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Abstract

In this paper we present a derivation of a back-scatter rotational Large Eddy
Simulation model, which is the extension of the Baldwin and Lomax model to non-
equilibrium problems. The model is particularly designed to mathematically describe
a fluid filling a domain with solid walls and consequently the differential operators
appearing in the smoothing terms are degenerate at the boundary. After the derivation
of the model, we prove some of the mathematical properties coming from the weighted
energy estimates and which allow to prove existence and uniqueness of a class of regular
weak solutions.
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1 Introduction

The aim of this paper is twofold: From one side we are deriving in a consistent way a
rotational Large Eddy Simulation model, capable of taking into account of back-scatter
of energy; from another side we are also showing, by using rather elaborate functional
analysis tools, the existence of weak solutions for the models we propose.

Recall that, the motion of a turbulent incompressible flow in a 3D domain Ω can be
simulated by using a turbulence model such as the following eddy viscosity model1:

(1.1)

{
vt + div (v ⊗ v)− div

(
(2ν + νturb)Dv

)
+∇p = f ,

divv = 0,

1Thanks to the divergence free constraint divv = 0, we have div (v⊗v) = (v ·∇)v where v⊗v = (vivj)
for 1 ≤ i, j ≤ 3. Therefore, these both forms are used throughout this report without any confusion, but
also the “rotational form” will be used.
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where vt = ∂tv for simplicity, v = v(t,x) = (v1(t,x), v2(t,x), v3(t,x)) is the mean velocity
of the fluid, p = p(t,x) the mean pressure, ν > 0 the kinematic viscosity, νturb ≥ 0 the eddy
viscosity (also known as the turbulent viscosity), f = f(t,x) = (f1(t,x), f2(t,x), f3(t,x))
the external source term, Dv = 1

2(∇v+∇vt) the deformation stress of the mean velocity,
and ”div ” stands for the divergence operator.

In the whole paper we will consider the problem with homogeneous Dirichlet boundary
conditions, i.e.,

v = 0 on (0, T )× ∂Ω,

and this poses certain technical problems, which are not present in the case of homogeneous
turbulence treated in the whole space or in the space-periodic setting. However, numerical
simulations would require the use of wall laws (see [7]).

One basic problem in turbulence modeling is the determination of the eddy viscosity
νturb, for which there are many options (see a comprehensive presentation of this question
in [4, 7]). One of the most popular models (and one among the first introduced) is the
Smagorinsky one [19] for which the eddy viscosity is given by

νturb = κ `2|Dv|,

where κ is the von Kármán dimensionless constant (the value of which is about 0.41)
and ` is the Prandtl mixing length (see [17]). The peculiarity of the modeling and of the
equations derived is the degeneracy of the differential operators (by means of the function
`(x), which is vanishing at the boundary). The models we study can be interpreted as
obtained with the application of a differential filter with radius vanishing near to the
boundary; hence, the model is not over-smoothing the boundary layer. The analysis of
wall-laws or of other boundary conditions requires tools not developed yet for this problem.

In the case of a flow over a plate, which is identified with the plane (x, y, 0), then the
domain is Ω = R2 × {z > 0} and one finds in Obukhov [16] the following law

` = `(z) = κz.

Considering a bi-layer model for a turbulent boundary layer over a plate, Baldwin &
Lomax [2] suggested –from heuristic arguments– to use in the inner part of boundary layer
the following formula

(1.2) νturb = κ `2(z)|ω|,

where ω = curlv denotes the mean vorticity, while the function ` (not a constant now) is
determined by the Van Driest formula [20],

`(z) := κ z (1− e−z/A);

here A depends on the oscillations of the plate and on the kinematic viscosity ν, while
z ≥ 0 is again the distance from the plate. As it is well-known, the Smagorinsky model is
over-diffusive, and model (1.2) looks to be a very interesting alternative, leading by (1.1)
to the system

(1.3)

{
vt + div (v ⊗ v)− ν∆v − div (κ `2(z)|ω|Dv) +∇p = f ,

divv = 0.
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However, the eddy viscosity term −div (κ `2(z)|ω|Dv) in (1.3) does not follow the rota-
tional structure of formula (1.2). In [18], the authors suggest a purely rotational form
curl (κ `2(x)|ω|ω) –which is consistent with (1.2)– yielding the following system

(1.4)

{
vt + div (v ⊗ v)− ν∆v + curl (κ `2(x)|ω|ω) +∇π = f ,

divv = 0,

for some modified pressure term π.

In addition to being over-diffusive, the Smagorinsky model (but this limitation is also
shared by non adaptive eddy viscosity models) is not capable of taking into account phe-
nomena of back-scatter of energy. Consequently, system (1.4) seems of interest limited to
(statistically) stationary or equilibrium flows. A first complete existence theory for the
Baldwin & Lomax model in the steady case has been recently given in [3].

In order to consider more complex physical settings, a variant has been proposed in [18]
including a non-smoothing dispersive term, in the same spirit as in Voigt models (also
written as Voight sometimes). The mathematical theory in this case needs to handle
degenerate operators and weighted estimates. For this reason, in [1] we have modeled
a back-scatter term of a Voigt form such as −α div (`(x)Dvt), where α > 0 denotes
the length scale, for turbulence evolving towards a statistical equilibrium, where `(x) is
a smooth positive function, vanishing only at the boundary of the domain and with a
prescribed rate. In [1] we also studied the properties of the corresponding PDE system, in
conjunction with TKE (turbulent kinetic energy equations). In [18], the authors suggested
instead a back-scatter term under rotational form, such as curl (`2(x)ωt), obtaining the
following system:

(1.5)

{
vt + curl (`2(x)ωt) + div (v ⊗ v)− ν∆v + curl (κ `2(x)|ω|ω) +∇π = f ,

divv = 0,

for some modified pressure term π.

In this paper we show:

1. How to derive systems (1.4) and (1.5) from a standard turbulence modeling proce-
dure,

2. Existence and uniqueness results of classes of weak solutions for these systems sup-
plemented with smooth enough initial data and Dirichlet homogeneous boundary
conditions, under certain reasonable mathematical assumptions.

The main mathematical result we prove is the following.

Theorem 1.1. Assume that the domain Ω is bounded and smooth (not necessarily with
a flat boundary) and that the function ` : Ω → R+ is of class C2 and satisfies the two
following properties:

(1.6) `(x) ≈
√
d(x, ∂Ω) for x close to ∂Ω,

where d(x, ∂Ω) denotes the distance from the boundary, and

(1.7) ∀ K ⊂⊂ Ω, ∃ `K ∈ R?+ s.t. `(x) ≥ `K > 0 ∀x ∈ K.

Assume in addition that f ∈ L2(0, T ;L2(Ω)3) and2 v0 ∈W 1,3
0,σ (Ω). Then, system (1.5) with

v(0) = v0 in Ω and v = 0 on (0, T )× ∂Ω has a unique “regular weak” solution.

2The divergence-free spaces W 1,p
0,σ (Ω) are defined below by (2.5).
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Theorem 1.1 is a consequence of the weighted estimate (5.1) below, which is the main
mathematical result of this paper and of a proper application of monotonicity techniques,
coupled with localization of the test functions.

