N
N

N

HAL

open science

Discrete Control of Response for Cybersecurity in
Industrial Control

Gwenagél Delaval, Ayan Hore, Stéphane Mocanu, Lucie Muller, Eric Rutten

» To cite this version:

Gwenaél Delaval, Ayan Hore, Stéphane Mocanu, Lucie Muller, Eric Rutten.
Response for Cybersecurity in Industrial Control. IFAC 2020 - IFAC World Congress 2020, Jul 2020,

Berlin, Germany. pp.1-8. hal-02569406

HAL Id: hal-02569406
https://hal.science/hal-02569406

Submitted on 11 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Discrete Control of

https://hal.science/hal-02569406
https://hal.archives-ouvertes.fr

Discrete Control of Response for
Cybersecurity in Industrial Control

Gwenaél Delaval, Ayan Hore, Stéphane Mocanu,
Lucie Muller, Eric Rutten

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, F-38000
Grenoble France

Abstract: Cybersecurity in Industrial Control Systems (ICS) is a crucial problem, as recent
history has shown. A notable characteristic of ICS, compared to Information Technology,
is the necessity to take into account the physical process, and its specific dynamics and
effects on the environment, when considering cybersecurity issues. Intrusion Detection Systems
have been studied extensively. In our work, we address the less classic topic of response
mechanisms, and their automation in a self-protection feedback loop. More precisely, we address
self-protection seen as resilience, where the functionality of the system is maintained under
attacks, be it in a degraded mode. We model this as a Discrete Event Systems supervisory
control problem, involving a model of the plant’s possible behaviors, a model of considered
attacks, and a formulation of the control objectives. We consider a case study, and perform
a prototype implementation and simulation, using the Heptagon/BZR programming language

and compiler/code generator, and targeting a multi-PLC experimental platform.

Keywords: Industrial Control, Cybersecurity, Discrete Event Systems, Supervisory Control

1. INTRODUCTION
1.1 Industrial Control Systems and Cybersecurity

Modern Industrial Control Systems (ICS) are commu-
nicating devices (software or electronic components but
also mechanical or hydraulic) which interact in order to
achieve the control objective of a physical process (man-
ufacturing, chemical or energy systems). They are often
considered a critical infrastructure in the sense that their
failure may lead to severe damages to the environment
and fatalities. Traditionally ICS communication relies on
proprietary networks and protocols. In the last twenty
years TCP/IP and Internet related technology become
more and more present due to their low cost and interop-
erability compared to legacy solutions. Opening to these
technologies comes with a risk, because when ICS are
open to remote maintenance, engineering and operations
management, they are also open to internet threats. In the
last decade, events and exploits (Stuxnet [Langner [2013]],
BlackEnergy, Industroyer, WannaCry) demonstrated that
cyber attacks may lead to physical damage on the process
and involve losses of millions of euros. The consequences of
the last in date major threat, LockerGoga, that infected
Norsk Hydro on May 2019 where evaluated between 56
and 66 M€ [Hydro [2019]].

Due to the fact that ICS are used to control a physical
process, the security deployment presents differences w.r.t.
Information Technology (IT) systems. An extensive anal-
ysis is provided in the classical NIST guide [Stouffer et al.
[2015]]. Relevant to our study are that firstly, in opposi-
tion with classical IT requirements analysis based on the
CIA triad (Confidentiality, Integrity, Availability in that

order of importance), the most important cybersecurity
requirement for ICS is system availability, because losing
process control is the worst case event. Integrity is the
second requirement in order, because tampering control
data may lead to process damage. Confidentiality is the
less important requirement as data leaks may lead to some
financial or reputation damage but unlikely to casualties.

Turning back to availability which is the paramount re-
quirement of ICS system that will mean from the point of
view of cybersecurity that classical solutions like reboot-
ing or reloading the operation system in case of attack
or virus infection cannot be applied. Shutting down an
industrial facility is a long process that has to respect a
strict procedure and it is common for critical ICS to be
maintained operational even under attack. It follows that
the operational characteristic of interest is the resilience,
i.e., the capacity of the system to maintain a minimal
quality of service while under attack.

One way to achieve resilience is to increase redundancy of
the critical assets as in the case of fault tolerant systems.
While this classical approach in safety is proved in case of
failure, it may not be adequate in case of attack. Indeed
while dependability and fault tolerance are designed in
order to handle a set of well characterized accidental fail-
ures, they are not designed to handle intentional attacks.
Cybersecurity approaches cannot consider only known
scenarios but also the possibility of new form of system
malfunction due to malevolent attacks (the so called “0-
day” vulnerability exploitation). In case of detection of
“strange” behaviour and doubtful networks activity the
security management has to react in order to keep a
minimal safe level of system function.

