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Abstract. This paper presents a Mixed Integer Program to solve the
Balanced TSP. It exploits the underlying structure of the instances and
is able to find optimal solutions for all the instances provided in the
Metaheuristics Summer School competition. We study the efficiency of
this new model on several variants of the Balanced TSP. The proposed
method was ranked first in the MESS18 Metaheuristic competition among
9 submissions.

Instances and ranking: http://195.201.24.233/mess2018/home . html.
Source code: https://gitlab.com/librallu/balancedtspcodel

Keywords: Balanced TSP - MIP - Metaheuristics

1 Introduction, Problem description, and preliminary
results

This paper presents a MIP formulation for a kind of optimization problem
that involves the minimization of an absolute lexicographic value. It obtains
optimality proofs for all instances of the Metaheuristic Summer School 2018
competition (http://195.201.24.233/mess2018/home.html) in a (relatively)
short amount of time.

Consider a graph G = (V, E), and a weight function w : F — Z. We want to
find a Hamiltonian tour 7" that minimizes | ) .p wel.

We can formulate this problem as follows:


http://195.201.24.233/mess2018/home.html
https://gitlab.com/librallu/balancedtspcode
http://195.201.24.233/mess2018/home.html
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min 2z
subject to
JEV,ij€E
> a<|s|-1 VS CV,S#0 (2)
i,j€S,ij€E

z 2> Z TeWe (3)

ecE
z>— Z TeWe (4)
ecE
z. € {0,1} Vee E

z€Z

Constraints (1) and (2) are tour constraints. Constraint (1) guarantees the
degree of vertices to be 2 in the tour. Constraint (2) guarantees no subtour.
Constraints (3) and (4) make z be the absolute value of the sum of edges in the
tour.

If used as is, this formulation gives poor results (see Table . A significant
improvement can be achieved by taking into account some properties of the
instances presented in the competition.

1.1 A better MIP formulation

The MESS2018 competitiorﬂ instances represent sparse graphs. Indeed, an
instance of size n contains 4 - n edges. It implies that the resulting MIP models
contain a (relatively) small number of variables. Moreover, it turns out that each
weight w can be written as w = w - 10° + w, with w € [0, 10] and w € [0, 100].
These weights are lexicographic since a solution that does not optimize the w
part will be worse than a solution that optimizes W (unless there are many edges
in the instance). Using this property, we can preprocess the input to decompose
weights and derive a new model that introduces 3 objectives. One for the sum
of w, one for the sum of w and the last one for the sum of w.

! http://195.201.24.233 /mess2018 /home.html
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min z
subject to
Z T =2 VieV (5)
JEV,ijeE
> w8 -1 VS CV,S 40 (6)
i,j€S,ij€E
z= Z TeWe (7)
eckE
2= wewe (8)
eckE
2>%-10° + 2 9)
2> —(2-10° + 2) (10)
z. € {0,1} Ve € E
2,2,2 €7

Constraint (5) guarantees the degree of vertices to be 2 in the tour. Constraint
(6) eliminates subtours. Constraints (7) and (8) define Z (resp. z) to be equal
to the weighted sum of selected edges. Constraints (9) and (10) define z to be
equal to the absolute value of the original weighted sum of edges.

In the remaining of this document, we call this model the lifted MIP model.
We call the original model the standard MIP model.

1.2 Numerical results

Results were obtained on an Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz core
with 8 GB RAM and Linux Mint 11. The MIP models were implemented using
Gurobi 8.1 and python2.7. Table ?? reports optimal values, and computation
times and gaps. In the dataset, instances are denoted by their size. For example,
instance 0500 has 500 vertices. Column optimal obj shows the value obtained
by the lifted MIP model. Column time to opt reports the time needed by the
lifted MIP model to find the optimality proof. Finally columns b standard, ub
standard, gap standard (gap = “IL_blb) report bounds obtained by the standard
MIP model within 30 seconds. We note that no more time is needed to observe

a clear difference in performance between the two models.

