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TOPOLOGY OPTIMIZATION FOR STEADY-STATE
ANISOTHERMAL FLOW TARGETING SOLIDS WITH PIECEWISE

CONSTANT THERMAL DIFFUSIVITY.

ALEXANDRE VIEIRA∗, ALAIN BASTIDE∗, AND PIERRE-HENRI COCQUET∗†

Abstract. A Topology Optimization (TO) problem is a PDE-constrained optimization problem
that aims at finding the shape of a solid inside a fluid which minimizes a given cost function. The
solid is located with a penalization term added in the constraints equations that vanishes in fluid
regions and becomes large in solid regions. This paper addresses a TO problem for anisothermal flows
modelled by the steady-state incompressible Navier-Stokes system coupled to an energy equation,
with mixed boundary conditions, under the Boussinesq assumption. We first prove the existence and
uniqueness of solution to this problem as well as the convergence of finite element discretization. Next,
we show that our TO problem has at least one optimal solution for cost functions that satisfy general
assumptions. The convergence of discrete optimum toward the continuous one is then provided as well
as necessary first order optimality conditions. Eventually, all these results let us design a numerical
algorithm to solve a TO problem that looks for solid with piecewise constant thermal diffusivities.
A physical problem solved numerically with this method concludes this paper.
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1. Introduction. Finding the shape of a solid located inside a fluid that either
minimizes or maximizes a given physical effect has several applications in engineering
and the applied science (see e.g. [39, 40, 43, 44] for several different applications).

There exists various mathematical methods to deal with such problems that fall
into the class of PDE-constrained optimization. The topological asymptotic expansion
[4, 16, 41] consider the solid as a hole or an inhomogeneity with characteristic size
ε. The so-called topological gradient is then defined as the first order term in the
asymptotic expansion of the cost function as ε→ 0. The shape optimization method
[25, 39, 40] computes the gradient of the cost function with respect to perturbation of
the boundary of the solid also referred as shape derivative. We emphasize that the two
aforementioned methods exactly locate the solid. Nevertheless, once the gradient of
the cost function is computed, the geometry of the computational domain changes and
thus these two methods usually need some specific techniques to follow the evolution
of the mesh during the numerical solving.

In this paper, we choose to locate the solid thanks to a penalization term added in
the Navier-Stokes equation. The latter vanishes in the fluid zone and goes to infinity
in a solid region of the computational domain (see [5] for the mathematical justifi-
cation of this method). Using such model as constraint in the shape optimization
problem is referred as a topology optimization (TO) problem. It is worth noting that
the major drawback of this approach is that the solid is only located when the velocity
of the fluid is smaller that a given tolerance. Nevertheless,the numerical solving of a
TO problem do not need specific remeshing techniques.
We refer to the review papers [2, 20] for many references that deals with numerical res-
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olution of TO problems applied on several different physical settings. More precisely,
we refer to [1, 3, 15, 45, 46] for numerical and physical studies on TO involving heat
transfers in fluid flows (involving for instance natural, forced or mixed convection)
since this is going to be the physical setting of interest of this paper.

Regarding the mathematical analysis of TO problems, we first note that they
amount to find some coefficients in the PDE that minimize a given criterion and can
thus be seen as parametric optimization problems [7]. They also share similarities
with problems that wish to recover some unknown parameters in the PDE from mea-
surements [17, 36, 42]. However, all the aforementioned references deal with scalar
coercive problem (see also [18] that deals with Helmholtz equation which is elliptic
but not coercive) and, even if they give some insight on how to mathematically tackle
a TO problem for fluid flows, can not be used to study the problem of interest in
this paper. We also wish to refer to [31] for several results on a general constrained
optimization problem. It is however worth noting that our TO problem does not fit
in the framework of [31].

To the best of our knowledge, there are only few works dealing with mathematical
study of TO problems for fluid flow. We can still refer to [13] where a TO problem for
incompressible Stokes equations have been studied. In [24], some existence results as
well as some limitations of the shape optimization using a penalization technique are
given for the incompressible Stokes equation. We finally refer to [28] where a shape
optimization problem combining perimeter regularization, penalization technique and
phase-field approach have been introduced.

Considering the previous literature review, there is, to the best of our knowledge,
no mathematical study (existence, approximation and convergence of optimal solu-
tion) of a TO problem involving heat transfers in anisothermal flows. In addition, in
the TO mathematical literature [13, 24, 28], the boundary conditions considered are
homogeneous Dirichlet on the whole boundary. This simplify the mathematical analy-
sis of the incompressible Navier-Stokes equation [12, 19, 27, 48]. The first objectives
of this paper are then to study a general TO problem involving, as constraint, the
Navier-Stokes equation coupled to the heat equation with mixed (homogeneous/inho-
mogeneous Dirichlet and traction) boundary conditions since the latter are closer to
those used in physical situations (see e.g. [1, 45, 46]).

Another topic of interest of this paper is to look for optimized solid with thermal
conductivity that are not only constant as it is the case in most TO studies. There
already exists some methods to get optimized physical parameter that are piecewise
constant [37, 38, 49] but the latter introduce an optimization parameter per constant
which may thus lead to large optimization problems. This constraint have been lifted
in [50] where an ordered SIMP (Solid Isotropic Material with Penalization) interpo-
lation function for the elastic modulus is introduced. Although this technique could
be applied to get optimized piece-wise constant thermal diffusivity, its definition is
actually based on gluing together power curves which results in a piecewise-defined
function with some points where it is not derivable (see [50, Figure 2]). Another goal
of this paper is then to introduce a smooth globally defined interpolation function
that yields optimized piecewise contant thermal parameters.

Plan of the paper. The paper is now organized as follow: first we end this intro-
duction by clearly defining the optimization problem under study. Next, we study the
existence and uniqueness of weak solution to the steady-state incompressible Navier-
Stokes equation coupled to a heat equation modelling heat transfer in anisothermal
flow. We prove next the convergence of a finite element approximation of the latter
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where a discrete optimization parameter is used. After giving some general conditions
on the cost function to obtain the existence of, at least, one optimal solution, we then
prove the convergence of the discrete optimum toward its continuous counterpart. We
introduce next the multi-material interpolation function that will be used to obtain
optimized solid with piecewise constant thermal diffusivity. We end this paper with
numerical simulations to show the interest of our approach.

Definition of the topology optimization problem. We present now the
main ideas leading to the TO problem considered in this paper. First, since the
velocity of the fluid vanishes inside the solid, one can use a penalization model as
those introduced in [5] in order to write the fluid-solid model as a single system valid
on the whole computational domain whose solution converges toward those of the
fluid-solid interface problem. Such model involves an indicator function, that is a
binary variable, to locate the solid and is thus not suitable for optimization (see e.g.
[24]). To bypass this difficulty, some smooth regularization of the indicator function
is introduced hence defining another model whose advantage is that the location of
the solid now depends on a continuous variable. We emphasize that the approach
described above has been used in several works [2, 20] and we describe it below for
the case of anisothermal flows.

We assume the fluid occupies a region Ωf ⊂ Ω and that a solid is embedded in Ωs

such that Ω = Ωf ∪ Ωs. The Boussinesq approximation (see e.g. [46] for the steady
case) of the Navier-Stokes equation coupled to convective heat transfer is given by

(1.1)

∇ · u = 0 in Ωf ,
(u · ∇)u+∇p− Re−1∆u− Riθey = 0 in Ωf ,
∇ · (uθ)−∇ ·

(
Re−1 Pr−1 k(x)∇θ

)
= 0 in Ω,

u = 0 in Ωs,

where Re is the Reynolds number, Ri the Richardson number, Pr is the Prandlt
number (see [46, Section 2] for the definition of these constants) and k(x) is the
thermal diffusivity which is 1 in the fluid and ks/kf in the solid.

