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Abstract—Accurate segmentation of uterus, uterine fibroids,
and spine from MR images is crucial for high intensity fo-
cused ultrasound (HIFU) therapy but remains still difficult to
achieve because of 1) the large shape and size variations among
individuals, 2) the low contrast between adjacent organs and
tissues, and 3) the unknown number of uterine fibroids. To
tackle this problem, in this paper, we propose a large kernel
Encoder-Decoder Network based on a 2D segmentation model.
The use of this large kernel can capture multi-scale contexts by
enlarging the valid receptive field. In addition, a deep multiple
atrous convolution block is also employed to enlarge the receptive
field and extract denser feature maps. Our approach is compared
to both conventional and other deep learning methods and
the experimental results conducted on a large dataset show its
effectiveness.

Index Terms—Encoder-Decoder, Global convolutional net-
works, HIFU, MR images, Segmentation, Uterine fibroids

I. INTRODUCTION

UTERINE fibroids are benign tumors, common and
present in up to 25% of women [1]. High intensity

focused ultrasound (HIFU) is a new noninvasive surgery
method for treating uterine fibroids. Magnetic Resonance
(MR) image is clinically used for their diagnosis and the
guidance of the HIFU procedure. The segmentation of uterus
and uterine fibroids is a prerequisite step for the planning of
HIFU treatment. However, the segmentation of the spine is
also important in order to avoid any injury to the spinal cord.
Manual delineation of the uterus, fibroids, and spine is a time-
consuming, tedious task and subject to intra-expert and inter-
expert variability during both pre- and post-treatment. Thus,
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Fig. 1. MR images of uterus regions in different patients. Red denotes the
fibroids, blue the uterus, and green the spine. (a) Patient 71 slice14 of raw
MR image. (b-f) The labeled images of Patient 71 slice14, Patient 84 slice14,
Patient 93 slice12, Patient 26 slice12, Patient 8 slice13. We can observe 1)
large shape and size variations among individuals; 2) a low contrast between
adjacent organs and tissues; 3) highly variable uterine fibroids numbers and
shapes.

an automatic and accurate segmentation method capable to
extract all these structures is of great importance.

Such an objective is challenging because of 1) large shape
and size variations among individuals. As it is shown in
Fig. 1, uterine and fibroids are highly variable in different
patients; 2) a low contrast between adjacent organs and
tissues. The contrast among uterus and uterine fibroids is
quite low, so the boundaries between organs are difficult to
distinguish; 3) the number of uterine fibroids and their
shapes are unknown. These issues are illustrated in Fig. 1.
Due to the above reasons, the existing methods dealing with
uterine fibroid segmentation are often applied after treatment,
while the pre-treatment is still performed manually by an
operator to mark uterus, fibroids and surrounding organs.
Therefore, in order to facilitate the development of a treatment
plan, a preoperative segmentation is required.

In recent years, deep learning (DL) methods have been
widely used in medical image segmentation [2], [3], [4].
However, they have to face the overall complexity of the
scenes under study. We propose here to derive comprehensive
anatomical information through a global convolutional net-
work (GCN) module based on a large valid receptive field and
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deep multiple atrous convolutions (DMAC) for hierarchically
structuring the information. By doing so, the performance
in locating and classifying the structures of interest can be
improved. Such semantic segmentation can be built upon the
Encoder-Decoder architecture already widely utilized. Inspired
by Fully Convolutional Network (FCN) [5] which was initially
designed for image classification, U-Net was proposed for
medical image segmentation by Ronneberger et al. [6] where
the pooling operators in FCN are replaced by upsampling
operators so that the output resolution can be retained at the
same size as the input. The state-of-the-art results of U-Net
in segmenting medical images, especially with small training
dataset, show a promising ability of this Encoder-Decoder
architecture. Basically, the Encoder aims to capture features
and reduce the spatial dimensions while the Decoder aims to
recover the object details and spatial dimension. Therefore,
in order to improve the performance of image segmentation,
more high-level features need to be automatically captured in
the encoder and more spatial information can be saved in the
decoder.

The U-Net was later extended in order to tackle different
problems. Cicek et al. [7] modified the initial U-Net architec-
ture by replacing all 2D operations with their 3D counterparts.
Milletari et al. [8] presented a novel 3D segmentation approach
(called V-Net) that leverages the power of a fully convolutional
neural network based on the Dice coefficient for processing
volumetric medical images such as MR images. In addition,
in contrast with 3D U-Net, the V-net formulates each stage by
using a residual function which can accelerate the convergence
rate. Many other U-Net based segmentation schemes have been
further reported for retinal vessels, liver and tumors in CT
scans, ischemic stroke lesion, intervertebral disc and pancreas
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20].

The U-Net shows a good segmentation performance with
the usage of skip connections which can concatenate two
feature maps of the same size in the corresponding parts
of the encoder and decoder. The concatenated feature maps
contain the information from both high and low levels, thus
achieving feature fusion under different scales to improve the
accuracy of model results. Even so, the complex anatomical
scene involved in our HIFU therapy application remains a
challenge. Large valid receptive fields play an important role
in global scene observation. Global convolutional network [21]
enables dense connections within a large region by using
spatial decomposed convolution with a large kernel. It can
capture multi-scale context cues with less computational cost
than a general convolution with a large kernel. Therefore,
we introduce layer-by-layer the GCN which has an efficient
kernel parameter number to enlarge the receptive field in our
Encoder-Decoder architecture.

