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1 Introduction

To reproduce and investigate cavitation phenomena, several numerical models have been developed and

implemented in Computation Fluid Dynamics (CFD) solvers in the last two decades. From those mod-

els, a large number uses calibration coefficients that are mainly empirical, and even though they are

set for a large set of conditions, coefficients are mostly undesirable due to the work it implies to find

proper values. In this work, we propose to investigate the model of [Sauer, 2000], based on a simpli-

fied Rayleigh-Plesset equation, because it does not use coefficients. Nonetheless, it was found that the

ISIS-CFD implementation of this model presents a problematic feature. Under some physical configu-

rations, Sauer’s model exhibits a short cavitation pocket with a minimum pressure much lower than the

vapor pressure, which additionally is not predicted by the experimental results neither by the models of

[Merkle et al., 1998] and [Kunz et al., 2000].

Although it is not largely commented, this issue can also be depicted by some other models besides

the Sauer’s one, either because of a lack of physics in the model or due to wrong numerical param-

eters. For instance, in the case of a foil, [Bauer and Abdel-Maksoud, 2001] show that a model based

on a potential method is unable to reproduce experimental data and the results of a more sophisticated

model. Or, as it is shown by [Yakubov et al., 2015], a model may present a loss in accuracy depending

on the calibration coefficients used. Furthermore, it has been seen that this phenomena can be a real

physical condition, as it is the case for injection nozzles due to the liquid tension, work presented by

[Martynov et al., 2006]. Within this work, the studied models were compared and different mechanisms

were proposed and tested in order to improve the implementation of the Sauer’s model. It was found that

a modification in the Rayleigh-Plesset model exhibited good results, and additionally it was proved that

there is a direct influence of the source term on the pressure response.

2 Numerical simulation of cavitation

Among the different cavitation models, two main approaches can be recognized: the heterogeneous ap-

proach and the homogeneous equilibrium. The present study is focused on models within the framework

of the second approach. This approach defines a single fluid model for both phases and interaction be-

tween them is taken into account by means of a barotropic state law or by solving an advection equation

for the liquid or vapor fraction, with a source term modeling the vaporization/condensation process. In

this approach, density and viscosity are computed as a weighted average of the volume fraction of the

two phases. The governing equations of the multiphase flow will then include, conservation of mass and

momentum, and a transport equation for the cell fraction of one of the phases, as the one shown below:

∂

∂t
(αvρv) +

∂

∂xi

(αvρvu j) = S . (1)

In this equation the source term can be understood as composed by two terms as S = ṁvap
+ ṁcond, each

term related to the active process, i.e. ṁvap stands for the vaporization process and ṁcond for the conden-

sation one. As shall be seen later, the source term S is formulated mainly as a function of the pressure

and the fraction of a donor phase. The advection equation (1) can be seen as a continuity equation, where

the vapor fraction αv defines the ratio of the vapor volume within the cell volume.

In this work, the solution strategy for the advection equation of the vapor fraction (1) and the turbulence

model are common for all the studied models, and the cavitation models are distinct from each other

only by the definition of the source term S . In that regard, turbulence effects on the cavitation process are
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included through the use of the shear stress transport (SST) turbulence model of [Menter et al., 2003],

and the dynamic of the mixture is predicted using a standard mono-fluid multiphase method, which is in

turn related to a given mass transfer model allowing the evolution between the phases.

3 Rayleigh-Plesset equation based models

This section presents a brief description of some homogenized models that use the Rayleigh-Plesset

equation as a closure for the motion equations. These models assume that micro-bubbles or cavitation

nuclei n0 exist in the liquid and are carried by it during the motion. When the liquid pressure is lowered

below the vapor pressure those cavitation nuclei expand generating regions of vapor. Particularly, in a

hydrofoil, the pressure decreases along the suction side, inducing the process of vaporization in the low

pressure regions (near the leading edge), and the breakage of the vapor pocket downstream where the

pressure recovers. Even though the model of interest is the model of Sauer, the models of Kubota and

Zwart are also presented since they are useful to highlight some features of Sauer’s one.