Plan of the paper. The paper is organized as follows: In Section 2 we set the mathema-
tical framework that we use in the whole paper. Sections 3 and 4 are devoted to modeling
and to explain the motivations for the systems (1.4) and (1.5). The proof of the main
weighted estimate (5.1) is provided in Section 5. Finally, in Section 6 we present the proof
of Theorem 1.1.
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2 Functional setting

In the sequel Ω ⊂ R3 will be a smooth and bounded open set, as usual we write x =
(x1, x2, x3) for all x ∈ R3. In particular, we assume that the boundary ∂Ω is of class C0,1,
such that the normal unit vector n at the boundary is well defined and other relevant
properties hold true. We also define the distance d(x, A) of a point from a closed set
A ⊂ R3 as follows

d(x, A) := inf
y∈A
|x− y|,

and we denote by d(x) the distance of x from the boundary of the domain Ω

(2.1) d(x) := d(x, ∂Ω) ∀x ∈ Ω.

For our analysis we will use the customary Lebesgue (Lp(Ω), ‖ . ‖p) and Sobolev spaces
(W k,p(Ω), ‖ . ‖k,p) of integer index k ∈ N and with 1 ≤ p ≤ ∞. The L2(Ω)-norm will
be denoted by ‖ . ‖ for simplicity. We use boldface for vectors, matrices and tensors. We
recall that Lp0(Ω) denotes the subspace of Lp(Ω) with zero mean value, while W 1,p

0 (Ω) is the
closure of the smooth and compactly supported functions with respect to the ‖ . ‖1,p-norm.

As usual we denote H1
0 (Ω) = W 1,2

0 (Ω). In addition, if Ω is bounded and if 1 < p <∞, the
following two relevant inequalities hold true:

1) the Poincaré inequality

(2.2) ∃CP (p,Ω) > 0 : ‖u‖p ≤ CP ‖∇u‖p ∀u ∈W 1,p
0 (Ω)3;

2) the Korn inequality

(2.3) ∃CK(p,Ω) > 0 : ‖∇u‖p ≤ CK‖Du‖p ∀u ∈W 1,p
0 (Ω)3.
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The Korn inequality allows to control the full gradient in Lp(Ω) by its symmetric part, for
functions which are zero at the boundary (cf. Malek, Nečas, Rokyta, and Ružička [15]).
Classical results (cf. Bourguignon and Brezis [5]) concern controlling the full gradient with
curl & divergence. The following inequality holds true: For all s ≥ 1 and 1 < p < ∞,
there exists a constant C = C(s, p,Ω) such that,

‖u‖s,p ≤ C
[
‖divu‖s−1,p + ‖curlu‖s−1,p + ‖u · n‖s−1/p,p,∂Ω + ‖u‖s−1,p

]
,

for all u ∈W s,p(Ω)3, where ‖ . ‖s−1/p,p,∂Ω is the trace norm as explained below. This same
result has been later improved by von Wahl [21] obtaining, under geometric conditions
on the domain, the following estimate without lower order terms: Let Ω be such that
b1(Ω) = b2(Ω) = 0, where bi(Ω) denotes the i-th Betti number, that is the the dimension
of the i-th homology group H i(Ω,Z). Then, there exists C = C(p,Ω) such that

(2.4) ‖∇u‖p ≤ C
(
‖divu‖p + ‖curlu‖p

)
,

for all u ∈ W 1,p(Ω)3 satisfying either (u · n)|∂Ω = 0 or (u × n)|∂Ω = 0. As usual in
fluid mechanics, when working with incompressible fluids, it is natural to incorporate the
divergence-free constraint directly in the function spaces. These spaces are built upon
completing the space of solenoidal smooth vector fields with compact support, denoted as
φ ∈ C∞0,σ(Ω)3, in an appropriate topology. For 1 < p <∞ we define

(2.5)


Lpσ(Ω) :=

{
φ ∈ C∞0,σ(Ω)3

}‖ . ‖p
,

W 1,p
0,σ (Ω) :=

{
φ ∈ C∞0,σ(Ω)3

}‖ . ‖1,p
.

A basic tool in mathematical fluid mechanics is the construction of a continuous right
inverse of the divergence operator with zero Dirichlet boundary conditions. An explicit
construction is due to the Bogovskĭı and it is reviewed in Galdi [8, Ch. 3]. The following
results holds true.

Proposition 2.1. Let ω ⊂ R3 be a bounded smooth domain and let f ∈ Lp0(ω). Then,

there exists at least one u = Bogω(f) ∈W 1,p
0 (ω)3 which solves the boundary value problem{

divu = f in ω,

u = 0 on ∂ω.

Among other spaces, the operator Bogω is linear and continuous from Lp0(ω) to W 1,p
0 (ω)3,

for all p ∈ (1,∞).

Part I

Modeling

In this part we perform the modeling leading to the model (1.4) in Section 3 and the
rotational back-scatter model (1.5) in Section 4.
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3 On the Baldwin & Lomax model

We start by recalling some facts about the Baldwin & Lomax model which will be used
later on. Let Ω ⊂ R3 denote the flow domain. We decompose any field ψ = ψ(t,x) with
(t,x) ∈ R+ × Ω, as the sum of its mean (denoted by a bar) and its fluctuation,

ψ = ψ + ψ′,

as suggested by Reynolds [4, 7]. The bar operator denotes any linear statistical filter that
does not need to be specified, beside that we assume it verifies at least the Reynolds rules:

(3.1) ∂ψ = ∂ψ and ψ = ψ,

for any linear differential operator ∂.

Let us start by considering the following rotational form of the Navier-Stokes equations
(NSE in the sequel),

(3.2)

vt + ω × v − ν∆v +∇
(
p+
|v|2

2

)
= f ,

divv = 0,

where (v, p) denotes the pair of the velocity and the pressure, and the alternative form of
the convective term follows by using the well-known identity

(v · ∇)v =
1

2
∇|v|2 + ω × v,

where ω = curlv. We apply the bar operator to (3.2). By using the Reynolds rules (3.1),
one obtains to the following system

(3.3)

{
vt + ω × v + ω′ × v′ − ν∆v +∇q = f ,

divv = 0,

where the force is chosen such that f = f for simplicity. The Bernoulli pressure and the
fluctuation of the vorticity are given, respectively, by

q = p+
|v|2

2
and ω′ = curlv′.

This leads to the issue of modeling the turbulent flux term ω′ × v′ only by mean (averaged)
quantities. According to the Helmholtz-Hodge theorem, under reasonable regularity and
decay assumptions, there exists a unique vector field A(R) such that

(3.4)

{
curlA(R) = ω′ × v′,

divA(R) = 0,

and in what follows we call A(R) the “rotational Reynolds stress.” As usual in turbulent
modeling, the fundamental question is how to express A(R) in terms of averaged quantities.
It is natural to assume that A(R) is a function of the mean vorticity ω. Following the
standard Reynolds-stress modeling-procedure and respecting the divergence free constraint
divA(R) = 0, we are led to set

(3.5) A(R) = νturbω +∇ψ,
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for some scalar function ψ which will be specified later on. Notice that from the Reynolds
rules combined with the Schwarz theorem, we have divω = 0. Therefore, taking the
divergence of (3.5) and using divA(R) = 0 yields a Poisson equation for ψ:

−∆ψ = div (νturbω),

hence, since ω is divergence-free,

ψ = (−∆)−1(∇νturb · ω).