In addition, getting the hierarchical structural information
can help to provide more contextual information at various
levels by using atrous convolutions. The key element of this
method is to insert holes into the convolution kernels, which
allows preserving the resolution and enlarging the receptive
field. Recently, atrous convolution has been widely used in
many deep learning architectures. DeepLab [22], based on

FCN and atrous convolutions, maintains the receptive field un-
changed. Besides, in order to get a better object segmentation
at multiple scales, in DeepLabV2 [23], Chen et al. Proposed
a module called atrous spatial pyramid pooling (ASPP) which
uses multiple parallel atrous convolutional layers with different
sampling rates. The use of atrous convolutions preserves the
spatial resolution of the final map and thus leads to higher
performance when compared to most methods in Encoder-
Decoder schemes. DeepLabV3+ [24] combines the advan-
tages of Xception [25] and Encoder-Decoder, which employs
DeepLabV3 [26] as the encoder.

However, the uncertainty regarding the location, the num-
bers and the sizes of uterine fibroids leads to an increase of
complexity for segmentation and many existing deep learning
segmentation models lack using features from different levels
efficiently. Subsequently, in some cases, the targets can be
segmented incorrectly. More effective feature extraction ap-
proaches are required for uterine fibroid segmentation.

Motivated by the above discussions and ResNet [27] struc-
tures, we propose a novel network named HIFUNet to segment
uterus, uterine fibroids and spine automatically. The main
contributions of the paper can be summarized as follows:

1) To address the segmentation errors (i.e., classifying
uterine neck as uterine fibroid because of insufficient recep-
tive field), we introduce a GCN module able to enlarge the
receptive field effectively.

2) We integrate the GCN and DMAC to further extract
context-based semantic information and generate more abstract
features for large scaled uterine fibroid.

3) The proposed HIFUNet behaves similarly to clinical
experts and, as it will be shown through a large number
of experiments, performs better than many existing semantic
segmentation networks.

4) The segmentation of the uterus and uterine fibroids is, to
the best of our knowledge, the first methodological attempt
using convolutional neural networks in HIFU therapy. The
inclusion of the spine segmentation, a critical organ in HIFU
therapy, is another major feature of our approach.

The structure of this paper is as follows: In Section II,
we describe up-to-date related work. Our solution is then
introduced in section III. Our experiments are reported in Sec-
tion IV, including performance comparisons with conventional
and other deep learning methods. In Section V, we draw some
conclusions and perspectives.

II. RELATED WORK

We sketch here the conventional methods proposed so far
for segmenting the uterus and uterine fibroids and we review
the state-of-the-art MR image segmentation methods based on
CNN architectures.

A. Conventional methods of uterus and uterine fibroid seg-
mentation

Very few contributions have been reported for segmenting
uterus and uterine fibroids from MR images. The main meth-
ods are summarized below:
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Approaches based on level-set: Ben-Zadok et al. [28] pre-
sented an interactive level set segmentation framework that
allows user feedback. It is a semi-automatic method where the
users have to select seed-points. Khotanlou et al. [29] proposed
a two-stage method combining the region-based level set [30]
and the hybrid Bresson methods [31]. Yao et al. [32] employed
a method based on a combination of fast marching level-set
and Laplacian level set.

Approaches based on Fuzzy C-Means (FCM): Fallahi et
al. [33] segmented the uterine fibroids by combining a fuzzy
C-Means method with some morphological operations. Later,
on the basis of [33], a two-step method [34] was pro-
posed by employing a Modified Possibilistic Fuzzy C-Means
(MPFCM) [35] in a second step.

Approaches based on region-growing: Militello et al. [36]
used a semi-automatic approach based on region-growing and
reported a quantitative and qualitative evaluation of the HIFU
treatment by providing the 3D model of the fibroid area. Rundo
et al. [37] presented a two-phase method where the first phase
is an automatic seed-region selection and region detection
while the second one is aimed at uterine fibroid segmentation.

Other mixed methods: Antila et al. [38] designed an auto-
matic segmentation pipeline without user input. They applied
the active shape model (ASM) to get the deformed surface, and
classified PV (perfused volume: the untreated tissue) and NPV
(non-perfused volume: the treated tissue) by an expectation
maximization (EM) algorithm. Militello et al. [39] proposed a
novel fully automatic method based on the unsupervised Fuzzy
C-Means clustering and iterative optimal threshold selection
algorithms for uterus and fibroid segmentation.

Recently, Rundo et al. [40] evaluated the above mentioned
two computer-assisted segmentation methods [37], [39] and
provided a quantitative comparison on segmentation accuracy
in terms of area-based and distance-based metrics. Their
results show that both methods remarkably outperform the
other ones.

However, there are still some limitations and drawbacks in
the conventional methods and a fully-automatic and accurate
method, able to reduce or even to remove pre-processing/post-
processing procedures as well as the interventions of the med-
ical physicists, is still expected. For this purpose, a detailed
comparison between the methods reported in [37] and [39]
and our method will be shown in Section IV.

B. Deep Learning Methods of MR Image Segmentation

Only a few attempts have been reported for the uterus seg-
mentation using CNN-based methods. Kurata et al. [41], [42]
evaluated the clinical feasibility of fully automatic uterine seg-
mentation on T2-weighted MR images based on an optimized
U-Net. The segmentation of uterus in this research was focused
on the staging of uterine endometrial cancer and on estimating
the extent of tumor invasion to the uterine myometrium. To
the best of our knowledge, there is no literature published on
the uterine fibroid segmentation using CNN-based methods.
Even so, it is important to highlight that many innovative
deep learning methods have been proposed for MR image
processing [43], [44]. The most common applications concern

segmentation of organs, substructures, or lesions, often as a
preprocessing step for feature extraction and classification.
Deep learning methods for MR image segmentation can be
divided into two different categories.

DL based on image patches: Features are extracted from a
local patch for every voxel using convolutional layers. These
features are then classified with a fully connected neural
network to obtain a label for every voxel. This method is for
instance widely used in brain tumor [45], white matter segmen-
tation in multiple sclerosis patients [46], normal components
of brain anatomy [47] and rectal cancer segmentation [48].
However, such methods have some disadvantages. The main
problem is that their computational efficiency is very low
because they have to process overlapping parts of the image.
Another disadvantage is that each voxel is segmented based
on a finite size context window, ignoring the broader context.
In some cases, more global information may be needed to
properly assign these labels to pixels or voxels.