As explained above, the solid can be located thanks to a penalization model (see
e.g. [5]) for (1.1) that add a term of the form η−11Ωs

u in the momentum conservation
equation. The latter formally enforces, as η → 0, that u|Ωs

= 0 as well as a no-slip
boundary condition on ∂Ωs. For Problem (1.1), this reads

(1.2)
∇ · u = 0 in Ωf ,

(u · ∇)u+∇p− Re−1∆u− Riθ~v + 1
η1Ωs(x)u = 0 in Ω,

∇ · (uθ)−∇ ·
(
Re−1 Pr−1 k(x)∇θ

)
= 0 in Ω,

where k(x) = 1
kf

(kf1Ωs
(x) + ks(1− 1Ωs

(x))) .

To get the model studied in this paper that acts as constraint in the TO problem,
we now consider some smooth regularization hτ (α(x)) of the indicator function that
satisfy hτ (α) → 0 for α < α0 and hτ (α) → αmax for α ≥ α0 and a large enough
αmax where the convergence is pointwise. We emphasize that the function α : x ∈
Ω 7→ R+ is going to be the optimization parameter. In addition, the fluid/solid zones
can now be obtained as Ωs := {x ∈ Ω | α(x) < α0} , Ωf := {x ∈ Ω | α(x) ≥ α0} .
The dimensionless form of the energy and penalized incompressible Navier-Stokes
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equations under Boussinesq assumption are finally written as follows

∇ · u = 0 in Ω,(1.3a)
(u · ∇)u = −∇p+A∆u− hτ (α)u+Bθey in Ω,(1.3b)
∇ · (uθ) = ∇ · (Ckτ (α)∇θ) in Ω,(1.3c)

where A,B,C are physical constants that are introduced to lighten the overall expres-
sions and reads A = 1

Re , B = Ri, C = 1
RePr . Regarding the boundary conditions we

are going to work with mixed boundary conditions and first assume ∂Ω = Γ can be de-
composed as Γ = Γw∪Γin∪Γout with |Γw| > 0, |Γin| > 0, |Γout| > 0 and Γin∩Γout = ∅.
where Γw are the walls, Γin the inlet/entrance and Γout is the exit of the computa-
tional domain. These boundary conditions can be found in [45, 46] and finally read

u = uin, θ = 0, in Γin,(1.4a)
u = 0, ∂nθ = φ, in Γw,(1.4b)

A∂nu− np = 0, ∂nθ = 0, in Γout,(1.4c)

where φ is a given heat flux.
Before deriving a weak formulation of (1.3)-(1.4), we introduce the spaces Xu

1 ={
v ∈ H1(Ω)d | v Γw = 0

}
, Xu =

{
v ∈ H1(Ω)d | v (Γw∪Γin) = 0

}
,

Xθ =
{
v ∈ H1(Ω) | v Γin = 0

}
. A variational formulation of (1.3)-(1.4) then reads:

(1.5)

Find (u, θ, p) ∈ Xu
1 ×Xθ × L2(Ω) such that:

u Γin = uin,

a(α;u, v1) + b(v1, p) + c(u, u, v1) + f(θ, v1) = 0, ∀v1 ∈ Xu

ã(α; θ, v2) + c̃(θ, u, v2) =

∫
Γw

Ckτ (α)φv2, ∀v2 ∈ Xθ

b(u, q) = 0, ∀q ∈ L2(Ω).

where
a(α;u, v) =

∫
Ω

[A∇u : ∇v + hτ (α)u · v] ,

b(u, q) = −
∫
Ω

q(∇ · u), c(u, v, w) =

∫
Ω

(u · ∇)v · w, f(θ, v) = −
∫
Ω

Bθey · v,

ã(α; θ, v) =

∫
Ω

Ckτ (α)∇θ · ∇v, c̃(θ, u, v) =

∫
Ω

(∇θ · u)v.

Also, we endow the spaces Xu and Xθ with the following norms: ‖ · ‖2Xu = a(α, ·, ·),
‖ · ‖Xθ = ‖ · ‖H1(Ω). Remark that:

(1.6) ‖u‖L4(Ω) ≤ C(Ω) ‖u‖H1(Ω) ≤ C(Ω) ‖∇u‖L2(Ω) ≤ C(Ω) ‖u‖Xu ,

thanks to the embedding H1(Ω) ⊂ L4(Ω) and the Poincaré inequality.
Eventually, the following general TO problem is studied in this paper

min J (α, u, θ, p)

s.t.

{
(u, θ, p) solution of (1.5) parametrized by α,
α ∈ Uad,

where J is a given cost function.
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2. Study of the PDE system and its discretization. This section will focus
on the study of the underlying PDE system in the TO problem, namely on (1.5). The
study will first be focused on proving the existence of a unique solution to (1.5) using
a fixed point approach. We will afterwards analyze the finite-element discretization
of (1.5), proving once again the existence of a unique solution and more importantly,
the convergence of the discretized solution toward the continuous one.

2.1. Existence and uniqueness. We begin our analysis with some specification
on our model.

Assumption 2.1. • α is bounded with bounded variation on Ω, has non-
negative values and a prescribed bound on its total variation, i.e. for some
αmax > 0 and κ > 0,

α ∈ Uad = {α ∈ BV(Ω) : 0 ≤ α(x) ≤ αmax a.e. on Ω, , |Dα|(Ω) ≤ κ} .

Remark that Uad is a convex, closed, weak-* closed subset of BV(Ω).
• We suppose that there exists kmin > 0 such that, for all x ∈ Ω, kmin ≤
kτ (α(x)) and 0 ≤ hτ (α(x)).

• hτ and kτ are bounded and continuous on [0, αmax].
• There exists V ∈ H1(Ω)d such that div(V ) = 0, V Γw = 0 and V Γin = uin.

Concerning the last assumption, one can prove that for all uin ∈ H
1/2
00 (Γin)

d (this
is the set of ψ ∈ H1/2(Γin) such that ψ̃ ∈ H1/2(∂Ω) where ψ̃ denotes the extension by
zero), such V exists and verify ‖V ‖H1(Ω)d ≤ C ‖uin‖H1/2

00 (Γin)d
.We use this assumption

in order to deal with the inhomogeneous Dirichlet boundary condition on Γin. One
can therefore write u = w + V , where w ∈ Xu satisfies:

(2.1)

Find (w, θ, p) ∈ Xu ×Xθ × L2(Ω) such that:
a(α;w, v1) + b(v1, p) = 〈G(α;w) + F (θ), v1〉, ∀v1 ∈ Xu,

ã(α; θ, v2) + c̃(θ, w + V, v2) =
〈
G̃(α), v2

〉
, ∀v2 ∈ Xθ,

b(w, q) = 0, ∀q ∈ L2(Ω),

where: 〈G(α;w) + F (θ), v〉 = −c(w + V,w + V, v)− f(θ, v)− a(α, V, v),
〈
G̃(α), v

〉
=∫

Γw
kτ (α)φv. Note that (2.1) is a fixed point equation equivalent to (1.5). In order to

study the well-posedness of (2.1), we consider first the following linear problem:

(2.2)

Find (w, θ, p) ∈ Xu ×Xθ × L2(Ω) such that:
a(α;w, v1) + b(v1, p) = 〈G(α; w̃) + F (θ), v1〉, ∀v1 ∈ Xu,

ã(α; θ, v2) + c̃(θ, w̃ + V, v2) =
〈
G̃(α), v2

〉
, ∀v2 ∈ Xθ,

b(w, q) = 0, ∀q ∈ L2(Ω).

for some fixed w̃ ∈ Xu. We start our analysis with estimates on the solution of (2.2).
Proposition 2.2. Problem (2.2) has a unique solution (w, θ, p) ∈ Xu × Xθ ×

L2(Ω) that satisfies

‖θ‖Xθ ≤ g̃0(Ω)(1 + ε)

εCkmin

∥∥∥G̃(α)∥∥∥ ≤ g̃0(Ω)(1 + ε)

εCkmin
‖kτ‖∞ ‖φ‖L2(Γ),
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‖w‖Xu ≤ ‖G(α; w̃) + F (θ)‖(Xu)′ ,

‖p‖L2(Ω) ≤
2

β
‖G(α; w̃) + F (θ)‖(Xu)′ ,

where ‖a‖ (resp. a0) is the norm (resp. coercivity constant) of a(α, ·, ·).