1.2 Response to attacks and its automation

Typically the response to attacks is triggered by a Security
Information and Event Management (SIEM) system upon
the reception and analysis of a security event sent by an
Intrusion Detection Systems (IDS). Intrusion Detection
research has been an intense activity field in IT in the
last forty years. A classification and basic definitions may
be found in the classical paper Debar et al. [1999]. From
the point of view of detection method IDS may use a
model of the normal behaviour to detect anomalies or use
a pattern of the attack: those are the so called signature-
based IDS. Various approaches are considering different
models for detection. For instance Carcano et al. [2011]
are building a stochastic model of the cyberphysical system
for a probabilistic detection while Koucham et al. [2016]
are using an approach based on security patterns learnt
by property mining. Once notifications and alarms are
being produced by such IDS, they can be received by the
SIEM, where the operators of ICSs can analyse them and
take appropriate counter measures, in a process that is
considered manual, and not part of the research topic.

A less studied research topic is to consider specifically
the response to attacks on ICS, and its automation, by
analysing what are the classes of attacks that can po-
tentially occur, what are the available means to use as
counter-measures, and what are the policies and criteria
for deciding on the most appropriate counter-measures.
More precisely, depending on the nature of the attack, as
well as the current state of the system and the available
protection actions, there is a decision problem that has
to be solved in a feedback loop enforcing self-protection.
Only few research has been conducted on this field because
the reaction mechanism is very dependent on the appli-
cation field. A self-protection approach for smart-grids is
presented in Kabir-Querrec et al. [2015]. Other approaches
are based on the use of a backup system as in Babay et al.
[2019] or a robust estimation algorithm able to correct
corrupted input data as in Zhu [2014].

1.8 Contributions of this work

Our approach is focusing on a class of response mecha-
nisms by isolation of attacked components and reconfigu-
ration of the ICS in order to keep it under safe control.
We present the following contributions : (i) our approach
to self-protection seen as resilience ; (ii) a generic model as
a Discrete Event System (DES) supervisory control prob-
lem, encoded in the Heptagon/BZR language ; (iii) a case
study, and a prototype implementation and simulation.

2. DISCRETE CONTROL WITH HEPTAGON/BZR

Initially defined in the framework of language theory by
Ramadge and Wonham [1989], the supervisory control of
DES, and the algorithmic tool for Discrete Controller Syn-
thesis (DCS) has been adapted to symbolic Labelled Tran-
sition Systems (LTS) representing finite state automata,
and implemented in tools within the reactive languages
by Marchand and Samaan [2000] and Berthier and Marc-
hand [2014]. DCS is applied on an LTS representing pos-
sible behaviors of a system, its variables being partitioned
into controllable ones (c) and uncontrollable ones (u). For

a given control objective (e.g., staying invariantly inside a
given subset of states, considered “good”), the DCS algo-
rithm automatically computes, by exploration of the state
space, the constraint on controllable variables, depending
on the current state, for any value of the uncontrollables,
so that remaining behaviors satisfy the objective. This
constraint is inhibiting the minimum possible behaviors,
therefore it is called mazimally permissive. If no solution
is found, then DCS plays the role of verification. The
computational complexity w.r.t. using DCS is of course an
issue, in FSM as well as in Petri nets based supervisory
control techniques [Yang and Hu [2019]] because they
involve unfolding the marking graph, but on the one hand
there are ongoing research works dealing with modular
DCS, and on the other hand the size of there are methods
to decompose systems into subsystems (see Section 4.6).

BZR program

Il

automaton model

state +

. ntrollable vars
uncont. inputs

Q

monitor execute
(uncontrollable

- (outputs)

inputs) managed system

Fig. 1. Heptagon/BZR: the contract is transformed by
compilation and DCS into a controller.

In our work, we use the Heptagon/BZR programming lan-
guage and compiler to build automata models and apply
DCS, as shown in Fig. 1. Using this language enables us to
constructs models which are at the same time formal, for
the DCS tool, and executable, for our application, without
any loss in generality. Heptagon/BZR [Delaval et al. [2013]]
is a synchronous programming language which allows to
model systems in term of parallel composition of reac-
tive finite state automata. A program written in Hep-
tagon/BZR is composed of nodes, each node being defined
by a set of inputs (each input modelling a stream of inputs,
typically coming from the environment), a set of outputs
(e.g., streams of actions towards the environment), and
a set of equations and/or automata defining the relation
between the sequences of inputs and outputs.

For example, the node in Fig. 2 describes the simplified
model of a program running on a Programmable Logic
Controller (PLC). This program can be in three differ-
ent states: Nominal, Degraded and Safe (the subsystem
controlled by this program has been disconnected). This
node is defined with two input streams: deg (resp. safe)
is a Boolean input which forces the program to go to its
degraded (resp. safe) mode. The output e_stop emits an
“emergency stop” event towards the subsystem when the
program is in safe mode.