The table 1 presents an overview of the models. It shows, for each of the models, the definitions for

the nuclei density n0, the vapor fraction αV and the mass transfer between the phases, expressed either

by the particular term according to the active process, ṁv
vap or ṁv

cond, or by the general source term S .

Table 1: Synopsis of some Rayleigh-Plesset equation based models

Kubota et al., 1992 Zwart et al., 2004 Schnerr and Sauer, 2001

n0 NB/V NB/VL

αV VBn0 =
4

3
πR3

Bn0

Vv

V
=

n04/3πR3

1 + n04/3πR3

ṁv
vap Cvap

3αvρv

RB

Ṙ Cvap

3αnuc(1 − αV )ρv

RB

Ṙ 3
ρl

ρ
(1 − αv)αv

Ṙ

R

ṁv
cond Ccond

3αvρv

RB

Ṙ Ccond

3αvρv

RB

Ṙ 3
ρl

ρ
(1 − αv)αv

Ṙ

R

Ṙ

√

2
3

PR−P∞
ρl
= sgn(Pv − Pc)

√

2
3

|Pv−Pc |

ρl

Furthermore, the last line of the table presents the simplified Rayleigh-Plesset equation Ṙ, which seeks to

characterize the size evolution of a single bubble due to the change in the local pressure. This formulation

assumes that bubble-bubble interactions and bubble coalescence can be neglected, and also that bubbles

remain spherical all along their life. In this equation PR is the liquid pressure at the bubble boundary, P∞
is the one in the far field and ρl the density of the domain surrounding the bubble. However, in practice,

PR and P∞ are taken as saturation vapor pressure Pv and cell pressure Pc, respectively. The models under

studying additionally neglect the liquid viscosity the surface tension and the second order terms within

the original equation.

One of the first models to predict cavitation by means of a multiphase mixture model based on a trans-

port equation is the one of [Kubota et al., 1992]. This model proposes a pseudo-density calculation for

the mixture and determines the volume vapor fraction using a constant nuclei density n0, a fixed radius

RB per unit volume and the Rayleigh-Plesset model. However, some issues are present at low void frac-

tions for this model, which is why the model of [Zwart et al., 2004] proposes to replace the term αv,

present in ṁv
+, by αnuc(1−αv). Change that allows overcoming the issue by considering that as the vapor

volume fraction increases, the nucleation site density decrease accordingly. Within this model, αnuc is

the nucleation site volume fraction and likewise RB is the radius of a nucleation site.

On the other hand, conversely to the models of Kubota and Zwart, [Schnerr and Sauer, 2001] propose

a particular definition of the nuclei density that leads with a different expression of the source term. This

model similarly adopts a constant nuclei density no and bubble radius R0 to describe the liquid quality,
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nonetheless in the definition of the nuclei density, the number of bubbles is explicitly linked to the liquid

volume and not to the mixture one. By doing this, the conservation of the defined quality of the liquid

is guaranteed along the cavitation process. That is to say that, if the nuclei grow the vapor fraction rises

and hence the water fraction decreases, and so does the number of bubbles in the cell, argument that is

in accordance with the one of Zwart to improve Kubota’s model.

4 Extended model of Sauer

This section presents a mechanism that was found to improve the prediction of Sauer’s model, increasing

the pressure so that it remains within the physical limit, and at the same time extending the cavity pocket.