As the results show, lifting the variable space in the second MIP has a dramatic
effect on performance. Indeed, it allows the solver to branch in order to optimize
first the w part of the problem, consequently improving the search speed. During
the competition, I tried many matheuristic approaches (mostly local branching
like). At some point, I noticed that the lifted approach was able to solve optimally
the competition instances in a few seconds. It would be interesting to compare
the lifted approach with other meta-heuristics (like local branching) on bigger
instances (i.e. 5.000, 10.000 etc.).
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instance | optimal [time to lower bound | upper bound gap
objective | optimal (s) | standard standard | standard (%)

0010 105 0 105 105 0.0

0015 271 0 271 271 0.0

0020 296 0 86 296 71.0
0025 375 0 87 386 77.5
0030 433 0 0 434 100.0
0040 458 0 0 604 100.0
0050 630 0 100 762 76.4
0060 821 0 0 948 100.0
0070 858 0 0 1.419 100.0
0080 807 0 5 1.324 100.0
0090 974 0 212 1.150 81.6
0100 996 0 266 2.228 88.1
0150 1.673 |1 0 3.003 100.0
0200 2.029 |0 0 3.838 100.0
0250 2.798 |0 0 5.497 100.0
0300 3.695 |2 119 7.240 98.4
0400 4.709 |2 0 9.919 100.0
0500 5.747 |5 0 9.983 100.0
0600 6.548 |8 154 12.573 98.8
0700 8.097 |8 0 16.169 100.0
0800 9.234 |15 0 18.019 100.0
0900 9.271 |12 0 19.481 100.0
1000 11.202 |29 0 23.604 100.0
1500 16.339 |51 0 36.304 100.0
2000 20.757 [133 0 48.789 100.0
2500 1.333 |510 0 35.075 100.0
3000 0 2.125 0 24.074 100.0

Table 1: Comparison of the standard and lifted formulations for the balanced
TSP
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In Appendix [A] Figures [1] [2} B} [ [B] and [6] show the convergence curves of the
lifted MIP formulation. We observe very different behaviours on the convergence
curves. In the btsp0100 and btsp0250 instances, the upper bound converges
quickly and the lower bound is found in the later stages of the resolution. In
the btsp0500 instance, the dual bound converges quickly to some good value.
However, there is still an important gap to optimality that is closed later during
the resolution. In the btsp0700 instance, both best solution found and dual
bound improve at the same time to some very small gap (less than 1%). Finally,
we observe on btspl000 and btsp1500 instances that finding a feasible solution
takes time (sometimes half the resolution time) and the lower bound of good
quality is found in the later stages of the resolution.

In this section, we investigated the lifting process. It allows a dramatic perfor-
mance increase. This allows us to find optimal solutions for all instances of the
benchmark. In the next section, we investigate this impact on different variants
of the problem (namely assignment variant, subset variant, balanced spanning
tree and regular TSP).

2 Impact on problem variants

We study different problem variants and evaluate the performance difference
between the standard and the lifted model.

For each variant, we present a standard MIP model. We perform the lifting
strategy as described on the balanced TSP. For the sake of simplicity, since the
lifting process for each variant is totally similar to the balanced TSP, we do not
present the lifted formulation alongside each standard formulation.

2.1 Balanced Assignment

A first related problem we may want to consider is the assignment problem.
It consists of removing from the original problem the subtour elimination con-
straint. We note that it constitutes a relaxation of the original balanced TSP.

We define the balanced assignment problem as follows:
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min 2z
subject to
S wi=2 VieV (11)
jeV,ijeE

z > Zmewe (12)

eel
z> — Z TelWe (13)
eeFE
z. € {0,1} VYec E

z €L

Constraint (11) forces each vertex to have two incident edges, constraint (12)
and (13) force the balanced objective.

As for the balanced TSP, one can define the lifted version of the balanced
assignment.

2.2 Balanced fixed-size subset

In this section, we describe a relaxation of the assignment problem. We relax
the degree constraint on each vertex and add a constraint to fix the number of
edges selected. The following model describes the subset problem:

min z

subject to

S r=n (14)

eckE
z > Z TeWe (15)
eckE
z>— Z TeWe (16)
ecE
z. € {0,1} Vee E
z €7

Constraint (14) forces the number of edges selected, constraints (15), (16) de-
fine z as an objective. As for the previous models, we consider both the standard
version and the lifted version.

2.3 TSP

Since the lifted formulation for the balanced-(TSP,assignment,subset) made a
huge difference in the performance, we added some experiments for the classical
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TSP. Without surprise, gurobi was able to handle even the big instances in a
few seconds for both models. However, it seems that the lift formulation does
not imply any gain in performance on the classical TSP. The following model
presents the TSP formulation used:

min 2z
subject to
S =2 VieV (17)
JEV,ijeE
ST oay<Is -1 VS CV,S+#0 (18)
4,j€S, ij€E

z> Z TeWe (19)

ecE
z. € {0,1} Vee E
z €

Constraints (17) and (18) are tour constraints. Constraint (19) sets the ob-
jective to the minimal tour value.

