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COURANT-SHARP PROPERTY FOR DIRICHLET
EIGENFUNCTIONS ON THE MÖBIUS STRIP

PIERRE BÉRARD, BERNARD HELFFER, AND ROLA KIWAN

Abstract. The question of determining for which eigenvalues there exists an
eigenfunction which has the same number of nodal domains as the label of the
associated eigenvalue (Courant-sharp property) was motivated by the analysis
of minimal spectral partitions. In previous works, many examples have been
analyzed corresponding to squares, rectangles, disks, triangles, tori, . . . . A natural
toy model for further investigations is the Möbius strip, a non-orientable surface
with Euler characteristic 0, and particularly the “square” Möbius strip whose
eigenvalues have higher multiplicities. In this case, we prove that the only Courant-
sharp Dirichlet eigenvalues are the first and the second, and we exhibit peculiar
nodal patterns.

1. Introduction

The question we are interested in was initially suggested by Étienne Ghys in March
2016, during a conference in Abu Dhabi.
We start with the standard strip,

S∞ := (0, π)× (−∞,+∞) ,
and we look at the standard Laplacian −∆ with Dirichlet condition at x = 0 and
x = π, and we add the conditions,
(1.1) u(x, y + πa) = u(π − x, y) , u ∈ H2

loc(S∞) ,
where a is a positive parameter. Equivalently, we look at the Laplacian on the flat
Möbius strip Ma, with Dirichlet boundary condition (see Section 2).
According to Courant’s nodal domain theorem [9, Chap. VI.6], an eigenfunction
associated with the nth Dirichlet eigenvalue of Ma has at most n nodal domains.
The eigenvalue λn is called Courant-sharp if there exists an associated eigenfunction
with exactly n nodal domains. As usual, we list the eigenvalues in nondecreasing
order, multiplicities accounted for, starting from the label 1.

Remark 1.1. There are obvious restrictions for an eigenvalue to be Courant-sharp.
Indeed, let k ≥ 2 be an integer. If the eigenvalue λk satisfies λk−1 < λk = · · · =
λk+`−1 < λk+` for some integer ` ≥ 2, then the eigenvalues λk+1, . . . , λk+`−1 cannot
be Courant-sharp.

Our aim is to prove the following theorem.

Theorem 1.2. When a = 1, the only Courant-sharp eigenvalues of the Dirichlet
Laplacian on the Möbius strip M1 are the first and second eigenvalues.
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Equivalently, for the Laplacian with Dirichlet condition on the boundary of S∞ and
the periodicity condition (1.1), with a = 1, the only Courant-sharp eigenvalues are
the first and second ones.
Here is a sketch of the proof. Since the Möbius strip is a surface with boundary
(actually a quotient of a cylinder), we can apply [6, p. 524] to extend Pleijel’s theorem
[26], and conclude that there exists an explicit number γ(2) < 1 such that

lim sup
k−→+∞

ν(k)
k
≤ γ(2) < 1 ,

where ν(k) denotes the maximal number of nodal domains of an eigenfunction asso-
ciated with the eigenvalue λk. This inequality implies that there are finitely many
Courant-sharp eigenvalues only. Using Weyl’s law with a controlled remainder term,
and an adapted Faber-Krahn inequality, we give an upper bound and a condition to
be satisfied by Courant-sharp eigenvalues. Together with Remark 1.1, these condi-
tions limit the possible Courant-sharp eigenvalues of M1 to the set {λ1, λ2, λ6, λ7}.
Courant’s theorem implies that λ1 and λ2 are Courant-sharp. To conclude the proof,
we determine the possible nodal patterns of the eigenfunctions associated with λ6
and λ7.
Because of its symmetries, and higher eigenvalue multiplicities, the case of the
“square” Möbius strip M1 (a = 1) seems to be the most interesting. Other in-
vestigations corresponding to irrational or small a’s could also be performed as in
[15], leading to partial answers to the Courant-sharp question. In this paper, we
shall only consider the case a = 1.
Looking for the Courant-sharp eigenvalues of the flat Möbius strip comes naturally
in view of the known results for the square and for the flat tori. It is also natural
to consider cylinders and Klein bottles. The following table displays some of the
known results.

Case Boundry Cond. Courant-sharp eigenvalues References

Square Dirichlet {λ1, λ2, λ4} [26, 2]
Square Neumann {λ1, λ2, λ4, λ5, λ9} [17]
Square Robin {λ1, λ2, λ4} [11] (h large, Remarks 1.3)
Square Robin {λ1, λ2, λ4, λ9} [12] (h > 0 small, Remarks 1.3)
Torus – {λ1, λ2} [3, 23] (resp. for the flat equilateral or square tori)

Triangle Dirichlet {λ1, λ2, λ4} [3] (equilateral triangle)
Disk Dirichlet/Neumann {λ1, λ2, λ4} [15, 18]

Möbius strip Dirichlet {λ1, λ2} The present paper
Cylinder Dirichlet {λ1, λ2} [5] (See Remarks 1.3)

Klein bottle – {λ1, λ2} [5] (See Remarks 1.3)

Table 1.1

Remarks 1.3.
(1) Other tori are treated in [14], [8].
(2) The Robin boundary condition is written ∂u

∂ν
+ hu = 0, where h is the Robin

parameter, and ν the outward-pointing normal.
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(3) The cylinders considered in the table are (0, π)× S1
r, r ∈

{
1
2 , 1

}
.

(4) The flat Klein bottles considered in the table have fundamental domains
(0, π) × (0, cπ), c ∈ {1, 2}, with sides {x = 0} and {x = π} identified, while
sides {y = 0} and {y = cπ} are identified with reversed orientations.

(5) The case of spheres appears in [24, 16].
(6) In the case of Neumann or Robin boundary condition, determining Courant-

sharp eigenvalues is more difficult because one can only apply the Faber-
Krahn inequality (see Section 7) to nodal domains which do not meet the
boundary.

The paper is organized as follows. In Section 2, we describe the Möbius strip, and
compute its spectrum using separation of variables. Sections 3–5 are devoted to
the description of the nodal patterns for the first eigenspaces, Eλ2 , Eλ6 , and Eλ7 .
In Section 6, we give a Weyl law with a controlled remainder term, and consider
isoperimetric and Faber-Krahn inequalities for the Möbius strip. In Section 7, we
give an upper bound, together with a condition à la Faber-Krahn, to be satisfied
by Courant-sharp eigenvalues. This section also contains the proof of Theorem 1.2.
In Section 8, we consider an Euler type formula for nodal patterns on the Möbius
strip. In Section 9, we give examples of high energy eigenfunctions of M1 with only
two nodal domains.
Acknowledgement. The second author would like to thank C. Léna for useful
discussions. The authors would also like to thank the two anonymous referees for
their constructive comments, and for pointing out several misprints.

2. The Möbius strip Ma

2.1. Presentation and geometry. Let S∞ := (0, π) × (−∞,∞), be the infinite
strip with width π, equipped with the flat metric dx2 + dy2 of R2. Given a > 0,
define the following isometries of S∞:

(2.1)


σa : (x, y) 7→ (π − x, y + a π) ,
$ : (x, y) 7→ (π − x, y) ,
τt : (x, y) 7→ (x, y + t), for t ∈ R .

Define the groups

(2.2)

 G :=
{
σka | k ∈ Z

}
,

G2 :=
{
σka | k ∈ 2Z

}
.

The group G2 is a subgroup of G, of index 2, generated by σ2
a.

The action of G on S∞ is smooth, isometric, totally discontinuous, without fixed
points. By [7, Section 2.4], we can consider the quotient manifolds with boundary
(2.3) Ca := S∞/G2 and Ma := S∞/G ,

equipped with the flat metric induced from the metric of S∞.
The cylinder Ca is the product manifold (0, π)×S1

a, where S1
a is the circle R/(2πaZ).

One can view Ca as the rectangle (0, π) × [0, 2πa] with the sides (0, π) × {0} and
(0, π)× {2aπ} identified, (x, 0) ∼ (x, 2aπ). This rectangle is a fundamental domain
for the action of G2 on S∞.
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The isometry σa induces an isometry of Ca, whose square is the identity. The Möbius
strip Ma can also be obtained as the quotient Ca/ {Id, σa}. One can view Ma as
the rectangle Ra := (0, π) × [0, aπ], with the sides (0, π) × {0} and (0, π) × {aπ}
identified by (x, 0) ∼ (π− x, aπ). The rectangle Ra is a fundamental domain of the
action of G on S∞.
In the sequel, we will mainly viewMa asRa, together with the identification (x, 0) ∼
(π − x, aπ).
The isometry $ of S∞ induces an isometry of Ca andMa. The action t 7→ τt induces
an isometric action of S1

a on Ca and Ma.
Physically, one can realize Ma by making a paper model: a rectangular sheet of
paper, [0, π] × [0, aπ], is twisted by a rotation of angle π about its symmetry axis{
x = π

2

}
, and the two horizontal sides {y = 0} and {y = aπ} are glued together.