In conclusion, the closure assumption for the rotational Reynolds stress can be expressed
as follows

(3.6) A(R) = νturbω +∇(−∆)−1(∇νturb · ω).

Taking the curl of (3.6) gives

curlA(R) = curl (νturbω).

Therefore, according to the Baldwin & Lomax model if νturb = κ `2(x)|ω|, and by noting
that 

1

2
|v|2 =

1

2
|v|2 + k,

div (v ⊗ v) = ω × v +∇
(
|v|2

2

)
,

(where k = 1
2 |v′|2 denotes the turbulent kinetic energy) we get as closure equations

from (3.3) the following system:{
vt + div (v ⊗ v)− ν∆v + curl (κ `2(x)|ω|ω) +∇(p+ k) = f ,

divv = 0,

which yields to the system (1.4) by setting the modified pressure π = p + k, and where
we recall that ω = curlv. In a vorticity/velocity formulation it is also relevant to consider
the rotational form of the convective term, hence{

vt + ω × v − ν∆v + curl (κ `2(x)|ω|ω) +∇q = f ,

divv = 0.

4 Introduction of the rotational back-scatter term

Following a modeling similar to that already employed in [1], we show in this section how
to derive the following model

(4.1)

{
vt + curl (`2ωt) + ω × v − ν∆v + curl (κ`2|ω|ω) +∇q = f ,

divv = 0,

for a turbulent flow evolving towards a statistical equilibrium.

Equation (3.3) combined with (3.4) becomes:

(4.2)

{
vt + ω × v − ν∆v + curlA(R) +∇q = f ,

divv = 0.
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According to Leray’s result [13], we know any turbulent solution (smooth enough to carry
on all the calculations) to (4.2) satisfies the energy inequality

(4.3)
1

2

d

dt
‖v(t)‖2 + ν‖∇v(t)‖2 + 〈curlA(R),v(t)〉 ≤ 〈f(t),v(t)〉,

in the sense of distributions over (0, T ), provided that the boundary conditions do not
bring additional terms (such as occurs i) with the no-slip boundary condition; ii) when
Ω = R3, or iii) in the space periodic case, for instance). Let us set

I (t) := 〈curlA(R),v(t)〉.

The aim of what follows is to study the contribution of this term in the energy inequal-
ity (4.3). To do so, we use the well-known formula

(4.4) νturb = Ck`
√
k,

relating eddy viscosity νturb and turbulent kinetic energy k, see [7]. Then, we combine (4.4)
with νturb = κ`2|ω|, leading to the closure equation for k

(4.5) k =
`2

2
|ω|2 =

`2

2
|curlv|2.

We assume now that the production of turbulent kinetic energy is mainly due to small
scales eddies, which are in a statistical equilibrium and that no-stratification occurs. By
a straightforward generalization of what is done in [7, Sec. 4.4.1], we get the following
equation for k:

(4.6) kt + v · ∇k + div
(
e′v′

)
= A(R) · ω − ε+ f ′ · v′,

where the rotational turbulent dissipation is given in this case by ε = ν|ω′|2, and e′ denotes
the fluctuation of the kinetic energy of the fluctuation e = 1

2 |v
′|2. The combination of (4.5)

and (4.6) gives the formal following energy equality:

(4.7)
d

dt

∫
Ω
k(t) =

∫
Ω
`2ωt · ω = I (t)−

∫
Ω
ε(t) + 〈f ′,v′〉.

From (4.3) and (4.7) it follows the following inequality

(4.8) frac12
d

dt

(
‖v(t)‖2 + ‖`ω(t)‖2

)
+ ν‖∇v(t)‖2 + ‖

√
ε(t)‖2 ≤ 〈f(t),v(t)〉+ 〈f ′,v′〉.

The energy inequality (4.8) suggests to add the term `2ωt to the rotational Reynolds
stress in formula (3.6), leading to the following expression for the no-equilibrium rotational
Reynolds stress

(4.9) A(R) = `2ωt + νturbω +∇(−∆)−1(∇νturb · ω).

When we plug (4.9) into (4.2) to get the following energy inequality

(4.10)
1

2

d

dt

(
‖v(t)‖2 + ‖`ω(t)‖2

)
+ ν‖∇v(t)‖2 + ‖

√
νturbω(t)‖2 ≤ 〈f(t),v(t)〉.

We compare (4.8) and (4.10), which is consistent when the following compatibility condi-
tion is satisfied:

(4.11) ‖
√
νturbω(t)‖2 + 〈f ′,v′〉 ≤ ‖

√
ε(t)‖2,

which we assume to be held near statistical equilibium. Hence, (4.1) follows by combining
(4.2) and (4.9). Finally, (4.1) yields the model (1.5) by setting the modified pressure
π = p+ k. An example which satisfies (4.11) is given by the following remark.
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Remark 4.1. The assumption in condition (4.11) can be justified as in [1, Remark 2.2].
More precisely, (for a time averaging filter) this condition holds true when source term is
constant f(t,x) = f(x), without turbulent fluctuation, i.e., f ′ = 0. It implies a decrease
of TKE, which means a decrease of the turbulence, towards a laminar state, or a stable
statistical equilibrium, such as a grid turbulence.

Part II

Analysis of the model

In this part of the paper we perform the mathematical analysis of the back-scatter ro-
tational model, by using established methods of analysis for non-Newtonian fluids. We
first present the main weighted estimate in Section 5 and then proving the existence and
uniqueness results in Section 6, as stated in Theorem 1.1.

5 Main estimate

In this section we show a bound involving the weighted-curl and weighted-gradient, which
does not follow directly from the classical tools combining weighted estimates and harmonic
analysis. As employed in [3] it can be shown that for fields in W 1,p

0,σ (Ω) one can prove the
weighted estimate∫

Ω
|∇v(x)|pw(x) dx ≤ C(w,Ω, p)

∫
Ω
|curlv(x)|pw(x) dx,

provided that the weight function w ∈ L1
loc(R

3), which is s.t. w ≥ 0 a.e., belongs to the
Muckenhoupt class Ap, for 1 < p <∞, that is there exists C such that

sup
Q⊂Rn

(
−
∫
Q

w(x) dx

)(
−
∫
Q

w(x)1/(1−p) dx

)p−1

≤ C,

where Q denotes a cube in R3. It is well-known that the powers of the distance function
w(x) =

(
d(x, ∂Ω)

)α
are Muckenhoupt weights of class Ap if and only if −1 < α < p − 1,

hence in the relevant cases we could not infer the required estimates if `(x) =
(
d(x, ∂Ω)

)α
,

for α ≥ p− 1.

In our case, we can prove a crucial estimate in a different and direct way, by using the
special Hilbert structure when p = 2. Despite being based on elementary direct compu-
tations the following lemma plays a fundamental role on the analysis of the rotational
back-scatter system (1.5).

Lemma 5.1. Assume that the function ` is such that `2 ∈W 2,∞(Ω) and let v ∈W 1,2
0,σ (Ω).

Then, there exists a positive constant C(`) = C(‖D2`2‖∞) such that

(5.1)

∫
Ω
`2|∇v|2dx ≤

∫
Ω
`2|curlv|2dx + C(`)

∫
Ω
|v|2dx.