The table below shows an execution example of this node.
At each execution step, the values of the two inputs are
read, the current state and the outputs are computed from
the previous state and the current values of inputs.

deg 0 0 0 1 0O|]0]O0
safe 0 0 0 0 0 110
State N|IN|N|D|DJ|S]|S
e_stop 0 0 0 0 0 1 1

node prog(deg,safe:bool) = (e_stop:bool)
let
automaton
state Nominal
do e_stop = false
unless deg then Degraded
| safe then Safe
state Degraded
do e_stop = false
unless safe then Safe
state Safe
do e_stop = true
end
tel

Fig. 2. Heptagon/BZR node example: model of program

The Heptagon/BZR language allow then to express paral-
lel composition of automata: e.g., we can instantiate twice
the prog node with distinct inputs and outputs:

e_stopl
e_stop2

prog(degl, safel);
prog(deg2, safe2);

Then, our language allows to express contracts on nodes,
so as to define temporal properties on inputs and outputs.
For example, we can express that at each instant, if the
first program is in safe mode, then the second one must
be also in safe mode: enforce (e_stopl => e_stop2). These
temporal properties will be enforced by a controller, au-
tomatically generated by a DCS tool from an equational
representation of the program. This equational represen-
tation is obtained directly by compilation of the Hep-
tagon/BZR program: a program can then be seen as well
as a computable model. This computed controller will act,
at execution time, on controllable variables such that the
property to be enforced will be satisfied, at each execution
step, whatever be the future values of inputs, depending
on the current state (resp. ¢, u and s in Fig. 1).

In the node given on Fig. 3, we consider that the synthe-
sized controller can act on the variables safel and safe2:
i.e., that the controller can force the two entities to go in
degraded mode. The aforementioned property is enforced
by this controller, without being explicitly programmed.

3. ICS AND CYBER-SECURITY PROBLEM

According to ANSSI' and NIST? classification, both
based on CIM?, model entities in an ICS are classified
from the point of view of their role in the ICS: sensors/ac-
tuators, controllers and operator consoles, Supervisory
Control and Data Analysis (SCADA) servers and clients,
enterprise resource planning (ERP) and data analysis.

In our approach we consider the reaction for the self-
protection of the critical part of the ICS. The self-
reconfiguration will concern the controllers which are tar-
gets of the attacks although the intermediate steps of the
attacks may corrupt SCADA and ERP devices.

1 Agence nationale de la sécurité des systémes d’information —
French Cybersecurity authority

2 National Institute of Standards and Technology

3 Computer Integrated Manufacturing

node two_progs(degl,deg2:bool)
= (e_stopl,e_stop2:bool)
contract
enforce (e_stopl => e_stop2)
with (safel, safe2:bool)

let
e_stopl = prog(degl, safel);
e_stop2 = prog(deg2, safe2);
tel

Fig. 3. Heptagon/BZR node example: controlled programs

The design of the reaction mechanism is stated as a DES
supervisory control problem, using our reactive program-
ming language Heptagon/BZR. Other approaches in the
state of the art of DES for security and privacy have been
considering obfuscation as e.g., Jacob et al. [2016], Ji et al.
[2018]. Differently to these approaches, we consider the
reaction to attacks from a resilience perspective.

3.1 Response and resilience

We consider attack scenarios that will compromise con-
trollers such as PLC by, for example, Denial of Service
when the control function is no more computed by the
PLC, a Variable Tampering when the data in the PLC
memory is compromised or a Program Tampering when
the control program is modified.

In our approach, to improve the resilience of the ICS in
case of cyber attacks, we propose a self-reconfiguration
reaction at two levels: (i) network level: we reconfigure
interconnection devices so that the compromised PLC is
isolated; (ii) controllers level: we reconfigure the programs
running in the available PLCs so that the control function
of the compromised one are taken over by another.

While the first part of the reaction (network level) does
not need any special features of the architecture (stan-
dard manageable interconnection devices are sufficient),
redeployment of control functions is possible only if the
sensors and actuators are accessible to several PLC over
the network. In the next section we specify the character-
istics of the ICS architecture supporting resilience.

3.2 Qwerall ICS architecture

We focus on the lower levels (actuators, sensors and
controllers) of an ICS architecture. We assume:

e the physical process may be technologically divided in
subsystems, corresponding to either control loops or
components of the plant (tanks, mixers, heaters, etc);

e sensor and actuators are all connected to RTU
(Remote Terminal Units) which communicate
through an Ethernet network. The RTU’s embedded
programs only support an emergency stop (E-STOP)
function, that can be remotely triggered, to put the
local loop in safe mode;

e controllers are PLCs, and may differ in terms of
memory and performance e.g., processor throughput;

e the local area network (LAN) is built around
manageable Ethernet switches, with ports that may
be shut down for disconnection from the network.