Fully convolutional neural network (FCNN): In this case,
the entire image or a large portion is processed, the output
being a segmentation result instead of a label of a single
pixel or voxel. Such an approach solves the shortcomings of
the former method and improves the efficiency of the algo-
rithm. Many architectures can be considered for segmentation
among which, as mentioned in Section I, encoder-decoder
ones such as U-Net and its modified versions [9]-[20]. For
MR images, we refer to [43] for a full survey. Zhang et
al. [49] used CNN for segmenting the infant brain tissues
by combining T1, T2, and FA images into white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF). Brain
tumor segmentation was addressed in [50]. Avendi et al. [51]
associated DL algorithms with deformable models for the
left ventricle segmentation of the heart. Milletari et al. [8]
proposed a 3D image segmentation based on a volumetric,
fully convolutional, neural network. Their CNN was trained
end-to-end on MR image volumes depicting the prostate and
learned to predict segmentation for the whole volume at
once. Some universal architectures were also proposed (for
instance CE-Net by Gu et al. [52]) to address different clinical
applications.

However, our target presents significant differences with
these examples (i.e. brain, prostate, and heart). The defor-
mation of the uterus shape is very large among the patients.
The uterus position is also varying a lot. The high number
of surrounding organs together with their similarity in tissue
features makes more challenging the segmentation. In addition,
different kinds of uterine fibroids (such as subseries fibroids,
submucosal fibroids, intramural uterine fibroid tumors, pedun-
culated leiomyomas, and parasitic uterine fibroids) may be
located in different regions of the uterus, and the gray level
of these fibroids are affected by the signal intensity and other
experimental factors. All these considerations have guided the
design of our approach.

III. METHOD

To accurately segment the uterus, uterine fibroids and spine
from the raw MR images, we propose an Encoder-Decoder
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Fig. 2. The architecture of our proposal network (HIFUNet). The network consists of Resnet101 backbone, GCN module, DMAC module, upsampling layers,
concatenation layers, and an output layer. The parameters and sizes of output features in different layers are presented in different colors

global convolutional network. The whole pipeline is illustrated
in Fig. 2. This network (called HIFUNet) consists of three
major parts: the feature encoder module, the feature extractor
part (with the global convolution network and deep multiple
atrous convolutions) and the feature decoder module.

A. Encoder Module

The encoder part uses pre-trained ResNet101 [27]. In [53],
the authors demonstrated that the use of residual connections
promotes information propagation both forward and backward,
so it helps to improve significantly both the training speed
and the performance. Because we have only one channel in
our raw 2D input image, we change the original first portion
which forms three input channels to one channel and we obtain
64 channels after the first Conv1. Then, four feature extracting
blocks are employed. The first, second, third, and fourth stages
contain 3, 4, 23, and 3 bottlenecks respectively and each block
has no average pooling layer or fully connected layers.

B. Global Convolution Network

The current trend in architecture design goes toward stack-
ing small convolution kernels because this option is more
efficient than using a large convolution kernel with the same
amount of computation. However, considering that semantic
segmentation tasks require pixel-by-pixel segmentation predic-
tion, Peng et al. [21] proposed a global convolutional network
to improve the accuracy of classification and localization
simultaneously. In GCN, a fully-convolutional layer is adopted
to replace the global pooling layer in order to keep the
localization information. Besides, large kernels are introduced

Fig. 3. Global Convolutional Network

to increase the valid receptive field (VRF). However, using
a large kernel or a global convolution directly is inefficient.
To further improve the computational efficiency, GCN uses a
combination of two large 1D convolutional kernels to replace a
single 2D kernel for the skip-connector layer. The architecture
of GCN is shown in Fig. 3. The kernel size we use in our
segmentation approach is 11× 11.

C. Deep Multiple Atrous Convolutions

Atrous convolutions solve the problem of reduced resolution
caused by the Deep Convolutional Neural Networks (DCNNs)
while adjusting the receptive field of the filter. Fig. 4 illustrates
the atrous convolution. The main idea of atrous dilation
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Fig. 4. Atrous convolutions with 3× 3 kernel (blue blocks) and rates 1, 2 or
4

Fig. 5. Deep multiple atrous convolutions (DMAC) consist of five atrous
convolutional layers

rate convolution is to insert ”holes” (zeros) between pixels
in convolutional kernels to increase the image resolution,
enabling thus dense feature extraction in DCNNs. The atrous
convolution was initially proposed to efficiently compute the
undecimated wavelet transform [54] and the wavelet decom-
position [55] in the atrous scheme. In recent years, atrous
convolution has been widely used in tasks such as seman-
tic segmentation and object detection. The Deeplab series
[22]–[24], [26] and dense upsampling convolution (DUC) [56]
made thorough studies of atrous convolution. Fig. 5 shows our
proposed deep multiple atrous convolution scheme to achieve
multi-scale representations. We implement five convolutional
layers with 3×3 kernels with different sampling rates to extract
the different features. Finally, we fuse all features with the
input image to generate the final result.