Proof. We start from the well-known vector-calculus identity

(5.2) −∆v = curl (curlv)−∇(divv) = curl (curlv),
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that holds for any divergence free vector field v. Then multiplying (5.2) by `2v and
integrating by parts on Ω we obtain3:

(5.3)

∫
Ω
∇v : ∇(`2v) dx =

∫
Ω

(curlv) · (curl (`2v)) dx,

where the fact that v = 0 on ∂Ω has been used. We will explicitly rewrite both sides
of (5.3). The left-hand side (l.h.s) of (5.3) can be rewritten as follows∫

Ω
∇v : ∇(`2v) dx =

∫
Ω

3∑
i,j=1

∂jvi ∂j(`
2vi) dx

=
1

2

∫
Ω

3∑
i,j=1

∂jv
2
i ∂j`

2 dx +

∫
Ω

3∑
i,j=1

(∂jvi)
2`2 dx

=
1

2

∫
Ω

3∑
j=1

∂j

(
3∑
i=1

v2
i

)
∂j`

2 dx +

∫
Ω
`2|∇v|2 dx

=
1

2

∫
Ω

3∑
j=1

∂j |v|2∂j`2 dx +

∫
Ω
`2|∇v|2 dx

=
1

2

∫
Ω
∇|v|2 · ∇`2 dx +

∫
Ω
`2|∇v|2 dx

= −1

2

∫
Ω
|v|2∆`2 dx +

∫
Ω
`2|∇v|2 dx,(5.4)

where v = (v1, v2, v3) and in the last equality in (5.4) we used integration by parts possible
again since v = 0 on ∂Ω. The right-hand side (r.h.s) of (5.3) can be rewritten as∫

Ω
(curlv) · (curl (`2v)) dx =

∫
Ω
`2|curlv|2 dx +

∫
Ω

(curlv) ·
(
(∇`2)× v

)
dx,(5.5)

where the identity curl (`2v) = `2curlv + (∇`2) × v has been used. Combining (5.4)
and (5.5) yields

(5.6)

∫
Ω
`2|∇v|2 dx =

∫
Ω
`2|curlv|2 dx +

∫
Ω

(curlv) ·
(
(∇`2)× v

)
dx +

1

2

∫
Ω
|v|2∆`2 dx.

To conclude we are going to estimate the two last integrals on the r.h.s of (5.6). To handle
the vector product we use the properties of the Ricci totally anti-symmetric tensor εijk
(such that (a × b)i =

∑3
j=1

∑3
k=1 εijkajbk) and we rewrite in components the integrand

as follows

(curlv) ·
(
(∇`2)× v

)
=

3∑
i,j,k,m,p=1

εijk(∂jvk) εimp(∂m`
2)vp

=
3∑

j,k,m,p=1

(δjmδkp − δjpδkm)(∂jvk) (∂m`
2)vp

=
3∑

j,k,m=1

[(∂jvk) (∂m`
2)vk − (∂jvk) (∂k`

2)vj ]

=
1

2

3∑
j,m=1

(∂j |v|2) (∂m`
2)−

3∑
j,k=1

(∂jvk) (∂k`
2)vj .

3We denote A : B =
∑
i,j aijbij for any two matrices A = (aij) and B = (bij) for 1 ≤ i, j ≤ 3.
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Hence, passing to the integral, and recalling that v vanishes at the boundary and is
divergence-free, we can integrate by parts to obtain∫

Ω
(curlv) ·

(
(∇`2)× v

)
dx =

1

2

3∑
j,m=1

∫
Ω

(∂j |v|2) (∂m`
2) dx−

3∑
j,k=1

∫
Ω

(∂jvk) (∂k`
2)vj dx

= −1

2

3∑
j,m=1

∫
Ω
|v|2 ∂jm`2 dx +

3∑
j,k=1

∫
Ω
vjvk ∂jk`

2 dx,

which leads to ∣∣∣∣∫
Ω

(curlv) ·
(
(∇`2)× v

)
dx

∣∣∣∣ ≤ C‖D2`2‖∞‖v‖2.

In addition, the other integral on the r.h.s of (5.6) is bounded by

1

2

∫
Ω
|v|2∆`2 dx ≤ C‖D2`2‖∞‖v‖2,

which combines to the previous estimate ending the proof.

6 Existence and uniqueness results

Throughout this section, we assume that assumptions (1.6) and (1.7) in Theorem 1.1 hold,
that is `(x) = O(

√
d(x, ∂Ω)) near the boundary and ` is strictly positive inside the domain.

Moreover, we also assume that f ∈ L2(0, T ;L2(Ω)3) and v0 ∈W 1,3
0,σ (Ω). Finally, recall that

ω = curlv. As in (2.1) we write d(x, ∂Ω) = d(x).
Without loss of generality, and according to the modeling introduced in [1] motivated by
dimensional analysis, we consider now the back-scatter Baldwin & Lomax model with the
following explicit expression for the length `

(6.1) `(x) =
√
d0 d(x) for some length d0 > 0,

which is consistent with assumptions (1.6) and (1.7) and `2(x) = d0 d(x) ∈ C2(Ω), if the
boundary of the domain ∂Ω is at least of class C2 (cf. the assumptions in Lemma 5.1 and
see also Gilbarg and Trudinger [9, Ch. 14]). Consequently, we now study the existence
and uniqueness problems for the following model

(6.2)

{
vt + curl (d0 dωt) + ω × v − ν∆v + curl (d0 d |ω|ω) +∇p = f ,

divv = 0,

where p is some modified pressure and, again for simplicity and without loss of generality,
we suppose from now on that d0 = 1. Recall that the above system is supplemented by
the Dirichlet boundary conditions v = 0 on (0, T ) × ∂Ω and the initial datum v(0) = v0

in Ω.
In order to prove existence of weak solutions we observe that the basic a-priori estimate
is obtained by testing with v itself and obtaining (after integration by parts, if solutions
are smooth to perform all computations) the following energy inequality for all s ∈ (0, T )

‖v(s)‖2 + ‖
√
dω(s)‖2 + ν

∫ s

0
‖∇v‖2 dt+ 2

∫ s

0

∫
Ω
d |ω|3 dxdt

≤ ‖v0‖2 + ‖
√
dω0‖2 +

C

ν

∫ s

0

∫
Ω
‖f‖2dxdt.

11



Here, the vanishing contribution of the rotational convection term has been used (af-
ter modifying the pressure) and the dimensionless constant C comes from applying the
Poincaré and Young inequalities. It follows by using (2.2) and a natural f ∈ L2(0, T ;L2(Ω)3)
assumption, that

v ∈ L∞(0, T ;L2(Ω)3) ∩ L2(0, T ;H1
0 (Ω)3),

d1/2ω ∈ L∞(0, T ;L2(Ω)3),

d1/3ω ∈ L3(0, T ;L3(Ω)3).

Hence, from one side we have for the mean velocity v the same estimates valid for the
Leray-Hopf weak solutions of the Navier-Stokes equations; On the other side we have
further estimates on the mean vorticity which are weighted by the distance from the
boundary, hence not enough to directly apply standard methods. We observe that both
(dispersive/back-scatter and dissipative/eddy viscosity) the additional degenerate terms
pose some mathematical difficulties: If in the system (6.2) one would have been given the
following smoothing term

curl (|ω|ω),

then the a-priori estimate, and the divergence-free constraint with (2.4) will imply directly
that v ∈ L3(0, T ;W 1,3

0,σ (Ω)), allowing us to apply the same tools valid for the Smagorinsky
model as in [14]. Here the estimates degenerate at the boundary (being the mean vorticity
weighted by the distance function d) and this prevents from using the solution itself as a
legitimate test function.