Figure 4 shows an example ICS with the previous charac-
teristics, with two subsystems, three RTUs and two PLCs.

PLCy PLC,

Fig. 4. An example of considered ICS architecture.

3.8 Response to attacks in a reaction feedback loop

As shown in the feedback loop of Figure 5, the reaction
is triggered by the alarms raised by the detection block
(of which the detail is out of our scope): we assume that
several IDS alerts are correlated e.g., within a SIEM in
order to detect and identify attacks. We consider that
a knowledge base of possible actions is available and,
depending on the alarms and the states of the PLCs
and programs cw; (critical phase) and sw; (switchable
phase), as well as a manual order to go to emergency mode
e;, the self-protection manager decides on the reaction:
(i) isolate the attacked component from the rest of the
ICS (by disconnecting communications); (i) reorganize
the functionalities required for the ICS to run properly,
i.e., reorganize control programs so that safety as well as
computing infrastructure capacity requirements are met.

The reaction manager will deliver a response in the form
of a stream of values to the ICS concerning: the isolation
of the attacked PLC (which is handled by the switches),
the versions of the programs to be activated mode;, as
well as its location amongst PLCs ex_loc;, according to
the constraints to be satisfied by the global system.

8.4 Physical and hardware related constraints

Due to the critical mission of most of the ICSs, recon-
figuration actions cannot take place at any moment. For
instance, during some technological steps it might be im-
possible to change the controller or the program version.
If for example, the duration of an operation is controlled
by an internal timer block, then program migration will

6 ———>

self-protection

manager —I
states programs
cw; mode; isolation;

SW; ex_loc;

alarm;

Fig. 5. Self-protection feedback loop in response to attacks.

be impossible if the exact step duration has to be re-
spected. Also, PLCs are typically resource constrained and
the control programs must satisfy explicit response time
bounds, so that reallocating a control program from a
PLC to another might jeopardize real-time performance.
In order to take into account such physical and computing
resource constraints, we make assumptions and impose
explicit constraints to be taken into account.

Control program assumptions and constraints. Programs
are written in IEC 61131 languages like SFC or Ladder
Diagrams, under several versions, distinguished by:

QoS: quality of service of the computed control: a more
elaborate version can provide with better precision,
or performance, e.g., involving complex optimization;

execution time: duration of the program version within
each PLC cycle, can differ w.r.t. complexity;

size in the memory: the code of each program version
occupies part of the PLC’s bounded memory.

Typically, we consider the following versions:

nominal delivering full functionality, with best quality,
e.g., precision of command, or optimization ;

degraded delivering limited functionality, e.g., sub-opti-
mal control, with a smaller use of resources;

safe mode or emergency stop where functionality is
not delivered any more, but the essential controls are
kept on the physical subsystem, in a safe state.

A subsystem can be ordered to go to emergency stop at
any time, by the human operator of the ICS or by the self-
protection manager. We consider that a program P; can be
in a critical phase, and can have phases where no version
switching is allowed. This information is made available
to the self-protection manager through Boolean variables
resp. cw; and sw;. At runtime, at each execution cycle of
the PLC, only some versions are computed by submitting
their execution to a condition excluding the others.

PLC and RTU related assumptions. Each PLC is char-
acterized, for the purposes of this work, by:

e the size of the memory where programs are loaded
statically, before the starting of the ICS;

e the cycle time, within which PLCs must read data
from the various inputs, execute codes and then write
the outputs, along with communication overheads.
This defines a maximum duration bounding the exe-
cution of active programs within one cycle;

e the manufacturer or type, as not all of them are inter-
operable w.r.t. execution of control programs.

We assume that not all PLCs are attacked at the same
time, i.e., for n PLCs, only n — 1 out of n can be. We
also assume that, thanks to their simplicity and limited
interactivity, RTUs will not be targeted by attacks.

Communication network assumption. A switched LAN
is interconnecting the PLC and RTU’s. We assume that
switches are manageable and ports can be shut down
if needed in order to isolate compromised devices. We
do not consider attacks targeting the network as they
are not specific to ICS. We consider that general IT
countermeasures were deployed and switches are secured.

PLC1 PLC2

OE=

@

i

Switch

N Tank —

.
5
=)

B
\L :I:/‘
B

=3
o/
-

|

~—

\

Fig. 6. The simple use-case of two cascading tanks.

3.5 Interactions between control programs

static priorities can designate programs to be more or
less critical: higher priority programs should be exe-
cuted in better version than lower priority ones.

dynamic priorities, e.g., depending on a state informa-
tion from the physical plant or a program

dependencies between emergency stop modes:
when some subsystem is in emergency stop mode
then some others should be too; but not necessarily
reciprocally, e.g., if P1 in safe mode then P2 and P3
as well (but not P1 if P2 or P3 in safe mode).

