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NUMERICAL SOLUTION OF LARGE-SCALE LYAPUNOV EQUATIONS
AND MODEL REDUCTION PROBLEMS USING AN

EXTENDED-RATIONAL BLOCK ARNOLDI METHOD

O.ABIDI∗, M.A. HAMADI ∗† , K. JBILOU ∗† , Y. KAOUANE† , AND A. RATNANI†

Abstract. In this paper, we propose a new block Krylov-type subspace method for model reduction
in large scale dynamical systems. We also show how this method can be used to extract an approximate
low rank solution of large-scale Lyapunov equations. We project the initial problem onto a new subspace,
generated as combination of Rational and Polynomial block Krylov subspaces. Algebraic properties are
given such as expressions of the error between the original and reduced transfer functions. Besides, a
simplified expression of the residual, that allows us to compute the approximate solution in an efficient
way, is established. Furthermore, we present an adaptive strategy of the interpolation points that will be
used in the construction of our new block Krylov subspace. Numerical results are finally reported using
some ”benchmark examples” to confirm the performance of our method compared with other known
methods.

Key words. dynamical systems, Krylov subspaces, transfer function, model order reduction, Lya-
punov equations.

AMS subject classifications. 65F10, 65F30

1. Introduction.

In recent past, a various model reduction methods for Multiple Input Multiple Out-
put system (MIMO, in short) have been explored. Some of them are based on the Krylov
subspace methods (moment matching) while others use balanced truncation [1, 23, 28],
Padé approximation [37], Optimal Hankel norm [19, 20].

We consider the following multi-input multi-output (MIMO) linear time-invariant (LTI,
in short) system, described by the state-space equations

{
ẋ(t) = Ax(t) +B u(t)
y(t) = C x(t),

(1.1)

where x(t) ∈ Rn denotes the state vector, u(t), y(t) ∈ Rp are the input and the output
vectors of the system (1.1) respectively. The system matrices B,CT ∈ Rn×p and A ∈
Rn×n are supposed to be large and sparse. The transfer function associated to the above
system is given by :

F (s) = C (s In −A)−1B. (1.2)

The goal of model reduction is to produce a smaller order system with a state-space form
: {

ẋm(t) = Am xm(t) +Bm u(t)
ym(t) = Cm xm(t),

(1.3)
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with the associated transfer function Fm given by

Fm(s) = Cm (s Im −Am)−1Bm, (1.4)

where Am ∈ Rm×m and Bm, C
T
m ∈ Rm×p, with (m� n).

One of the most popular techniques used for model reduction methods, is based on
interpolation and moment matching methods are treated e.g., in [4, 16, 21, 26, 29]. These
methods use Polynomial block Krylov subspace

Kpoly
m (A, V ) = colspan{B,AB,A2B, . . . , Am−1B}.

Extended block Krylov subspace

Kpoly
m (A, V ) = colspan{A−mB, . . . , A−1B,B,AB,A2B, . . . , Am−1B}.

or Rational block Krylov subspace

Krat
m (A,B) = colspan{(s1I −A)−1B, . . . ,

m∏
i=1

(siI −A)−1B},

where {s1, . . . , sm} are some selected complex shifts. The procedure of Rational Krylov
subspace was originally proposed by Ruhe [35], in the context of approximating interior
eigenvalues and has been used during the last years for model order reduction, see [21].
The aim of those methods is to build reduced models whose transfer function (1.4) inter-
polates the original system transfer function (1.2) at selected interpolation points. These
methods enable us to construct a reduced order systems, at a short time and with ap-
propriate computational requirements, via a projection using bases of a particular Krylov
subspaces. In this paper, we are interested in the projection of the original problem (1.1)
onto a new block Krylov subspace to obtain a low order model. The new block Krylov
subspace called the ”Extended-Rational” is defined as a combination of the rational and
the polynomial block Krylov subspaces. One of the issues in this method is the selection
of shifts that are used in the construction of the Extended-Rational block Krylov. Diverse
methods have been proposed in the literature to construct the interpolation points see,
e.g., [15, 21]. In [6, 24] authors proposed an Iterative Rational Krylov Algorithm (IRKA,
in short) to compute a reduced order model satisfying the first order conditions for the
H2 approximation.
The remainder of this paper is organised as follows. Section 2 describes the new block
Krylov subspace projection framework and derives some algebraic properties. An adap-
tive strategy for the selection of the shifts, that are used in the construction of the
Extended-Rational block Krylov subspace, and an expression of the error between the
original transfer function and its approximation are presented in Section 3. In Section
4, we show how to extract a low rank approximate solution to Lyapunov equations. In
Section 5 we treat the model reduction of second-order systems. Finally in Section 6, we
provide some numerical examples to show the effectiveness of our method.