Next, if the dispersive term would have been given by

curl (ωt) = −∆vt,

(where the equality is valid for divergence-free functions) the same well-known tools valid
for the Voigt model can be used as in [6]. We note in particular that in problem (6.2)
the presence of this dispersive term does not allow us to prove by comparison the classical
regularity in negative spaces for the time derivative vt (as needed by Aubin-Lions type
compactness results); In addition it is also not easy to prove from the weak formulation
that the solution is weakly continuous in L2(Ω) as required by the compactness results à
la Hopf (or in the refined form of Landes and Mustonen [12]).

Each term poses some questions which can be separately handled, but the combination of
the effects of both weighted terms requires to have a precise interplay between some local
(in space) estimates on a double approximated system.

For these reasons we first ε-regularize the system by a hyper-dissipative term and we then
approximate it by a Galerkin procedure. We first pass to the limit in the Galerkin system
and then pass to the limit in the smoothed system, by using further regularity on the time
derivative which is obtained in a way similar to [1].

6.1 The approximate system: existence and further regularity

For simplicity we assume from now on that f = 0, but the introduction of an external force
f ∈ L2(0, T ;L2(Ω)3) can be done with minor changes. Moreover, throughout the section,
we assume ` =

√
d, but observe that assumptions (1.6) and (1.7) would be enough.

12



In order to apply the standard Galerkin method and monotonicity, we approximate the
system (6.2) by the following one
(6.3){

vεt + curl (dωεt) + ωε × vε − ν∆vε + curl (d |ωε|ωε)− ε div (|Dvε|Dvε) +∇pε = 0,

divvε = 0,

and we study it with homogeneous Dirichlet boundary conditions.

The above system falls within the standard class of monotone problems as those considered
in Lions [14] and Ladyžhenskaya [11] in the analysis of the Smagorinsky model. Here, in
addition to the standard Smagorinsky model, we have two perturbation terms, which can
be easily handled.

We have the following result.

Theorem 6.1. Let be given v0 ∈W 1,3
0,σ (Ω), then there exists a unique weak solution vε to

system (6.3) with v0 as initial datum and with homogeneous Dirichlet boundary conditions.
This means that

vε ∈ L∞(0, T ;L2
σ(Ω)3) ∩ L3(0, T ;W 1,3

0,σ (Ω)),

is such that

(6.4)

∫ T

0

∫
Ω

(ωε × vε) · φ+ ν∇ωε : ∇φ+ d |ωε|ωε · curlφ+ ε |Dvε|Dvε : Dφdxdt

=

∫ T

0

∫
Ω
vε · φt + dωε · curlφt dxdt+

∫
Ω
v0 · φ(0) + dω0 · curlφ(0) dx,

for all φ ∈ C∞0,σ([0, T )× Ω)3.

Proof. Testing by divergence free test vector fields as is custom, we do not consider the
pressure term that can be recovered through the usual ways. The proof is based on an
application of the Galerkin method to prove existence of approximate solutions. Denoting
by vε,m ∈ Vm for all t ∈ (0, T ) a finite dimensional approximation to vε one has the
following energy estimate for all s ∈ [0, T ]

‖vε,m(s)‖2 + ‖
√
dωε,m(s)‖2 + 2ν

∫ s

0
‖∇vε,m‖2 dt+ 2ε

∫ s

0
‖Dvε,m‖33 dt

+ 2

∫ s

0

∫
Ω
d |ωε,m|3 dxdt ≤ ‖v0‖2 + ‖

√
dω0‖2,

which shows, by using (2.2)-(2.3) that

vε,m ∈ L∞(0, T ;L2
σ(Ω)3) ∩ L3(0, T ;W 1,3

0,σ (Ω)),

with estimates depending on ε > 0, but independent of m ∈ N.

Next, testing with vt, we can see that the contribution of the rotational convective term
can be estimated as follows:∣∣∣ ∫

Ω
(ω × v) · vt dx

∣∣∣ ≤ ‖vt‖ ‖v‖6‖ω‖3
≤ ‖vt‖ ‖v‖6‖∇v‖3
≤ C‖vt‖ ‖∇v‖ ‖Dv‖3

≤ 1

2
‖vt‖2 + C‖∇v‖2 ‖Dv‖23,
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for smooth enough v, where we used the Korn inequality (2.3).

By using vε,mt as test function and the previous estimates (where v is replaced by vε,m)
we then obtain the following differential inequality

1

2

(
‖vε,mt (s)‖2 + ‖

√
dωε,mt (s)‖2

)
+
d

dt

ν

2
‖∇vε,m‖2 +

d

dt

ε

3
‖Dvε,m‖33

+
d

3dt

∫
Ω
d |ωε,m|3dx ≤ C‖∇vε,m‖2 ‖Dvε,m‖23.

An application of the Gronwall lemma –possible since vε,m ∈ L3(0, T ;W 1,3
0,σ (Ω))– shows

that
vε,m ∈ L∞(0, T ;W 1,3

0,σ (Ω)) and vε,mt ∈ L2(0, T ;L2(Ω)3),

again uniformly in m ∈ N. The above estimates with Aubin-Lions compactness lemma
(cf. [14]) are enough to infer that, for each fixed ε > 0, there exists

vε ∈ L∞(0, T ;W 1,3
0,σ (Ω)) ∩H1(0, T ;L2

σ(Ω)),

such that when m→ +∞

vε,m
∗
⇀ vε in L∞(0, T ;W 1,3

0,σ (Ω)),

vε,m ⇀ vε in L3(0, T ;W 1,3
0,σ (Ω)),

vε,mt ⇀ vεt in L2(0, T ;L2
σ(Ω)3),

√
dωε,mt ⇀

√
dωεt in L2(0, T ;L2

σ(Ω)3),

|Dvε,m|Dvε,m ⇀ χ1 in L3/2(0, T ;L3/2(Ω)9),

|Dvε,m|Dvε,m
∗
⇀ χ1 in L∞(0, T ;L3/2(Ω)9),

d2/3 |ωε,m|ωε,m ⇀ χ2 in L3/2(0, T ;L3/2(Ω)3),

d2/3 |ωε,m|ωε,m ∗
⇀ χ2 in L∞(0, T ;L3/2(Ω)3),

vε,m → vε in L2(0, T ;Lqσ(Ω)3) ∀ q <∞.

