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Abstract—Forecasting CNY exchange rate accurately is a challenging task due to its complex

coupling nature, which includes market-level coupling from interactions with multiple financial

markets, macro-level coupling from interactions with economic fundamentals and deep coupling

from interactions of the two aforementioned kinds of couplings. This study develops a new deep

coupled Long Short-Term Memory (LSTM) approach, namely DC-LSTM, to capture the complex

couplings for USD/CNY exchange rate forecasting. In this approach, a deep structure consisting

of stacked LSTMs is built to model the complex couplings. The experimental results with 10

years data indicate that the proposed approach significantly outperforms seven other

benchmarks. The DC-LSTM is verified to be a useful tool to make wise investment decisions

through a profitability discussion. The purpose in this paper is to clarify the importance of

coupling learning for exchange rate forecasting, and the usefulness of deep coupled model to

capture the couplings.
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CNY EXCHANGE RATE forecasting is of

great importance due to the following rea-

sons: Firstly, the CNY exchange rate could

highly affect Chinese economic development.

In 2018, the overall exports and imports of

goods and services stands at 39.78% of the Chi-

nese GDP (http://data.stats.gov.cn/staticreq.htm),

which means that exchange rate fluctuations have

severe economic implications. Secondly, the pro-

moted internationalization of CNY attracts atten-

tion from global investors, risk managers and

governments. On October 1, 2016, the official

incorporation of CNY into the special drawing

right (SDR) currency basket of the International

Monetary Fund (IMF) has been made. The ratio

of CNY reserves to world total foreign exchange

reserves increased from 1.23% in 2017 to 1.89%

in 2018 (https://www.imf.org/en/Countries/CHN).
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Figure 1. An overview of complex coupled nature of CNY exchange rate

Last but not least, the China-US trade war, started

in 2017, further increases the investment risk in

the Chinese exchange rate market.

Currently, how to forecast CNY exchange

rate accurately is still an open question with

great challenges, the main reason behind this

being the complex coupling nature of the CNY

exchange rate (Figure 1), where coupling refers

to any relationship or interaction connecting two

or more aspects [1]. As shown in the figure,

there exist three types of couplings: 1) Market-

level coupling, referring to the interactions be-

tween market influence factors (e.g. commodity

market) and the CNY exchange rate, and also

the interactions between the influence factors. 2)

Macro-level coupling, indicating the interactions

between macro-economic influence factors (e.g.

interest rate) and the CNY exchange rate, and

the interactions between the influence factors.

Here we discriminate the market-level coupling

and macro-level coupling since these two types

of couplings take different influence mechanisms

on the exchange rate. Specifically, the impact

influence of market-level factors, such as com-

modities, is stronger at short horizons, and be-

comes weaker as the horizon increases, while

the impact of macro fundamentals lasts for a

long horizon [2]. 3) Deep coupling represents the

interactions between market-level coupling and

macro-level coupling in a deep layer. This is easy

to understand since the macro-level factors could

affect the market-level factors and vice-versa.

Therefore, it is important to analyze and capture

the complex couplings for CNY exchange rate

forecasting, since Coupling Learning has been

approved to be an effective way to tackle the

economic and financial issues [3].

Modeling and extracting such complex deep

coupled relationships present a challenge for ex-

isting methods. Specifically, traditional statisti-

cal methods (e.g. ARIMA [4]) have difficulties

when facing the multiple influence factors with

nonlinear and interconnected relationships [5], let

alone the complex hidden couplings. Simple ma-

chine learning methods with shallow architectures

(e.g. SVR [6]) cannot incorporate the three kinds

of couplings with different working mechanisms

listed above. Recently, with the development of

deep learning and FinTech, deep neural networks

(e.g. CNN [7] and LSTM [8]) which are ap-

propriately structured to learn deep features, are

utilized in financial time series forecasting with

promising results [9]. Especially the LSTM model

which can effectively learn long-term and short-

term dependencies through memory cells and

gates, has been verified to be a useful tool in

financial time series analysis [8]. Interestingly, the

capability of learning long-range and short-range

time dependencies matching the working mecha-

nisms of macro-level coupling and market-level

coupling, which means that the LSTM model

is suitable for CNY exchange rate forecasting.