Proof. One can easily prove that the application b̃ : (θ, v2) 7→ ã(α; θ, v2)+ c̃(θ, w̃+
V, v2) is bilinear and complies with the estimates:

|b̃(θ, v2)| ≤ C(Ω)max{‖w̃ + V ‖Xu , C‖kτ‖∞}‖θ‖Xθ‖v2‖Xθ ,

b̃(θ, θ) ≥ C(Ω) (Ckmin − ‖w̃ + V ‖Xu) ‖θ‖2Xθ .

Therefore, if one chooses w̃ such that ‖w̃ + V ‖Xu ≤ Ckmin
1+ε for some ε > 0, one

proves that b̃ is continuous and coercive with constant C(Ω)Ckmin
ε

1+ε . Therefore,
thanks to the Lax-Milgram theorem, one proves that there exists a unique function θ
solving the second equation of (2.2) and respecting the following estimate:

‖θ‖Xθ ≤ 1 + ε

εC(Ω)Ckmin

∥∥∥G̃(α)∥∥∥
(Xθ)′

≤ g̃0(Ω)(1 + ε)

εCkmin
‖kτ‖∞ ‖φ‖L2(Γ),

where g̃0(Ω) is a positive constant that only depends on Ω.
We are left with an equation satisfied by (w, p), which is a standard linear saddle-

point problem. Since the bilinear form a(α, ·, ·) is continuous and coercive (with
respect to the norm defined on Xu), it only remains to prove that the bilinear form b
complies with an inf-sup condition. Adapting the result of [10, p.6, Eq. (2.13)], one
proves that there exists a constant β > 0 such that

inf
q∈L2(Ω)\{0}

sup
v∈Xu\{0}

b(v, q)

‖v‖Xu‖q‖L2(Ω)
≥ β.

We eventually conclude using [26, II.1, Proposition 1.3].

We also need some upper bound and Lipschitz condition on G(α; ·) in order to
state a fixed point result. This is done in the following Lemma.

Lemma 2.3. The nonlinear function G(α; ·) + F (·) : Xu ×Xθ → (Xu)′ satisfies
the following estimates:

‖G(α; w̃) + F (θ)‖(Xu)′ ≤ C
(
‖uin‖2H1/2

00 (Γin)d
+ ‖uin‖H1/2

00 (Γin)d
+B ‖θ‖Xθ + ‖w̃‖2Xu

)
,

‖(G(α;w1) + F (θ1))− (G(α;w2) + F (θ2))‖(Xu)′ ≤

CL

(
(‖w1‖Xu + ‖w2‖Xu + ‖uin‖H1/2

00 (Γin)d
)‖w1 − w2‖Xu +B‖θ1 − θ2‖Xθ

)
,

where C,CL are positive constants that only depend on Ω.

Proof. From the inequality (1.6), together with the Hölder inequality, one proves:
|c(u, v, w)| ≤ CNL‖u‖Xu‖v‖Xu‖w‖Xu where CNL > 0 only depends on Ω. Using now
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the bound on V , we get

|〈G(α;w) + F (θ), v〉(Xu)′,Xu | ≤CNL‖v‖Xu‖w + V ‖2Xu +B‖θ‖Xθ‖v‖Xu+

‖V ‖Xu‖v‖Xu

≤‖v‖Xu

(
CNL(2M

2‖uin‖2H1/2
00 (Γin)d

+ ‖w‖2Xu)

+B‖θ‖Xθ +M‖uin‖H1/2
00 (Γin)d

)
≤‖v‖XuC(Ω)

(
‖uin‖2H1/2

00 (Γin)d
+ ‖w‖2Xu+

B
g̃0(Ω)(1 + ε)

εCkmin
‖θ‖Xθ + ‖uin‖H1/2

00 (Γin)d

Taking the supremum over v ∈ Xu with ‖v‖Xu ≤ 1 yields the first estimates. Con-
cerning the second estimate, note that:

〈G(α;w1) + F (θ1))− (G(α;w2) + F (θ2), v〉(Xu)′,Xu

= c(w2 + V,w2 + V, v)− c(w1 + V,w1 + V, v) + f(θ2, v)− f(θ1, v)

=

∫
Ω

(((w1 + V ) · ∇)(w1 + V )− ((w2 + V ) · ∇)(w2 + V )) · v

−
∫
Ω

B(θ2 − θ1)ey · v

For two vector fields a and b, one has the following bound: |a · ∇a− b · ∇b| ≤ |a −
b| |∇a|+ |b| |∇(a− b)| . Therefore there exists CL > 0 such that:∣∣〈G(α;w1) + F (θ1))− (G(α;w2) + F (θ2), v〉(Xu)′,Xu

∣∣
≤ CL‖v‖Xu

(
‖w1‖Xu + ‖w2‖Xu + ‖uin‖H1/2

00 (Γin)d

)
‖w1 − w2‖Xu

+B‖θ1 − θ2‖Xθ

)
Taking once again the supremum over v ∈ Xu with ‖v‖Xu ≤ 1 finishes the proof.

Let us now move back to the non-linear problem (2.1). As stated before, we use
the properties we have proved on (2.2) in order to state some fixed point result to
prove the existence of solution to (2.1).

Theorem 2.4. Given any α ∈ Uad and given B, ‖uin‖H1/2
00 (Γin)

and ‖φ‖L2(Γ) small
enough (see (2.3)-(2.5)), there exists a unique solution (w, θ, p) ∈ Xu ×Xθ × L2(Ω)
to the variational problem (2.1).

Proof. Denote by S(w̃) : (Xu)′ × (Xθ)′ → Xu × Xθ × L2(Ω), S(w̃) : (F,G) 7→
(w, p, θ), the (linear) solution map of the linear problem:

Find (w, θ, p) ∈ Xu ×Xθ × L2(Ω) such that:
a(α;w, v1) + b(v1, p) = 〈F, v1〉, ∀v1 ∈ Xu,

ã(α; θ, v2) + c̃(θ, w̃ + V, v2) = 〈G, v2〉 , ∀v2 ∈ Xθ,

b(w, q) = 0, ∀q ∈ L2(Ω),

for some (F,G) ∈ (Xu)′ × (Xθ)′. The operator S(w̃) is well-defined for ‖w̃+V ‖Xu ≤
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Ckmin
1+ε It is also continuous and Proposition 2.2 gives the estimate

‖S(w̃)[F,G]‖Xu×Xθ ≤ CS

(
‖F‖(Xu)′ + ‖G‖(Xθ)′

)
,

CS = max

{
g̃0(Ω)(1 + ε)

εCkmin
, 1 +

2

β

}
.