When compared to the conventional network structure, our
deep multiple atrous convolutions can extract multiple features
and provide receptive fields of multiple sizes. It can be noticed
that the architecture of our atrous convolution scheme adopts
a serial frame instead of a parallel structure such as Inception
and Atrous Spatial Pyramid Pooling (ASPP). We employ the
DMAC block in the final layer of the encoder and this way
more abstract information can be exploited. Within the DMAC
block, as the layer is deeper, the dilation rate is getting larger.
Because of the kernel discontinuity, not all pixels are used for
calculation, so more atrous rate convolutions can compensate
for the uncalculated information in the serial structure, which
can increase the receptive field effectively. Besides, different
sizes of atrous rates can help to extract different sized targets
(from small fibroids to large organs like uterus or spine). The

serial structure can get global distribution information from
various scales of atrous convolution. The final step sums up as
the output the abstract information extracted from the multiple
layers. This output is then sent to the decoder phase in order
to recover the object details and spatial dimensions. Therefore,
in order to improve the performance of image segmentation,
more low and high-level features are automatically captured
in the encoder.

D. Decoder Module

The decoder module mainly uses the concatenation op-
eration to fuse the multi-scale features. U-Net concatenates
the downsampling feature maps with the corresponding up-
sampling feature maps. Here, this concatenation is performed
between two neighboring feature maps after the GCN modules
and this from the bottom to the top. After four concatenation
operations, the image scale increases from 1/32 to 1/2 of the
input image size. Then, we use a deconvolution operation to
enlarge the image scale to the initial size and to restore features
with more detailed information. Finally, the output mask
is obtained after applying two convolution operations and
softmax. As illustrated in Fig. 2, the decoder module mainly
includes four concatenation operations (a 1 × 1 convolution,
a 4 × 4 transposed convolution, and two 3 × 3 convolutions
consecutively). Then, the feature decoder module outputs a
mask with the same size as the original input.

E. Loss Function

The HIFUNet can be trained by minimizing the cross-
entropy error between its prediction result and the ground-
truth. The loss function is defined as

L =
∑
i∈Ω

yci log(pci) + (1− yci) log(1− pci) (1)

where pci denotes the predicted probability of c-th class
for pixel i in the predicted result p, yci ∈ {0, 1} is the
corresponding ground-truth value. If yci = 1, it means that
Pixel i belongs to the c-th class. If yci = 0, it means that
pixel i does not belong to the c-th class. c = 0 denotes the
background, c = 1 denotes the uterus, c = 2 denotes the
uterine fibroids while c = 3 denotes the spine. Ω denotes
the space of the predicted result of p and the ground-truth y.
By minimizing the loss function on a training database, the
parameters of HIFUNet can be optimized. Then the trained
HIFUNet can be applied for automated uterus, uterine fibroids
and spine segmentation on different datasets

F. Further Discussion

The main difference between our HIFUNet and other state-
of-the-art deep learning networks including GCN, HRNet, U-
Net, CE-Net, AttentionUNet, and LEDNet is summarized as
follows:
• GCN uses large kernels to enlarge the effective receptive

field which can help classify different objects. Different
from GCN, in order to exploit more abstract information,
HIFUNet adds an original DMAC block which improves
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the accuracy of segmentation of key parts such as the
cervix and minor fibroids.

• HRNet relies on a parallel structure enabling the model
to connect multi-resolution subnetworks in a novel and
effective way. It starts from a high-resolution subnetwork
as the first stage and gradually adds high-to-low reso-
lution subnetworks one by one to form more stages, the
multiresolution subnet- works being connected in parallel.
The main difference is that HIFUNet and HRNet use
different ways for computing high-resolution representa-
tion. Our HIFUNet employs the way of recovering high-
resolution representations from low-resolution represen-
tations outputted by a network (e.g. ResNet). While in
HRNet, the authors propose another way that maintaining
high-resolution representations through high-resolution
convolutions and strengthening the representations with
parallel low-resolution convolutions.

• U-Net uses a simple downsampling way to extract fea-
tures while HIFUNet uses ResNet101 as the backbone to
extract more features. We add large kernels in the skip-
connections to increase the valid receptive field (VRF).

• CE-Net uses the Dense Atrous Convolution (DAC) mod-
ule with multi-scale convolution and the Residual Multi-
kernel Pooling (RMP) with multi-scale pooling at the
bottom to extract and decode multi-scale features in
parallel, as well directly integrate them. It ignores the
global scene content at each level which further enhance
the localization effect of the skip connection, as well as
the progressivity and the correlativity among the multi-
scale structure.
Especially different from the CE-Net, the proposed HI-
FUNet adopts GCN in each skip connection between the
encoder and the decoder. So that it is able to embed global
scene information in the decoder, avoiding the global
scene information loss in the dimension reduction during
encoding. Besides, the HIFUNet also employs DMAC
with the series structure and hierarchical fusion at the
bottom of the encoder to progressively and correlatively
extract multi-scale structure for the semantic objects.

• AttentionUNet proposes a novel Attention Gate (AG)
model for medical imaging that automatically learns to
focus on target structures of varying shapes and sizes,
which brings a risk of transmitting multiplicative error
along with the network.
CE-Net and AttentionUNet are both based on the U-Net
and keep the way of extracting features in the encoder
of U-Net. Differently, we choose to use a ResNet-101
pretrained on ImageNet as our backbone, which can
be easier to train ResNet than training simple deep
convolutional neural networks and resolve the problem
of accuracy degradation.

• LEDNet aims at real-time semantic image segmentation.
It employs an asymmetric encoder-decoder architecture.
The encoder adopts a ResNet as the backbone network,
where two new operations, channel split and shuffle,
are utilized in each residual block to greatly reduce the
computational cost while maintaining a higher segmenta-
tion accuracy. On the other hand, an Attention Pyramid

TABLE I
THE SCAN PARAMETERS AND CHARACTERISTICS OF MR DATASETS

Variable Value
Repetition time (TR) 3040 ms

echo time (TE) 107.5 ms
field of view (FOV) 28× 22.4 cm

slice thickness 6 mm
slice gap 1 mm

matrix 304× 304
age (years) 40.8± 6.6∗

*Age is Meanvalue ± S.D

Network (APN) is employed in the decoder to further
decrease the entire network complexity.
In our task, we pay more attention to the segmentation
accuracy than to the efficiency of training. In the decoder
part, LEDNet focuses on the last feature map from the
encoder network, while some low-level features can be
let out, which is not conducive to recovering detailed
information . Therefore, we choose to recover the high-
resolution information by concatenating low- and high-
level features, which can help to identify the objects of
all sizes and the details in complex medical images.