However, how to build an advanced LSTM model

to fully and systematically capture the complex

deep couplings across the influence factors is still

an issue.

To address the above challenges, we propose a

new deep coupled LSTM approach (DC-LSTM)

to encode the complex couplings for CNY ex-

change rate forecasting with a deep structure. At

the first layer, we employ two LSTM models

to learn the abstract features which represent

market-level and macro-level couplings. In the

second layer, a coupled LSTM is built on the

features learned from the first layer, so as to

incorporate the short-term market-level coupling
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and long-term macro-level coupling. Then the

learned deep coupled features are fed into a fully

connected layer to conduct the final forecasting.

The Proposed Methodology

The original LSTM model

As depicted in Figure 2, the LSTM memory

block is composed of a memory cell Ct and three

gates with different purposes: a forget gate ft
specifies which information should be removed

from the cell state Ct−1, an input gate it de-

fines which information should be added to the

cell state Ct, an output gate ot defines which

information from cell state Ct should be used as

output. The detailed calculations and updating of

the LSTM memory cells are performed with the

following formulas:

ft = σ (UfXt +Wfht−1 + bf ) (1)

it = σ (UiXt +Wiht−1 + bi) (2)

C̃t = tanh (UcXt +Wcht−1 + bc) (3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

ot = σ (UoXt +Woht−1 + bo) (5)

ht = ot ∗ tanh (Ct) (6)

where Xt is the input variable at time t, U and

W are weight matrices, b is the bias vector, C̃t

is the candidate of input to be stored and ht

corresponds to the hidden state at time t. σ(·) is a

sigmoid function, and symbol ∗ denotes element-

wise multiplication.Then the forward process can

be described in three steps: 1) the first step

is driven by forget gate ft to determine how

much information should be removed from the

past cell state according to Equation (1); 2) the

second procedure comprises the three operations

through input gate it according to Equations (2)

to (4): the input gate it determines how much

new information should be stored, the candidate

value C̃t determines how much new information

is received in the cell state, then the new cell

state Ct is updated based on the previous two

steps; 3) the last step determines the hidden state

ht through output gate ot according to Equations

(5) and (6).

×

+×

×

σ σ σtanh

tanh
Ct-1

ht-1

ft it
Ct
Њ Ot

ht

Ct

ht

Xt

forget gate
input gate

output gate

Figure 2. Structure of an LSTM memory block

The proposed DC-LSTM model

The DC-LSTM, shown in Figure 3, owns a

deep structure which consists of stacked LSTMs:

there are two wings of classical LSTMs in the

ground layer, where one wing represents the

market-level coupling and the other captures the

macro-level coupling. Then the two kinds of

hidden couplings are fed into a new LSTM as

input in the second layer, hence the second layer

LSTM is used to model the deep interactions

between market-level coupling and macro-level

coupling.

A. Representation of market-level coupling

Suppose there are I market indicators

{α1,α2, · · · ,αI} selected as market influence

factors, and the element αit denotes the observa-

tion of market indicator αi at time t. As illustrated

in the market-level coupling part in Figure 3,

various market indicators αit are served as inputs

of one LSTM (LSTMC1) at the bottom layer

at time t (i.e. XC1

t = {α1t,α2t, · · · ,αIt, ERt},

where ERt is the Exchange Rate value at time

t), then the hidden abstract patterns are learned

through the gating mechanism. It is easy to find

that the complex interactions between the indica-

tors are encoded with the weight parameters U
and W in Equations (1) to (6). Therefore, the

hidden features of market-level coupling at time

t could be represented by hC1

t , where:

hC1

t = oC1

t ∗ tanh
(
CC1

t

)
(7)

B. Representation of macro-level coupling

Suppose there are J macro-economic indexes

{β1,β2, · · · ,βJ}, and βit represents the ob-

servation of macro-based indicator βi at time

t. Similar to market-level coupling, at time t,
the hidden coupling features hC2

t are captured
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Figure 3. Architecture of the proposed DC-LSTM approach

through a LSTM (LSTMC2) with the input

XC2

t = {β1t,β2t, · · · ,βJ t, ERt} by

hC2

t = oC2

t ∗ tanh
(
CC2

t

)
(8)