Problem (2.1) then becomes the fixed point equation:

(w, θ, p) = T (w, θ, p),

where T (w, θ, p) = S(w)[G(α,w) + F (θ), G̃(α)]. Denote, for R > 0, the set

BR =
{
(w, θ, p) ∈ Xu ×Xθ × L2(Ω) : ‖w‖Xu + ‖θ‖Xθ + ‖p‖L2(Ω) ≤ R

}
.

Thanks to Proposition 2.2 and Lemma 2.3, we have the estimate

‖T (w, θ, p)‖Xu×Xθ×L2(Ω) ≤ CS

(
‖G(α,w) + F (θ)‖(Xu)′ +

∥∥∥G̃(α)∥∥∥
(Xθ)′

)
≤ CS

(
C1 + ‖w‖2Xu +B ‖θ‖Xθ

)
,

where
C1 = C(Ω)

(∥∥∥G̃(α)∥∥∥
(Xθ)′

+ ‖uin‖2H1/2
00 (Γin)d

+ ‖uin‖H1/2
00 (Γin)d

)
.

We assume B2C2
S − 4C1C

2
S − 2BCS + 1 ≥ 0. This reduces to

(2.3) 4C1C
2
S ≤ (BCS − 1)2,

which amount to have the source terms small enough. Assuming now that (w, θ, p) ∈
BR with R such that

(2.4) R ≤ R0, R0 =
1−BCS +

√
B2C2

S − 4C1C2
S − 2BCS + 1

2CS
,

we obtain that T maps BR to BR for any R ≤ R0.
We now prove that T : BR → BR is a contraction mapping. Let (w1, θ1, p1) and

(w2, θ2, p2) ∈ BR. We have T (w1, θ1, p1)− T (w2, θ2, p2) = M1 +M2, where

M1 = {S(w1)− S(w2)} [G(α,w1) + F (θ1), G̃(α)],

M2 = S(w2) [(G(α,w1) + F (θ1))− (G(α,w2) + F (θ2)), 0] .

Lemma 2.3 gives the next bound for M2

‖M2‖Xu×Xθ×L2(Ω) ≤ CSCL max
{
2R+ ‖uin‖H1/2

00 (Γin)d
, B

}
× (‖w1 − w2‖Xu + ‖θ1 − θ2‖Xθ ) .

The bound for M1 can be obtained by noting that the operator
{S(w1)− S(w2)} [F,G] verifies the identity

{S(w1)− S(w2)} [F,G] = S(w1)[0, C̃],
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where C̃ ∈ (Xθ)′ is defined as
〈
C̃, v2

〉
= c̃(θ(w2, θ2, p2), w2−w1, v2), with θ(w2, θ2, p2)

being the temperature defined thanks to the operator S(w2)[F,G]. We then have the
next upper bound

‖M1‖Xu×Xθ×L2(Ω) ≤ CS

∥∥∥C̃∥∥∥
(Xθ)′

≤ CSC(Ω) ‖θ(w2, θ2, p2)‖Xθ ‖w1 − w2‖Xu

≤ C2
SC(Ω)

(
‖G(α,w2) + F (θ2)‖(Xu)′ +

∥∥∥G̃(α)∥∥∥
(Xθ)′

)
‖w1 − w2‖Xu

≤ C2
SC(Ω)(C1 +R2 +BR) ‖w1 − w2‖Xu .

Gathering the previous estimates, we obtain

‖T (w1, θ1, p1)− T (w2, θ2, p2)‖Xu×Xθ×L2(Ω) ≤ CLip (‖w1 − w2‖Xu + ‖θ1 − θ2‖Xθ ) ,

with

CLip := max
{
CSCLB,CSCL

(
2R+ ‖uin‖H1/2

00 (Γin)d

)
, C2

SC(Ω)(C1 +R2 +BR)
}
.

Assuming now the source terms are small enough so that

(2.5) ‖uin‖H1/2
00 (Γin)d

<
1

CSCL
, 4C1C

2
SC(Ω)

2 < B2C2
SC(Ω)

2 + 4C(Ω),

and that

(2.6)

CSCLB < 1, R ≤ min{R1, R2},

R1 =
1

2

(
1

CSCL
− ‖uin‖H1/2

00 (Γin)d

)
,

R2 =
1

2CSC(Ω)

(√
B2C2

SC(Ω)
2 − 4C1C2

SC(Ω)
2 + 4C(Ω)− C(Ω)BCS

)
.

One finally proves that for any R ≤ min(R0, R1, R2), T : BR → BR is a contraction if
one takes B, ‖uin‖H1/2

00 (Γin)
and ‖φ‖L2(Γ) small enough (see (2.3)-(2.5)). Banach fixed

point Theorem then proves the Theorem.
Remark 2.5. Let us consider hτ = 1

τ 1Ωs where the solid is located in Ωs ⊂ Ω.
Theorem 2.4 ensures the existence and uniqueness of a solution to Problem (2.1) that
satisfy the bound ‖w‖Xu + ‖θ‖Xθ + ‖p‖L2(Ω) ≤ R, where R does not depend on τ (see
(2.3)-(2.5)). Since ‖.‖Xu =

√
a(α; ·, ·), we get

∥∥√hτw∥∥L2(Ω)
= 1√

τ
‖w‖L2(Ωs)

≤ R,

from which we infer ‖w‖L2(Ωs)
≤ R

√
τ . In addition, from the the multiplicative trace

inequality, we have

‖w‖L2(∂Ωs)
≤ C

√
‖w‖L2(Ωs)

‖w‖H1(Ω) ≤ C
√
Rτ1/4 ‖w‖Xu ≤ CRτ1/4,

where C > 0 is a generic constant. Therefore the velocity of the fluid vanishes in
the solid as τ goes to 0 and it satisfies the no-slip boundary condition on ∂Ωs. It
is finally worth noting that we obtain similar convergence rates as those proved in
[5, Corollary 4.1, Lemma 4.4] where incompressible unsteady Navier-Stokes equations
with homogeneous Dirichlet boundary on ∂Ω were considered.
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2.2. Convergence of a finite element approximation. We now move on
to the analysis of the discretization of (2.1). We consider a quasi-uniform family of
triangulations (see [22, Definition 1.140]) {Th}h>0 of Ω whose elements are triangles
(d = 2) or tetrahedrons (d = 3). We emphasize that Ω =

⋃
K∈Th

K. The parameter
hK is the diameter of the circle or sphere inscribed in the cell K ∈ Th and we set
h = supK∈Th

hK . We consider the Taylor-Hood finite element [47] that uses piecewise
polynomial approximations (wh, θh, ph) ∈ Xu

h×Xθ
h×Mh of (w, θ, p) ∈ Xu×Xθ×L2(Ω)

with
Xu

h = {vuh ∈ Xu| ∀K ∈ Th, vuh K ∈ P2(K)} ,

Xθ
h =

{
vθh ∈ Xθ| ∀K ∈ Th, vθh K ∈ P2(K)

}
,

Mh =
{
qh ∈ C0(Ω)| ∀K ∈ Th, qh K ∈ P1(K)

}
,

and we denote by IXu
h
: Xu → Xu

h the finite element interpolate on Xu
h . Regarding

the discretization of α by some αh, we use:

Kh = {αh ∈ L∞(Ω) : αh K ∈ P0(T ), ∀K ∈ Th}.

Let us now consider the following discretized variational problem: given αh ∈ Kh:

(2.7)

Find (wh, θh, ph) ∈ Xu
h ×Xθ

h ×Mh such that:
a(αh;wh, v

u
h) + b(vuh , ph) = 〈G(αh;wh) + F (θh), v

u
h〉, ∀vuh ∈ Xu

h ,

ã(αh; θh, v
θ
h) + c̃(θh, wh + IXh

V, vθh) =
〈
G̃(αh), v

θ
h

〉
, ∀vθh ∈ Xθ

h,

b(wh, qh) = 0, ∀qh ∈Mh.