3.6 Control informal specification

To summarize, the following policies must be enforced by
the controller of the re-configurations of the ICS :

(i) every subsystem should be under the control of at
least one and at most one version of a control pro-
gram, executed on some PLC or RTU;

(ii) a control program can be executed on a PLC only if it
has a version which is compatible with the PLC type
and available in the memory of that PLC;

(iii) the total code of control programs available on a PLC

must not exceed its memory capacity;

) the duration of the execution of all programs active

in the same cycle must be less than the Cycle Time;

) static priorities between programs must hold;

(iv

(v
(vi) dynamic priorities between programs must hold;
(vii) subsystems can be put in emergency stop at any time;
(viii) dependencies of emergency stop modes must hold;
(ix) a PLC under attack should not execute any program.

The above logical properties might be satisfied by several
different configurations. The choice amongst them must be
made according to other criteria, for example more qual-
itative, like cost in resources or quality and performance,
upon which optimization can be done. In our case, we will
want to maximize Quality of Service (QoS), i.e., maximize
number of control programs in nominal mode.

3.7 Use case scenario

We defined a very simple use-case scenario to test the tech-
nical feasibility of the actions and illustrate the concepts.
It corresponds to the class of architectures of ICS shown
earlier in Fig. 4. The process consists of two cascading
tanks as in Fig. 6. The transformation process consists
of two technological steps: a first transformation process
takes place in Tankl then the intermediate product is
transferred to Tank2 for a final transformation. Three ac-
tuators (valves FV1, FV2 and FV3) are used to fill /empty
the tanks. The state of the tank (full/empty) is detected
by the level sensors LSH1/LSL1 resp. LSH2/LSL2.

Two RTUs are used to manage the sensor and actuators:
one for LSH1, LSL1, FV1, FV2 and a second one for LSH2,
LSL2 and FV3. A PLC is used to control the Tank 1 and
the transfer to Tank2. A second PLC is used to control
Tank2. The state of the Tank 2 is read periodically by
PLC1 from PLC2. All devices are connected by a switch.

The process is simulated but it interacts with real RTU
and PLC devices through our hardware-in-the-loop ICS
sandbox [Mocanu et al. [2019]]. Both PLCs contain two
versions of the control program: one in nominal mode
when both PLCs are available and a second version for
the case when one of the PLC is attacked. The network
actions (shutting down Ethernet ports on the switch) are
implemented in Expect scripts*. Program switching into
the PLC is actually a branching in the main program which
is activating on an external signal.

4. DES MODELLING & SUPERVISORY CONTROL

In this section, we show how the system considered can
be defined as a DES model, where each element (i.e.,
PLCs and control programs) is modelled as an automaton,
with equations on states defining the dynamic properties
of these elements (duration cycle, execution localization
of programs, availability of PLCs). Then the security
properties defined as DCS objectives, to be enforced online
by a controller, itself synthesized offline.

4.1 Problem Definition and Overall Model Architecture

The problem stated in previous sections is defined as:

e a set of n control programs P;,i =1,...,n;

e aset of p PLCs Cj,j =1,...,p;

e max; is the maximum cycle duration of PLC Cj;

e n;; is the duration of the nominal version of program
P; on PLC Cj;

e d;; is the duration of the degraded version of program
Pi on PLC Cj

The overall model is the parallel composition of all au-
tomata representing PLCs and programs, defined in a
Heptagon/BZR node. The Boolean inputs of this main
node are (cf. Section 3.4, and Fig.5):

e alarm;,i = 1,...,p, notifying alarms on PLC Cj;
e cw;,i =1,...,n, true when P; in critical section;
e sw;,i =1,...,n, true when P; is “switchable”;

e es;,i = 1,...,n, triggering emergency stop of P;.

4 https://core.tcl-lang.org/expect /home

Outputs of the main node, towards the environment, are:

e mode;: the version of program P; to be executed
(within values Nominal, Degraded and Safe);

e ex_loc;: the execution location of the program P;
(within values PLCy,...,PLCp).

A contract will be defined on this main node, in order
to synthesize a controller, which will enforce objectives
at execution, using controllable features: the version and
localization of programs. The controllable variables defined
in this node, i.e., the variables on which the synthesized
controller will act, are then: cd; and cs;, Boolean variables
allowing the controller to force the program P; to go in
Degraded (resp. Safe) version, and el;, within values
PLCy,...,PLC,, allowing the controller to chose the PLC
on which the program P; has to be executed.

node plc(alarm:bool)= (plc_avail:bool)

alarm

Available Attacked

plc_avail = true plc_avail = false

Fig. 7. PLC Heptagon/BZR model

4.2 Behavioral models

PLC models We represent a PLC as a two-state automa-
ton (see Fig. 7). The node plc takes as input the alarm
stream, signalling that an attack has been detected on this
PLC. The output plc_avail is true whenever the PLC
is considered to be available; and becomes and remains
false once an attack has been detected. plc nodes are
instantiated for all PLCs and composed in parallel:

‘ plc_avail; = plc(alarm;); ‘

plc_avail, = plc(alarmy);

Additionally, the main contract comprises an environment
hypothesis on alarms: there will be, at any execution
step, at least one PLC available. This is expressed on
plc_avail; variables as: assume \/”_, plc_avail,.