The fixed point set of $ in Ma is a circle (the “soul”) of length aπ, while the
boundary ∂Ma has length 2aπ.
The cylinder Ca embeds isometrically in R3 by

(2.4) (0, π)× S1
a 3 (u, v) 7→

(
u, a cos(v

a
), a sin(v

a
)
)
∈ R3 ,

and we can view the cylinder as a collection of segments (0, π)a attached to the circle
{y2 + z2 = 1} ∩ {x = 0}, orthogonally to the plane {x = 0}.
Define the map F by

(2.5) (w, v) 7→
(
w cos v

a
, (R + w sin v

a
) cos 2v

a
, (R + w sin v

a
) sin 2v

a

)
,

where w = u− π
2 , (w, v) ∈

(
−π

2 ,
π
2

)
× [0, aπ], and R > 0. It is easy to see that F is

a diffeomorphism from Ma onto F (Ma) ⊂ R3 provided that R > π
2 .

One can view the surface F (Ma) as the collection,{
F
(

(−π2 ,
π

2 ), 2v
a

) ∣∣∣ v ∈ [0, aπ]
}
,

of segments centered at the point
(
0, R cos 2v

a
, R sin 2v

a

)
, contained in the plane xOωa,

where ωa =
(
0, cos 2v

a
, sin 2v

a

)
, and making in this plane an angle v

a
with the axis Ox.

Remark 2.1. We will use the map F to visualize the topology of the nodal sets
and nodal domains of the eigenfunctions of M1 in three dimensions. Note that
the map F is not an isometric embedding. As a matter of fact, it is not even
conformal, but the vectors ∂uF and ∂vF are orthogonal. The surface Ma, with the
metric F ∗(dx2 + dy2 + dz2) induced from the canonical metric in R3, has negative
curvature. According to [13, § 15] and [10, Lecture 14], if the Möbius strip Ma can
be isometrically embedded into R3, then a > π

2 , and such embeddings actually exist
for a >

√
3.



COURANT-SHARP PROPERTY 5

Figure 2.1. The Möbius strip embedded in R3, with boundary and
soul

2.2. Dirichlet spectrum. We equip the Möbius strip, Ma = S∞/G, with the flat
metric inherited from S∞, and consider the Dirichlet eigenvalue problem for the
associated Laplace-Beltrami operator. The projection Ca →Ma being a Riemannian
covering, the Dirichlet eigenfunctions of Ma can be identified with the Dirichlet
eigenfunctions of Ca which are invariant under σa. Since Ca is a product manifold,
we can use separation of variables. A complete family of complex eigenfunctions of
Ca is given by

(2.6) sin(mx) exp(iny
a

),m ∈ N•, n ∈ Z ,

with associated eigenvalues λ̂(m,n, a) = m2 + n2

a2 . Here, N• := {n ∈ Z | n ≥ 1}. The
eigenspace Eλ̂(m,n,a), associated with the eigenvalue λ̂(m,n, a), consists of eigenfunc-
tions of the form

(2.7) Φ(x, y) =
∑

αp,q sin(px) exp(iq y
a

)

where αp,q ∈ C, and the sum extends over the pairs (p, q) ∈ N• × Z such that
λ̂(p, q, a) = λ̂(m,n, a). Since

Φ ◦ σa(x, y) = Φ(π − x, y + πa) =
∑

(−1)p+q+1 αp,q sin(px) exp(iq y
a

) ,

it follows that Φ ◦ σa = Φ if and only if the summation in (2.7) extends over the
pairs (p, q) ∈ N• ×Z such that λ̂(p, q, a) = λ̂(m,n, a), with the additional condition
that p+ q is odd. As a consequence, we have the following result.

Lemma 2.2. A complete family of real Dirichlet eigenfunctions of the Möbius strip
Ma, equipped with the flat metric, is

(2.8)
{ sin(mx), m ∈ N• odd, and

sin(mx) cos(ny
a
), sin(mx) sin(ny

a
), m, n ∈ N•, m+ n odd,

with associated eigenvalues λ̂(m,n, a) = m2 + n2

a2 .

Definition 2.3. Let Φ be a Dirichlet eigenfunction of −∆ on Ma. The nodal set
of Φ is defined as

(2.9) Z(Φ) = {x ∈Ma | Φ(x) = 0} ,

i.e., as the closure in Ma ∪ ∂Ma of the set of (interior) zeros of Φ. The nodal
domains of Φ are the connected components of Ma\Z(Φ).
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2.3. Dirichlet spectrum of the Möbius strip, case a = 1. In the case a = 1, the
Dirichlet eigenvalues ofM1 have higher multiplicities. Let λ̂(m,n) denote λ̂(m,n, 1).
Notation 2.4. In the sequel, the Dirichlet eigenvalues of the Möbius strip M1 are
denoted,

λ1 < λ2 ≤ λ3 ≤ · · · ,
and listed in nondecreasing order, with multiplicities, starting from the label 1.
The first Dirichlet eigenvalues of M1 are given in the following table, with eigen-
functions given by (2.8).

Eigenvalue (m,n) λ̂(m,n) Multiplicity

λ1 (1, 0) 1 1
λ2, λ3, λ4, λ5 (1, 2), (2, 1) 5 4

λ6 (3, 0) 9 1
λ7, λ8, λ9, λ10 (2, 3), (3, 2) 13 4
λ11, λ12, λ13, λ14 (1, 4), (4, 1) 17 4

λ15, λ16, λ17, λ18, λ19 (3, 4), (4, 3), (5, 0) 25 5
λ20, λ21, λ22, λ23 (2, 5), (5, 2) 29 4
λ24, λ25, λ26, λ27 (1, 6), (6, 1) 37 4
λ28, λ29, λ30, λ31 (4, 5), (5, 4) 41 4
λ32, λ33, λ34, λ35 (3, 6), (6, 3) 45 4

λ36 (7, 0) 49 1
λ37, λ38, λ39, λ40 (2, 7), (7, 2) 53 4
λ41, λ42, λ43, λ44 (5, 6), (6, 5) 61 4
λ45, . . . , λ52 (1, 8), (8, 1), (4, 7), (7, 4) 65 8

Table 2.1. First Dirichlet eigenvalues of M1

3. Analysis of the first eigenspaces

Whenm,n ∈ N• (withm+n odd), the eigenvalue λ̂(m,n) = m2+n2 has multiplicity
at least 4. In this case, the corresponding eigenspace, denoted Eλ̂(m,n), contains the
subspace E[m,n] consisting of eigenfunctions of the form

(3.1)
{ Φ(x, y) = sin(mx) (A cos(ny) +B sin(ny))

+ sin(nx) (C cos(my) +D sin(my)) .
Note that Eλ2 = E[1,2] and Eλ7 = E[2,3], while Eλ15 = E[3,4]⊕E[5,0], see Table 2.1. Since
we are interested in nodal sets, we may assume, without loss of generality, that Φ is
normalized by A2 +B2 +C2 +D2 = 1. The function in the first parenthesis on the
right hand side of (3.1) can be written as

√
A2 +B2 sin(ny+α), and the function in

the second parenthesis as
√
C2 +D2 sin(my+ β), for some α, β ∈ (−π, π]. Defining

θ ∈ [0, π2 ] by,  cos θ =
√
A2 +B2 ,

sin θ =
√
C2 +D2 ,
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we write Φ as,

(3.2)
Φβ,θ(x, y) = cos θ sin(mx) sin(ny + α)

+ sin θ sin(nx) sin(my + β) .

Using the isometric S1 action τt : (x, y) 7→ (x, y + t) on M1, we can assume that
α = 0. We also observe that

Φβ+π,θ(x, y) = (−1)n cos θ sin(mx) sin(n(y + π)) +
(−1)m+1 sin θ sin(nx) sin(m(y + π) + β) ,

so that

(3.3) Φβ+π,θ(x, y) = (−1)n Φβ,θ(x, y + π) = (−1)n Φβ,θ(π − x, y) .

It follows that the nodal sets of Φβ+π,θ and Φβ,θ are symmetric with respect to{
x = π

2

}
in R1 or M1.

Proposition 3.1. To determine the nodal patterns of the Dirichlet eigenfunctions
Φ ∈ E[m,n], for m,n ∈ N• with m + n is odd, it is sufficient to study the nodal
properties of the family Φβ,θ,

Φβ,θ(x, y) = cos θ sin(mx) sin(ny) + sin θ sin(nx) sin(my + β) ,

for β ∈ (0, π], and θ ∈ [0, π2 ].
When [m,n] = [1, 2] or [2, 3], one can reduce the parameter set further.