2. Block Extended-Rational method.
The general idea of this section is to provide a new subspace Krylov richer than the ratio-
nal Krylov subspace. To this end, we introduce the Extended-Rational block Krylov sub-
space which is a subspace of Rn, denoted by Km(A,B), spanned by the columns of the ma-
trices Ak B, k = 0, . . . ,m−1 and (s1I−A)−1B, (s1I−A)−1(s2I−A)−1B, . . . ,

∏m
i=1(siI−
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A)−1B. This subspace is defined by

Km(A,B) := colspan({
m∏
i=1

(siI−A)−1B, . . . , , (s1I−A)−1B,B,AB,A2B, . . . , Am−1B}),

where s1, . . . , sm are some selected complex parameters. As in all projection methods
we need to provide an orthonormal basis of the subspace where the projection occurs.
For this, we introduce the Extended-Rational Arnoldi algorithm based on the Gram-
Schmidt orthogonalization process. We start with the pair {B, (s1I−A)−1B} and we add
simultaneously two vectors at a time, one multiplied by A and the other by (sjI−A)−1B
at each iteration. Here we need to mention that we can use the decomposition LU to
compute the inverse of (sjI−A), but when we deal with large matrices we can use iterative
solvers with preconditioners instead. The Extended-Rational block Arnoldi algorithm
generates a sequence of blocks {V1, . . . , Vm} of size (n×2p), such that their columns form
an orthonormal basis of the Extended-Rational block Krylov subspace Km(A,B). The
algorithm is defined as follows

Algorithm 1 The Extended-Rational (block) Arnoldi algorithm

• Inputs: A ∈ Rn×n, B ∈ Rn×p, {s1, . . . , sm} ⊂ C and m.
• Compute [V1,Λ] = QR([B, (s1I −A)−1B]), V1 = [V1].
• For j = 1, . . . ,m

1. Set V
(1)
j : first p columns of Vj ; V

(2)
j : second p columns of Vj .

2. Ṽj+1 = [AV
(1)
j , (sjI −A)−1 V

(2)
j ].

3. Orthogonalize Ṽj+1 with respect to to V1, . . . ,Vj to get Vj+1, i.e.,
for i = 1, 2, . . . , j

Hi,j = (Vi)
T Ṽj+1;

Ṽj+1 = Ṽj+1 − ViHi,j ;
end for

4. [Vj+1, Hj+1,j ] = QR(Ṽj+1).
5. Vj+1 = [Vj , Vj+1].

End For.

The matrix Vm = [V1, V2, . . . , Vm] ∈ Rn×2mp with Vi ∈ Rn×2p have their columns mu-
tually orthogonal provided that none of the upper triangular matrices Hj+1,j are rank
deficient. Hence, after m steps, Algorithm 1 builds an orthonormal basis Vm of the
Extended-Rational block Krylov subspace Km(A,B) and an upper block Hessenberg ma-
trix Hm ∈ R2mp×2mp whose non zero blocks are the Hi,j . Note that each submatrix Hi,j

(1 ≤ i ≤ j ≤ m) is of order 2p× 2p.
We consider the following notations :
Vo

m,Ve
m are the matrices of Rn×mp formed by the block columns of the odd and the even

indices of the matrix Vm.
H̄o

m, H̄e
m are the matrices of R2(m+1)p×mp formed by the block columns of the odd and the

even indices of the matrix H̄m ∈ R2(m+1)p×2(m+1)p an upper block Hessenberg matrix,
defined as

H̄m =

[
Hm

Hm+1,mE
T
m

]
,
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where Em = [02p, . . . , 02p, I2p] ∈ R2p×2mp and Hm+1,m ∈ R2p×2p defined as

Hm+1,m =

[
H

(1,1)
m+1,m H

(1,2)
m+1,m

0 H
(2,2)
m+1,m

]
.

