of oblique transition. At the
initial time of the DNS (t = 15), the flow is composed by the wavy disturbance and
its corresponding mean flow deformation. While the energy of the former decreases in
time, the latter increases and saturates towards an almost steady state; at the same time,
streaky modes begin to be generated from the initial numerical noise, and slowly saturate
in time. However, the amplitude of the induced mean flow distortion is not sufficiently
high to sustain a regeneration cycle cycle, and after a long saturation phase, the streaks
decay towards the laminar state (frame (a) of figure 11). On the other hand, when ε is
slightly larger, the self-sustained cycle is triggered very suddenly, roughly after 10 time
units. As one can observe in frame (b) of figure 11, the streaky modes generated by the
initial noise do not experience the slow phase of saturation and secondary instability
observed in the classical bypass transition scenario, but they rapidly reach a chaotic
dynamics. This behaviour is not surprising, since the perturbation has been optimized
by taking into account non-linear effects; thus, it should be able to skip some of the
linear phases of growth of the perturbations, similarly to fully non-linear optimals (cf.,
for instance, Cherubini et al. (2011)).

The different phases of the weakly non-linear optimal transition are displayed in figure
12 where isosurfaces of the streamwise perturbation are plotted together with velocity



Figure 13. Isosurfaces of the streamwise perturbation to the base flow (yellow and blue for
u = ±0.2, respectively), extracted from a DNS initialized with the optimal solution at t = 15
for ε = 0.0151. The snapshots are extracted at t = 25, 30, 45, 75.

vectors in a plane parallel to the direction of the oblique wave. At t = 25 (first frame),
the mean flow distortion has induced an inflectional region at y ≈ 0. The inflectional
instability triggered in this region produces an array of vorticity rolls normal to the
direction of the oblique wave (second frame). The rolls increase in amplitude, transporting
the base flow momentum, creating inclined zones of strong high and slow streamwise
velocity (third frame). It is noteworthy that the presence of inclined rolls and low- and
high-momentum regions is a key feature found in fully non-linear optimal perturbations in
Couette flow (see Monokrousos et al. (2011); Rabin et al. (2012); Cherubini & De Palma
(2013)). Finally, after 55 time units, these chaotic structures lose memory of the initial
inclination provided by the vortices, and a self-sustained chaotic motion is observed. On
the other hand, for a lower value of ε, although similar structures are created at early
times, they are not able to self-sustain. Figure 13 shows that, after 30 time units, rolls of
vorticity normal to the direction of the oblique wave begin to be generated. However, their
amplitude being too weak, they cannot be sustained in time by non-linear effects; thus,
they begin to decay. During this slow decay phase, the streamwise vorticity component
of those rolls slowly begin to generate streamwise streaks, which can be observed in the
fourth frame of figure 13. However, since the regeneration cycle is not sustained due to
the weak effect of non-linearities, the streaks saturate and then slowly decay.



The trajectory of the flow in these two cases can be observed on a projection of the
phase space given by the energy input rate, I, and the integral dissipation rate, D,
normalized by their respective laminar values and defined as:

I =
αoptβopt

4π2

∫ 2π/αopt

0

∫ 2π/βopt

0

1

2

[(
∂u

∂y

)
y=−1

+

(
∂u

∂y

)
y=1

]
dx dz, (4.2)

D =
1

V

∫ 2π/αopt

0

∫ +1

−1

∫ 2π/βopt

0

|ω|2 dx dy dz, (4.3)

where ω represents the vorticity vector. This projection of the phase space (see, e.g.
Kawahara & Kida (2001)) allows to visualize the balance between the energy injected
in the system through the moving walls and that dissipated by viscosity in the whole
domain. As discussed by Kawahara & Kida (2001), the laminar attractor sits in the point
I = D = 1; the turbulent statistically stationary state is close to I = D ≈ 3, whereas
all other equilibrium solutions are situated on the I = D diagonal, indicated in the two
frames of figure 14 by dashed lines. As shown in figure 14 (a), the trajectories start
from the upper left part of the plane (the empty triangles indicating the starting point
of the trajectory and its direction), corresponding to an energy input very close to the
laminar one and a rather high dissipation value. This is not surprising since the initial
flow structures are not placed close to the wall, where energy enters the system, but
rather around the center of the domain in y = 0. The light blue trajectory shows that,
for ε = 0.0151, after a rapid decrease of the dissipation, the trajectory bends towards
the I = D bisector, locus of equilibrium solutions. However, the perturbation amplitudes
reached are not sufficiently high to escape from the laminar attractor. On the other hand,
for ε = 0.0153, the trajectory spends much time close to the bisector, and then leaves
towards higher values of the energy input and dissipation rate, which are characteristic
of the turbulent dynamics. The slow-down of the trajectory in correspondence of the
bisector, in a region characterized by I and D values intermediate between the laminar
and the turbulent ones, might be the signature of the passage of the perturbation close
to a relative attractor on the laminar-turbulent boundary (the edge state, see Schneider
et al. (2008); Schneider & Eckhardt (2006); Skufca et al. (2006)). Indeed, for an initial
amplitude far from the laminar-turbulent boundary, ε = 0.0157 (green line), the trajec-
tory does not pass close to the bisector before reaching turbulence, but displays strong
values of D, typical of a bursting phenomenon (see also van Veen & Kawahara (2011);
Cherubini & De Palma (2013)).