Throughout this section, we make the following assumption on Th:

Assumption 2.6. At least an edge (d=2) or a face (d=3) of an element of Th is
contained in Γout.

As noted in [11], this assumption is fulfilled for h small enough. Assuming Assump-
tion 2.6, [11, Lemma 3.2] proves that there exists β∗ > 0 such that:

inf
qh∈Mh\{0}

sup
vh∈Xu

h

b(vh, qh)

‖vh‖Xu‖qh‖L2(Ω)
≥ β∗.

Therefore, [29, Theorem 4.1] and a similar proof as for Theorem 2.4 (using a fixed
point approach) prove that Problem (2.7) admits a unique solution for h small enough
which complies with:

(2.8) ‖wh‖Xu + ‖θh‖Xθ + ‖ph‖L2(Ω) ≤ R,

for some R that does not depend on h (see (2.3)-(2.5)).
We now prove convergence of the discretized solutions to the continuous ones.

Consider a sequence of controls αh which converges to a control α in the weak-*
topology, which means αh → α strongly in L1 and Dαh

∗
⇀ Dα weakly-* in Mb(Ω),

the space of bounded Radon measure.
Given this definition, we prove the convergence of the finite element approxima-

tion toward the continuous solution of (2.1).
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Theorem 2.7. Suppose B, ‖uin‖H1/2
00 (Γin)

and ‖φ‖L2(Γ) are small enough for the
solutions of (2.1) and (2.7) to exist for h > 0 small enough, and that αh

∗
⇀ α in

BV(Ω). Denote by (wh, θh, ph) the solution of (2.7) using αh, and by (w, θ, p) the
solution of (2.1) using α. We then have the following convergence:

lim
h→0

(
‖wh − w‖Xu + ‖θh − θ‖Xθ + ‖ph − p‖L2(Ω)

)
= 0.

Proof. Since the presence of IXu
h
V in (2.7) does not add any trouble in the fol-

lowing analysis, it is omitted for this proof.
As proved in inequality (2.8), the sequence (wh, θh, ph) is uniformly bounded in

Xu×Xθ×L2(Ω) with respect to h. Therefore, there exist (w, θ, p) ∈ Xu×Xθ×L2(Ω)
and subsequences such that:

(whk
, θhk

, phk
)⇀ (w, θ, p) weakly in H1(Ω)d+1 × L2(Ω),

(whk
, θhk

) → (w, θ) strongly in L4(Ω)d+1.

Part 1 Let us prove that the sequence weakly converges. Let (vu, vθ, q) ∈
C∞(Ω)d+2. There exists a sequence (vuh , v

θ
h, qh) ∈ Xu

h ×Xθ
h ×Mh that strongly con-

verges to (vu, vθ, q) in Xu ×Xθ ×L2(Ω). Using the convergence of the subsequences,
one proves easily: b(vuhk

, phk
) → b(vu, p), b(whk

, qhk
) → b(w, q), c(whk

, whk
, wu

hk
) →

c(w,w, vu), f(θhk
, vuhk

) → f(θ, vu), c̃(θhk
, whk

, vθhk
) → c̃(θ, w, vθ).

Also, one proves:

|a(αhk
, whk

, vuhk
)− a(α,w, vu)| ≤ |A|

∣∣∣∣∫
Ω

∇whk
: ∇vhk

−∇w : ∇v
∣∣∣∣

+ ‖hτ‖∞
∣∣∣∣∫

Ω

whk
· vuhk

− w · vu
∣∣∣∣

−−−−−→
k→+∞

0,

|ã(αhk
, θhk

, vθhk
) → ã(α, θ, vθ)| ≤ C‖kτ‖∞

∣∣∣∣∫
Ω

∇θhk
· ∇vhk

−∇θ · ∇v
∣∣∣∣

−−−−−→
k→+∞

0,∣∣∣∣∫
Γw

kτ (αhk
)φvθhk

−
∫
Γw

kτ (α)φv
θ

∣∣∣∣ ≤ ‖kτ‖∞
∣∣∣∣∫

Γw

φ(vθhk
− vθ)

∣∣∣∣ → 0s, .

and a(αhk
, V, vuhk

) → a(α, V, vu). It finally proves that the limit (w, θ, p) satisfies (2.1)
for all (vu, vθ, q) ∈ C∞(Ω)d+2. The density of smooth functions in Xu ×Xθ × L2(Ω)
ensures that (w, θ, p) ∈ Xu ×Xθ × L2(Ω) satisfies (2.1) for all functions (vu, vθ, q) ∈
Xu ×Xθ ×L2(Ω). Thus, (whk

, θhk
, phk

) weakly converges toward (w, θ, p) solution of
(2.1).

Part 2 Let us now show that wh and θh strongly converge in Xu ×Xθ. Taking
vuhk

= whk
and vθhk

= θhk
in (2.7), one gets:

(2.9)

∫
Ω

(
A|∇wnk

|2 + hτ (αnk
)|wnk

|2 + (wnk
· ∇)wnk

· wnk
−Bθnk

ey · wnk

)
=

∫
Ω

(A∇V : ∇wnk
+ hτ (αnk

)V · wnk
) ,
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(2.10)
∫
Ω

(
Ckτ (αnk

)|∇θnk
|2 + θnk

(∇θnk
· wnk

)
)
=

∫
Γw

kτ (αnk
)φθnk

.

From (2.9), one gets:

A‖∇whk
‖2L2(Ω) =

∫
Ω

(A∇V : ∇whk
+ hτ (αhk

)V · whk
)

+

∫
Ω

(Bθhk
ey · whk

− (whk
· ∇)whk

· whk
)

−
∫
Ω

hτ (αhk
)|whk

|2

→A‖∇w‖2L2(Ω).

Therefore, we have proved that whk
⇀ w and ‖∇whk

‖L2(Ω) → ‖∇w‖L2(Ω). It eventu-
ally proves that whk

→ w strongly in Xu. Also, using the same technique, one proves

that C
∥∥∥√kτ (αhk

)∇θhk

∥∥∥2
L2(Ω)

→ C
∥∥∥√kτ (α)∇θ

∥∥∥2
L2(Ω)

, and since θhk
⇀ θ, it proves

that θhk
→ θ strongly in Xθ.

Part 3 Using the discrete inf-sup condition, we have

‖p− phk
‖L2(Ω) ≤

1

β∗ sup
vhk

∈Bh

(b(vhk
, p− phk

)) ,

where Bh = {uh ∈ Xu
h : ‖uh‖Xu = 1}. Since (whk

, θhk
, phk

) satisfies (2.7) and (w, θ, p)
satisfies (2.1), one proves:

|b(vhk
, p)− b(vhk

, phk
)| ≤ |a(αhk

;whk
, vhk

)− a(α;w, vhk
)|

+ |f(θhk
, vhk

)− f(θ, vhk
)|

+ |c(whk
, whk

, vhk
)− c(w,w, vhk

)|
→ 0,

where the last limit comes from the strong limit of (whk
, θhk

) proved before. It
therefore proves that limk→+∞ supvhk

∈Bh
(b(vhk

, p)− b(vhk
, phk

)) = 0. Eventually, it
proves that phk

→ p strongly in L2(Ω).
To summarise, we have proved that there exists a subsequence

(whk
, θhk

, phk
) which converges strongly to a solution (w, θ, p) of (2.1) when αh

∗
⇀ α.