In order to introduce the mechanism the following analysis is done. If a homogeneous nuclei distribution

is considered, for low vapor fraction values the assumption of non-interaction and non-coalescence might

be correct since the bubbles contained in the computational cell would be small enough and might not be

interacting with each other. Therefore, in this case, it is correct to use the liquid density to characterize the

domain in which a single bubble evolves, as it stated by the Rayleigh-Plesset model. Nonetheless, when

bubbles grow and the vapor fraction of a cell increases, a bubble is not anymore evolving in a purely

liquid medium, which is why this work proposes to use the cell density (mixture density), instead of the

pure liquid one, to characterize the surrounding domain of a bubble evolving. In this way, the initial as-

sumption is met and the physical sense within the model is extended for high values of the vapor fraction.

Additionally, to compute the cell density instead of using an arithmetic mean, between liquid and va-

por density, a modified mean was used. A function between and arithmetic and a generalized mean (with

exponent p = 0.1) was finally implemented. Figure 3 shows that the density of the cell will be almost

considered as the vapor density for vapor fractions below 0.5, it means ρcell = ρv for 0 < αv ≈ 0.5.

Despite an extensive revision of [Sauer, 2000] aspects of the model, such as use of dynamic bubble

radius or the assumption regarding the vapor density, remained unclear and were thus studied within this

work. Regarding the bubble radius, it was questioned whether to fix it along the computation to the value

R0, which corresponds to the liquid quality defined, or to compute and use an actualized radius at each

iteration using the current value of the vapor fraction, as defined by the expression of the radius R in

section 3. Even though the effect of a fixed radius was studied, the results are not presented here, instead,

the radius R is computed at each iteration according to the original implementation of Sauer’s model in

the ISIS-CFD solver. Under this assumption, the model of Sauer should depict not only the mechanism

of the inception, but the growing of the bubbles and the inverse process. Additionally the vapor density

is neglected in the formulation of the source term.

5 Influence of the source term on the balance of the system

As mentioned before, transient effects given by the mass transfer between phases are taken into account

by considering a source term in both, the VOF transport equation (1) and the pressure-equation. Using an

algorithm (SIMPLE-type), this section illustrates the influence of the sign and magnitude of the source

term on the pressure field. Given the algorithm used determine and couple the pressure and velocity fields

for incompressible flows, using the Navier-Stokes equations, as:

Prediction of the velocity (E − A)Uk
+Gpk−1

= f ,

Prediction of the pressure DE−1Gpk
= DU∗k ,

with U∗k = E−1(AUk
+ f ) ,

Correction of velocity U = U∗k − E−1Gpk .

Applying the divergence operator on the velocity correction equation and assuming the E matrix to be

diagonal, yields the relation DE−1Gp = DU∗ − DU. There, the terms DU and DU∗ are considered to be

source of change for the pressure, and the behavior of the left hand side term is assimilated as propor-

tional to the Laplacian of the pressure, i.e. DE−1Gp ≈ β∆p.

It is recalled that for a non-cavitating flow, the continuity equation yields ∇~u = 0. However, when

cavitation is presented, the source term on the continuity equation (1) is active and ∇~u is no longer zero,
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Unfortunately, when studying the modified model of Sauer, it was observed a large dependency to the

turbulence modeling approach. That is to say that good results are obtained when using a wall-resolved

turbulence model for the boundary layer, however they are lost when a wall function is used, and more-

over. This issue may be caused by the larger velocity imposed, near the foil, when a wall function is

used, which rapidly convects the short vapor induced by the source term. Therefore, for Sauer’s model,

the process of vaporization has to deal, first, with the low magnitude of the source term, but also with the

fact that this term will be quickly convected. On the contrary, this dependency is less observed for the

other cavitation models. They overcome the lack of physics, imposed with the use of the wall-function

approach, with a source term larger, by several orders of magnitude.

Fig. 5: −Cp ISIS-CFD models Fig. 6: −Cp Original and Extended Sauer

The improvement of the model is still ongoing, nonetheless given the benefits of a model and and the

improvements achieved, this work seeks to expand the modified model of Sauer to be used with a wall

function approach, and the future work include to assess the model with different foils, unsteady condi-

tions and also 3D flow condition.
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