C. Forecasting based on DC-LSTM

As shown in Figure 3, suppose the window

length is n (the data from time t − n + 1 to

time t are used to forecast the exchange rate

at time t + 1), then the output (hidden states)

of LSTMC1 ({hC1

t−n+1, h
C1

t−n+2, · · · , hC1

t }) and

LSTMC2 ({hC2

t−n+1, h
C2

t−n+2, · · · , hC2

t }) serves

as the input of LSTMDC , which means the DC-

LSTM could jointly model the market-level and

macro-level couplings in a deep coupling layer.

Then at time t, the deep coupling features hDC
t

could be learned through the gate mechanisms of

LSTMDC :

hDC
t = oDC

t ∗ tanh
(
CDC

t

)
(9)

where ot and Ct are the output gate and cell state

learned from XDC
t and hDC

t−1. Note that XDC
t =

{hC1

t , hC2

t } here.

Accordingly, the learned deep coupling hDC
t

is passed through a fully connected layer to get

the final prediction ER at time t+ 1 by:

ERt+1 = δ(ΣhDC
t W ) (10)

where δ is the activation function and W is the

weight of connection between hDC
t and ERt+1.

Experimental Settings and Results

Data gathering and preparation

The weekly exchange rate USD/CNY is se-

lected as the target since it is the most important

type of the CNY exchange rate [10]. Moreover,

the selected market-level and macro-level factors

are listed in Table 1.

The data are collected from Wind Database

(http://www.wind.com.cn/), covering the period

from June 2009 to April 2019. The dataset is

divided into an in-sample subset (June 2009 to

March 2016) and an out-of-sample subset (April

2016 to April 2019). In addition, all data is

normalized to [0,1] by I
′

t =
It−Imin

Imax−Imin
,where It

is the original value of the index at time t.

Evaluation methodology

A. Technical perspective

• Directional forecasting accuracy (Acc) is a

measure of the performance in predicting the

direction of value changes, ranges between 0
and 1 and a higher value indicates a better
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Table 1. Selected Factors
Category Factors

Market-level data
Commodity market

WTI crude oil price
Gold price

Stock market
Shanghai Stock Exchange Composite Index

Dow Jones Index

Macro-level data

Monetary policy

Chinese money supply index (M1 and M2)
Chinese consumer index

Producer pricer index
Industrial production index

Interest rate
Shibor 1-week rate (Chinese)

Federal fund rate (US)
Inflation Chinese inflation rate

Trade balance
Trade balance index

Payment balance index

Policy uncertainty
Chinese economic policy uncertainty index (CEPU)

US economic policy uncertainty index (UEPU)
Global economic policy uncertainty index (GEPU)

forecasting performance.

Acc =
1

N

N∑

t=1

d(t)× 100%, where

d(t) =






1 if [y(t+ 1)− y(t)][ŷ(t+ 1)
−y(t)] ≥ 0
0 otherwise

(11)

where ŷ(t) and y(t) denotes the forecasting

value and the actual value at time t, respec-

tively, and N is the size of the forecasting

interval.

• Mean absolute error (MAE) is a measure of

average of the differences between the actual

and forecasting values, and a smaller value

represents a higher forecasting accuracy.

MAE =
1

N

N∑

t=1

|yt − ŷt| (12)

• Root mean square error (RMSE) is the square

root of the mean of the square of all of the

errors, and a smaller value denotes a better

forecasting performance.

RMSE =

√√√√ 1

N

N∑

t=1

|yt − ŷt| (13)

B. Statistical perspective

The Diebold-Mariano (DM) test [11] and

Pesaran-Timmermann (PT) test [12] as statistical

tests for multiple forecast comparison, are em-

ployed to compare the proposed approach with

other benchmarks. The Mean Square Error (MSE)

and Acc are selected as the target functions for

these two statistical tests, respectively.