2.4 Balanced Spanning Tree

A related problem can be to find a balanced minimum spanning tree in the graph.
We relax the degree constraint for each vertex. Also, we add a constraint that
forces the number of selected edges to be n — 1 and the graph to be connected.
The following model describes the balanced spanning tree problem:

min 2
subject to
Z Te=n—1 (20)
ecE
> a<|s|-1 VS CV,S#0 (21)
i,jES,ijEE

z > Z LeWe (22)

eckE
z>— Z TeWe (23)
eck
ze € {0,1} Vee E

z€Z

Constraint (20) ensures the number of selected edges to be n— 1. Constraints
(21) ensures no cycle in the selected edges. Constraints (22) and (23) forces the
objective function to be the balanced sum of selected edges.
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2.5 Numerical results on sub-cases

As for the balanced TSP, results were obtained on an Intel(R) Core(TM) i5-
3470 CPU @ 3.20GHz core with 8 GB RAM and Linux Mint 11. The MIP
models were implemented using Gurobi 8.1 and python2.7. Tables and
present numerical results for respectively the Balanced assignment problem, the
balanced spanning tree problem, the balanced subset problem and the TSP.

For the balanced assignment problem and the balanced subset problem, the
result tables are similar to the balanced TSP (i.e. time to optimal with the
lifted formulation and the bounds and gap for the standard formulation). For
the classical TSP, since both formulations were able to prove optimality within a
few seconds, we only use the time to optimal for both formulations. Finally, for
the balanced spanning tree, since both formulations struggle to find optimality
proofs for some instances, we stopped them if they run more than 30 seconds.
We report the bounds of both formulations.

We note that for both the balanced assignment and the balanced subset, we
obtain similar results as for the balanced TSP. For the classical TSP, we do not
notice any significant difference between the two formulations. More tests should
be performed on different non-balanced problems to evaluate the efficiency (or
inefficiency) of the lifted formulation. Finally, the balanced minimum spanning
tree is harder to solve than the other versions (including the balanced TSP).
Indeed, even for some very small instances (n = 40), the lifted formulation is
not able to prove optimality within 30 seconds. We note that the biggest solved
instance within 30 seconds with the lifted formulation has 300 vertices. Also, the
standard formulation is only able to solve the smallest instance (n = 10). Even
for n = 15, the standard formulation is not able to find an optimal lower bound
nor an optimal upper bound.

3 Conclusion & Perspectives

This paper presents a new MIP model for the balanced TSP. This model uses a
specific property on the edge weights. This allows to make a clever reasoning and
closing instances of the Metaheuristic Summer School (MESS18) competition.
This paper investigates this phenomenon on several variants of the balanced TSP
(namely the balanced assignment problem, the balanced fixed subset problem,
the balanced minimum spanning tree problem and the classical TSP). We show
that this performance improvement occurs on all balanced problems considered.
However, this phenomenon seems to not appear on the classical TSP. We showed
a dramatic performance increase on the lifted formulation compared to the stan-
dard formulation. This approach seems to be suited for balanced problems and a
simple MIP model is even able to compete with other metaheuristics presented
during the competition.
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MIPs are known to be suited for instances of reasonable size. However, this
approach is less suited on bigger instances (i.e. 5.000, 10.000, etc.). One way
to overcome this issue is to implement matheuristics. One can, for instance,
implement some Large Neighbourhood Search while using a MIP solver ([FL03]).
This, way, one can take advantage of the progress made by such software and
the lifted formulation described in the present paper.

References

FL03. Matteo Fischetti and Andrea Lodi. Local branching. Mathematical program-
ming, 98(1-3):23-47, 2003.

A Appendix

1x10% F T T T T T T T 3

F objective —+— |

dual bound - < - 1

100000 £ I— 9

" E i
>
©
>

£ 10000 F 1

401 F ]

9 [ 1

o L ]

1000 | e

100 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

time(s))

Fig. 1: btsp 0100 convergence curves



10

Objective value

Objective value

L. Libralesso

1x10° ¢

100000

10000 |

1000

1x10° ¢

100000 |

10000

1000

T T T T T T T
b objective —+—
I dual bound - -X -
1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
time(s))
Fig. 2: btsp 0250 convergence curves
T T T T T T T
objective —+—
dual bound - -X< -
M """""""""""""""" .
1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4

time(s))