Finally, in order to evaluate the efficiency of the weakly non-linear optimal perturba-
tions in inducing turbulence, we have compared these trajectories with those followed by
a linear optimal perturbation, computed for the same target time. The linear optimal
perturbation has been rescaled in amplitude in order to have at t = 15 the same integral
energy of the weakly non-linear solutions for ε = 0.0151 and 0.0157. The light blue and
green curves in figure 14 (b) show that, for these amplitudes, the linear optimal pertur-
bation is not able to induce transition, but rather leads to very fast relaminarization.
Increasing the initial energy of these perturbations by 5 times still does not lead the
flow to transition (as shown by the red line in figure 14 (b)), but rather induces a strong
bursting event which slowly decays in time. Thus, we can conclude that weakly non-linear
optimal perturbations are indeed more effective in inducing transition than linear ones.
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Figure 14. Trajectories on a I −D projection of the phase space of the (a) weakly non-linear
optimal solutions obtained for ε = 0.0151, 0.0153, 0.0157 and (b) of the corresponding linear
optimal solutions rescaled with increasing amplitudes. Note that the arrows indicate increasing
values of ε. The starting points of the trajectories, as well as their direction, are indicated by
the white triangles, whereas the full triangles indicate the ending points.

5. Conclusions

A formulation of the optimal-perturbation problem in shear flows is proposed, which
takes into account the distortion of the base flow by the action of the Reynolds stresses,
modeled by averaging the products of single-mode disturbance waves. The technique
proposed permits to consider the effect of the amplitude ε of the initial disturbance field
and to isolate a strongly receptive region of wavenumber space, for T sufficiently small
for the theory to remain tenable, which differs significantly from the most selective range
of linear optimal disturbances.

The simplicity of the weakly nonlinear model permits to compute thresholds separat-
ing initial states which relaminarize from those which grow without bound, in a fraction
of the time compared to full DNS and thereby the model represents a valuable tool for
parametric studies of the early stages of the laminar–turbulent transition. The impor-
tance of including the spanwise mean-flow distortion terms in the equations describing
the transient amplification of oblique flow structures has been demonstrated: although
the ε2w00 terms are small in magnitude their influence on the cross-stream terms in the
wave equations is not negligible.

It would, however, be illusory to expect for the present highly truncated model to
yield accurate transition thresholds, since transition relies on the growth and interac-
tion of several modes. We have thus performed Direct Numerical Simulations to unravel
the transition scenarios induced by the weakly nonlinear optimal disturbances. Concern-
ing the energy amplification, a remarkable agreement is found between the DNS and
the weakly nonlinear model results, for initial amplitudes below threshold. For larger
amplitudes, non-linear effects become too strong to be correctly captured by a weakly
non-linear expansion. However, when ε > εcrit, the optimal perturbation resulting at
finite time from the weakly non-linear model is able to induce a self-sustaining cycle
leading to turbulence, whereas a linear optimal disturbance computed for the same tar-
get time leads to relaminarization, even when the initial energy is rescaled to very large
values. The self-sustained cycle identified is triggered by an inflectional instability at
the center of the domain, resulting from the mean flow distortion induced by Reynolds



stresses. This inflectional instability generates an array of vorticity rolls in the direction
normal to the oblique wave, that, while increasing in amplitude, transport the base flow
momentum, creating inclined zones of high and low streamwise velocity. Finally, these
chaotic structures lose memory of the initial inclination provided by the vortices, and
sustained chaotic motion is observed.
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