IV. EXPERIMENT AND DISCUSSIONS

A. Datasets
The preoperative fat-suppressed T2-weighted MR images in

the sagittal direction from 297 patients were used in this work.
These images were collected from the First Affiliated Hospital
of Chongqing Medical University. Sagittal T2-weighted fast
spin-echo images were performed using a 3.0T MR unit
(Signa HD Excite, GE Healthcare, Marlborough, MA) with
an eight-channel phased-array coil. The scan parameters and
characteristics of MR images are shown in Table I

Each MR volume consists of 25 slices of 304 × 304
pixels. The ground truth has been generated through a proper
annotation process. To ensure an objective and consistent clin-
ical reference, two radiologists were solicited for consensus
agreement. This procedure included three steps:
1) Annotations through discussions: The discussion between
two radiologists A (7-year experience) and B (15-year expe-
rience) was held in a face-to-face mode to set the annotation
rules and identify special and complicated cases. It appeared,
in this application, that the variability of the annotations
mainly exists on the contour of the cervix and some minor
fibroids.
2) The radiologist A took 2 months in annotating (no more
than 5 volumes per day). After annotating 10 volumes, a
second face-to-face discussion was held to analyze the first-
round annotation, and improve the annotation rule further.
3) Then the radiologist A processed all cases (297 patients).
Radiologist B checked all results and marked the cases which
have some divergent views. Then, they held a face-to-face
discussion and solved these situations.

After the above three steps, a full agreement between the
two radiologists was obtained.

The research associated with the treatment of uterine fi-
broids was approved by the ethics committee and has no
implication on patient treatment.
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B. Experimental Setup

1) Training and testing phase: We used for training and
testing MR images from 260 and 37 patients, respectively.
The number of images in the testing set is 925. The use of
a small amount of training data can result in overfitting. To
prevent overfitting due to the limited number of images, the
training data were augmented by image manipulation [57]. We
applied the random shifting and scaling strategies (zoom range
of 0.1, the shift of 0.5 mm).

2) Parameter settings and platform: For the optimization
of our network, we use the Adam optimizer and set the initial
learning rate to 2e-4. After each epoch, if we observe that the
validation loss does not decrease for three consecutive times,
the learning rate is reduced to 1/5 of its current value until
it stops at 5e-7. Therefore, the number of training epochs is
determined by the decreasing learning rate. The batch size
is set to 8. All the comparative experiments adopt the same
strategy for updating the hyperparameters. Besides, in the
ablation study, the hyperparameters are fixed when removing
parts of the network.

Our proposed network is based on the pretrained ResNet101
model on ImageNet. Notice that we adapt the first convolution
operation because, as mentioned in III-A, we have a single
channel input image instead of RGB channels like in natural
images. The implementation is carried out on the PyTorch
platform. The training and testing bed are ubuntu 16.04 system
with NVIDIA Titan XP GPU (12 GB memory) and CUDA 9.0.

C. Evaluation Metrics

Different quantitative measures are used to comprehensively
evaluate and compare the segmentation performance with
other methods. We use the area-based indexes to compare the
predicted segmentation results with the ground-truth manu-
ally labeled by radiologists. These indexes include the Dice
coefficient (DSC) [58], Precision [59], Sensitivity (SE) [60],
Specificity (SP) [60], Jaccard index (JI) [61], False Positive
Ratio (FPR), False Negative Ratio (FNR) and False Region
Ratio (FRR) [40]. We also use the distance-based indexes
to evaluate the segmentation in terms of the location and
shape accuracy of the extracted region boundaries such as
the Mean Absolute Distance (MAD [40], Maximum Distance
(MAXD) [40] and Hausdorff Distance (HD) [62].

D. Comparison with Conventional Methods and Discussion

As mentioned in Section II-A, Rundo et al. [37] and
Militello et al. [39] proposed to segment uterine fibroids
after treatment and evaluated them in [40]. We compare their
methods with our method on the same dataset (fat-suppressed
T2-weighted MR images composed of 375 slices issued from
15 patients).

It can be noticed that the above two methods are based on
the fact that ablated fibroids appear as homogeneous hypo-
intense regions with respect to the rest of the uterus (after
contrast medium injection). Before the treatment, all kinds of
fibroids appear as different states, which makes the segmenta-
tion task harder. For all patients, area-based and distance-based
indexes were computed based on a slice-by-slice comparison

and were performed on each slice having a fibroid area. The
results are displayed in Table II. They show the superiority
of the proposed method over the other two approaches and
demonstrate its ability for uterine fibroid segmentation.

Some visual results are depicted in Fig. 6. It can be seen
that, in the Patient 4, the gray level values around the area
outlined by the circles have little difference from adjacent
tissue. While in the post-treatment MR images the ablated
tissue does not absorb the contrast medium and is hypo-intense
with respect to the uterus, the use of simple adaptive global
thresholding and region growing methods remains possible.
However, the quality of the MR images is affected by noise
which may lead to gray values in the regions of uterine fibroids
similar to those of the surrounding tissues. As it is shown
in Patient 7, there are two fibroids that appear with different
signal strengths because of the different moisture contents:
one is dark and the other one is bright. Thus, it is difficult for
IOTS to distinguish the two different grayscale distributions of
fibroids. SM&RG fails to identify the contour of fibroids and
assimilates the uterus to fibroids. The segmentation provided
by our DL method is close to the ground-truth segmented by
the clinical experts.