Fig. 3: btsp 0500 convergence curves



Objective value

Objective value

1x107 ¢
1x106 |
100000 }

10000 |

1000

100000

10000

Title Suppressed Due to Excessive Length 11
T T T T T T 3
objective —+—
dual bound - -X -
3 P DK+ Y
Xoommmmmm o - - == 3 X
1 1 1 1 1 1
0 1 2 3 4 5 6 7
time(s))
Fig. 4: btsp 0700 convergence curves
T T T T
objective —+—
dual bound - -X< -
SR
1 1 1 1
0 5 10 15 20 25
time(s))

Fig. 5: btsp 1000 convergence curves



12

L. Libralesso

instance  time to optimal  lower bound upper bound gap
optimal (s) objective  standard standard  standard (%)

0010 0 105 105 105 0.0
0015 0 271 271 271 0.0
0020 0 285 221 286 22.7
0025 0 364 214 375 42.9
0030 0 433 161 443 63.6
0040 0 458 56 457 87.7
0050 0 629 117 805 85.4
0060 0 821 50 1.083 95.3
0070 0 857 90 1.210 92.5
0080 0 806 225 850 73.5
0090 0 973 58 1.203 95.1
0100 0 993 8 1.399 100.0
0150 0 1.664 0 2.868 100.0
0200 0 2.029 1 3.936 100.0
0250 0 2.796 0 5.056 100.0
0300 0 3.693 141 6.721 97.5
0400 1 4.698 0 7.099 100.0
0500 1 5.737 0 8.922 100.0
0600 0 6.543 4 9.789 99.9
0700 1 8.095 0 13.028 100.0
0800 1 9.226 0 14.899 100.0
0900 2 9.265 0 15.412 100.0
1000 2 11.201 0 21.157 100.0
1500 16 16.337 0 31.883 100.0
2000 18 20.755 0 47.645 100.0
2500 39 1.326 0 31.943 100.0
3000 38 0 0 18.872 100.0

Table 2: Numerical results on the balanced assignment problem
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instance lited lifted standard standard
lower bound upper bound lower bound upper bound

0010 60 60 60 60

0015 129 129 4 173

0020 143 143 0 242

0025 222 222 0 430

0030 247 247 0 247

0040 241 840 0 720

0050 378 378 0 1.036
0060 389 394 0 1.071
0070 375 375 0 1.238
0080 369 369 0 1.167
0090 342 342 0 1.300
0100 525 525 0 2.313
0150 855 855 0 2.476
0200 925 925 0 4.311
0250 1.170 1.170 0 3.236
0300 1.471 1.471 0 4.854
0400 2.099 2.109 0 7.493
0500 2.619 2.629 0 6.942
0600 0 2.917 0 10.381
0700 0 3.864 0 15.749
0800 0 4.319 0 15.649
0900 325 4.189 0 18.736
1000 386 5.188 0 21.090
1500 0 20.396 0 32.876
2000 0 23.264 0 45.489
2500 0 24.583 0 30.485
3000 0 28.297 0 13.466

Table 3: Numerical results on the balanced spanning-tree problem

13
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instance  time to optimal  lower bound upper bound gap
optimal (s) objective  standard standard  standard (%)
0010 0 82 0 82 100.0
0015 0 130 0 130 100.0
0020 0 144 92 332 72.2
0025 0 233 0 306 100.0
0030 0 259 0 434 100.0
0040 0 263 0 460 100.0
0050 0 389 0 700 100.0
0060 0 406 128 568 77.4
0070 0 376 0 650 100.0
0080 0 358 0 1.750 100.0
0090 0 353 0 486 100.0
0100 0 537 0 2.074 100.0
0150 0 799 0 3.519 100.0
0200 0 926 0 4.176 100.0
0250 0 1.192 0 5.032 100.0
0300 0 1.493 0 5.785 100.0
0400 0 2.110 0 8.620 100.0
0500 0 2.630 0 10.708 100.0
0600 0 2.861 0 12.612 100.0
0700 1 3.886 0 14.463 100.0
0800 0 4.320 0 15.765 100.0
0900 0 4.166 0 16.042 100.0
1000 9 5.210 0 21.334 100.0
1500 19 7.579 0 33.974 100.0
2000 34 8.447 0 41.608 100.0
2500 7 0 0 29.713 100.0
3000 0 0 0 16.087 100.0

Table 4: Numerical results on the balanced subset problem
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time to optimal (s)

standard time to optimal (s)
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Table 5: Numerical results on the classical TSP problem
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