Proposition 2.1. Let Vm+1 = [V1, . . . , Vm+1], by using the above notation we get

AVo
m = Vm+1H̄o

m, (2.1)

AVm+1H̄e
m = Vm+1H̄e

mSm − Ve
m, (2.2)

where Sm = [s1Ip; . . . ; smIp].

Proof. Assuming that [V1, . . . , Vj ] has been computed, we seek for Vj+1 = [V
(1)
j+1, V

(2)
j+1]

∈ Rn×2p. In Algorithm 1 a Gram-shmidt process is used in order to get Vj+1, we can
sum up this process in the following result :

Vj+1Hj+1,j = [AV
(1)
j , (sjI −A)−1V

(2)
j ]−

j∑
i=1

ViHi,j , for j = 1, . . . ,m. (2.3)

Let Vj , Hi,j and Hj+1,j be defined by the following partition form :

Vj = [V
(1)
j , V

(2)
j ], Hi,j =

[
H

(1,1)
i,j H

(1,2)
i,j

H
(2,1)
i,j H

(2,2)
i,j

]
, Hj+1,j =

[
H

(1,1)
j+1,j H

(1,2)
j+1,j

0 H
(2,2)
j+1,j

]
,

we can rewrite (2.3) as
AV

(1)
j =

j+1∑
i=1

Vi

[
H

(1,1)
i,j

H
(2,1)
i,j

]
withH

(21)
j+1,j = 0

(sjI −A)−1V
(2)
j =

j+1∑
i=1

Vi

[
H

(1,2)
i,j

H
(2,2)
i,j

]


for j = 1, . . . ,m (2.4)

then as
AV

(1)
j =

j+1∑
i=1

Vi

[
H

(1,1)
i,j

H
(2,1)
i,j

]
withH

(2,1)
j+1,j = 0

A

j+1∑
i=1

Vi

[
H

(1,2)
i,j

H
(2,2)
i,j

]
= sj

j+1∑
i=1

Vi

[
H

(1,2)
i,j

H
(2,2)
i,j

]
− V (2)

j


for j = 1, . . . ,m (2.5)

finally, we get

AVo
m = Vm+1H̄o

m,

AVm+1H̄e
m = Vm+1H̄e

mSm − Ve
m,

where Sm = [s1Ip; . . . ; smIp].
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Let Lm = [VT
m(s1I −A)−1V1,VT

m(s2I −A)−1V2, . . . ,VT
m(smI −A)−1Vm] := [Li,j ], where

Li,j = V T
i (sjI −A)−1Vj ∈ R2p×2p. Notice that we can verify that Lm has a block upper

Hessenberg form, also the first p columns of Li,j with i > j, are zero i.e.,

Li,j = V T
i (sjI −A)−1Vj =

[
0 L

(12)
i,j

0 L
(22)
i,j

]
with i > j.

The next result enable us to compute the block (Li,j)i,j=1,...,m using just a few inner
product and the blocks (Hi,j) which is already obtained form Algorithm 1.

Proposition 2.2. Let the blocks Li,j and Hi,j as defined earlier for i, j = 1, . . . ,m
and consider the following partition

Li,j = [V T
i (sjI −A)−1V

(1)
j , V T

i (sjI −A)−1V
(2)
j ],

where V
(1)
j , V

(2)
j are the first and last p columns of Vj.

