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ABSTRACT The audible noise of AC filter capacitors is one of the major noise sources in High Voltage
Direct Current (HVDC) converter stations. In order to avoid the sharp noise of AC filter capacitors, it is
necessary to design aMultiple Harmonic Current Injection System (MHCIS) for power capacitors to analyze
their audible noise characteristics. Simulating effectively the noise of AC filter capacitors under their actual
working conditions in converter stations is the primary target of this proposed MHCIS. To ensure the
accuracy of the harmonic currents injected into the power capacitors, each harmonic current is detected and
controlled separately. On the basis of the instantaneous reactive power theory, a selective harmonic current
detection algorithm is proposed in this paper for the single-phase MHCIS. The amplitude of the selected
harmonic current can be tracked timely and exactly in d-q synchronous rotational coordinate system, such
that a Proportional Integral (PI) controller can be directly operated to eliminate the steady-state errors. The
experimental parameters are usually invariable in this system, the phase deviation of the selected harmonic
current is also fixed. Thus the phase angle offset of the corresponding harmonic current can be detected and
calculated to compensate the system inherent delay. Owing to the accurate detection and control of multiple
harmonic currents, the actual working conditions of AC filter capacitors can be accurately simulated, and the
reliable noise analysis results of power capacitors can be obtained. Finally, the proposed selective harmonic
current detection and control algorithm is verified by the theoretical analysis, simulation and experimental
results.

INDEX TERMS AC filter capacitor, current control, harmonic current, synchronous rotating frame.

I. INTRODUCTION
High Voltage Direct Current (HVDC) power networks are
widely applied in modern power grids, because of their abil-
ity of flexible control of DC and significant potential for
long-distance, high-capacity power transmission of regional
grids [1]. However, in HVDC converter stations, AC filter
capacitors generate audible harsh noise due to the flowing
multiple harmonic currents. The audible noise generation
mechanism and the relation between the harmonic currents
and audible noise are studied in [2]–[4]. Briefly, when the
multiple harmonic currents flow through the power capac-
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itor unit, the internal electric forces will cause the external
mechanical vibration, resulting in the harsh audible noise of
power capacitors.

In order to achieve the precise analysis results of noise and
vibration characteristics of power capacitors, it is necessary
to simulate effectively the working conditions of AC filter
capacitors. As the system impedance is different for differ-
ent harmonic current, different frequency signals will have
different characteristics. Besides, the AC filter capacitors’
noise characteristics are proved to be related to the current
frequency, magnitude and relative phase angle [5]. Therefore,
in order to achieve the accurate result of noise analysis for AC
filter capacitors, it is themost critical task to design aMultiple
Harmonic Current Injection System (MHCIS), in which the
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relative phase angle and magnitude of each harmonic current
can be detected and controlled.

How to detect the harmonic current quickly and accurately
in real-time is a pivotal part for MHCIS. A series of current
detection methods have been presented. Some methods in
frequency domain based on Fourier analysis are described
in [6]–[8]. Meanwhile, a lot of harmonic current detection
algorithms based on the instantaneous reactive power theory
have been proposed in time domain [9], such as p-q [10], [11]
and d-q [12] methods. Jing et al. [13] have introduced a
random harmonic current detection strategy to identify the
positive and negative sequence component of random har-
monic current. In two-phase stationary frame, a harmonic
and reactive current detection strategy without using any
coordinate transformation is proposed in [14].

In this paper, the proposed selective harmonic current
detection algorithm is also based on the theory of instanta-
neous reactive power.