• DM test

At first, the forecast error of model i is given

by ui,t = ŷi,t − yt, where ŷ(t) and y(t)
denote the forecasting value and the actual

value at time t, respectively. A loss differential

between two forecasts i1 and i2 is built by

dt = g (ui1,t)−g (ui2,t), where g(·) is a given

loss function (here we use MSE). Then the DM

statistic could be computed by

DM =
d

√
2πf̂d(0)/T

∼ N(0, 1) (14)

where d = 1
T

∑T

t=1 (g (u1,t)− g (u2,t)), and

f̂d(0) is a consistent estimate of fd(0), which

represents the spectral density of the dt at

frequency 0. Then the corresponding p value

is obtained; if the p value is less than the

threshold, the null hypothesis that the forecast-

ing abilities of the two models i1 and i2 are

equivalent is rejected.

• PT test

The objective of the PT test is to determine

whether a forecast does a good job in predict-

ing the change in the direction of a time series.

Suppose ŷ(t) and y(t) denote the forecasting

value and the actual value at time t, and the

number of observations is T , then the PT

statistic could be obtained through

PT =
pyŷ − p√
v − w

∼ N(0, 1) (15)

where p = pypŷ + (1− py) (1− pŷ), v =
p(1−p)

T
, w = (2py − 1)2 qŷ + (2pŷ − 1)2 qy +

2019 5



Table 2. Input variables and parameters of various approaches

Approaches
factors

Parameters
Market-level Macro-level History value(USD/CNY)

ARIMA X X O Order=(2,1,0)
SVR O O O see [13]
CNN X X O Seven layers; Optimizer: Adam; Activate function: RELU
LSTM-single X X O Hidden units: 30; Learning rate:0.0001; Epoch:200
LSTM-all O O O Hidden units: 30; Learning rate:0.0001; Epoch:200
LSTM-market O X O Hidden units: 25; Learning rate:0.0001; Epoch:200
LSTM-macro X O O Hidden units: 15; Learning rate:0.0001; Epoch:200

DC-LSTM O O O
Hidden units: 25(market-level LSTM), 15(macro-level),

30(deep layer); Learning rate:0.0001; Epoch:200
Optimizer: Adam; Activate function: RELU

* O denotes employment of the factors while X represents exclusion of the factors.

4qyqŷ, It(i) =

{
1; ti > 0
0; ti ≤ 0

, pt =

1
T

∑T

i=1 It(i) and qt = pt(1−pt)
T

. Similar to

the DM test, the null hypothesis that ŷ is

not a good forecast of y could be rejected

if the corresponding p value is less than the

threshold.

Baseline algorithms

We compare the performance of the proposed

method with the following seven benchmarks, and

the input variables and parameters for the bench-

marks and the proposed DC-LSTM are listed in

Table 2:

• ARIMA [4]: This is a statistical method for

analyzing and building a forecasting model

which best represents a time series by mod-

eling the correlations in the data. We use it as

a baseline method.

• SVR [6]: As a standard machine learning

method, we can derive the incremental value-

add of the proposed DC-LSTM model through

comparison.

• CNN [7]: This is a typical deep learning

model, the effect of long-term and short-term

memories could be observed through compar-

ing the performance of CNN and LSTM.

• LSTM-single: This is a single LSTM model

which only considers the history values of the

USD/CNY exchange rate as input.

• LSTM-all: The different performance of this

model with DC-LSTM could reflect the effect

of deep coupling analysis.

• LSTM-market: This is a sub-model of DC-

LSTM, which simply models the market-level

coupling without considering the macro-level

coupling.

• LSTM-macro: This is a sub-model of DC-

LSTM, which only considers the macro-level

coupling while overlooking the macro-market

coupling.

Results

A. Results of forecasting performance

Table 3 compares the forecasting perfor-

mances of the eight approaches in terms of fore-

casting errors and directional accuracy via MAE,

RMSE and Acc, with three different window

lengths. The proposed DC-LSTM approach out-

performs other benchmarks under all evaluation

criteria and with all window lengths. For exam-

ple, the DC-LSTM exhibits 3.5%, 8.2% and 7%

improvements compared to LSTM-all, LSTM-

macro and LSTM-market in terms of Acc (Table

3(b)), which verifies the effect of deep coupling

analysis, when compared with shallow coupling

and simple coupling. Interestingly, the perfor-

mance of LSTM-macro and LSTM-market are

conflicting with each other. Specifically, LSTM-

macro performs better than the LSTM-market

with longer window length in terms of MAE

and RMSE. And this is consistent with former

research [2] that macro-economic factors have

long-term influence on exchange rate. In addition,

it is worth noting that the LSTM-based models

obviously outperform the simple SVR, ARIMA

and CNN, which further proves the superiority of

the LSTM model which is capable of capturing

the long-term and short-term dependencies in

time series.