(1) For [m,n] = [1, 2], it suffices to consider (β, θ) ∈ (0, π2 ]× [0, π2 ]. Indeed,

(3.4)

 Φβ+π
2 ,θ

= −Φβ,θ ◦ τ−π2 ,
Z(Φβ+π

2 ,θ
) = τπ

2
Z(Φβ,θ) .

(2) For [m,n] = [2, 3], it suffices to consider (β, θ) ∈ (0, π3 ]× [0, π2 ]. Indeed,

(3.5)

 Φβ+π
3 ,θ

= −Φβ,θ ◦ τ−π3 ,
Z(Φβ+π

3 ,θ
) = τπ

3
Z(Φβ,θ) .

For the analysis of nodal sets, we need the following definition.

Definition 3.2. A point (x, y) is a critical zero of a function Φ if Φ(x, y) = 0 and
d(x,y)Φ = 0. A critical zero has order k ∈ N• if the function Φ and its derivatives
of order less than or equal to (k − 1) vanish at (x, y), and a least one derivative
of order k does not. A point (x, y) such that Φ(x, y) = 0 and d(x,y)Φ 6= 0 is called
regular.

For eigenfunctions in dimension 2, the critical zeros are isolated, and their orders
determine the structure of the nodal set locally. In the case of the Möbius strip M1,
the eigenfunctions are defined globally on R2, and one defines a boundary critical
zero as a critical zero of (the extended function) Φ, which lies on the boundary ∂M1.
As a first step to Theorem 1.2, we prove the following result.

Proposition 3.3. For the Möbius strip M1, the Dirichlet eigenvalues λ1 and λ2 are
Courant-sharp. The eigenvalues λ3, . . . , λ10 are not Courant-sharp.
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Proof. The first assertion is a direct consequence of Courant’s nodal domain theorem
[9, Chap. VI.6].
According to Remark 1.1 and Table 2.1, the eigenvalue λ2 = λ̂(1, 2) has multiplicity
4, so that λ3, . . . , λ5 cannot be Courant-sharp. Since λ6 = λ̂(3, 0) is simple, and since
the associated eigenfunction sin(3x) has 2 nodal domains in M1, the eigenvalue λ6
is not Courant-sharp. The eigenvalue λ7 = λ̂(2, 3) has multiplicity 4. This implies
that λ8, . . . , λ10 cannot be Courant-sharp.
To finish the proof of Proposition 3.3, it suffices to prove that λ7 is not Courant-
sharp. This is the purpose of Lemma 5.1 in Section 5; the proof is by analyzing the
possible nodal patterns of eigenfunctions in Eλ7 = E[2,3]. �

Although we already know that λ2 is Courant-sharp, it is interesting to describe
the possible nodal patterns of associated eigenfunctions. They indeed present some
peculiar properties when compared to second Dirichlet eigenfunctions of a simply-
connected domain. In Section 4, we give the possible nodal patterns of eigenfunctions
in Eλ2 = E[1,2], up to isometries given by the S1 action, and to the symmetry with
respect to

{
x = π

2

}
.

In Section 5, we give the possible nodal patterns of eigenfunctions in Eλ̂(2,3), up to
isometries given by the S1 action, and to the symmetry with respect to

{
x = π

2

}
. As

a consequence, we shall conclude that an eigenfunction in Eλ7 has at most 6 nodal
domains, so that λ7 is not Courant-sharp.

4. Analysis of the eigenspace Eλ2

In this section, we describe the nodal patterns of the eigenfunctions Φβ,θ ∈ E[1,2] =
Eλ2 , with β ∈ (0, π2 ] and θ ∈ [0, π2 ]. According to Proposition 3.1, this is sufficient
to determine all the possible nodal patterns, up to isometries. We consider the
following cases and subcases.

(1) θ = 0 and θ = π
2 .

(2) β = π
2 , three subcases: 0 < θ < π

4 , θ = π
4 and π

4 < θ < π
2 .

(3) β ∈ (0, π2 ), three subcases 0 < θ < θβ, θ = θβ and θβ < θ < π
2

(the function β 7→ θβ is described below).
The analysis of these cases can be done using the methods described in Section 5.
For this reason, we shall not give full details here, but a mere description.
The figures below display the nodal lines in the fundamental domain R1; recall that
the Möbius strip M1 is obtained by identifying the lines {y = 0} and {y = π} via
(x, y) ∼ (π − x, y + π). The nodal lines appear in red, the Dirichlet boundary in
blue. When the lines {y = 0} and {y = π} are not nodal, they appear as dashed
black lines to indicate the Möbius identification.

4.1. Case θ = 0 or θ = π
2 . In this case, the eigenfunctions are decomposed and

the nodal sets explicit, see Figure 4.1. When θ = 0, Figure (A), there are two
disjoint nodal lines (in M1), hitting the boundary at critical zeros of order 2, and
no interior critical zero. When θ = π

2 , Figure (B) & (C), there are two nodal lines
which intersect at an interior critical zero of order 2, and hit the boundary at critical
zeros of order 2. As expected, in each case, there are two nodal domains.
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(a) Φβ,0 (b) Φ0,π2 (c) Φπ
5 ,
π
2

Figure 4.1. Nodal sets Z(Φβ,0), Z(Φ0,π2 ), and Z(Φπ
5 ,
π
2
)

The Möbius strip M1 is not simply-connected (it retracts onto the soul circle).
Figures 4.1 (B) and (C) display second Dirichlet eigenfunctions with an interior
critical zero, and a nodal set which contains a closed curve, the arc

{
x = π

2

}
. We

refer to Figure 4.5 for a 3D-picture. The existence of interior critical zeros is a
consequence of the multiplicity of λ2 which is 4 for M1. For domains Ω ⊂ R2,
Pólya’s nodal line conjecture states that a second Dirichlet eigenfunction cannot
have a closed nodal line. The conjecture has been proved for convex domains by
A. Melas (smooth convex domains) and G. Alessandrini (general convex domains).
A consequence of the conjecture is the non-existence of interior critical zeros. A
counter-example to the conjecture has been constructed by M. Hoffmann-Ostenhof,
T. Hoffmann-Ostenhof and N. Nadirashvili, with a domain Ω not simply connected.
We refer to [19] and the recent paper [22] for more details and references on the
nodal line conjecture.

4.2. Case β = π
2 and 0 < θ < π

2 . In this case, a bifurcation occurs at θ = π
4 .

The different patterns are illustrated in Figure 4.2. For θ = π
4 , Figure (B), the line{

y = π
2

}
is contained in the nodal set Z(Φπ

2 ,
π
4
). It hits the boundary part {x = 0}

at a critical zero of order 2, and the boundary part {x = π} at a critical zero of
order 4. There is another nodal component hitting the boundary at this point, a
closed curve. When 0 < θ < π

4 , Figure (A), the nodal set consists in two disjoint
simple curves with end points critical zeros of order 2 on the boundary. No interior
critical zeros for both patterns. When π

4 < θ < π
2 , Figure (C), the nodal set consists

in two simple curves which intersect at an interior critical zero of order 2; one curve
is closed, the other hits the boundary at two critical zeros of order 2. As expected,
there are two nodal domains in each cases. We refer to Figure 4.6 for a 3D-picture.
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(a) 0 < θ < π
4 (b) θ = π

4 (c) π
4 < θ < π

2

Figure 4.2. Nodal sets Z(Φπ
2 ,θ

), for 0 < θ < π
2

4.3. Case β = 0 and 0 < θ < π
2 . This case is similar to the preceding one.

Indeed, recall that the nodal sets Z(Φ0,θ) and Z(Φπ
2 ,θ

) are isometric. We give the
corresponding pictures for completeness.

(a) 0 < θ < π
4 (b) θ = π

4 (c) π
4 < θ < π

2

Figure 4.3. Nodal sets Z(Φ0,θ), for 0 < θ < π
2

4.4. Case 0 < β < π
2 and 0 < θ < π

2 . This case presents some novelty. Indeed,
given β ∈ (0, π2 ), there exists a unique θβ ∈ (0, π2 ) such that the nodal sets of the
family {Φβ,θ}, for fixed β and 0 < θ < π

2 , present a bifurcation at θ = θβ. More
precisely, given β ∈ (0, π2 ), there exist a unique yβ ∈ (0, π2 ), given by cot3(yβ) =
cot(β), and a unique value θβ ∈ (0, π2 ), given by cot(θβ) = 2 sin(yβ+β)

sin(2yβ) , such that the
following description holds.
Fix β ∈ (0, π2 ). When θ = θβ, Figure 4.4 (B), the nodal set Z(Φβ,θβ) hits the
boundary part {x = π} at the point (π, yβ), which is a critical zero of order 3. The
nodal set consists in two curves issued from this point, forming equal angles with the
boundary; one of them hits the boundary part {x = 0}, the other hits the boundary
part {x = π}×(π2 , π), at critical zeros of order 2. They do not intersect in the interior.
When 0 < θ < θβ, Figure (A), the nodal sets consists in two disjoint curves, with
end points on the boundary, critical zeros of order 2. When θβ < θ < π

2 , Figure (C),
the nodal set consists of one simple curve with end points on the boundary, critical
zeros of order 2. No interior critical zeros in these three patterns. As expected there
are two nodal domains in all these cases.
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Figure 4.4 (C) presents another peculiarity. The nodal domain labelled “1” is not
simply connected, and actually homeomorphic to a Möbius strip, and it is not ori-
entable. We refer to Figure 4.8 for 3D-pictures.