Control program models A program is modelled with
the automaton given in Fig. 8. dn; and dd; are static
parameters of the node prog, and are the duration values
of the program on PLC C;, in nominal or degraded mode.

The outputs of this node are mode, exec_loc and dur;.
mode is the current version executed by the program
(Nominal, Degraded, or special Safe value for emergency
stops). exec_loc is the PLC on which the program has
to be executed at each step. For each PLC, dur; is the
current execution duration of the program on the PLC C;
(0 if the program is not executed on this PLC).

The variable c_exec_loc is meant to be controllable at
main level; it allows the controller to define the PLC on
which the program should be executed. This request from
the controller is effective in Degraded mode (equation

node prog<<dni,...,dnp,dds,..
(c_exec_loc:arch_element;
deg, safe, cw,sw:bool)
— (mode:prog_mode;exec_loc:arch_element;
dury, ..., dury:int)

., ddp>>

mode = Nominal

exec_loc = c_exec_loc ->if cw then pre exec_loc
else c_exec_loc

dur; = if exec_loc = PLC; then dn; else 0

deg and (not cw or sw)

mode = Degraded
exec_loc = c_exec_loc
dur; = if exec_loc = PLC; then dd; else 0

mode = Safe
dur_plc;, =0

Fig. 8. Program Heptagon/BZR model

exec_loc = c_exec_loc), and in Nominal mode, if the pro-
gram is not in “critical wait” section (i.e., when the input
cw is true); otherwise the execution location will be the
previous one (pre exec_loc). In Nominal mode, the value of
exec_loc is initialized at first step with the first value of
c_exec_loc (operation ->).

Variables deg and safe are also meant to be controllable:
they allow the controller to enforce the current mode of the
program. The transitions show that not every mode can
be taken at every instant: whereas the Safe mode is always
reachable (as it is the “emergency stop”), a program can
only switch from Nominal to Degraded if either it is not in
a critical section (cw is false), or it is in a critical section
but has been recognized as “switchable” (sw is true).

This node and its automaton make the system satis-
fying by construction the properties (i) (as the output
mode is of enumerated type, of values taken from the set
{Nominal, Degraded, Safe}) and (vii), by the effect of the
transitions from every state to the state Safe, and the
instantiation given below of the node input safe.

This prog node is then instantiated for each program, in
a parallel composition:

(mode;,ex_locy,duriy,...,durip) =
prog<<n11,...,n1p,d11,...,d1p>>
(elqy,cdi,es; or csi,Cwy,SWi);

(modep,ex_locy,,duryt,...,duryp) =
pr09<<nn1y~--;nnp:dn1;---ydnp>>
(el,,cd,,es, Or CcSy,CWyp,SWyp);

We recall that for each instantiation, n;; (resp. d;;) is the
duration cost of program P; on PLC C; in nominal (resp.
degraded) mode. We can here represent the fact that a
version of a given program P; does not exist on a PLC C;
by stating n,; or d;; = oo.

4.3 Global Cost Model and Control Objectives

In addition to parallel instances of plc and prog nodes (see
above), the global model also comprises the computation
of the total duration of programs on each PLC:

‘dur_plcl = durq1 + ... + dury: ‘

dur_plcp = durip + ... + duryy

These equations state that the total duration on each PLC
C; is the sum of the duration of each program F; on this
PLC (dur;;), taken from instances of node prog.

Then, these variables can be used to define control ob-
jectives to be enforced by the synthesized controller. In
relation to the properties introduced in Section 3.6:

e property (iv) (duration of execution of program
versions active on the same PLC should be less
than the cycle time of this PLC) can be stated as:
enforce \?_, dur_plc, < max;. This synthesis objec-
tive also enforce the property (ii) (presence of a com-
patible version on the PLC), by defining n;; = oo
(resp. d;; = oo) if the nominal (resp. degraded)
version of P; is not available on PLC Cj.

e The property (ix) (a PLC under attack should
not be used to execute any program) is enforced
by stating that on any PLC which became not
available, the total duration cost have to be O:
enforce \?_, —plc_avail, = (dur_plc, = 0).

e Property (viii) (dependencies between safe/emer-
gency stops modes of programs P; and P;) can be
stated as: enforce (mode; = Safe) => (mode; = Safe).

4.4 One-step Optimization and Priorities

The synthesized controller, computed by the synthesis
tool, is mazximally permissive, i.e., the constraint on the
program is minimal and thus keeps all the possible behav-
iors such that the properties are satisfied.