Additional comments on the two methods used here for
comparison deserve to be made. The uterus ROI segmentation
is a preliminary step for a robust fibroid detection in [40]. This
task can be accomplished manually by the user to remove parts
outside the uterus which are present in sagittal sections [37]
or can rely on the Fuzzy C-Means (FCM) [39], which is an
automatic method but where the number of clusters is set
according to a visual inspection (i.e. anatomical properties of
the analyzed pelvic images by considering image features) and
experimental evidence (by means of segmentation trials). It
means that the intervention of the experts is indispensable and
that a complex and time-consuming preprocessing is needed
before applying the intensity-based clustering technique. In
conclusion, although these conventional methods have some
merits in terms of performance, they show some practical
limits in the clinical setting.

E. Comparison with Other Deep Learning Methods

We compare our method with six state-of-the-art (SOTA) al-
gorithms, including U-Net [6], Attention-Unet [20], GCN [21],
CE-Net [52], HRNet [63], LEDNet [64]. Their original imple-
mentations were kept and the same experimental conditions
were used.

We select four of these competitive methods (U-Net, GCN,
HRNet and CE-Net) to visually compare our method in
Fig. 7 where the segmentation results are overlaid on the
raw images. Different colors denote different classes (red
denotes the fibroids, blue the uterus and green the spine).
The images show that our method provides more accurate
results. The performance of the six selected methods is
presented in Table III for quantitative comparison. Among
them, HRNet is the best method for segmenting uterus and
fibroids. Besides, for the spine which has a high contrast with
adjacent tissues, the introduction of the attention mechanism
(i.e. AttentionUNet) performs quite well. However, overall
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TABLE II
VALUES OF AREA-BASED AND DISTANCE-BASED FOR SEGMENTING UTERINE FIBROIDS USING DIFFERENT METHODS ON T2-WEIGHTED MR IMAGES

Method area-based distance-based
DSC(%) Precision(%) SE(%) SP(%) JI(%) FPR FNR FRR MAD MAXD HD

ITOS [39] 80.50 76.83 89.03 98.22 69.34 0.018 0.110 0.540 2.432 7.893 8.893
SM&RG [37] 81.15 77.74 89.47 98.33 72.13 0.017 0.105 0.429 3.422 11.536 12.935

Proposed 86.58 88.17 88.45 99.53 78.45 0.005 0.116 0.709 2.955 9.365 16.372

Fig. 6. Visualization of the segmentation results of uterine fibroids by using the proposed method and methods in [37], [39] for two patients. Red denotes the
fibroids, and the yellow and green circles point out incorrect segmentation of uterine fibroids due to the little gray value difference with surrounding tissues

the best results are obtained by our method. Regarding the
computation cost, we choose the GPU memory requirements
and the test time for evaluating each slice to evaluate. Because
of using ResNet as our backbone, our HIFUNet has a larger
number of parameters. However, in clinical applications, the
accuracy of the segmentation is much more important than
the computation cost. From Table III, we can see that the
performance of HIFUNet is significantly better in comparison
to the other methods. We found it acceptable that the increases
in computational costs are negligible for the improvement in
accuracy. The computational cost of our method at test time
can be borne by a standard GPU.

As can be seen from Fig. 7, the fibroids are more difficult
to segment than the uterus, due to their unclear boundaries
and undefined shapes. For patient 9, GCN and HRNet fail to
segment the spine. For patient 8, U-Net, HRNet and CE-Net
lead to incomplete segmentations. We can also observe the

crucial role of the large receptive field used in our approach.
Fig. 8 and Fig. 9 show the DSC of uterus and fibroid
segmentation results in the form of box plots. Our method
provides the best and steadiest performance in segmenting both
uterus and fibroids while the performance of HRNet is slightly
weaker.

F. Ablation Study
1) DMAC block: We first conducted ablation studies and

validated the effectiveness of our DMAC block using the same
training strategy and datasets. The original GCN (GCN-no
DMAC [21]) was compared with the modified GCN (GCN-
DMAC) with a DMAC block added in the last layer. In the
proposed HIFUNet (Proposed-DMAC), the DMAC block was
put in the last layer and before the operation of global convo-
lution. Comparisons were performed between the Proposed-
DMAC, removal of DMAC block (Proposed-no DMAC) and



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020 9

Fig. 7. Visualization of the segmentation results of uterus, fibroids and spine by using the proposed method and other four SOTA methods. From top to
bottom are three different patients. Red denotes the fibroids, blue denotes uterus, and green denotes spine

TABLE III
QUANTITATIVE COMPARISON OF THREE EVALUATION INDEXES OF DIFFERENT SEGMENTATION METHODS ON TESTING DATASET (THE BEST RESULTS ARE

INDICATED IN BOLD)

Method Uterus Fibroid Spine Memory Test timeDSC Precision Recall DSC Precision Recall DSC Precision Recall
GCN [21] 79.44% 79.27% 80.37% 80.43% 82.88% 80.04% 80.50% 85.14% 77.74% 464.96M 108.25ms

HRNet [63] 80.43% 78.29% 83.45% 80.88% 85.39% 80.76% 85.45% 83.77% 86.50% 561.88M 165.55ms
U-Net [6] 75.34% 76.97% 74.81% 77.58% 78.39% 79.23% 78.15% 89.10% 71.46% 317.97M 14.56ms

CE-Net [52] 74.69% 75.42% 74.99% 76.38% 75.05% 80.66% 82.48% 86.99% 79.15% 123.22M 105.77ms
AttentionUNet [20] 74.79% 76.08% 74.56% 76.24% 74.97% 81.18% 83.28% 88.54% 79.25% 927.34M 159.12ms

LEDNet [64] 77.87% 77.10% 79.46% 78.92% 83.71% 76.12% 79.02% 87.19% 74.19% 121.37M 73.84ms
Proposed 82.37% 79.45% 86.00% 83.51% 84.48% 83.70% 85.01% 82.51% 88.69% 503.71M 109.83ms

Fig. 8. The qualitative uterus segmentation performance is presented as
boxplots. The y axis indicates the DSC values, while the x axis corresponds
to the different methods (Unfilled circles denote the suspected outliers)

insertion of the DMAC after the global convolutional operation
(Proposed-DMAC behind). Table IV shows the results of this
study together with the time needed for each training epoch.
They point out that the segmentation results are not signif-
icantly improved for GCN-DMAC. Concerning the DMAC
position in our method, the computation time is strongly
reduced when it is behind but the performance is worse than
DMAC in-front (i.e. Proposed-DMAC).