(a) 0 < θ < θβ (b) θ = θβ (c) θβ < θ < π
2

Figure 4.4. Nodal set Z(Φβ,θ), for 0 < β < π
2 and 0 < θ < π

2

Some 3D-pictures.

Figure 4.5. Second eigenfunction with an interior critical zero and
a closed nodal line (β = π

5 , θ = π
2 )
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Figure 4.6. Second eigenfunction with a boundary critical zero of
order 4 (β = π

2 , θ = π
4 )

Figure 4.7. Second eigenfunction with a boundary critical zero of
order 3 (β given, θ = θβ)

Figure 4.8. Second eigenfunction with a non simply connected
nodal domain (β given, θβ < θ < π

2 )
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Remark 4.1. The picture on the right hand side of Figure 4.6, resp. 4.8, seems
to violate the equal angle condition at the boundary critical zero of order 4, resp 3.
The reason is that the map F is not conformal, as pointed out in Remark 2.1.

5. Analysis of the eigenspace Eλ7

The purpose of this section is to finish the proof of Proposition 3.3 by proving the
following lemma. Recall that Eλ7 = E[2,3], see Table 2.1.

Lemma 5.1. An eigenfunction Φ associated with the Dirichlet eigenvalue λ7 of the
Möbius strip M1 has at most six nodal domains. As a consequence, the eigenvalue
λ7 is not Courant-sharp.

Taking Proposition 3.1 into account, we consider the family of eigenfunctions,
(5.1) Φβ,θ(x, y) = cos θ sin(2x) sin(3y) + sin θ sin(3x) sin(2y + β) ,
for β ∈ [0, π3 ] and θ ∈ [0, π2 ], and examine three cases. More precisely, we will prove
that,

(1) when θ = 0 or θ = π
2 , Φβ,θ has 6 nodal domains, see Subsection 5.1;

(2) when β ∈ (0, π3 ) and θ ∈ (0, π2 ), Φβ,θ has 3 nodal domains, see Subsection 5.4;
(3) when β ∈

{
0, π3

}
and θ ∈ (0, π2 ), Φβ,θ has 4 nodal domains, see Subsection 5.5.

Subsections 5.2 and 5.3 contain technical preliminaries.
Recall that the Möbius strip M1 is obtained by identifying the lines {y = 0} and
{y = π} via (x, y) ∼ (π−x, y+π). The figures below represent the nodal sets in the
fundamental domain R1, or on the topological 3D-representation given by the map
F defined in (2.5), see Remark 2.1. The nodal lines appear in red in the fundamental
domain R1, the Dirichlet boundary in blue. When {y = 0} ∼ {y = π} is not a nodal
line, the dashed black lines indicate the Möbius identification.

5.1. Special values θ = 0 and θ = π
2 . The eigenfunctions Φβ,0 (actually indepen-

dent of β), and Φβ,π2
play a special role. Their nodal sets are explicit; they are the

unions of horizontal and vertical segments, see Figure 5.1. There are both interior
and boundary critical zeros, all of order 2. There are 6 nodal domains in each case.
Figure (A) illustrates the following property: cutting the Möbius strip along the
soul circle yields a strip with half the width, and twice the length of the original
strip. This strip is doubly twisted and hence orientable. Figure (B) illustrates what
happens when one cuts the strip in the y-direction, at exactly one-third the width.
This operation produces two intertwined strips, one Möbius strip (corresponding to
the domains labelled “5” and “6”), and a doubly twisted (orientable) strip (corre-
sponding to the domains labelled “1, 2, 3” and “4”).
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(a) Φβ,0

(b) Φπ
5 ,
π
2

Figure 5.1. Nodal sets Z(Φβ,0) and Z(Φπ
5 ,
π
2
)

5.2. General properties of the nodal sets. As a preparation for the analysis of
the nodal sets of Φβ,θ, we gather some general properties.

Proposition 5.2. Assume that β ∈ [0, π3 ] and θ ∈ (0, π2 ). The following properties
hold.

(1) For any ξ ∈ (0, π), the nodal set Z(Φβ,θ) does not contain the segment
{x = ξ}.

(2) For η ∈ [0, π], the nodal set Z(Φβ,θ) contains the horizontal segment {y = η},
if and only if (η, β) ∈

{
(0, 0); (π, 0); (π3 ,

π
3 )
}
.

Proof. In this proof, we use the abbreviation1 Φ for Φβ,θ.
Assertion (1). Let ξ ∈ (0, π). Then, {x = ξ} ⊂ Z(Φβ,θ) if and only if

Φ(ξ, y) = cos θ sin(2ξ) sin(3y) + sin θ sin(3ξ) sin(2y + β) ≡ 0 ,

as a function of y.

� If β = 0, choosing y = π
2 we find that sin(2ξ) = 0. This in turn implies that

sin θ sin(3ξ) sin(2y + β) ≡ 0, and hence that sin(3ξ) = 0, a contradiction.
� If β 6= 0, choosing y = 0, we find that sin(3ξ) = 0. This in turn implies that
cos θ sin(2ξ) sin(3y) ≡ 0, and hence that sin(2ξ) = 0, a contradiction.

Assertion (2). Take η ∈ [0, π], and assume that Φ(x, η) ≡ 0 as a function
of x. Choosing x = π

2 , we find that sin(3η) = 0. This in turn implies that

1We shall do so in the subsequent proofs, whenever there is no ambiguity.
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sin θ sin(3x) sin(2η + β) ≡ 0, which implies that sin(2η + β) = 0. The condi-
tions sin(3η) = 0 and sin(2η + β) = 0 occur simultaneously if and only if (η, β) ∈{

(0, 0); (π, 0); (π3 ,
π
3 )
}
. �

Proposition 5.3. Assume that β ∈ [0, π3 ], and that θ ∈ (0, π2 ). Let (ξ, η) ∈ M1 (or
R1) be a critical zero of Φβ,θ. The following properties hold.

(1) The point (ξ, η) satisfies,
(5.2) sin(3η) sin(2η + β) sin(ξ) = 0.

(2) If ξ ∈ (0, π), i.e., if (ξ, η) ∈M1 is an interior critical zero of Φβ,θ, then

(5.3) (η, β) ∈
{

(0, 0); (π, 0); (π3 ,
π

3 )
}
,

and the point (ξ, η) has order 2. In particular, if β ∈ (0, π3 ) and θ ∈ (0, π2 ),
the function Φβ,θ has no interior critical zero. If β ∈

{
0, π3

}
and θ ∈ (0, π2 ),

any interior critical zero of Φβ,θ lies on the line {y = β}.
(3) If ξ ∈ {0, π}, i.e., if (ξ, η) is a boundary critical zero of Φβ,θ, then (ξ, η) has

order k ∈ {2, 3, 4}. More precisely,
(a) the point (ξ, η) is a boundary critical zero if ξ ∈ {0, π}, and either (η, β) ∈

{
(0, 0); (π, 0); (π3 ,

π
3 )
}
,

or η 6∈
{

0, π3 ,
2π
3 , π

}
and cot θ = − cos(ξ) f(β, η),

where the function f(β, y) is defined by,

(5.4) f(β, y) = 3
2

sin(2y + β)
sin(3y) for β ∈ [0, π3 ], y ∈ (0, π)\

{
π

3 ,
2π
3

}
;

(b) the boundary critical zero (ξ, η) has order at least 3 if and only if
g(β, η) = 0 as well, where the function g(β, y) is defined on [0, π]2 by

(5.5) g(β, y) = 2 cos(2y + β) sin(3y)− 3 cos(3y) sin(2y + β) ;
(c) the boundary critical zero (ξ, η) can only have order at least 4 if

sin(3η) sin(2η + β) = 0. In that case, the order is 4.

Proof. We use the abbreviation Φ for Φβ,θ in the proof.
Assertion (1). The point (ξ, η) is a critical zero of Φ if and only if it satisfies the
system of equations

Φ(x, y) = cos θ sin(2x) sin(3y) + sin θ sin(3x) sin(2y + β) = 0,(5.6a)

∂xΦ(x, y) = 2 cos θ cos(2x) sin(3y) + 3 sin θ cos(3x) sin(2y + β) = 0,(5.6b)

∂yΦ(x, y) = 3 cos θ sin(2x) cos(3y) + 2 sin θ sin(3x) cos(2y + β) = 0.(5.6c)

Since θ ∈ (0, π2 ), if (ξ, η) is a critical zero of Φ, the determinant of the linear system
(5.6a) and (5.6b) must vanish at (ξ, η),

sin(3η) sin(2η + β) (3 sin(2ξ) cos(3ξ)− 2 cos(2ξ) sin(3ξ)) = 0,
or equivalently

sin(3η) sin(2η + β) sin3(ξ) (4 cos2(ξ) + 1) = 0 .
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Assertion (2). If ξ ∈ (0, π), (5.2) implies that sin(3η) sin(2η + β) = 0. Since (ξ, η)
is an interior critical zero, the system (5.6), and the assumption θ ∈ (0, π2 ), imply
that

(5.7) sin(3η) sin(2η + β) = 0⇔ (η, β) ∈
{

(0, 0); (π, 0); (π3 ,
π

3 )
}
.