The above convergences are enough to pass to the limit in the approximate equations,
except in the monotone terms.
In particular, for the Baldwin & Lomax term, it follows that∫ T

0

∫
Ω
d |ωε,m|ωε,m · curlφdxdt

=

∫ T

0

∫
Ω
d2/3 |ωε,m|ωε,m · d1/3curlφdxdt

m→+∞→
∫ T

0

∫
Ω
χ2 · d1/3curlφdxdt

=

∫ T

0

∫
Ω
d1/3χ2 · curlφdxdt,

for all smooth functions φ with compact support. Hence, one gets (the trick of distributing
powers of the distance function on the integrands will be used several times in the sequel)∫ T

0

∫
Ω

(ω × v) · φ+ ν∇ω : ∇φ+ εχ1 : Dφ+ d1/3χ2 · curlφdxdt

=

∫ T

0

∫
Ω
v · φt + dω · curlφt dxdt+

∫
Ω
v0 · φ(0) + dω0 · curlφ(0) dx,
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and for almost all 0 ≤ s0 ≤ s ≤ T it holds

1

2

(
‖vε(s)‖2 + ‖

√
dωε(s)‖2

)
+

∫ s

s0

[
ν‖∇vε(t)‖2 +

∫
Ω

(
εχ1 : Dvε + d1/3χ2 · ωε

)
dx

]
dt

=
1

2

(
‖vε(s0)‖2 + ‖

√
dωε(s0)‖2

)
.

Hence, to show that vε is a solution to (6.3) one needs to prove that

(6.5) χ1 = |Dvε|Dvε and χ2 = d2/3 |ωε|ωε,

at least almost everywhere in (0, T )× Ω.

This can be proved by using the standard monotonicity argument (Minty-Browder trick)
as developed in the time evolution problem in [11, 14]. The only thing to be verified is
that the function

vε,m − vε,

is a legitimate test function. This follows by the regularity of the time derivative we
proved. Hence, the classical argument proceeds as in (cf. [14, p. 207]) showing that the
approximate solution vε satisfies

ε

∫ s

0

∫
Ω

(χ1 − |Dφ|Dφ) : (Dvε −Dφ) dxdt ≥ 0,∫ s

0

∫
Ω

(χ2 − d2/3 |curlφ|curlφ) · (d1/3ωε − d1/3curlφ) dxdt

‖∫ s

0

∫
Ω

(d1/3χ2 |curlφ|curlφ) · (ωε − curlφ) dxdt ≥ 0,

for a.e. s ∈ [0, T ] and for arbitrary φ ∈ L3(0, T ;W 1,3
0,σ (Ω)), since they are both coming

from monotone terms. This is enough to imply by monotonicity of the functions

B 7→ |B|B and b 7→ dα|b|b,

(which is valid for all matrices B, vectors b, α ∈ R+, and smooth functions d such that
d > 0 for all x ∈ Ω, cf. [3, Lem. 3.2]) that the equalities in (6.5) hold true. We finally
proved that there exists vε such that

(6.6)

∫ T

0

∫
Ω

[
vεt · φ+ dωεt(s) · curlφ+ (ωε × vε) · φ

]
dx

+

∫ T

0

∫
Ω

[
ν∇vε : ∇φ+ ε |Dvε|Dvε : Dφ+ d |ωε|ωε · curlφ

]
dxdt = 0,

at least for all φ ∈ L3(0, T ;W 1,3
0,σ (Ω)). Well-known estimates can be also applied to show

that the solution vε is unique.

Remark 6.1. Due to the regularity of the solution of the approximated system we can use
the function vε,m− vε as test function. In the case of the non-regularized system (6.2) we
will see that localization in the space variable is needed and this is not compatible with the
finite dimensional Galerkin approximation.
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6.2 Proof of Theorem 1.1

We now consider the original problem (without the ε-regularization) and give the proof of
the main result of the paper.

Proof of Theorem 1.1. The proof is divided into two steps. Let us start with the existence
part.

Step 1: Existence part. To construct weak solutions to (6.2) we consider the limit
ε → 0 of solutions to (6.3). By the estimate coming from the energy inequality we also
have by using (5.1) the following inequality, for all s ∈ (0, T )

1

2
‖vε(s)‖2 + min

{
1,

1

2C(`)

}
‖
√
d∇vε(s)‖2 + 2ν

∫ s

0
‖∇vε‖2 dt+ 2ε

∫ s

0
‖Dvε‖33 dt

+ 2

∫ s

0

∫
Ω
d |ωε|3 dxdt ≤ ‖v0‖2 + ‖

√
dω0‖2,

which shows that

vε ∈ L∞(0, T ;L2
σ(Ω)3) ∩ L2(0, T ;W 1,2

0,σ (Ω)) and d1/3ω ∈ L3((0, T )× Ω),

with estimates independent of ε > 0. We now extract further information from the other
bound which is independent of ε, namely

√
d∇vε ∈ L2(0, T ;L2(Ω)9),

coming from the other term on the left-hand side. We use now the inequality

‖v‖H1/2(Ω)3 ≤ C‖
√
d∇v‖ ∀v ∈W 1,2

0 (Ω)3,

which is a simplification of that proved in [1, Thm. 3.1] and H1/2(Ω) denotes the famous
critical fractional Sobolev space.
Here, we have the full gradient instead of the deformation tensor on the right-hand side
and since we are working with the Galerkin approximations we need to verify it at least
for functions in W 1,2

0 (Ω), instead that for general distributions: This is why the estimate
is less technical than that in [1]. By using the Sobolev embedding H1/2(Ω) ⊂ L3(Ω), valid
in three space dimensions, we finally have the following version of a classical Lions and
Magenes result

(6.7) ‖v‖3 ≤ C‖v‖1/2,2 ≤ C‖
√
d∇v‖ ∀v ∈W 1,2

0 (Ω)3.

This is still not enough for our purposes, but we pass at the estimate obtained testing
with vεt. We can also write the following estimate, which follows as in [1, Sec. 4]

(6.8)

∣∣∣ ∫
Ω

(ωε × vε) · vεt dx
∣∣∣ ≤ ‖vεt‖3‖vε‖6‖ωε‖ ≤ C‖vt‖3‖∇vε‖2
≤ 1

2
min

{
1,

1

2C(`)

}
‖
√
d∇vεt‖2 + C1(`)‖∇vε‖4,

valid for smooth functions for some C1(`). At the level of the Galerkin approximation we
can use the above estimate and then the bound is inherited by the limit in m → +∞.
Hence, by testing by vε,mt the Galerkin system and by using Lemma 5.1, with the estimation
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on the convective term (6.8), we get (after passing to the limit m → +∞) the following
differential inequality

1

2
‖vεt‖2 +

1

2
min

{
1,

1

2C(`)

}
‖
√
d∇vεt‖2 +

d

dt

ν

2
‖∇vε‖2 +

d

dt

ε

3
‖Dvε‖33

+
d

3dt

∫
Ω
d |ωε|3 dx ≤ C1(`)‖∇vε‖4.

In particular, for all s ∈ (0, T ) it holds

ν

2
‖∇vε(s)‖2 ≤ ν

2
‖∇v0‖2 +

ε

3
‖Dv0‖33 +

1

3

∫
Ω
d |ω0|3 dx + C1(`)

∫ s

0
‖∇vε‖4 dt,

which shows that, by using the Gronwall lemma (see for example [1, Lemma 4.1])

ν

2
‖∇vε(s)‖2 ≤

(
ν

2
‖∇v0‖2 +

ε

3
‖Dv0‖33 +

1

3

∫
Ω
d |ω0|3 dx

)
exp

{
C1(`)

∫ s

0
‖∇vε‖2 dt

}
≤
(
ν

2
‖∇v0‖2 +

1

3

∫
Ω
d |ω0|3 dx

)
exp

{
C1(`)

2ν

(
‖v0‖2 + ‖

√
dω0‖2

)}
=: F (`,v0),

where we have used the uniform estimate for vε in L2(0, T ;W 1,2
0 (Ω)3, previously proved.