The current regulation approaches in α-β stationary frame
based on the Proportional Resonant (PR) controller are
discussed in [15], [16]. PR controllers can offer infinite
gain for AC components at the specified frequency, thus
can eliminate the steady-state errors when tracking an
AC reference. Meanwhile, due to the fact that the magni-
tude obtained in synchronous rotating coordinate system is
DC components, the Proportional Integral (PI) controller can
be directly used in d-q synchronous rotating frame to offer
an infinite gain for DC components [17], [18]. Besides that,
P. Mattavelli et al. at [19] have proposed a repetitive-
based controller to compensate the selected harmonic current.
As the phase angle of harmonic will affect the results of the
harmonic compensation, a selective harmonic compensation
method based on the dynamic phasor theory is proposed
in active power filtering [20]. And an active compensation
method through the jittering of selective harmonic elimina-
tion phase angle is applied to high-power PWM converters’
system [21].

In this paper, a selective harmonic current control algo-
rithm based on the PI controller in multiple synchronous
rotating frames is proposed. The phase deviation of each
considered harmonic current is detected and calculated to
compensate the impact of the system inherent delay. After the
control of magnitude and compensation of phase angle offset
of the selected harmonic current in multiple synchronous
rotating frames, the output harmonic current can be realized
by inverse transformation.

This paper proposes a Multiple Harmonic Current
Injection System (MHCIS) for noise analysis of AC filter
capacitors in converter stations. Firstly, the simplified con-
figuration of the proposed system is introduced, and the
system modeling is built. Then the proposed harmonic cur-
rent detection algorithm is described based on the theory
of instantaneous reactive power. The amplitude and phase
angle of each selected harmonic current can be calculated.
After that, the PI current controller in multiple synchronous
coordinate systems is designed for each selected harmonic

TABLE 1. Harmonic currents distribution.

FIGURE 1. Structure block of MHCIS.

FIGURE 2. Simplified test bench of MHCIS.

current. Finally, the experimental results obtained byRT-LAB
platform are presented to verify the feasibility of the proposed
selective harmonic current detection and control strategy.

II. SYSTEM CONFIGURATION AND MODELING
The block diagram of MHCIS is shown in Fig.1 [22], [23],
which consists of harmonic power supply, tested capac-
itors, current transformer and control module, power
amplifier, compensation reactor and medium frequency
transformer (MFT).

The harmonic power supply can generate the specified
fundamental current and associated harmonic currents. The
parameters of each harmonic current, such as the reference
amplitude and the phase angle, can be designed in the har-
monic signal generator module. Table 1 shows the measured
values of harmonic currents for a power capacitor in a con-
verter station, which can be used as the reference values of
the system. Themeasured capacitor is of 38.5µF capacitance,
6.2kV rated voltage.

A. MODEL OF MULTIPLE HARMONIC CURRENT
INJECTION SYSTEM
A simplified test bench of MHCIS, shown in Fig.2, is built in
this work due to the limitation of laboratory. The low voltage
AC film capacitors replace the AC filter capacitors, which are
used as the tested capacitors, the compensation reactor and
the MFT are removed.

The power amplifier used in this system has its own voltage
and current closed-loop control. The power amplifier can be
modeled, approximately, as a first-order inertia system, and
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FIGURE 3. Model of the tested capacitor.

FIGURE 4. T/4 delay block.

the transfer function can be written as:

GAMP =
kPWM
1+ sτ

(1)

where kPWM is the proportional coefficient of the power
amplifier, and τ is the inertia time constant, which is usually
related to the sampling delay.

The tested capacitors can be considered as a series circuit
of resistor r and capacitor C , as shown in Fig.3.

The transfer function between the capacitor current IC (s)
and voltage UC (s) is expressed as

IC (s)
UC (s)

=
sC

sCr + 1
(2)

B. SELECTIVE HARMONIC CURRENT DETECTION
STRATEGY
The single-phase selective harmonic current detection strat-
egy designed in this paper for MHCIS is based on the multi-
ple synchronous rotating frame transformation principle and
instantaneous reactive power theory.