Then we have the following

1. VT
m(s1I −A)−1V

(1)
1 = (ê1Λ(1,2) + ê2Λ(2,2))(Λ(1,1))−1,

2. VT
m(sjI −A)−1V

(2)
j =

j+1∑
i=1

Ẽi

[
H

(1,2)
i,j

H
(2,2)
i,j

]
. for j = 1, . . . ,m,

3. VT
m+1(sj+1I −A)−1V

(1)
j+1 = (sj+1VT

m+1(sj+1I −A)−1V
(1)
j − êj

−
j∑

i=1

VT
m+1(sj+1I −A)−1Vi

[
H

(1,1)
i,j

H
(2,1)
i,j

]
)(H

(1,1)
j+1,j)

−1,

where êj = VT
m+1V

(1)
j = ej ⊗ Ip, ei is the vectors of the canonical basis and Ẽi =

VT
mVi = ẽi ⊗ I2p with ẽi is the vectors of the canonical basis.

Proof. We know from Algorithm 1 that

[B, (s1I −A)−1B] = V1Λ = [V
(1)
1 , V

(2)
1 ]

[
Λ(1,1) Λ(1,2)

0 Λ(2,2)

]
,

then

B = V
(1)
1 Λ(1,1) and (s1I −A)−1B = V

(1)
1 Λ(1,2) + V

(2)
1 Λ(2,2).

Thus, if Λ(1,1) is non-singular, we obtain (1)

VT
m(s1I −A)−1V

(1)
1 = (ẽ1Λ(1,2) + ẽ2Λ(2,2))(Λ(1,1))−1.

In order to get (2), we use the partition (2.3)

(sjI −A)−1V
(2)
j =

j+1∑
i=1

Vi

[
H

(1,2)
i,j

H
(2,2)
i,j

]
,

then, we obtain

VT
m(sjI −A)−1V

(2)
j =

j+1∑
i=1

Ẽi

[
H

(1,2)
i,j

H
(2,2)
i,j

]
.

5



where, Ẽi = VT
mVi = ei ⊗ I2p and ei is the vectors of the canonical basis.

For the last (3), we proceed as follow :
we know from the partition (1) that

AV
(1)
j =

j+1∑
i=1

Vi

[
H

(1,1)
i,j

H
(2,1)
i,j

]
with H

(2,1)
j+1,j = 0,

V
(1)
j+1H

(1,1)
j+1,j = AV

(1)
j −

j∑
i=1

Vi

[
H

(1,1)
i,j

H
(2,1)
i,j

]
,

then we obtain

sj+1V
(1)
j − V (1)

j+1H
(1,1)
j+1,j = sj+1V

(1)
j −AV (1)

j +

j∑
i=1

Vi

[
H

(1,1)
i,j

H
(2,1)
i,j

]
,

V
(1)
j+1H

(1,1)
j+1,j = sj+1V

(1)
j − (sj+1I −A)V

(1)
j −

j∑
i=1

Vi

[
H

(1,1)
i,j

H
(2,1)
i,j

]
,

(sj+1I −A)−1V
(1)
j+1H

(1,1)
j+1,j = sj+1(sj+1I −A)−1V

(1)
j − V (1)

j

−
j∑

i=1

(sj+1I −A)−1Vi

[
H

(1,1)
i,j

H
(2,1)
i,j

]
.

Then, if (H
(11)
j+1,j)

−1 is non-singular we get

VT
m+1(sj+1I −A)−1V

(1)
j+1 = (sj+1VT

m+1(sj+1I −A)−1V
(1)
j − êj

−
j∑

i=1

VT
m+1(sj+1I −A)−1Vi

[
H

(1,1)
i,j

H
(2,1)
i,j

]
)(H

(1,1)
j+1,j)

−1,

where êj = VT
m+1V

(1)
j = ej ⊗ Ip and ei is the vectors of the canonical basis.

Remark 1. Notice that a solution of the shifted linear system given by (sj+1I−A) is
needed in order to get the last relation for j = 1, . . . ,m. Fortunately, this shifted system
has been already solved at each iteration j in the previous Algorithm 1.

Let Ti,j = (Vi)
T AVj ∈ R2p×2p and Tm = [Ti,j ] ∈ R2mp×2mp be the restriction of the

matrix A to the extended-rational Krylov subspace Km(A,B), i.e.,

Tm = VT
mAVm.