Therefore, from the above differential inequality we get, for all s ∈ (0, T )

1

2

∫ s

0

(
‖vεt‖2 + min

{
1,

1

2C(`)

}
‖
√
d∇vεt‖2

)
dt+

ν

2
‖∇vε(s)‖2 +

1

3

∫
Ω
d |ωε(s)|3 dx

+
ε

3
‖Dvε(s)‖33 ≤

ν

2
‖∇v0‖2 +

1

3

∫
Ω
d |ω0|3 dx + C1(`)F (`,v0)

(
‖v0‖2 + ‖

√
dω0‖2

)
,

for all ε > 0. The latter implies in particular that

vεt ∈ L2(0, T ;L3(Ω)3) ∩H1/2(Ω)3) and vε ∈ L∞(0, T ;W 1,2
0,σ (Ω)),

with bounds uniform in ε > 0. (The validity of the estimates can be justified working again
with the Galerkin approximation showing estimates not depending on m in a standard
way.) We can now use this information to pass to the limit as ε→ 0.

In particular, by the a priori estimates, and since d > 0 for all x ∈ Ω observe that we can
infer

dK

∫ T

0

∫
K
|ωε|3 dxdt ≤

∫ T

0

∫
Ω
d |ωε|3 dxdt,

with 0 < dK := minx∈K d(x). Next, being the right-hand side bounded independently of
ε > 0 this shows that we have (up to a sub-sequence) L3-weak convergence in (0, T )×K.
Considering a family of closed balls Bq,rq ⊂ Ω with rational center q ∈ Q3 and rational
radius rq ∈ Q+ which form a covering of Ω, and using a diagonal argument we can show
that we can find a sub-sequence {ωε} converging in L3 in any compact set of (0, T ) × Ω.
Moreover, one has also the weak-∗ convergence in L∞(0, T ;L3(K)).
By collecting all information coming from the above a priori estimates, we can infer that
there exists

v ∈W 1,2(0, T ;L3
σ(Ω) ∩H1/2(Ω)3) ∩ L∞(0, T ;W 1,2

0,σ (Ω)),

with
ω ∈ L∞(0, T ;L3

loc(Ω)3),
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such that

vε
∗
⇀ v in L∞(0, T ;W 1,2

0,σ (Ω)),(6.9)
√
dωε

∗
⇀
√
dω in L∞(0, T ;L2(Ω)3),(6.10)

vεt ⇀ vt in L2(0, T ;H1/2(Ω)3 ∩ L3
σ(Ω)3),(6.11)

√
dωεt ⇀

√
dωt in L2(0, T ;L2(Ω)3),(6.12)

ε|Dvε|Dvε ⇀ 0 in L3/2(0, T ;L3/2(Ω)9),(6.13)

d |ωε|ωε ⇀ χ in L3/2(0, T ;L3/2(Ω)3),(6.14)

d |ωε|ωε ∗⇀ χ in L∞(0, T ;L3/2(Ω)3),(6.15)

ωε ⇀ ω in L3(0, T ;L3(K)3), ∀K ⊂⊂ Ω,(6.16)

ωε
∗
⇀ ω in L∞(0, T ;L3(K)3), ∀K ⊂⊂ Ω,(6.17)

and by Aubin-Lions lemma

vε → v in L2(0, T ;W
3/4,2
0,σ (Ω)3) ⊂ L2(0, T ;L4(Ω)3),(6.18)

All terms in the equation with the weak formulation (6.4) for vε pass to the limit, except
the nonlinear one concerning the Baldwin & Lomax stress tensor. We obtain then

(6.19)

∫ T

0

∫
Ω
vt · φ+ dωt · curlφ+ (ω × v) · φ+ ν∇v : ∇φ+ χ · curlφdxdt = 0,

for all smooth test functions φ with compact support in (0, T )× Ω.

The last step is to show that the limit v (and it curl ω) satisfies the system (6.2) in a weak
sense. To this end it would be classical to take the difference between the equation satisfied
by vε and that satisfied by v, test by the difference and show that the limit vanishes. This
is needed to show that

d |ωε|ωε → d |ω|ω,

at least a.e. in (0, T )×Ω. All the other terms work fine, the only problem is then to make
sure that the integral below is well-defined

(6.20)

∫ T

0

∫
Ω

(d |ωε|ωε − d |ω|ω) · (ωε − ω) dxdt→ 0,

and to show that it vanishes. The a priori estimates we have on the solution are not
enough for this results: the integral in (6.20) can be well-defined if taken over a compact
subset of K ⊂ Ω, being ω ∈ L3

loc(Ω)3 for a.e. t ∈ [0, T ], but not over the whole domain Ω.
In order to overcome this problem we have to localize. So let us fix an open ball B :=
B(x, R) ⊂ Ω and take a cut-off function 0 ≤ η ∈ C∞0 (Ω)) such that{

η(x) = 1 if x ∈ B/2 := B(x, R/2),

η(x) = 0 if x ∈ Ω\B.

In this way, since for a.e. t ∈ (0, T ) it follows that v(t) ∈ L3(Ω)3, and ω(t) ∈ L3(B)3 we
have that

η (vε − v)|∂B = 0,

div (η (vε − v)) = ∇η · (vε − v) ∈ L3(B),

curl(η (vε − v)) = ∇η × (vε − v) + η (ωε − ω) ∈ L3(B)3,
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it follows then by (2.4) that η (vε − v) ∈ L3(0, T ;W 1,3
0 (B)3). Concerning the regularity,

for all ε > 0 the vector η (vε − v) will be suitable as test function, but it still not allowed
since η (vε−v) is not divergence-free. So in order to be able to use it we need to subtract
its divergence. This can be done by means of the Bogovskĭı operator BogB( . ) associated
to the ball B. Note that we are using it for all fixed t ∈ [0, T ] and this does not create
problems since the functions are smooth enough to consider the time as a parameter.
Hence, a legitimate test function is the following one

Φε :=

{
η (vε − v)− BogB(∇η · (vε − v)) in B,

0 in Ω\B.

From the continuity of the Bogovskĭı operator as in Proposition 2.1 we can infer that
supp Φε ⊂ B for all t ∈ [0, T ] and

Φε ∈ L∞(0, T ;W 1,2
0,σ (Ω)) ∩ L3(0, T ;W 1,3

0,σ (Ω)).