The transformation matrix cannot be directly used in a
single-phase system, due to the lack of the orthogonal cur-
rent signals. Thus a lot of studies about how to create the
quadrature signal from the original single-phase system have
been proposed [24], among which the most popular method is
the T /4 delay block (one-quarter of a period) for orthogonal
signal generator (OSG), owing to its simple digital implemen-
tation, as shown in Fig.4.

iα = i sin(θ )
iβ = i sin(θ + T/4n) = i cos(θ)
θ = nωt + ϕ

(3)

where iα is the original signal and iβ is generated by the
T /4 delay block, T is the fundamental period for ω = 100π ,
n is the harmonic order, and can take the values
of 1, 3, 5, 7, . . .

The traditional synchronous rotating frame is extended to
the specified frequency synchronous rotating frame based
on the instantaneous reactive power theory. The nth syn-
chronous rotating frame is taken for example. The α-β frame
is always stationary, while the d-q rotating coordinate system
is rotated with angular frequency nω, which is the angular
velocity for the nth harmonic current. The DC components

FIGURE 5. Relationship between the stationary and rotating reference
frames.

FIGURE 6. nth frequency current detection algorithm.

(idn, and iqn) can be obtained via the specified frequency syn-
chronous rotating frame transformation. The nth synchronous
rotating frame transformation matrix is defined as:

Cn =
[

cos(nω t) sin(nω t)
− sin(nω t) cos(nω t)

]
(4)

The relationship between the stationary and the nth syn-
chronous rotating coordinate system is shown in Fig. 5, where
nω is the angular frequency for the nth harmonic current.

The selected harmonic current is converted into the
DC value via the synchronous rotating coordinate system
at the corresponding frequency, while the currents at other
harmonic orders are always AC quantities via the same
synchronous rotating frame transformation matrix. There-
fore two Low-Pass Filers (LPFs) are added in the syn-
chronous rotating frame to filter the AC quantities. Hence
the DC components for the nth harmonic current can be
acquired, as shown in Fig. 6. Then the selected harmonic
current without any other harmonic order components can be
obtained again through the corresponding inverse transforma-
tion matrix, defined as:

C−1n =

[
cos(nω t) − sin(nω t)
sin(nω t) cos(nω t)

]
(5)

Fig.7 shows the flow chart of the selective harmonic current
detection algorithm for MHCIS proposed in this paper, and
the detection algorithm for the fundamental current is taken
for example. TheDC components obtained after the two LPFs
are īd1 and īq1, the amplitude of the fundamental current i1 can

be calculated by
√
ī2d1 + ī

2
q1. The corresponding phase angle

ϕ1 can be calculated as:

ϕ1 = arctan(īq1/īd1) (6)
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FIGURE 7. Harmonic current detection method.

FIGURE 8. Fundamental current closed-loop control diagram.

C. HARMONIC CURRENT CONTROL STRATEGY
In multiple synchronous rotating coordinate system, the har-
monic currents are transformed into DC quantities and
PI controllers can be used directly to eliminate the
steady-state errors.

The nth PI controller for the nth harmonic current in the
multiple synchronous rotating frame has the following stan-
dard transfer function:

Hn(s) = Kpn +
Kin
s

(7)

where Kpn and Kin are the proportional and integral coeffi-
cients respectively for the nth harmonic current, n can take
the values of 1, 3, 5, . . . , h, and h is the harmonic order.

The new control variables U∗d , U
∗
q which are the refer-

ence voltages of PI controllers for fundamental current, are
defined. Take only the d-axis frame into account, the transfer
function of the system can be expressed as:

U∗d
kPWM
sτ + 1

= Id (s)
sCr + 1
sC

(8)

where Id (s) is the amplitude of the fundamental current.
Fig.8 shows the current control model of the system under

the fundamental frequency synchronous rotating coordinate
system.

Thus the open-loop transfer function of the fundamental
current can be expressed as:

G(s) =
Kp1(s+ Ki1/Kp1)

s
·

kPWMCs
rCτ s2 + (rC + τ )s+ 1

(9)

Considering the dynamic response and robustness of
the system, we can let the value of bandwidth ωp equals
to 5-10 times ω0, where ω0 is the fundamental angular fre-
quency. Then selecting an appropriate phase margin for this
system, the values of the proportional coefficient Kp1 and
integral coefficient Ki1 for the fundamental current can be
calculated with the help of Bode diagram [25]–[27].