To conclude the proof of the assertion, we need the second derivatives of Φ.
∂xxΦ(x, y) = −4 cos θ sin(2x) sin(3y)− 9 sin θ sin(3x) sin(2y + β),(5.8a)

∂xyΦ(x, y) = 6 cos θ cos(2x) cos(3y) + 6 sin θ cos(3x) cos(2y + β),(5.8b)

∂yyΦ(x, y) = −9 cos θ sin(2x) sin(3y)− 4 sin θ sin(3x) sin(2y + β).(5.8c)

For (η, β) ∈
{

(0, 0); (π, 0); (π3 ,
π
3 )
}
, we have

∂x2Φβ,θ(x, η) ≡ 0, ∂y2Φβ,θ(x, η) ≡ 0 .
The critical zero (ξ, η) has order at least 3, if ∂yΦβ,θ(ξ, η) = 0 and ∂xyΦβ,θ(ξ, η) = 0.
This system implies that(

3 cos(3ξ) sin(2ξ)− 2 cos(2ξ) sin(3ξ)
)

cos(3η) cos(2η + β) = 0 .

The term in the parenthesis is equal to 2 sin3(ξ)(4 cos2(ξ) + 1), and hence does not
vanish since ξ ∈ (0, π). The second factor does not vanish either since (η, β) ∈{

(0, 0); (π, 0); (π3 ,
π
3 )
}
. It follows that the second derivative ∂xyΦβ,θ does not vanish

at (ξ, η). The proof of Assertion (2) is complete.
Assertion (3). Let ξ ∈ {0, π} and ε = cos(ξ). The only derivatives of Φ, of order
less than or equal to 4, which are not identically identically zero on {x = ξ} are,

∂xΦ(ξ, y) = 2 cos θ sin(3y) + 3ε sin θ sin(2y + β),(5.9a)

∂xyΦ(ξ, y) = 6 cos θ cos(3y) + 6ε sin θ cos(2y + β),(5.9b)

∂x3Φ(ξ, y) = −8 cos θ sin(3y)− 27ε sin θ sin(2y + β),(5.9c)

∂xy2Φ(ξ, y) = −18 cos θ sin(3y)− 12ε sin θ sin(2y + β),(5.9d)

∂x3yΦ(ξ, y) = −24 cos θ cos(3y)− 54ε sin θ cos(2y + β),(5.9e)

∂xy3Φ(ξ, y) = −54 cos θ cos(3y)− 24ε sin θ cos(2y + β).(5.9f)
The point (ξ, η) is a boundary critical zero if and only if ∂xΦ(ξ, η) = 0. This occurs
either for (η, β) ∈

{
(0, 0); (π, 0); (π3 ,

π
3 )
}
, or for η 6∈

{
0, π3 ,

2π
3 , π

}
, and θ given by

cot θ = −εf(β, η).
The critical point (ξ, η) has order at least 3 if and only if ∂xyΦ(ξ, η) = 0, i.e.,
g(β, η) = 0.
The boundary critical zero (ξ, η) has order at least 4 if and only if ∂x3Φ(ξ, η) = 0 and
∂xy2Φ(ξ, η) = 0 simultaneously. For this to occur, we must have sin(3η) sin(2η+β) =
0. The relations ∂x3yΦ(ξ, η) = 0 and ∂xy3Φ(ξ, η) = 0 can only occur simultaneously
if cos(3η) cos(2η + β) = 0. According to the previous relation, this means that a
boundary critical zero has order less than or equal to 4. �

Remark 5.4. We shall refine the analysis of Assertion (3) later on, in Subsec-
tion 5.4.
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Remark 5.5. The function f(β, y), defined in (5.4), and the function g(β, y), de-
fined in (5.5), are crucial to understand the structure of the nodal sets. We study
them in Subsection 5.3.

Proposition 5.6. Define the set
(5.10) Zβ := Z(Φβ,0) ∩ Z(Φβ,π2

).
This is the set of common zeros of the eigenfunctions Φβ,θ, where β is fixed, and θ
varies in (0, π2 ). Define the function
(5.11) Pβ(x, y) = sin(2x) sin(3y) sin(3x) sin(2y + β).

(1) For β ∈
{

0, π3
}
and θ ∈ (0, π2 ), the set Zβ consists in the line {y = β}, and

a finite number of regular points for Φβ,θ on M1\{y = β}.
(2) For β ∈ (0, π3 ) and θ ∈ (0, π2 ), the set Zβ consists in finitely many regular

points for Φβ,θ.
(3) For β ∈ (0, π3 ), the nodal set Z(Φβ,θ) does not meet the set {Pβ > 0}, and

only meets the nodal sets Z(Φβ,0) and Z(Φβ,π2
) at the points in Zβ.

(4) For β ∈
{

0, π3
}
, the nodal set Z(Φβ,θ) does not meet the set {Pβ > 0}, and

only meets the nodal sets Z(Φβ,0) and Z(Φβ,π2
) at the points in Zβ, or along

the common line {y = β}.

This proposition, whose proof is clear, is best understood by looking at Figure 5.2
(see also Figures 5.5 and 5.9).

(a) Common zeros (b) Prohibitions

Figure 5.2. The checkerboards for β = 0 and θ ∈ (0, π2 )

In Figure 5.2(A), the nodal lines of Φβ,0 appear as dashed black lines; the nodal
lines of Φβ,π2

appear as dot/dashed purple lines; the lines {y = 0} and {y = π} are
common to both functions and appear in red. The points of Zβ\{y = 0} are marked
“O” (in red). The “checkerboard” in Figure (B) displays the prohibitions: the nodal
set Z(Φβ,θ) cannot visit the domains in gray, and cannot cross the segments marked
with “X”. The “P” denote points through which the nodal set cannot pass. The
points marked “R” denote regular points (in particular, the nodal set cannot hit the
boundary at regular points). We will use similar checkerboards in Subsections 5.4
and 5.5, to describe the nodal sets, using Propositions 5.2, 5.3, 5.6 and Lemma 5.8
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Notation 5.7. Given a bounded domain Ω, let δ(Ω) denote its smallest Dirichlet
eigenvalue.

Let Φ ∈ E[2,3] = Eλ7 be any eigenfunction, and let Ω be any nodal domain of Φ.
Then, it is well-known that δ(Ω) = λ̂(2, 3) = 13. Clearly, any nodal domain of the
function Pβ is an open set contained in some nodal domain of Φβ,0 or Φβ,π2

.

Lemma 5.8. For β ∈ [0, π3 ] and θ ∈ (0, π2 ), no nodal domain ΩP of the function Pβ
can contain a closed nodal line of Φβ,θ, or a nodal line whose end points are located
on Ω ∩ ∂M1.

Proof. Indeed, such a curve would bound a nodal domain ω of Φβ,θ, strictly contained
in ΩP . On the one hand, by domain monotonicity of Dirichlet eigenvalues, we would
have δ(ω) > δ(ΩP ) ≥ λ̂(2, 3) (the second inequality follows from the fact that the
nodal domains of Pβ are contained in nodal domains of the functions Φβ,0 or Φβ,π2

).
On the other hand, we have δ(ω) = λ̂(2, 3), a contradiction. �

5.3. Analysis of the functions f(β, y) and g(β, y). Recall the expression of the
function f(β, y) defined in (5.4). For y ∈ (0, π3 ) ∪ (π3 ,

2π
3 ) ∪ (2π

3 , π),

f(β, y) := 3
2

sin(2y + β)
sin(3y) .

We have,

∂yf(β, y) = 3
2 sin2(3y) g(β, y),

where

g(β, y) = 2 sin(3y) cos(2y + β)− 3 cos(3y) sin(2y + β).

was defined in (5.5). Expanding g(β, y), and using the identity 1
sin2(y) = 1 + cot2(y),

we obtain

g(β, y) = sin5(y)
{

2 cos β(1 + 5 cot2(y))− sin β cot(y)(5 + 3 cot4(y))
}
.

It follows that

(5.12) g(β, y) = 0 and y ∈ (0, π)⇔ cot β = 1
2

cot(y) (5 + 3 cot4(y))
1 + 5 cot2(y) .