The matrix Tm is of great importance for the model reduction by projection methods.
When we manipulate big size model, the direct calculus of the matrix Tm is of an elevated
cost.
In the sequel, we give a recursion to compute Tm from Hm without requiring matrix-
vector products with A and extra inner products of long vectors (block-vectors). First,
we provide some notations:

• Let [B, (s1I − A)−1B] := V1Λ be the QR decomposition of [B, (s1I − A)−1B]
which can be written as

[B, (s1I −A)−1B] = V1Λ = [V
(1)
1 , V

(2)
1 ]

[
Λ(1,1) Λ(1,2)

0 Λ(2,2)

]
. (2.6)
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• For j = 1, . . . ,m, let the upper triangular matrix Hj+1,j be under the form

Hj+1,j =

[
H

(1,1)
j+1,j H

(1,2)
j+1,

0 H
(2,2)
j+1,j

]
.

The following result enables us to compute Tm directly from the columns of the upper
block Hessenberg matrix Hm obtained from Algorithm 1.

Proposition 2.3. Let Tm and Hm be the upper block Hessenberg matrices defined
earlier. Then we have the following, for j = 1, . . . ,m

Tm ẽ2j−1 =

[
Hj

02(m−j)s×2js

]
= Hm ẽ2j−1, (2.7)

Tm ẽ2 =
[
s1

[
I2p

02mp×2p

] [
Λ(1,2)

Λ(2,2)

]
− Tm ẽ1 Λ(1,2) − ẽ1 Λ(1,1)

]
(Λ(2,2))−1, (2.8)

and

Tm+1 ẽ2j+2 =
(
sjHm ẽ2j −

[
Tj

02(m−j)s×2js

]
Hj ẽ2j

− Tm+1 ẽ2j+1H
(1,2)
j+1,j − ẽ2j

)
(H

(2,2)
j+1,j)

−1, (2.9)

where ẽi = ei ⊗ Ip and ei is the vectors of the canonical basis.

Proof. Let Vj = [V
(1)
j , V

(2)
j ] ∈ Rn×2p for j ≥ 1. We notice from Algorithm 1 that

V̂j+1 = [AV
(1)
j , (sjI −A)−1 V

(2)
j ]− Vj Hj [ẽ2j−1, ẽ2j ], (2.10)

and

Vj+1Hj+1,j = V̂j+1. (2.11)

Using (2.10) and (2.11), we obtain

AV
(1)
j = V̂j+1 ẽ1 + Vj Hj ẽ2j−1 = Vj+1Hj+1,j ẽ1 + Vj Hj ẽ2j−1

= Vj+1Hj ẽ2j−1,

and by multiplying on the left by VT
m+1, we get

VT
m+1AV

(1)
j = VT

m+1 Vj+1 Hj ẽ2j−1,

hence,

VT
m+1AVm ẽ2j−1 =

[
I2(j+1)s

02(m−j)s×2(j+1)s

]
Hj ẽ2j−1,

and so

Tm ẽ2j−1 =

[
Hj

02(m−j)s×2js

]
= Hm ẽ2j−1.
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the (2.7) holds.
To prove (2.8), we start from the QR decomposition of [B, (s1I −A)−1B] given in (2.6)

[B, (s1I −A)−1B] = [V
(1)
1 Λ(1,1), V

(1)
1 Λ(1,2) + V

(2)
1 Λ(2,2)].

Then

(s1I −A)−1B = V
(1)
1 Λ(1,2) + V

(2)
1 Λ(2,2).

Now, multiplying on the left by (s1I −A), we get

B = s1[V
(1)
1 , V

(2)
1 ]

[
Λ(1,2)

Λ(2,2)

]
−AV (1)

1 Λ(1,2) −AV (2)
1 Λ(2,2),

and since B = V
(1)
1 Λ(1,1), we have

AV
(2)
1 Λ(2,2) = s1V1

[
Λ(1,2)

Λ(2,2)

]
−AV (1)

1 Λ(1,2) − V (1)
1 Λ(1,1).