Part 4 Let us eventually prove that the whole sequence actually converges. De-
note by Sh = (wh, θh, ph) a sequence of solutions and S = (w, θ, p). Since Sh is
bounded, so is every subsequence Shk

of Sh. Therefore, we can extract another subse-
quence of Shk

which will also converge to S using the same arguments as in Part 1-3
and by uniqueness of the solution to (2.1). Therefore, every subsequence of (Sh) has
a further subsequence that strongly converges to S, and using Urysohn’s subsequence
principle, one proves that the whole sequence (Sh) strongly converges to S.

Remark 2.8. Theorem 2.7 gives the convergence, as h→ 0, of the finite element
approximation of (2.1). There is however no additional information on the rate of
convergence. Optimal error estimates can actually be obtained using results from [14]
(see also [30]). Nevertheless, these require the solution to Problem (2.1) to be more
regular (like e.g. (w, θ, p) ∈ H2(Ω)d ×H2(Ω)×H1(Ω)).
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3. Optimization problem. Now that we have proved that the system (1.5) is
well-posed, we now tackle the optimal control problem involving it, namely:

(3.1)

min J (α,w, θ, p)

s.t.

{
(w, θ, p) solution of (2.1) parametrized by α,
α ∈ Uad,

where J is a real-valued cost functional. We will follow the approach used in section 2,
namely we first study the well-posedness of (3.2) and then the discretization of it. We
end up with a proof of a necessary condition of optimality for (3.1).

3.1. Continuous problem. We start this study with the existence of a solution
to (3.1).

Theorem 3.1. Suppose:
(A1) ∀(α,w, θ, p) ∈ Uad ×Xu ×Xθ × L2(Ω), infUad×Xu×Xθ J > −∞.
(A2) J is lower semi-continuous w.r.t. the (weak-*, weak, weak, weak). topology of

Uad ×Xu ×Xθ.
Then the optimization problem (3.1) has at least one solution in Uad×Xu×Xθ×

L2(Ω).
Proof. We recall Uad ⊂ BV(Ω) is a weak-* closed subset of BV(Ω). Let (αn) ⊂

Uad be a sequence uniformly bounded in Uad and converging to α ∈ BV (Ω). One
can therefore prove that αn

∗
⇀ α in Uad. Let (wn, θn, pn) be the solutions of (the

continuous) problem (2.1) parametrized by αn, and (w, θ, p) the solution of (2.1)
parametrized by α. Using the same technique as in the proof of Theorem 2.7, one can
get that (wn, θn, qn) → (w, θ, q) strongly in Xu × Xθ × L2(Ω). In other words, one
can similarly prove that the mapping

α ∈ (U, weak-*) 7→ (w, θ, p) ∈ (Xu ×Xθ × L2(Ω), strong)

is continuous. The proof is now based on minimizing sequence and can be adapted
for instance from [31, Theorem 2.1].

3.2. Discretized problem. We now turn our attention to the discretization of
Problem (3.1), which reads:

(3.2)

min J (αh, wh, θh, ph)

s.t.

{
(wh, θh, ph) solution of (2.7) parametrized by αh,

αh ∈ Uh = Uad ∩ Kh.

where we remind that Kh = {αh ∈ L∞(Ω) : αh T ∈ P0(T ), ∀T ∈ Th}.
As in subsection 2.2, we will focus on proving some convergence result of the finite

element discretization (3.2) toward a solution of the continuous problem (3.1).
Theorem 3.2. Assume Assumptions (A1)-(A2) from Theorem 3.1 are verified

and that the cost function J is continuous with respect to the (weak-*, strong, strong,
strong) topology of BV(Ω)×Xu×Xθ×L2(Ω). Let (α∗

h, wh, θh, ph) ∈ Uh×Xu
h×Xθ

h×Mh

be an optimal solution of (3.2). Then (αh) ⊂ Uh is a bounded sequence. Furthermore,
there exists (α∗, w∗, θ∗, p∗) ∈ Uad × Xu × Xθ × L2(Ω) such that a subsequence of
(αh, wh, θh, ph) converges (weak-*, strong, strong, strong) to (α∗, w∗, θ∗, p∗) and

J (α∗, w∗, θ∗, p∗) ≤ J (α,w, θ, p), ∀(α,w, θ, p) ∈ Uad ×Xu ×Xθ × L2(Ω).

Hence, any accumulation point of (αh, wh, θh, ph) is an optimal solution of (3.1).
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Proof. The proof can be adapted from [18, Theorem 15] (see also [32, Theorem
3]) but we give it for the sake of completeness.

Remark that (α∗
h) ⊂ Uh ⊂ Uad is bounded uniformly in BV(Ω) ; thus, it ad-

mits a weak-* accumulation point α∗, and by Theorem 2.7, (wh, θh, ph) converges to
(w∗, θ∗, p∗) The lower semi-continuity of J ensures that
J (α∗, w∗, θ∗, p∗) ≤ lim infh→0 J (α∗

h, w
∗
h, θ

∗
h, p

∗
h), where the subsequence is still de-

noted like the sequence. Let α ∈ Uad. As stated in [8, Introduction], using the density
of smooth functions in BV, there exists a sequence αh ∈ Uh such that αh

∗
⇀ α in BV.

From Theorem 2.7, one gets that the solutions (wh, θh, ph) of Problem (2.7) associated
to αh converge strongly in Xu×Xθ ×L2(Ω) to the solution (w, θ, p) of Problem (2.1)
associated with α. The continuity of J ensures that J (αh, wh, θh, ph) → J (α,w, θ, p).
But since J (α∗

h, w
∗
h, θ

∗
h, p

∗
h) ≤ J (αh, wh, θh, ph), for all αh ∈ Uh, one proves:

J (α∗, w∗, θ∗, p∗) ≤ lim inf
h→0

J (α∗
h, w

∗
h, θ

∗
h, p

∗
h)

≤ lim inf
h→0

J (αh, wh, θh, ph)

=J (α,w, θ, p) ∀α ∈ Uad.

3.3. First order necessary conditions. As it can be found in [35, Section
1.7.2], one can define for (3.1) some optimality conditions. Denote by e(w, θ, p, α) = 0
the set of equations defining (2.1) and suppose that ∂(w,θ,p)e(w(α), θ(α), p(α), α) has
a bounded inverse for all α ∈ Uad. Assuming that J1 : α 7→ J (α,w(α), θ(α), p(α)) is
differentiable, one gets that an optimum α∗ satisfies:

〈∇αJ1(α
∗), α− α∗〉(L∞(Ω))′,L∞(Ω) ≥ 0, ∀u ∈ Uad.

We only need to prove that ∂(w,θ,p)e(w(α), θ(α), p(α), α) has a bounded inverse,
which implies the study of the linearization of (2.1). Computing the Fréchet derivative
of the operator involved in (2.1) at (u, θ, p) ∈ Xu

1 × Xθ × L2(Ω), we have to prove
that, for any source term (f1, f2, f3) ∈ (Xu

1 )
′ × (Xθ)′ × L2(Ω), (ν, ζ, ρ) is the unique

solution to the linearization of (2.1), which reads:

(3.3)

Find (ν, ζ, ρ) ∈ Xu
1 ×Xθ × L2(Ω) such that

a(α; ν, v1) + b(v1, ρ) + c′(u, ν, v1) + f(ζ, v1) = 〈f1, v1〉, ∀v1 ∈ Xu

ã(α, ζ, v2) + c̃(ζ, u, v2) + c̃(θ, ν, v2) = 〈f2, v2〉 ∀v2 ∈ Xθ

b(ν, q) = 〈f3, q〉, ∀q ∈ L2(Ω).

where
c′(u, ν, v) =

∫
Ω

((u · ∇)ν · v + (ν · ∇)u · v) .