Within this set of possible behaviors, one must be cho-
sen at execution. The solution presented here consist in
applying a one-step optimization phase, at the end of
the controller synthesis process. The controller will then,
among the set of solutions, take a solution which will
maximize, in our case, the number of programs in nominal
mode.

To be able to perform this optimization phase, we add the
following equations to the main node:

count; = if mode; = Nominal then 1 else 0;

count,, = if mode,, = Nominal then 1 else 0;
count = count; + ... + countp

These equations define the variables count;, equal to 1 if P;
is in nominal mode, 0 else; and count being the number of
programs in nominal mode, at each execution step. Then,
we can compute the controller enforcing each previously
defined objective, and which will maximize the value of
count at each step.

Static priorities between programs (property (v), i.e.,
preferring to keep highest priority programs in nominal
modes), can be easily expressed by adding weights w; on
counts of programs nominal modes:

‘count = wp ¥ count; + ... + wn ¥ count,

For example, an absolute and total priority order P; <
... = P, (i.e., we want to prioritize nominal mode on P,
over any other one) can be defined with w; = n'.

Dynamic priorities (property (vi)) can be stated the same
way, by adding the values w; as inputs of the main node
instead of as constants.

In summary, we described how a model can be built for
an ICS architecture as specified informally in Section 3,
and how control objectives can be formalized on the
variables of the model for all required properties (i) to
(ix) of Section 3.6, as well as the optimization objective.
Hence, the self-protection as resilience problem has been
formalized as a DES supervisory control problem, for
which DCS tools can be used, and an executable controller
can be obtained, to be integrated in the architecture.

4.5 Use case scenario

We show in this section the controller synthesis and
simulation of a system corresponding to the use case of
Section 3.7, made slightly more complex by the addition of
one more program, for illustration purposes. It is composed
of 3 programs (P; to Ps), running on 2 PLCs (PLCl1
and PLC2). The duration cost of nominal and degraded

versions are (in ms):
20 30 25 10 15 15
(nig) = (20 30 25) (dis) = (10 15 15)7

with maximum durations max; = 50 ms, maxs = 40 ms.

The Figure 9 shows a simulation of this system. Initially,
all the programs are in nominal mode. P; and P» are placed
on PLC1, and P; on PLC2 (as the total sum of durations
exceed the maximum duration on PLC1). When an alarm
is triggered on PLC1 (while P; is in a critical section), Py
is executed in degraded mode on PLC2 with Ps3, and P; is
switched to safe mode (being in critical section, it cannot
be switched to another PLC).

alarml [

alarm2
s I I

critical_waitl
critical_wait2
critical_wait3

model Nominal | Safe
ex_locl PLCL [
mode2 Nominal | Degraded
ex_loc? PLC1 [Pc
mOde3 Nominal

ex_loc3 PLC2

Fig. 9. Simulation of 3 programs running on 2 PLC

4.6 Method scalability

To evaluate the scalability of our method, we measure the
synthesis time for models of systems of different sizes. The
complexity of the synthesis being exponential in the size
of the input model (size as number of inputs, states and
controllable variables), the synthesis time is the bottleneck
of our method. We take systems of size n, n being both

the number of programs and of PLCs. We consider that all
programs can be executed on all PLCs, with n;; = 30ms,
d;; = 10ms, and max; = 50 ms.

Figure 10 shows the synthesis time for different values
of n, with and without one-step optimization, performed
on a 3.70 GHz CPU. This graph, besides showing the
actual exponential costs of synthesis times, also points out
an additional cost for one-step optimization, of several
order of magnitudes compared with the synthesis cost
without optimization. The execution time of the produced
controller is itself linear. Note that this execution time does
not have an impact on the real system as the computations
are achived off-line.

10000

T T
With one-step optimization —+—
Without optimization —<

1000

10

Synthesis time (s)

0.1%

n (number of programs/PLC)

Fig. 10. Synthesis time for n programs and PLCs

We argue that, while our method is able to handle only
systems of quite small sizes (n < 7), the combinatorial
of solutions for systems of such sizes make them hard if
not impossible to handle “manually”, i.e., by program-
ming without controller synthesis. However, these sizes are
relevant to real-life industrial systems as even large size
systems are using network segmented then can be decom-
posed in a set of smaller size systems. On sizes for which
one-step optimization is not usable, simple optimizations
with static and absolute priorities can be modelled with
Heptagon/BZR, with the declaration order and values of
controllable variables. Modelling bigger systems can take
into account the system structure and benefit from mod-
ular synthesis with Heptagon/BZR (Delaval et al. [2014]).