Lemma 5.9. The function,

(5.13) h(t) := 1
2
t(5 + 3t4)

1 + 5t2 ,

is an increasing bijection from R to R. As a consequence, the function

(5.14) y 7→ arccot (h(cot y))
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is an increasing bijection from (0, π) to (0, π). Furthermore,

(5.15)

t −∞ − 1√
3 0 1√

3 1
√

3 ∞

h(t) −∞ − 1√
3 0 1√

3
2
3

√
3 ∞

y 0 π
6

π
4

π
3

π
2

2π
3 π

arccot (h(cot y)) 0 π
6 arccot(2

3) π
3

π
2

2π
3 π

Proof. A straightforward computation gives

h′(t) = 5
2

(3t2 − 1)2(t2 + 1)
(1 + 5t2)2 .

The lemma follows. �

As a consequence, given β ∈ (0, π3 ), there exists a unique yβ ∈ (0, π3 ), such that
β = arccot (h(cot yβ)). It follows that, given β ∈ (0, π3 ), the function y 7→ f(β, y)
varies as indicated (5.16).

(5.16)

y 0 yβ
π
3

2π
3 π

∂yf(β, y) − 0 + ‖ + ‖ +

∞ ∞ ‖ ∞ ‖ ∞
f(β, y) ↘ ↗ ‖ ↗ ‖ ↗

mβ ‖ −∞ ‖ −∞

where

(5.17) mβ := 3
2

sin(2yβ + β)
sin(3yβ) .

Figure 5.3. Graph of the function f(β, ·), for β = π
8
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From Lemma 5.9, the definition of g(β, y) in (5.5), and the uniqueness of the zero
of the function y 7→ g(β, y), we deduce that

(5.18)


β = π

6 ⇒ yβ = π
6 ,

β > π
6 ⇒ β > yβ >

π
6 ,

β < π
6 ⇒ β < yβ <

π
6 ,

and from the definition of g(β, y), see (5.5),

(5.19)

 yπ
3−β = π

3 − yβ ,
yπ

6
= π

6 .

It turns out that y and β play a symmetric role. Instead of fixing β, we could fix
some η ∈ (0, π3 ). Then, there exists a unique βη = arccot(h(cot η)), and the function
y 7→ f(βη, y), has an infimum mβη at η.
The relation cot(β) = h (cot(y)) can also be rewritten as,
(5.20) tan(β) = ` (tan(y)) ,
where

(5.21) `(t) := 2t3(5 + t2)
3 + 5t4 .

We conclude that

(5.22) βη ∼
10
3 η3, as η → 0.

From (5.17), (5.14) and (5.18), we conclude that the function β 7→ mβ satisfies,

(5.23)

 mπ
3−β = mβ ,

mπ
6

= 3
2 .

Writing mη = f(βη, η) and using (5.22), we obtain that
(5.24) lim

η→0
mη = 1.

Finally from the definitions ofmβ = f(β, yβ) and of yβ, and using (5.18), we conclude
that

(5.25)


m′β > 0, for β < π

6 ,

m′β < 0, for β > π
6 ,

1 ≤ mβ ≤ 3
2 .

Furthermore, mβ = 1 if and only if β = 0 or β = π
2 , and mβ = 3

2 if and only if
β = π

6 .
Define the value θβ by the relation

(5.26) cot(θβ) = 3
2

sin(2yβ + β)
sin(3yβ) = 3

2
sin(2yβ + arccot(h(cot yβ)))

sin(3yβ)) .

Equivalently, the value θβ is defined by the equations

(5.27)
{ cot(β) = h (cot yβ) ,

2 cos θβ sin(3yβ)− 3 sin θβ sin(2yβ + β) = 0 .
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From the definition of f and (5.23), we conclude that

(5.28)


θπ

3−β = θβ ,

θπ
6

= arccot(3/2) ,
limβ→0 θβ = limβ→π

2
θβ = π

4 .

The graph of β 7→ θβ is symmetric with respect to β = π
6 , the function decreases

from π
4 to arccot(3/2) ≈ 0.588003 as β increases from 0 to π

6 , and then increases to
π
4 when β continues increasing to π

3 .

Remark 5.10. As pointed out above, when looking at the set {g(β, y) = 0}, β and
y play symmetric roles. Given β, there is a unique zero yβ, and conversely, given
y, there is a unique zero βy. In order to visualize the functions mβ and θβ, it is
simpler to look at β as a function of y, and to visualize mβy and θβy as functions of
y. Figure 5.4 displays the graphs of the functions βy = arccot (h(cot y)), mβy and
θβy .

(a) βy = arccot (h(cot y)) (b) mβy (c) θβy

Figure 5.4. Graphs as functions of y

5.4. The general case β ∈ (0, π3 ) and θ ∈ (0, π2 ). We write the eigenfunction as

(5.29)

Φβ,θ(x, y) = cos θ sin(2x) sin(3y) + sin θ sin(3x) sin(2y + β),
= sin(x) Ψβ,θ(x, y), where,

Ψβ,θ(x, y) = 2 cos θ cos(x) sin(3y)
+ sin θ(4 cos2(x)− 1) sin(2y + β),

and we also use the abbreviation Φ or Ψ to simplify notation.
The checkerboards associated with the function Pβ,

Pβ(x, y) = sin(2x) sin(3y) sin(3x) sin(2y + β) ,
are given in Figure 5.5. According to Proposition 5.6, the nodal set Z(Φ) is contained
in the set {Pβ ≤ 0} (the rectangles in white). The points marked “O” in the figure
are the common zeros of the family of functions Φβ,θ, for a fixed β ∈ (0, π3 ), and all
θ ∈ (0, π2 ). The function Φ does not vanish at the points marked “P”, so that Z(Φ)
does not pass through these points. The points marked “R” are regular points of
the boundary, the partial derivative ∂xΦ does not vanish at these points.



22 P. BÉRARD, B. HELFFER, AND R. KIWAN

(a) Grid with common zeros (b) Grid with prohibitions

Figure 5.5. Localization of the nodal set Z(Φβ,θ)

Properties 5.11. The following properties hold.

(1) For y0 ∈
{

0, π3 ,
2π
3 , π

}
, the function Ψ(x, y0) only vanishes at the points x = π

3
and x = 2π

3 . The nodal set Z(Φ) cannot hit the corresponding horizontal lines
elsewhere.

(2) For y0 ∈
{
π
2 −

β
2 , π −

β
2

}
, the function Ψ(x, y0) only vanishes at the point

x = π
2 . The nodal set Z(Φ) cannot hit the corresponding horizontal lines

elsewhere.
(3) By (5.6b) and (5.6c), at the common zeros marked “O”, the tangent to the

nodal line is oriented SouthEast–NorthWest, pointing to the white domains,
except on the bottom line where the orientation is SouthWest–NorthEast.

(4) According to Subsection 5.3 and (5.16), the function Ψ(0, y) has precisely
one zero in each interval (π3 ,

π
2 −

β
2 ) and (2π

3 , π−
β
2 ). The nodal set Z(Φ) hits

the boundary at a critical zero of order 2.
(5) According to Subsection 5.3 and (5.16), the function Ψ(π, y) has precisely

one zero in each interval (π2 −
β
2 ,

2π
3 ) and (π− β

2 , π). The nodal set Z(Φ) hits
the boundary at a critical zero of order 2. In the interval (0, π3 ), the function
Ψ(π, y) has 0, 1, or 2 zeros, depending on whether cot θ is less than, equal to,
or larger than mβ (defined in Equation (5.17)). In the first case, the nodal
set does not hit the boundary. In the second case, it hits the boundary at a
critical zero of order 3. In the third case, it hits the boundary at two critical
zeros of order 2.

From these properties, we deduce the general aspect of the nodal set Z(Φ), with
reference to the right hand picture in Figure 5.5.

Column 1: The nodal set in the rectangles A and B is a simple curve with
end points a boundary critical zero of order 2 and the common zero marked
“O”.

Column 2: The nodal set in the rectangles C, D and E is a simple curve with
end points the common zeros marked “O”.

Column 3: The nodal set in the rectangles F and G is a simple curve with
end points the common zeros marked “O”.
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Column 4: In the rectangles J and K, the nodal set is a simple curve with end
points the common zero marked “O” and a boundary critical zero of order
2. In the rectangle H, there are three different cases.

0 < θ < θβ: The nodal set is a simple curve joining the two common zeros
marked “O”.

θ = θβ : The nodal set consists in two arcs entering the rectangle at
the common zeros marked “O”, and meeting at the boundary critical
zero (π, yβ), of order 3.

θβ < θ < π
2 : The nodal set consists in two disjoint arcs entering the rec-

tangle at the common zeros marked “O”, and hitting the boundary at
two distinct critical zeros, each of order 2.

Remark 5.12. One can localize the position of the nodal curves by looking at their
intersections with the lines {x = x0}, i.e., at the zeros of the function Ψ(x0, y), and
by making use of (5.16).