Theorem 3.3. There exists a unique solution to (3.3) which is continuous with
respect to the source term (f1, f2, f3).

Proof. Define the linear operators A,B, F, C̃, Ã as

〈Aν, v1〉 = a(α; ν, v1) + c′(u, ν, v1), 〈C̃ν, v2〉 = c̃(θ, ν, v2),

〈Fζ, v1〉 = f(ζ, v1), 〈Ãζ, v2〉 = ã(α; ζ, v2) + c̃(ζ, u, v2)

〈Bρ, v1〉 = b(v1, ρ)
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Then, one can understand (3.3) as the following equation in (Xu
1 )

′×(Xθ)′×L2(Ω):

Find (ν, ζ, ρ) ∈ Xu
1 ×Xθ × L2(Ω) such that

Aν +Bρ+ Fζ = f1

C̃ν + Ãζ = f2

B∗ν = f3.

Using the same analysis as in the proof of Proposition 2.2, ζ is uniquely determined
and continuous with respect to the source terms as soon as ν is. Therefore, ζ =
Ã−1(f2 − C̃ν). We reintroduce this in the first equation, which now reads: (A −
FÃ−1C̃)ν +Bρ = f1 − Ã−1f2. As we have proved in Lemma 2.3, one gets that:

〈Aν, ν〉 = a(α, ν, ν) + c(u, ν, ν) + c(ν, u, ν),

≥ ‖ν‖2Xu − 2CNL‖u‖Xu‖ν‖2Xu ≥ (1− 2CNLR)‖ν‖2Xu ,

where R was defined in Theorem 2.4. Also, from the proof of Proposition 2.2, one
has 〈Ãζ, ζ〉 ≥ C(Ω)(Ckmin − ‖u‖)‖ζ‖2Xθ ≥ C(Ω)(Ckmin − R)‖ζ‖2Xθ . Denote CÃ =

C(Ω)(Ckmin − R). Since Ã is invertible, for all f ∈ (Xθ)′, there exists ζ ∈ Xθ such
that Ãζ = f and:

‖Ã−1f‖2Xθ ≤ 1

CÃ

〈f, Ã−1f〉(Xθ)′,Xθ ≤ 1

CÃ

‖Ã−1f‖Xθ‖f‖(Xθ)′

which proves ‖Ã−1‖ = sup‖f‖
(Xθ)′=1 ‖Ã−1f‖Xθ ≤ 1

CÃ
. Furthermore, one can easily

show that: ‖F‖ ≤ B, ‖C̃‖ ≤ ‖θ‖Xθ ≤ R. Eventually, all these results leads to:

〈(A− FÃ−1C̃)ν, ν〉 ≥
(
1− 2CNLR− BR

C(Ω)(Ckmin −R)

)
‖ν‖2.

Therefore, if one chooses R small enough (which means that the source terms have
to be small enough, as in Theorem 2.4), one has that, for all f ∈ (Xu

1 )
′, there exists

a unique ν ∈ Xu
1 such that

(
A− FÃ−1C̃

)
ν = f , thanks to Lax-Milgram theorem.

Eventually, noting that (ν, ρ) satisfy a standard saddle-point problem that verify the
assumptions of [30, Theorem 4.1, p.59], one proves the existence, uniqueness and
continuity with respect to the data of (ν, ζ, ρ).

4. Numerical treatment. We focus in this section on a small presentation of
the developments handled to numerically treat Problem (3.1), which will be more
deeply presented in a companion paper. There exists a huge literature on the nu-
merical methods for solving programs with PDE-constraints ; see for instance [6, 34].
Most methods rely on the gradient of the cost functional with respect to the design
variable (in our case, with respect to α) in order to compute a descent direction ; in
turn, one needs to compute the derivative of the state variables with respect to the
design variable. Since we use a differentiate then discretize approach, this gradient
will be computed via the so-called adjoint system associated to (3.1), which will be
afterward discretized.

4.1. Gradient computation with the adjoint system. From now on, we
suppose that J (α, u, p, θ) =

∫
Ω
JΩ(α, u, θ, p)+

∫
Γ
JΓ(α, u, θ, p), where JΩ : Uad×Xu×

Xθ×L2(Ω) → L1(Ω), JΓ : Uad×Xu×Xθ×L2(Ω) → L1(Γ) are Fréchet differentiable
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mappings. Slightly adapting the result of [9], one can prove that the adjoint system
associated to (3.1) reads:

(4.1)



∇λp − hτ (α)λ
u + θ∇λθ +A∆λu +∇λu · u− (λu · ∇)u = −∂JΩ

∂u
,

Bλu · ey + u · ∇λθ +∇ ·
(
Ckτ (α)∇λθ

)
= −∂JΩ

∂θ
,

∇ · λu = −∂JΩ
∂p

.

(4.2)

On Γw : λu · t = 0, λu · n =
∂JΓ
∂p

, λθ(u · n) + Ckτ (α)∂nλ
θ =

∂JΓ
∂θ

,

On Γin : λu · t = 0, λu · n =
∂JΓ
∂p

, λθ = 0, ∂nλ
p = 0,

On Γout : λθ(u · n) + Ckτ (α)∂nλ
θ =

∂JΓ
∂θ

,

λpn+ λθθn+A∂nλ
u + (u · n)λu =

∂JΓ
∂u

,

where t is a unit tangent vector.
The existence of adjoint solutions to (4.1)-(4.2) has been proved in Theorem 3.3.

The gradient of the cost functional then reads:

(4.3)
∇αJ =

∂JΩ
∂α

− ∂hτ
∂α

(α)u · λu − C
∂kτ
∂α

(α)∇θ · ∇λθ on Ω,

∇αJ =
∂JΓ
∂α

+ C
∂kτ
∂α

(α)φλθ on Γw,

and one has the variational optimality condition:

(4.4) 〈∇αJ , β − α〉(L∞(Ω))′,L∞(Ω) ≥ 0, ∀β ∈ Uad.

Note that in our case, ∇αJ ∈ L1(Ω) ⊂ (L∞(Ω))′, the duality bracket can be
written as an integral over Ω. However, this inequality is hardly used in an algorithm,
since it relies on a duality product. The following Lemma let us recast inequality
(4.4) as a projection on an interval, and will be later used in the projected gradient
algorithm.

Lemma 4.1. Inequality (4.4) is satisfied if and only if, for almost every x ∈ Ω:

(4.5)
∇αJ (α(x), u(x), θ(x), p(x)) · (β − ᾱ(x)) ≥ 0,

∀β ∈ [0, αmax],

where ᾱ = 1
2 (α̌ + α̂) and α̌ (resp. α̂) is the lower (resp. upper) semi-continuous

envelope of α. Hence, the optimal α is defined pointwise as any representative of:

ᾱ(x) = Π[0,αmax] (ᾱ(x) + κ∇αJ (α(x), u(x), θ(x), p(x))) ,

where Π[0,αmax](x) = max{0,min{αmax, x}} and any κ > 0.
Proof. The proof is essentially adapted from [21, Proposition 5.1] and [23, Corol-

lary 1, p. 216].
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4.2. Topology optimization for materials with piecewise constant ther-
mal diffusivity.

4.2.1. Choice of the interpolating function. Note first that the existence
of optimal solution to (3.1) proved in Theorem 3.1 as well as the convergence of the
discrete optimum toward the continuous one (see Theorem 3.2) hold for any function
hτ , kτ that are continuous and bounded. In this subsection, we give the explicit
formula for these functions and also present our approach to find optimized solid with
piecewise constant thermal diffusivity, also termed as multi-materials.