5. CONCLUSIONS AND PERSPECTIVES

We presented an approach to the cybersecurity of ICS,
with the automated reaction by self-protection to attacks,
based on resilience mechanisms. Our contributions are in
the proposal of a self-protection manager for reaction to
attacks, its modeling and design involving Supervisory
Control of DES and DCS tools, and treatment of a use
case, using the Heptagon/BZR language.

Perspectives are in several directions: regarding the use
of DCS and its complexity, and the scalability in size of
ICSs, problems can be addressed by modularity, decom-
posing the problem so as to have hierarchical distributed
controllers. On the side of cybersecurity automation and
self-protection controllers, on the short term we will set
up a larger size use-case experiment involving around 10
PLC and 20 RTU in order to be more realistic w.r.t.
attacks that compromise communication between the self-
protection manager and PLC, like Ethernet storms or

Distributed Denial of Service. For the moment we as-
sumed that the communication between the centralized
self-protection manager and the non-compromised PLC is
possible which may not always be the case. Distributing
part of the decision manager on the PLC themselves will
allow us to handle this issue.

REFERENCES

A. Babay, J. Schultz, T. Tantillo, S. Beckley, E. Jordan, K. Ruddell,
K. Jordan, and Y. Amir. Deploying intrusion-tolerant scada
for the power grid. In 2019 49th IEEE/IFIP Int. Conf. on
Dependable Systems and Networks (DSN), June 2019.

N. Berthier and H. Marchand. Discrete Controller Synthesis for
Infinite State Systems with ReaX. In IEEE Int. Workshop on
Discrete Event Systems WODES, Cachan, France, May 2014.

A. Carcano, A. Coletta, M. Guglielmi, M. Masera, I. Nai Fovino,
and A. Trombetta. A multidimensional critical state analysis for
detecting intrusions in SCADA systems. IEEE Trans. Industrial
Informatics, 7(2), 2011.

H. Debar, M. Dacier, and An. Wespi. Towards a taxonomy of
intrusion-detection systems. Computer Networks, 31(8):805 — 822,
1999.

G. Delaval, E. Rutten, and H. Marchand. Integrating discrete con-
troller synthesis into a reactive programming language compiler.
Discrete Event Dynamic Systems, 23(4):385-418, December 2013.

G. Delaval, S. Mak Karé Gueye, E. Rutten, and N. De Palma.
Modular coordination of multiple autonomic managers. In
CBSE’1Y, Proc. of the 17th Int. ACM SIGSOFT Symposium on
Component-Based Software Engineering, Lille, France, June 30 -
July 4, 2014, 2014.

Norsk Hydro. Cyber-attack on Hydro in brief, 2019.
URL https://www.hydro.com/en-NO/media/on-the-
agenda/cyber-attack/.

R. Jacob, J.-J. Lesage, and J.-M. Faure. Overview of discrete event
systems opacity: Models, validation, and quantification. Annual
Reviews in Control, 41, 2016.

Y. Ji, X. Yin, and S. Lafortune. Opacity enforcement by insertion
functions under energy constraints. IFAC-PapersOnLine, 51(7):
291 — 297, 2018. 14th IFAC Workshop on Discrete Event Systems
WODES 2018.

M. Kabir-Querrec, S. Mocanu, P. Bellemain, J.-M. Thiriet, and
E. Savary. Corrupted GOOSE Detectors: Anomaly Detection in
Power Utility Real-Time Ethernet Communications. In GreHack,
Grenoble, France, nov. 2015.

O. Koucham, S. Mocanu, G. Hiet, J.-M. Thiriet, and F. Majorczyk.
Detecting Process-Aware Attacks in Sequential Control Systems.
In NordSec, Oulu, Finland, November 2016.

R. Langner. To kill a centrifuge, 2013.
https://www.langner.com/wp-content/uploads/2017/03/
to-kill-a-centrifuge.pdf.

H. Marchand and M. Samaan. Incremental design of a power trans-
former station controller using a controller synthesis methodology.
IEEE Trans. on Soft. Eng., 26(8):729 —741, 2000. ISSN 0098-5589.

S. Mocanu, M. Puys, and Thevenon P.-H. An Open-Source
Hardware-In-The-Loop Virtualization System for Cybersecurity
Studies of SCADA Systems. In Journées C&EESAR Virtualisation
et Cybersécurité, Rennes, France, November 2019.

P.J. Ramadge and W.M. Wonham. On the supervisory control of
discrete event systems. Proc. IEEE, 77(1), January 1989.

K. A. Stouffer, J. Falco, and K. Scarfone. Guide to industrial control
systems (ICS) security, 2015.

B. Yang and H. Hu. Secure conflicts avoidance in multidomain
environments: A distributed approach. IFEEE Transactions on
Systems, Man, and Cybernetics: Systems, pages 1-12, 2019.

B. X. Zhu. Resilient Control and Intrusion Detection for SCADA
Systems. PhD thesis, UC Berkeley, May 2014.

URL