Figure 4 reports the forecasting results of

the eight approaches with three-months window

length. It can be seen in Figure 4(a) that the

fittings and predictions look reasonably accurate,

and the results obtained by the models are sim-
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Table 3. Performance comparison of different models

(a) One-month window length

Models MAE Rank RMSE Rank Acc(%) Rank
ARIMA 0.0257 8 0.0350 8 53.85 8
SVR 0.0231 5 0.0326 6 55.48 5
CNN 0.0243 7 0.0336 7 54.84 7
LSTM-single 0.0238 6 0.0323 5 55.48 5
LSTM-market 0.0191 4 0.0252 3 66.45 3
LSTM-macro 0.0230 3 0.0287 4 64.51 4
LSTM-all 0.0151 2 0.0202 2 69.68 2
DC-LSTM 0.0145 1 0.0189 1 71.61 1

(b) Three-months window length

Models MAE Rank RMSE Rank Acc Rank
ARIMA 0.0261 8 0.0356 8 54.42 8
SVR 0.0255 7 0.0304 7 57.53 6
CNN 0.0226 6 0.0302 6 57.53 6
LSTM-single 0.0210 5 0.0275 5 61.64 5
LSTM-market 0.0160 4 0.0196 4 68.49 3
LSTM-macro 0.0153 3 0.0193 3 67.12 4
LSTM-all 0.0134 2 0.0179 2 71.92 2
DC-LSTM 0.0127 1 0.0168 1 75.34 1

(c) Six-month window length

Models MAE Rank RMSE Rank Acc Rank
ARIMA 0.0272 8 0.0369 8 50.75 8
SVR 0.0247 7 0.0336 7 55.64 7
CNN 0.0236 6 0.0331 6 57.89 6
LSTM-single 0.0229 5 0.0303 5 60.15 5
LSTM-market 0.0191 4 0.0241 4 65.41 3
LSTM-macro 0.0188 3 0.0233 3 63.16 4
LSTM-all 0.0169 2 0.0208 2 72.93 2
DC-LSTM 0.0168 1 0.0202 1 75.93 1

ilar. But based on Figure 4(b) which character-

izes forecasting errors, we can observe that the

proposed DC-LSTM approach has the smallest

fluctuations (errors) through the whole testing

period when compared with other benchmarks.

Especially in the China-US trade war period

(started in August, 2017), full of uncertainty, the

DC-LSTM still achieves low forecasting errors

while the performance of other models fluctuate

sharply.

B. Results of the statistical test

The DM and PT tests are used to statistically

evaluate forecasting errors and accuracy. The re-

sults are depicted in Table 4.

Table 4(a) shows the DM test results in terms

of DM statistics, here the MSE is considered as

the loss function and the proposed DC-LSTM

approach is compared against other seven models.

From the Table it can be clearly seen that: (1)

compared with the LSTM-all model, all DM

statistics are less than −2 corresponding to P-

values are less than 0.05, which indicates that

the proposed DC-LSTM is better than LSTM-

all under 95% confidence level with all win-

dow lengths; (2) compared with LSTM-market

and LSTM-macro approaches, the DC-LSTM ap-

proach is significantly superior to the two ap-

proaches under 99% confidence level with one-

month and three-month window lengths, while

under 95% confidence level with six-month win-

dow length; (3) compared with the LSTM-single,

CNN, SVR and ARIMA approaches, DC-LSTM

is better with under 99% confidence level with all

window lengths.