Fig. 9. The qualitative fibroid segmentation performance is presented as
boxplots. The y axis indicates the DSC values, while the x axis specifies
the different methods (Unfilled circles denote the suspected outliers)

Some images are shown in Fig. 10 for visual inspection.
GCN leads to a relatively good segmentation of uterus and
spine but the boundary of the fibroids is clearly inaccurate, and
most parts of the fibroids fail to be labeled out. Adding the
DMAC helps to refine the inaccurate boundary of the uterus
and correct to some extent the wrong segmentation of fibroids.
When replacing GCN by our proposed main structure, two
fibroids are labeled out successfully with accurate boundaries
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TABLE IV
THE MEAN DSC AND COMPUTATION TIME OF DIFFERENT SEGMENTATION
METHODS USING DMAC BLOCK (THE BEST RESULTS ARE INDICATED IN

BOLD)

Method DSC Time (s)Uterus Fibroids Spine
GCN-no DMAC 79.44% 80.43% 80.50% 164

GCN-DMAC 80.15% 81.08% 80.01% 161
Proposed-no DMAC 76.87% 78.84% 84.28% 479

Proposed-DMAC behind 77.72% 77.47% 80.89% 441
Proposed-DMAC 82.37% 83.51% 85.01% 1094

Fig. 10. Visualization of the segmentation results of uterus, fibroids and spine
from two patients by using different methods which are mentioned in Table IV.
From left to right: ground-truth, GCN [21], GCN with DMAC, our proposed
method without/with DMAC. Red denotes the fibroids, blue denotes uterus,
and green denotes spine. Details are drawn by red box to see apparently

(see Patient 20 slice 13) which shows the advantage of our
main structure. In the same slice, by comparing GCN and the
Proposed-no DMAC, the boundary of the spine is corrected,
which confirms the previous observation. A slightly better
result can be achieved with DMAC. In all cases, our method
labels both the uterus and the inside fibroids accurately which
shows the effectiveness of the proposed DMAC. In particular,
by comparing the last two columns, we can conclude that
DMAC can extract the features of a large receptive field in
a multi-scale context from multi-level feature maps.

2) Decoder method: In our approach, we replace the sum-
mation operation in GCN by a concatenation operation in U-
Net. Besides, in the procedure of upsampling, the deconvolu-
tion operation is employed to recover the original image size
and to get the output mask. Recent contributions focus on the
use of an upsampling module to upsample a low-resolution
feature map given high-resolution feature maps as guidance.
For instance, Joint Pyramid Upsampling (JPU) [65] aims
at generating a high-resolution target image by transferring
details and structures from the guidance image. Dupsampling
(DUP) [66] was also proposed to replace the standard bilinear
upsampling to recover the final pixel-wise prediction. The
DUP takes advantage of the redundancy in the label space of
semantic segmentation and is able to recover the pixel-wise
prediction from low-resolution outputs of CNNs.

We report here the experiments made in order to compare
different ways of decoding. Inspired by Octave Convolu-

tion [67], in which Chen proposed to store and process low-
frequency and high-frequency characteristics respectively, we
plan to deal with low and high channels separately. Also
motivated by the Inception module [68] which employed
a split-transform-merge strategy, we design a Channel-Split
module that splits channels of each feature map after the
GCN module into high and low channels and then we use
concatenation and summation operations to integrate features
of different layers in a continuous way. Different from Octave
Convolution in [67] which is an operation as a direct replace-
ment of vanilla convolutions, Channel-Split (CS) is a decoder
strategy to change the way of merging different channels from
different layers. Another decoding method is shown in Fig. 2.
It removes the operations of summation in each layer and
mainly uses deconvolution and concatenation. We name it
Concatenation-Decoding (CD).

We train the three networks, with JPU or CS or CD
as decoder respectively. The backbone here is the encoder
of ResNet101 with GCN block and DMAC block. DUP is
not trained because there is no formal code implementa-
tion of it. The comparison experiments are based on the
same training parameter settings over the same training
and validation dataset. The quantitative assessment is per-
formed on the same testing dataset. The implementation
of the JPU refers to the official PyTorch version on http-
s://github.com/wuhuikai/FastFCN.

As it is shown in Table V, CD is much better than JPU
and CS methods, with a benefit in DSC varying between 6%
and 16% for uterus. It can be concluded that concatenation
helps to recover the features especially in complex contexts
and multiple targets. The summation is applied in the shortcuts
(skip connections) in ResNet. It can help the network to speed
up the training process and improve the gradient flow since
the shortcuts are taken from previous convolution operations.
Therefore, it is effective for the backpropagation to transfer
error corrections to earlier layers, which can address the
problem of vanishing gradient. However, due to the summation
of the different channels or feature maps in CS, it may be
difficult for the networks to distinguish different targets or
recover the object details in the decoder. In contrast, the
concatenation in CD operates on the feature maps generated
by different filter sizes and keeps the information of different
resolution feature maps since the information of features is not
lost by summing up. JPU mainly uses the last three layers in
the encoder. Therefore, the features of multiple objects in our
complicated context may not be fully exploited by employing
JPU.