One can summarize the preceding discussion as follows, see Figure 5.6. Fix some β ∈
(0, π3 ). Let yβ ∈ (0, π3 ) and θβ ∈ (0, π2 ), be defined by (5.12) and (5.26) respectively.
The nodal sets of the family {Φβ,θ}, with β fixed and θ ∈ (0, π2 ) present a bifurcation
at θ = θβ, as illustrated by Figure 5.6 (in this figure, β = π

4 ).
When θ = θβ, Figure (B), the nodal set consists in three simple regular curves which
do not intersect in M1. Two of these curves hit the boundary at the critical zero
(π, yβ), of order three. One of them hits the boundary part {x = 0}; the other hits
the boundary part {x = π}×(π3 ,

2π
3 ). The two end points of the third curve belong to

{x = 0} and {x = π} respectively. Except for the afore mentioned boundary critical
zero of order 3, the boundary critical zeros have order 2. There is no interior critical
zero.
When 0 < θ < θβ, Figure (A), the nodal set consists in three non-intersecting simple
regular curves. Two of them have one end point on each part of the boundary. The
third has two distinct end points on {x = π}. There are no interior critical zero.
The boundary critical zeros all have order 2.
When θβ < θ < π

2 , Figure (C), the nodal set consists in two non-intersecting simple
regular curves. They both have one end point on {x = 0}, the other on {x = π}.
These end points are critical zeros of order 2. There are no interior critical zeros.
In all three cases, the number of nodal domains (on M1) is 3.
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(a) 0 < θ < θβ

(b) θ = θβ

(c) θβ < θ < π
2

Figure 5.6. Z(Φβ,θ), with 0 < β < π
3 fixed, and 0 < θ < π

2

5.5. Special values β = 0 and β = π
3 , with θ ∈ (0, π2 ). The nodal sets Z(Φπ

3 ,θ
)

are nicer to visualize. They are displayed in Figure 5.7. The functions Φ0,θ are
Dirichlet eigenfunctions of the square (0, π)2. Their nodal sets have already been
studied in [26], see also [2] for more details. They are given in Figure 5.8. Recall
that Z(Φπ

3 ,θ
) = τπ

3
Z(Φ0,θ), see (3.5) and Figure 5.10.
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(a) 0 < θ < π
4

(b) θ = π
4

(c) π
4 < θ < π

2

Figure 5.7. Z(Φπ
3 ,θ

) for 0 < θ < π
2

We summarize the analysis of the nodal sets for β = π
3 . Write

(5.30)
{ Φπ

3 ,θ
(x, y) = cos θ sin(2x) sin(3y) + sin θ sin(3x) sin(2y + π

3 )
= −2 sin(x) sin(y − π

3 ) Γθ(x, y − π
3 ) ,

where

(5.31)
Γθ(x, y − π

3 ) = cos θ cos(x)(4 cos2(y − π
3 )− 1)

+ sin θ(4 cos2(x)− 1) cos(y − π
3 ) .
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(a) 0 < θ < π
4 (b) θ = π

4 (c) π
4 < θ < π

2

Figure 5.8. Z(Φ0,θ) for 0 < θ < π
2

Consider the checkerboards associated with the function,

(5.32)
Pπ

3
(x, y) = sin(2x) sin(3y) sin(3x) sin(2y + π

3 ),
= sin(2x) sin(3(y − π

3 )) sin(3x) sin(2(y − π
3 )),

and apply Proposition 5.6: the nodal set Φπ
3 ,θ

can only visit the white domains. It
passes through the points marked “O”, does not pass through the points marked
“P”. The points marked “R” are regular points at the boundary. The corresponding
checkerboard appears in Figure 5.9.

(a) Grid with common zeros (b) Grid with prohibitions

Figure 5.9. Location of the nodal set Z(Φπ
3 ,θ

)

Propositions 5.2–5.6 and Lemma 5.8 determine the nodal set Z(Φ0,θ) except in the
squares marked “U” and “V”, where a further analysis is necessary.

Analyzing the functions Γθ(x, 0) and Γθ(π, y − π
3 ), one finds that there are three

cases:
(1) when 0 < θ < π

4 , the nodal line entering “U” at (2π
3 ,

2π
3 ) does not hit

{
y = π

3

}
,

and hits the boundary in {π} × (π3 ,
2π
3 ) and there is a similar nodal line

entering “V” at (2π
3 , 0);

(2) when π
4 < θ < π

2 , the nodal line entering “U” at (2π
3 ,

2π
3 ) crosses

{
y = π

3

}
,

does not hit the boundary {π} × (0, 2π
3 ), and exits V at (2π

3 , 0);
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(3) when θ = π
4 , the nodal set in U ∪ V consists in two line segments, one from

(2π
3 ,

2π
3 ) to (π, π3 ), and a symmetric one from (2π

3 , 0) to (π, π3 ).
In the first two cases, the critical zeros have order 2; in the third case, the critical
zero (π, π3 ) has order 4, as indicated in Proposition 5.3, Assertion (3).
In the three cases, the eigenfunction Φ has four nodal domains.
Finally, Figure 5.10 illustrates the relations (3.5). More precisely, one can write

(5.33) Φβ+π
3 ,θ

(x, y) =
{ −Φβ,θ(x, y − π

3 ) if y ∈ [π3 , π] ,
−Φβ,θ(π − x, y + 2π

3 ) if y ∈ [0, π3 ] .
To pass from Z(Φ0,π4 ) (Figure 5.10, left) to Z(Φπ

3 ,
π
4
) = τπ

3
Z(Φ0,π4 ) (Figure 5.10,

right), divide the figure on the left along the black dashed horizontal line; trans-
late the lower part upwards by π

3 ; translate the upper part downwards by 2π
3 and

apply the symmetry with respect to
{
x = π

2

}
; glue the resulting domains along the

horizontal red line.
The proof of Lemma 5.1 is complete.

Figure 5.10. From Z(Φ0,π4 ) to Z(Φπ
3 ,
π
4
)

6. Isoperimetric Inequality and Faber-Krahn Property

We follow the proof given by C. Léna in [23], who refers to [6] and to the older [25].
A key role is played by the isoperimetric inequality in connection with the Faber-
Krahn inequality. For this purpose, we use Howards’s isoperimetric inequality for
the Klein bottle, [21, Section 7].

6.1. Isoperimetric inequality.

Theorem 6.1. [21, Theorem 7, case 1] Let S be a flat torus or a Klein bottle with
shortest closed geodesic of length ` and area A(S). Given 0 < A < A(S), the
least-perimeter region of area A is a circular disk if 0 < A ≤ `2/π.

Corollary 6.2. Let Ω be an open domain of M1 with perimeter `(Ω) and area A(Ω).
If A(Ω) < π then `(Ω) is greater than or equal to the length of a circular disk of the
same area:

`2(Ω) ≥ 4π2A(Ω).

Proof. We note indeed that an open set in M1 can be considered as an open set of a
flat Klein bottle. We have just to delete one line x = const on the Klein Bottle. �
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6.2. Faber-Krahn inequality.

Proposition 6.3. If Ω is an open connected set ofM1 with a piecewise C1 boundary,
and such that A(Ω) ≤ π, then:

λ1(Ω)A(Ω) ≥ πj2
0,1 .

Proof. The proof is given in [25] (with a more detailed proof analyzing more carefully
the regularity assumptions given in [6]). In the two papers additional assumptions
are made which are only used in the proof of the isoperimetric inequalities. We have
replaced them by Howards’s result [21]. Our proof gives also a variant of Léna’s
result on the torus (note that Léna gives an alternative proof). �

6.3. Weyl formula with control of the remainder. Following the classical proof
in Pleijel’s foundational paper [26], we need to find an explicit lower bound for the
counting function,

N(λ) = #{k | λk < λ},
whose main term as λ→ +∞ is given by the classical Weyl formula,

(6.1) N(λ) ∼ π

4 λ .

The coefficient π
4 in front of λ comes from the computation of 1

4πA(M1) in 2D, where
A(M1) is the area of M1. In our case, we have A(M1) = π2.
This asymptotics is sufficient for showing that the number of Courant-sharp eigen-
values is finite. To actually determine the Courant-sharp eigenvalues, we need a
lower bound for N(λ), valid for any λ ≥ 9. The case of the square was treated in
[26]. For the Möbius strip, we prove the following lower bound.

Proposition 6.4. The counting function of the Dirichlet eigenvalues of the Möbius
strip M1 satisfies,

(6.2) N(λ) ≥ π

4λ − 2
√
λ+ 1.

Proof. Let Dλ be the part of the closed disk of radius
√
λ in the first quadrant.

In view of Lemma 2.2 and (2.8), to each pair (m,n) ∈ Dλ, such that m+n odd and
m 6= 0, we associate a rectangle or a square, as follows:

• If n > 0, we associate the rectangle Rm,n = [m,m+ 1]× [n, n+ 2].
• If n = 0, (hence m odd positive), we associate the square Rm,0 = [m,m +

1]× [1, 2].
The following lemma will be useful to continue the proof.