We first introduce the next smooth regularization of the Heaviside step function
(see e.g. [45])

(4.6) h̃τ (y, y0, a, b) = a+ (b− a)

(
1

1 + exp(−τ(y − y0))
− 1

1 + exp(τy0)

)
,

where y ∈ [0, ymax]. It is easy to check the following point-wise convergence

(4.7) lim
τ→+∞

h̃τ (y, y0, a, b) =

 a if y < y0,
(a+ b)/2 if y = y0,
b if y > y0.

Hence, we set hτ (α) = h̃τ (α, α0, 0, αmax), which has the properties wanted for an
approximation of the indicator of the solid/fluid region.

We now present the multi-material interpolation function used to look for opti-
mized solid with piecewise constant thermal diffusivity. Our idea to get piece-wise
constant thermal conductivity kj for j = 1, · · · , N is to introduce another design vari-
able ϕ that interpolates the multiple values of the thermal conductivity. Therefore,
kτ is replaced with

(4.8) kτ (α, ϕ) = kf +
h̃τ (α, α0, 0, αmax)

αmax
(χτ (ϕ)− kf ),

where kf is the thermal conductivity of the solid and χτ is going to interpolate the
several constants defining the thermal conductivity. Note that, in the fluid part
of the domain, one has α(x) < α0 and then (4.7) ensures that kτ (α, ϕ) → kf as
τ → ∞ for any ϕ. In the solid part of the domain, α(x) ≥ α0 and (4.7) shows
that h̃τ (α, α0, 0, αmax)/αmax → 1 and thus kτ (α, ϕ) → kf + (χτ (ϕ) − kf ) = χτ (ϕ)

as τ → +∞. The definition of χτ (ϕ) is achieved thanks to a superposition of h̃τ as
follow

(4.9) χτ (ϕ) =

N−1∑
j=1

h̃τ (ϕ,ϕj , aj , bj),

where ϕi ∈ [0, ϕmax] and ϕi < ϕj for any i 6= j ∈ {1, · · · , N}. The constants aj , bj
are then determined thanks to the following requirements

lim
τ→+∞

χτ (ϕ)= kj for ϕj−1 < ϕ < ϕj , 2 ≤ j ≤ N − 1,

lim
τ→+∞

χτ (ϕ)= k1 for ϕ < ϕ1 and lim
τ→+∞

kτ (ϕ) = kN for ϕN−1 < ϕ(4.10)

lim
τ→+∞

χτ (ϕj)=
kj + kj+1

2
for 1 ≤ j ≤ N − 2.
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Note that (4.10) gives (N − 2) + 2 + (N − 2) = 2(N − 1) linear equations which
determine the constants aj , bj . Using (4.7), this linear system reads

(4.11)

N−1∑
l=1

al = k1,

N−1∑
l=1

bl = kN ,

j−1∑
l=1

bl +

N−1∑
l=j

al = kj for 2 ≤ j ≤ N − 1,

aj + bj
2

+

j−1∑
l=1

bl +

N−1∑
l=j+1

al =
kj + kj+1

2
for 1 ≤ j ≤ N − 2.

Mutatis mutandis, all the results given in sections 2 and 3 are still valid by replac-
ing α by (α, ϕ) (and therefore, we also suppose that ϕ ∈ Uad with 0 ≤ ϕ(x) ≤ ϕmax
for almost every x ∈ Ω).

4.2.2. A projected gradient method for PDE constrained programs. In-
spired by [34], we use a projected gradient method with alternating direction combined
with a continuation method in order to numerically solve the optimal control problem
(3.1). The process is presented in Algorithm 4.1, but a more thorough presentation
will be made in a companion paper.

Algorithm 4.1 A descent algorithm for (3.1)
1: Input : τ > 0 big enough. Initial guess (α0, ϕ0) ∈ Uad, thermal conductivity

constants {kj}
2: Sort {kj} in ascending order;
3: k:=0;
4: while stopping criteria is not met do
5: Solve (1.3)-(1.4) using fixed point for (u, θ, p);
6: Solve (4.1)-(4.2) using (u, θ, p) to get (λu, λp, λθ);
7: Compute ∇αk,ϕk

J thanks to (4.3);
8: Use backtracking line search on αk to get the step length tαk ;
9: Set αk+1 = Π[0,αmax] (αk − tαk∇αJ ) pointwise;

10: Use backtracking line search and a continuation method on ϕk to get ϕk+1;
11: Increase k.
12: end while

Some details are needed to understand the algorithm:
• The first step consists in solving (1.3)-(1.4) using a fixed point approach, in
the same spirit used for the proof of Theorem 2.4. Note that convergence is
assured by Theorem 2.4 for small enough source terms.

• In order to find ϕk+1, one has to do a continuation method. The reason is
that the derivative of kτ with respect to ϕ is often too small for computing
an acceptable descent step.

4.3. Numerical example. We illustrate our method using the cost function
giving the pressure losses which can be written as [46, p. 7, Eq. (10)]:

(4.12)

min −
∫
Γ

(
p+

1

2
|u|2

)
u · ~n dσ +Ri

∫
Ω

(u · ey) θ dΩ

s.t.


(u, θ, p) solve (1.3)− (1.4) with
Re = 200, Ri = 0.6, Pr = 0.71,

α ∈ Uad,
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where ~n denotes the normal to Γ. Ω designs a single horizontal pipe of height H and
length L, as sketched in Figure 1.

H

L

Γw, φ = 0 Γout

Γw, φ = 0

Γw, φ = 1

Γw, φ = 0

Γin

Γw, φ = 0

Fig. 1: Sketch of Ω

We suppose that the pipe is
heated on a part of the upper side,
where φ = 1. We also set uin(x, y) =
ciny(H − y) on Γin, where cin =
1.8. Algorithm 4.1 has been imple-
mented using FreeFem++ [33]. An
example is shown in Figure 2, where
we plotted the solid distribution in
the domain with the thermal diffu-
sivity constants found. We make the
following remarks:

• The cost is well reduced
along the different itera-
tions by roughly 4% (going
approximately
from 1.46 × 10−2 at ini-
tialization to approximately

1.38× 10−2 when the process ends). Remark that in this situation, the fluid
doesn’t need a lot of energy to move explaining the slight minimization. We
noticed that the cost is first sharply reduced by α on the first iteration, and
the following iterations were just adjustments made with ϕ.

• We have a clear border between the solid and the liquid domain with small
region of porous media.

• The thermal conductivity constants are taken by big chunks. Note also that
the conductivity of the fluid part is well respected.

• Several runs were made with different grid sizes ; the solutions were qualita-
tively the same, enforcing the result of Theorem 3.2.

• The assumption |Dαh|(Ω) ≤ κ is not properly imposed, but the discretization
makes it de facto verified for some κ big enough.
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(a) kτ .
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(b) hτ .

Fig. 2: Solutions for thermal conductivity in possible values [5,6,8,11,13,16]

5. Conclusion. We proved the well-posedness of the energy and penalized in-
compressible Navier-Stokes equations under Boussinesq assumption along with the
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convergence of the Taylor-Hood finite element discretization of the model. We also
proved some properties of a TO problem, namely the existence of a solution and the
convergence of the discretization of this problem. All these results were applied to a
TO problem with materials with piecewise constant thermal diffusivity and let us de-
sign a numerical method giving interesting results, changing the design of the channel
along with the thermal conductivity. However, all these results present some limits:
the source terms have to be small enough, and the penalization still contains some
hard-coded parameters that need to be hand-tuned. Also, the numerical optimization
method presented in this paper is rather simple, and enhancing this method could
be an interesting study. On a final note, an other interesting study could focus on
keeping the optimization problem without the penalization but rather with mixed
state-control constraints that could be non-smooth, but more robust to the a priori
chosen parameters.
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