V. CONCLUSION

In this paper, we have proposed a global convolutional
network with deep multiple atrous convolutions to segment
uterus, uterine fibroids and spine automatically. The employ-
ment of the DMAC block allows capturing effectively more
low and high-level features.

Experimental results on the same datasets and platform
demonstrated (i) the accuracy and robustness of the proposed
method, (ii) a significant improvement when compared to
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TABLE V
THE PERFORMANCE ON TESTING DATASET BY USING DIFFERENT DECODER METHODS (THE BEST RESULTS ARE INDICATED IN BOLD)

Method Uterus Fibroid Spine
DSC Precision Recall DSC Precision Recall DSC Precision Recall

Backbone+JPU 66.26% 70.44% 63.37% 67.36% 70.20% 66.74% 66.07% 76.90% 58.79%
Backbone+CS 76.37% 80.77% 73.27% 80.06% 79.55% 83.31% 83.88% 87.45% 81.37%

Backbone+CD (Proposed) 82.37% 79.45% 86.00% 83.51% 84.48% 83.70% 85.01% 82.51% 88.69%

state-of-the-art segmentation methods and (iii) the perfor-
mance could be close to radiologist level.

Although the proposed method shows promising results,
some boundary inaccuracies may still be present in patients de-
picting multiple fibroids (see the left fibroid in the first row of
Fig. 10). We plan to improve our approach by working directly
in 3D (i.e. 3D convolutional filters) instead of dealing with 2D
slices. This will make the training issues (improving efficiency
and reducing training time) more critical. Other ideas should
also be explored such as the use of prior anatomical and
pathological knowledge on the uterus and spine. Coupling
our approach with other techniques (active contour models,
for instance) to refine the boundaries of the uterus and spine
may also offer a sound way to correct the remaining errors
mentioned above.
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X. Lladó, “Deep convolutional neural networks for brain image analysis
on magnetic resonance imaging: a review,” Artif Intell Med, vol. 95, pp.
64–81, apr 2019.

[51] M. Avendi, A. Kheradvar, and H. Jafarkhani, “A combined deep-learning
and deformable-model approach to fully automatic segmentation of the
left ventricle in cardiac MRI,” Med Image Anal, vol. 30, pp. 108–119,
may 2016.

[52] Z. Gu, J. Cheng, H. Fu, K. Zhou, H. Hao, Y. Zhao, T. Zhang, S. Gao,
and J. Liu, “CE-net: context encoder network for 2D medical image
segmentation,” IEEE Trans Med Imag, vol. 38, no. 10, pp. 2281–2292,
oct 2019.

[53] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
Inception-ResNet and the impact of residual connections on learning,”
in Proc. of the Thirty-First AAAI Conference on Artificial Intelligence,
2017, pp. 4278–4284.

[54] M. Holschneider, R. Kronland-Martinet, J. Morlet, and P. Tchamitchian,
“A real-time algorithm for signal analysis with the help of the wavelet
transform,” in Wavelets. Inverse problems and theoretical imaging, 1990,
pp. 286–297.

[55] J.-M. Combes, A. Grossmann, and P. Tchamitchian, Eds., Wavelets.
Time-Frequency Methods and Phase Space Proceedings of the Inter-
national Conference, ser. Inverse problems and theoretical imaging.
Springer, 1990.

[56] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrell,
“Understanding convolution for semantic segmentation,” in 2018 IEEE
Winter Conference on Applications of Computer Vision (WACV), mar
2018.

[57] Z. Hussain, F. Gimenez, D. Yi, and D. Rubin, “Differential data
augmentation techniques for medical imaging classification tasks.” in
AMIA ... Annual Symposium proceedings, vol. 2017, 2017, pp. 979–984.

[58] L. R. Dice, “Measures of the amount of ecologic association between
species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[59] F. C. Monteiro and A. C. Campilho, “Performance evaluation of image
segmentation,” in Image Analysis and Recognition. ICIAR 2006, ser.
Lecture Notes in Computer Science, vol. 4141, 2006, pp. 248–259.

[60] R. Trevethan, “Sensitivity, specificity, and predictive values: foundations,
pliabilities, and pitfalls in research and practice,” Front Public Health,
vol. 5, nov 2017.

[61] P. Jaccard, “The distribution of the flora in the alpine zone,” New Phytol,
vol. 11, no. 2, pp. 37–50, feb 1912.

[62] J. Henrikson, “Completeness and total boundedness of the Hausdorff
metric,” MIT Undergraduate Journal of Mathematics, 1999.

[63] K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang,
W. Liu, and J. Wang, “High-resolution representations for labeling pixels
and regions,” in ArXiV, no. 1904.04514v1, 2019.

[64] Y. Wang, Q. Zhou, J. Liu, J. Xiong, G. Gao, X. Wu, and L. J. Latecki,
“LEDNet: a lightweight encoder-decoder network for real-time semantic
segmentation,” in ArXiV, no. 1905.02423v3, 2019.

[65] H. Wu, J. Zhang, K. Huang, K. Liang, and Y. Yu, “FastFCN: rethinking
dilated convolution in the backbone for semantic segmentation,” in
ArXiV, no. 1903.11816v1, 2019.

[66] Z. Tian, T. He, C. Shen, and Y. Yan, “Decoders matter for semantic
segmentation: data-dependent decoding enables flexible feature aggre-
gation,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), jun 2019, pp. 3121–3130.

[67] Y. Chen, H. Fan, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan, and
J. Feng, “Drop an Octave: Reducing spatial redundancy in convolutional
neural networks with Octave convolution,” in arXiv, no. 1904.05049v3,
2019.

[68] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the Inception architecture for computer vision,” in 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), jun 2016,
pp. 2818–2826.