Lemma 6.5. Let Iλ = {(m,n) ∈ Dλ;m+ n odd and m 6= 0}. Then,

(6.3) A(Dλ) ≤
∑

(m,n)∈Iλ

A(Rm,n) + 2
√
λ− 1

Proof. To prove this lemma, it is enough to prove that,
Dλ ⊂ [0, 1]× [0,

√
λ] ∪ [0,

√
λ]× [0, 1] ∪

⋃
(m,n)∈Iλ

Rm,n .

To see that, let us prove that for any number (x, y) ∈ Dλ, such that x > 1 and
y > 1, there is a pair (m,n) ∈ Iλ such that (x, y) ∈ Rm,n. Consider the integer m
such that m ≤ x ≤ m+ 1. Two cases are possible here:
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Figure 6.1. The square Rm,0 (red) and the rectangles Rm,n (color
depending on n)

• If m is odd, let n be the biggest even number less than or equal to y: (m,n)
is then in Iλ and (x, y) ∈ Rm,n.
• If m is even, let n be the biggest odd number less than or equal to y: (m,n)
is then in Iλ and (x, y) ∈ Rm,n.

For x ≤ 1 (resp. y ≤ 1), one can easily see that (x, y) belongs to the vertical strip
[0, 1] × [0,

√
λ] (resp. the horizontal strip [0,

√
λ] × [0, 1]). This ends the proof of

(6.3). �

To finish the proof of Proposition 6.2, it is enough to consider the multiplicity of
the eigenspace associated to each λ̂(m,n), one can indeed write,

N(λ) =
∑

(m,n)∈Dλ,m 6=0
A(Rm,n),

which is equivalent to (6.2). �

7. Upper bound for the Courant-sharp eigenvalues

This section is inspired by the paper of C. Léna on the torus [23].

Theorem 7.1. For k /∈ {1, 2, 7}, the eigenvalues λk of M1 are not Courant-sharp.

Before starting the proof of the theorem, we need the following two lemmas.

Lemma 7.2. If λ is an eigenvalue of the Laplacian on M1 with an associated eigen-
function u, and if the number of nodal domains ν(u) of u satisfies ν(u) ≥ 4, then
we have:

(7.1)
j2

0,1ν(u)
π

≤ λ
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Proof. If ν(u) ≥ 4, observing that the area of M = M1 is π2, there exists one nodal
domain D associated to u with area A(D) less than π2

4 , hence less than π. Applying
now (6.3) to D, we get:

(7.2) λ = λ1(D) ≥
πj2

0,1

A(D) ≥
ν(u)j2

0,1

π
.

�

We now apply this lemma to a Courant-sharp eigenvalue λk. By assumption, there
exists an eigenfunction uk with k nodal domains. Applying Lemma 7.2 to uk, we
get:

Proposition 7.3. If λk is a Courant-sharp eigenvalue of the Laplacian on M1, with
k ≥ 4, then,

(7.3) λk
k
≥ (j0,1)2

π
.

We can now give the proof of the theorem.

Proof of Theorem 7.1. Assume that λk is Courant-sharp. By Remark 1.1, N(λk) ≤
k − 1. Using (6.2) and (7.3), we conclude that P (

√
λk) ≥ 0, where

(7.4) P (x) := ( π
j2

0,1
− π

4 )x2 + 2x− 2 .

Eigenvalue (m,n) λk
λk π

(j0,1)2

λ1 (1, 0) 1 –
λ2 (1, 2), (2, 1) 5 –
λ6 (3, 0) 9 4.8891
λ7 (2, 3), (3, 2) 13 7.0620
λ11 (1, 4), (4, 1) 17 9.2349
λ15 (3, 4), (4, 3), (5, 0) 25 13.5807
λ20 (2, 5), (5, 2) 29 15.7536
λ24 (1, 6), (6, 1) 37 20.0995
λ28 (4, 5), (5, 4) 41 22.2724
λ32 (3, 6), (6, 3) 45 24.4453
λ36 (7, 0) 49 26.6182
λ37 (2, 7), (7, 2) 53 28.7911
λ41 (5, 6), (6, 5) 61 33.1370
λ45 (1, 8), (8, 1), (4, 7), (7, 4) 65 35.3099

Table 7.1. Courant-sharp vs Faber-Krahn

Since the quadratic function P is negative for x ≥ 8, Courant-sharp Dirichlet eigen-
values of M1 must be smaller that 64. The last step is to check the eigenvalues
smaller than 64. Table 7.1 lists the eigenvalues λk less than or equal to 65 which
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could be Courant-sharp, taking Remark 1.1 into account, together with the corre-
sponding ratio λk π

(j0,1)2 (which only makes sense for k ≥ 4). The only eigenvalue which
satisfies the Faber-Krahn condition k ≤ λk π

(j0,1)2 is λ7.

According to Lemma 5.1, the eigenvalue λ7 is not Courant-sharp.
�

Taking Proposition 3.3 into account, the proof of Theorem 1.2 is complete.

8. An Euler-type formula for the Möbius band

The Möbius band is a non-orientable surface with boundary, with Euler character-
istic 0, and one boundary component. Otherwise stated, it is a real projective plane
with one disk removed. A natural question is whether the non-orientability charac-
ter can be detected in the nodal patterns. The purpose of this section is to give a
positive answer.
Let Ω be a bounded connected open set in R2, with piecewise C1,+ boundary. The
following theorem appears in [20].

Proposition 8.1. Let D = {Di}ki=1 be a nodal k-partition of Ω, where the Di’s are
the k nodal domains of some Dirichlet eigenfunction Φ in Ω, and ∂D = Z(Φ). Let b0
denote the number of connected components of ∂Ω, and b1 the number of connected
components of ∂D ∪ ∂Ω. Let Ci(∂D) denote the set of interior critical zeros of Φ,
and Cb(∂D) the set of boundary critical zeros. Given x ∈ Ci(∂D), let ν(x) denote
the number of nodal semi-arcs at x; given y ∈ Cb(∂D), let ρ(y) denote the number
of nodal semi-arcs hitting the boundary at y. Then,

(8.1) k = 1 + b1 − b0 + 1
2

∑
x∈Ci(∂D)

(ν(x)− 2) + 1
2

∑
y∈Cb(∂D)

ρ(y) .

In the case of the Möbius strip, we expect the following Euler-type formula to hold.
It takes non-orientability into account.

Property 8.2. Let D be nodal k-partition of the Möbius stripM1. With the previous
notation, the following relation holds,

(8.2) k = ω(D) + b1 − b0 + 1
2

∑
x∈Ci(∂D)

(ν(x)− 2) + 1
2

∑
y∈Cb(∂D)

ρ(y) ,

where ω(D) = 0 if all the nodal domains are orientable, and ω(D) = 1 if one nodal
domain in non-orientable. In the latter case, it turns out that there is exactly one
non-orientable nodal domain.

Proof. We refer to [4] for the proof of Property 8.2 in the more general framework
of partitions. �

Remark 8.3. The Euler-type formula (8.1) actually holds for more general parti-
tions, [1, 20].

One can easily check that Property 8.2 is true for the nodal domains which appear
in Section 5, with ω(D) = 0 for all nodal patterns, except for the nodal pattern
in Figure 5.6 (C) for which ω(D) = 1, note that the nodal domain labeled “2” is
homeomorphic to a Möbius strip.
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Formula (8.2) can also be verified on the nodal patterns displayed in the following
figures. Figure 8.1 displays nodal patterns containing one Möbius strip, and one or
two non-simply connected, orientable nodal domains. Figure 8.2 displays the nodal
patterns of the function

cos θ sin(x) cos(my) + sin θ sin(mx) cos(y) , with m = 6,
for the values θ = 0.18 π and θ = 0.4π. In both cases, one of the nodal domains is
non-orientable, homeomorphic to a Möbius strip (left), or to a Möbius with holes
(right).

Figure 8.1. Nodal sets of sin(3x) and sin(5x)

Figure 8.2. Nodal sets with non-orientable nodal domains

9. High energy eigenfunctions with two nodal domains

From (2.8), we conclude that some of the Dirichlet eigenfunctions of the square
(0, π)2 are also Dirichlet eigenfunctions of the Möbius strip. This is in particular the
case of the eigenfunctions sin(x) sin(2ry) and sin(2rx) sin(y), where r is a positive
integer. According to a result of A. Stern, for ε > 0 small enough (depending on
r), the eigenfunction sin(x) sin(2ry) + (1 + ε) sin(2rx) sin(y) has precisely two nodal
domains. This is illustrated in Figure 9.1 and 9.2, we refer to [2] for detailed proofs.
Other examples involve linear combinations of sin(x) cos(2ry) and sin(2ry) cos(y),
see for example Figure 8.2 (left).
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Figure 9.1. Example à la Stern [1, 4]

Figure 9.2. Example à la Stern [1, 6]
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