In order to remedy the impact of the system inherent
delay, a phase angle compensation segment is included in the
control loop. Since the parameters of this system are usually
invariable in the experiment, the phase angle offset of the
selected harmonic current is also constant. The operation flow
of MHCIS is shown in Fig. 9. In the pretreatment segment,
the phase deviation 1ϕn can be detected and calculated to
compensate the phase angle for the corresponding harmonic
current. Hence C−1n becomes:

C−1n =

[
cos(nωt +1ϕn) − sin(nωt +1ϕn)
sin(nωt +1ϕn) cos(nωt +1ϕn)

]
(10)

III. SIMULATION RESULTS
A. SIMULATION OF HARMONIC CURRENT DETECTION
METHOD
The simulation model of the harmonic currents detection
method proposed in this paper is built on the PSIM platform.
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FIGURE 9. Operation flow of MHCIS.

TABLE 2. Simulation parameters of harmonic currents.

The parameters design of LPF will influence the dynamic
response and precision of the system, so a second-order LPF
is used in this system and the cut-off frequency is 25 Hz,
considering the trade-off between the accuracy and dynamic
response. Table 2 shows the simulation parameters.

The simulation results of the detected amplitudes and
phase angles for the fundamental and 5th harmonic current are
shown in Figs.10 and 11, from which it can be seen that the
selective harmonic current amplitude and phase angle can be
detected accurately within 20-40ms. The ripples shown in the
phase angle detection results are caused by the characteristics
of the LPF.

The simulation results show that the selective harmonic
current detection algorithm proposed in this paper can meet
the MHCIS’s requirements for dynamic response.

B. SIMULATION OF HARMONIC CURRENT DETECTION
STRATEGY
In order to verify the effectiveness of the proposed selective
harmonic current detection and control method, the simula-
tion model of MHCIS has been built on the PSIM platform,

FIGURE 10. Harmonic current amplitude detection results:
(a) Fundamental current (b) 5th harmonic current.

and a single phase inverter model with dual closed-loop con-
trol has been designed. Table 3 gives the detailed simulation
parameters of the MHCIS.

The fundamental and 7th harmonic currents are taken for
examples, and the parameters of harmonic currents are given
in Table 4. Fig.12 shows the simulation results of single
order harmonic current, from which we can find that the
harmonic current can be detected and controlled accurately
within 1-2 fundamental cycles.

94028 VOLUME 8, 2020
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FIGURE 11. Detection results of phase angle for respective harmonic
current.

TABLE 3. Simulation parameters of the MHCIS.

TABLE 4. Parameters of harmonic current.

TABLE 5. Parameters of the superposed harmonic currents.

However, it is far from enough to show the effectiveness
of the proposed control strategy for MHCIS. Thus the funda-
mental current and the 3rd harmonic current are superposed
and then injected into the power capacitors to verify the fea-
sibility of the current control algorithm. The detailed param-
eters of the multiple harmonic currents are shown in Table 5.

The simulation results of multiple harmonic currents are
shown in Figs. 13 and 14. In order to make a comparison,
Fig. 13 shows the results that the phase angle is compensated,
while the results that the phase angle is uncompensated are
shown in Fig. 14.

IV. EXPERIMENTAL RESULTS
In the process of the experiment, harmonic power supply
generatesmultiple harmonic currents and its output frequency
ranges from 0 to 2.5 kHz. As shown in Fig. 2, the RT-LAB
hardware-in-the-loop simulation platform OP5600 is used in
the experiment. The dynamic system mathematical model of
Matlab/Simulink can be directly compiled and imported into
RT-LAB for real-time control and testing. It can be regarded
as the signal generator, ADC (Analog-Digital Converter),

TABLE 6. Interface parameters of RT-LAB.