Moreover, from the convergence of the approximated sequence we also have, by interpola-
tion, that vε − v→ 0 in L3(0, T ;L3(Ω)3), hence

Φε → 0 in L3(0, T ;L3(Ω)3),(6.21)

Φε ⇀ 0 in L3(0, T ;W 1,3
0 (B)3),(6.22)

BogB(∇η · (vε − v))→ 0 in L3(0, T ;W 1,3
0 (B)3).(6.23)

We then obtain from the weak formulation of the regularized problem (6.6) the following
equality∫ T

0

∫
Ω
η
(
d |ωε|ωε − d |ω|ω

)
·
(
ωε − ω

)
dxdt

= −
∫ T

0

∫
Ω

(
d |ωε|ωε − d |ω|ω

)
· ∇η ×

(
vm − v

)
dxdt

+

∫ T

0

∫
Ω

(
d |ωε|ωε − d |ω|ω

)
· curl

[
BogB(∇η · (vm − v))

]
dxdt

− ν
∫ T

0

∫
Ω
D(vm − v) : DΦε dxdt+

∫ T

0

∫
Ω

(
ω × v − ωε × vε

)
· Φε dxdt

+

∫ T

0

∫
Ω

(
d1/3χ− d |ω|ω

)
· curl Φε dxdt− ε

∫ T

0

∫
Ω
|Dvε|Dvε : DΦε dxdt

−
∫ T

0

∫
Ω

(vεt − vt) · Φε dxdt−
∫ T

0

∫
Ω
d (ωεt − ωt) · curl Φε dxdt

=: (I) + (II) + (III) + (IV ) + (V ) + (V I) + (V II) + (V III).

The strong L3(0, T ;L3(Ω)3) convergence of vm and the continuity of the Bogovskĭı oper-
ator, with (6.21) imply that (I) and (II) vanish as ε→ 0 (we also used that the function
d is uniformly bounded). We write then the following equality

(III) = −ν
∫ T

0

∫
Ω
η|D(vm − v)|2 dxdt− ν

∫ T

0

∫
Ω
D(vm − v) : ∇η ⊗ (vm − v) dxdt

+ ν

∫ T

0

∫
Ω
D(vm − v) : D

[
BogB(∇η · (vm − v))

]
dxdt,

19



where the first term is non-positive and the second and third one vanish on account
of (6.21)-(6.23). The convergence of (IV ) follows from uniform bounds in L2(0, T ;W 1,2(Ω)3)
and (6.21). The term (V )→ 0 due to (6.23) and the bound in L3/2((0, T )× B) of χ and
|ω|ω. Next, (V I)→ 0, due the L3(0, T ;W 1,3(B)3) bound of vm − v and (6.13).

Concerning the terms involving the time derivative, which are the new ones with respect
to the steady problem treated in [3], it follows that they both vanish as ε → 0. In fact,
in (V II) the term vεt − vt is bounded in L2(0, T ;L2(Ω)3), by (6.19), while Φε vanishes
strongly in L2(0, T ;L2(Ω)3). Moreover, regarding (V III), we rewrite it as∫ T

0

∫
Ω

(
√
dωεt −

√
dωt) ·

√
dΦε dxdt,

and observe that the quantity
√
dωεt −

√
dωt is bounded in L2(0, T ;L2(Ω)3) by (6.12),

while
√
dΦε converges strongly to zero in L2(0, T ;L2(Ω)3) by (6.18).

In this way we proved that

min
x∈B/2

d(x)

∫ T

0

∫
B/2

(|ωε|ωε − |ω|ω) · (ωε − ω) dxdt

= min
x∈B/2

d(x)

∫ T

0

∫
B/2

η (|ωε|ωε − |ω|ω) · (ωε − ω) dxdt

≤
∫ T

0

∫
B/2

d(x) η (|ωε|ωε − |ω|ω) · (ωε − ω) dx

≤
∫ T

0

∫
B
d(x) η (|ωε|ωε − |ω|ω) · (ωε − ω) dxdt→ 0,

which is enough to prove that |ωε|ωε → |ω|ω a.e. in (0, T ) × B/2. The arbitrariness of
the ball B ⊂ Ω implies that

|ωε|ωε → |ω|ω a.e. in (0, T )× Ω.

This proves, by the identification of weak and almost everywhere limits, the validity of the
limit d |ωε|ωε ⇀ d |ω|ω, at least in L3/2(0, T ;L3/2(Ω)3) ending the proof of the existence
part, since v satisfies∫ T

0

∫
Ω

[vt · φ+ dωt · curlφ+ (ω × v) · φ] dxdt

+

∫ T

0

∫
Ω

[ν∇v : ∇φ+ d |ω|ω · curlφ] dxdt = 0,

for all φ ∈ C∞0,σ((0, T )× Ω)3.

Observe that the hypotheses on the initial datum v0 ∈ W 1,3
0,σ (Ω) are enough to make the

integrals well-defined. In the limit only the weighted estimate
∫

Ω d |ω0|3 dx <∞ is needed.
So at the price of further technical questions related to approximation by smooth functions
in weighted space as in Kufner [10], one can relax the hypotheses on the initial datum as
follows:

v0 ∈W 1,2
0,σ (Ω) with

∫
Ω
d |ω0|3 dx <∞,

such that there exists a sequence vε0 ∈W
1,3
0,σ (Ω) satisfying

vε0 → v0 in W 1,2
0,σ (Ω) and

∫
Ω
d |ωε0|3 dx ≤ 2

∫
Ω
d |ω0|3 dx.
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We continue now with the uniqueness part.

Step 2: Uniqueness part. Since we proved existence of rather regular weak solutions, we
can now prove their uniqueness. As usual we suppose that there exists two solutions v1, v2

corresponding to the same initial datum. We take the difference and it follows that all
estimates satisfied by the velocity are inherited by the difference and hence δ v := v1−v2

and δω := ω1 − ω2 satisfy in particular the following

δ v ∈ L∞(0, T ;W 1,2
0,σ (Ω)),

√
d (δω) ∈ L∞(0, T ;L2(Ω)3),

δ vt ∈ L2(0, T ;H1/2(Ω)3 ∩ L3
σ(Ω)),

√
d (δωt) ∈ L2(0, T ;L2(Ω)3),

δω ∈ L∞(0, T ;L3(K)3), ∀K ⊂⊂ Ω.

It follows that if we write the equation satisfied by the difference δ v, we can rigorously
test by the difference itself. All terms work directly, the only one that needs to be checked
is the monotone one. In fact, if we write

(6.24)

∫ T

0

∫
Ω

(
d |ω1|ω1 − d |ω2|ω2

)
·
(
ω1 − ω2

)
dxdt,

this would be surely finite if ωi ∈ L3(0, T ;L3(Ω)3), which we do not know. Nevertheless
we can observe that, for all i, j = 1, 2∣∣∣∣∣
∫ T

0

∫
Ω
d |ωi|ωi · ωj dxdt

∣∣∣∣∣ ≤
(∫ T

0

∫
Ω
d |ωi|3 dxdt

)2/3 (∫ T

0

∫
Ω
d |ωj |3 dxdt

)1/3

<∞,

hence the integral in (6.24) is well defined, and then by monotonicity it follows that∫ T

0

∫
Ω

(
d |ω1|ω1 − d|ω2|ω2

)
·
(
ω1 − ω2

)
dxdt ≥ 0.

This proves that

1

2
‖δ v(s)‖2 +

1

2
‖
√
d (δω(s))‖2 +

ν

2

∫ s

0
‖∇(δ v)‖2 dt ≤ C

ν

∫ s

0
‖∇v2‖4‖δ v‖2 dt,

by using the standard inequalities for the nonlinear term (as in [1, Sec. 4]), since δ v(0) ≡ 0.
The bound ∇v2 ∈ L∞(0, T ;L2(Ω)9) and the Gronwall lemma implies that ‖δ v(s)‖ ≡ 0
for all s ∈ [0, T ], hence the uniqueness follows.
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