Table 4(b) illustrates the PT test results in

terms of PT statistics, and the results check how

well the predicted directions follow the real direc-

tions. As shown in the Table: (1) our proposed

DC-LSTM displays the best statistical perfor-

mance with the highest PT statistics with all win-

dow lengths; (2) the coupling-based approaches

(LSTM-all, LSTM-macro and LSTM-market) are

significantly valid forecasting approaches under

99% confidence level, which further demonstrates

the importance of coupling analysis in exchange

rate forecasting; (3) simple models like ARIMA,

SVR and CNN are almost ineffective since their

p-values are greater than 0.1 with one-month
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(b) The forecasting errors

Figure 4. The forecasting results using different models: three-month window length

window length.

Backtesting on profitability

Since having a high prediction accuracy does

not imply that the strategy generates profit, here

we compare the performance of our approach

against the seven other approaches with three-

months window length in the testing period from

June 2016 to April 2019, together with two other

trading strategies: (1) buy and hold strategy: a

long-term investment strategy based on the view

that in the long run financial markets give a

good rate of return despite periods of volatility

or decline. According to the trading strategy, an

investor buys an asset and holds it until the end;

(2) risk free strategy: it is a look-ahead strategy

which means that an investor has perfect foresight

of the sign of the trend change from today to

tomorrow. It is clear that this strategy can never

be achieved, and here we treat it as an interesting

upper bound of the performance. The wealth

evolutions are shown in Figure 5.

We have the following settings for the in-

vestment: (1) the initial capital investment is

USD100; (2) no new capital will be added there-

after; (3) the investor buys and sells the index ac-

cording to the trends forecasted by each approach

(buy when there is an upward forecasting and sell

while downward); (4) there are no transition fees.

The following conclusions can be drawn from the

figure: a. the DC-LSTM approach performs best,
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Figure 5. Investor’s wealth evolution

Table 4. The statistical results of different models

(a) The DM results

Window length
one-month three-month six-month

ARIMA -5.5756*** -5.7469*** -5.2406***
SVR -4.1386*** -5.6312*** -5.0017***
CNN -4.5436*** -5.5542*** -4.9291***
LSTM-single -4.4943*** -5.1367*** -3.4557***
LSTM-market -3.0475*** -4.5983*** -2.1484**
LSTM-macro -5.4956*** -3.9168*** -2.3851 **
LSTM-all -2.1129** -2.1477** -2.0490**
* denotes a rejection of null hypothesis at the 10% significance

level.
** denotes a rejection of null hypothesis at the 5% significance

level.
*** denotes a rejection of null hypothesis at the 1% signifi-

cance level.

(b) The PT results

Window length
one-month three-month six-month

ARIMA 1.0221 1.3292* 0.6064
SVR 1.2018 1.8277** 1.3041*
CNN 1.0455 1.6634** 1.6517**
LSTM-single 1.3292* 2.6736** 2.3488**
LSTM-market 3.9481*** 4.3330*** 3.3974***
LSTM-macro 3.6086*** 4.1585*** 3.0593***
LSTM-all 4.7432*** 5.3274*** 5.3090***
DC-LSTM 5.3901*** 6.9817*** 6.0337***
* denotes a rejection of null hypothesis at the 10% signifi-

cance level.
** denotes a rejection of null hypothesis at the 5% signifi-

cance level.
*** denotes a rejection of null hypothesis at the 1% signifi-

cance level.

that is, an investor taking recommendations from

the approach can make profit at USD29.56, which

represents a return of 34.62% in around three

years during the trade war period; b. LSTM-all,

LSTM-market and LSTM-macro achieve almost

similar results, which is much better than LSTM-

single, CNN, SVR and ARIMA. We believe these

results further demonstrate the importance of cou-

pling analysis in exchange rate forecasting, and to

verify the proposed DC-LSTM as a useful tool to

help investors make wiser trading decisions.

Conclusions
Forecasting the CNY exchange rate is very

challenging especially under the complex cou-

plings and fluctuations due to CNY internation-

alization and the unstable economic environment.

In this study, the DC-LSTM model is proposed to

learn the complex deep couplings between multi-

ple influence factors of the USD/CNY exchange

rate. We believe the experimental results with 10

years data can not only report the importance of

coupling learning in exchange rate forecasting,

but also the superiority of the proposed DC-

LSTM model in capturing the couplings when

compared with various benchmarks.
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