TABLE 7. Parameters of the comparative experiments.

TABLE 8. Reference values of the harmonic currents.

FIGURE 12. Simulation results of current control: (a) Fundamental current
control (b) 7th harmonic current control.

DAC (Digital-AnalogConverter) and controller. Some impor-
tant interface parameters of RT-LAB are shown in Table 6.

The fixed step size of the system is 1/20k and the sampling
rate is 20 kHz. The frequency, amplitude and phase angle of
the reference current can be set up in the host computer, and
the experimental platform is shown in Fig. 15.

To verify the validity of the phase angle compensa-
tion strategy, the comparative experiments are carried out.
The detailed parameters about the experiments are shown
in Table 7.
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FIGURE 13. Simulation results of compensated phase.

FIGURE 14. Simulation results of uncompensated phase.

FIGURE 15. Experimental platform.

FIGURE 16. Experimental results of the uncompensated phase.

Figs. 16 and 17 show the results that the phase angles are
uncompensated and compensated respectively. Fig.16 shows
the distortion of the output current due to the system
impedance associated to the frequency. As shown in Fig.17,
the output current is symmetric because of the compen-

FIGURE 17. Experimental results of the compensated phase.

FIGURE 18. Experiment results of the harmonic currents injection system:
(a) harmonic currents injected into the power capacitor (b) the spectrum
of the injected currents.

FIGURE 19. Results of the abrupt load changing experiment.

sated phase angle. The compensated phase angle is shown
in Table 7.

Due to the limitation of experimental bench in the labora-
tory, the reference values of several typical harmonic currents
are shown in Table 8. In the pretreatment segment, the phase
offset of the corresponding harmonic current is detected,
calculated and used for the compensation.

After the compensation of phase angle for each har-
monic current, the MHICS designed in this paper can
steadily and accurately output themultiple harmonic currents.
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FIGURE 20. Results of the reference amplitude modification experiment.

The multiple harmonic currents that are injected into the
tested capacitors are shown in Fig. 18 (a), and Fig. 18 (b)
shows the results of spectrum analysis. As shown in the
spectrum, the amplitudes of the fundamental current, 5th

harmonic current, 7th harmonic current and 13th harmonic
current are about 4.98A, 1.2A, 4A, and 13.1A, respec-
tively. It is obvious that the output currents have the
same harmonic components compared to the reference
currents.

To prevent the harmful effects of sudden changes of exper-
imental environment parameters on the system, it is nec-
essary to verify the robustness and dynamic response of
the MHCIS. Then the abrupt load changing experiment and
the reference amplitude modification experiment are carried
out. Fig. 19 shows the results of the abrupt load chang-
ing experiment, where the load is changed from 400µF
to 600µF. It can be found that the current will be sta-
bilized after a sudden increase and the dynamic response
is about 30ms. Then Fig.20 shows the results of the ref-
erence amplitude modification experiment, where the ref-
erence amplitude of the current is changed from 10A to
15A, and the output current can follow the reference value
within 20-30ms. The experimental results show that dynamic
response of the proposed current control strategy can meet
the requirements of the audible noise analysis for AC filter
capacitor.

V. CONCLUSION
This paper proposes a selective harmonic current detec-
tion and control algorithm for MHCIS to analyze the noise
characteristics of AC filter capacitors. Based on the instan-
taneous reactive power theory, the transformation relation
between the stationary frame and synchronous rotating frame
is derived. In the preprocessing stage, it is essential to com-
pensate the phase offset caused by the system inherent delay.

The mathematical analysis and simulation results confirm
that the proposed selective harmonic current detection strat-
egy can accurately and timely detect the magnitude and phase
angle of each harmonic current.

The simulation results of MHCIS also show that the par-
alleled PI regulators in multiple synchronous rotating coordi-
nate systems are sufficient to provide zero steady-state error.
Finally, the experimental results validate that the MHCIS
designed in this paper can be applied to the audible noise
analysis for AC filter capacitors.
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