Then, if Λ(2,2) is nonsingular, assertion (2.8) holds by pre-multiplying the above equal-

ity on the left by VT
m+1 and using the facts that VT

m+1 V
(1)
1 = (e1 ⊗ Ip) = ẽ1 and

VT
m+1AV

(i)
1 = Tm (ei ⊗ Ip) = Tm ẽi for i = 1, 2.

Now, in order to prove (2.9), we use (2.10) and (2.11), to get

(sjI −A)−1 V
(2)
j = V̂j+1 ẽ2 + Vj Hj ẽ2j = Vj+1Hj+1,j ẽ2 + Vj Hj ẽ2j .

Multiplying by (sjI −A) on the left, we get

V
(2)
j = sj

[
Vj+1Hj+1,j ẽ2 + Vj Hj ẽ2j

]
−AVj+1Hj+1,j ẽ2 −AVj Hj ẽ2j ,

and since

AVj+1Hj+1,j ẽ2 = AV
(1)
j+1H

(1,2)
j+1,j +AV

(2)
j+1H

(2,2)
j+1,j ,

we deduce the following

AV
(2)
j+1H

(2,2)
j+1,j = sj

[
Vj+1Hj+1,j ẽ2 + Vj Hj ẽ2j

]
−AVj Hj ẽ2j −AV (1)

j+1H
(1,2)
j+1,j − V

(2)
j

= sjVj+1Hj ẽ2j −AVj Hj ẽ2j −AV (1)
j+1H

(1,2)
j+1,j − V

(2)
j .

Finally, multiplying on the left by VT
m+1, we get

Tm+1 ẽ2j+2 =
[
sj

[
I2(j+1)s

02(m−j)s×2(j+1)s

]
Hj ẽ2j −

[
Tj

02(m−j)s×2js

]
Hj ẽ2j

− Tm+1 ẽ2j+1H
(1,2)
j+1,j − ẽ2j

]
(H

(2,2)
j+1,j)

−1

=
(
sjHm ẽ2j −

[
Tj

02(m−j)s×2js

]
Hj ẽ2j − Tm+1 ẽ2j+1H

(1,2)
j+1,j − ẽ2j

)
(H

(2,2)
j+1,j)

−1.

Remark 2. Note that the matrix Tm has a block Hessenberg form.
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As for any Krylov subspace method, a set of identities known as the Arnoldi relations
are satisfied and are used to compute error bounds, residuals, stop tests and to perform
perturbation analysis. In the case of Rational Krylov subspace, some relations have been
established in the literature, see, e.g., [14, 29, 36] and referenced therein. However these
identities are much more complex in the Rational case when compared to the Polynomial
Arnoldi equations.

Proposition 2.4. Assume that m steps of Algorithm 1 have been run and let Tm =
VT

m+1AVm, then we have the following

AVm = Vm+1 Tm

= Vm Tm + Vm+1 Tm+1,mET
m, (2.12)

where Em = [02p; · · · ; I2p]=em ⊗ I2p.

Proof. In order to prove the above proposition, we first need to show that

AKm(A,B) ⊆ Km+1(A,B).

Set B = [B(1), . . . , B(p)] ∈ Rn×p, where B(k) denotes the k-th column of B. In fact, for
j = 1, . . . ,m and k = 1, . . . , p, we have

A

j∏
i=1

(siI −A)−1B(k) =

j∏
i=1

(siI −A)−1AB(k)

=

j∏
i=1

(siI −A)−1
[
− (sjI −A)B(k) + sj B

(k)
]

=

j−1∏
i=1

−(siI −A)−1B(k) + sj

j∏
i=1

(siI −A)−1B(k) ∈ Km+1(A,B),

thus A
∏j

i=1(siI−A)−1B(k) ∈ Km+1(A,B). It is easy to show that for j = 1, . . . ,m and
k = 1, . . . , p, A(AjB(k)) = Aj+1B(k) ∈ Km+1(A,B). Hence, there exists a matrix T such
that

AVm = Vm+1 T. (2.13)

We have mentioned before that Tm is a block upper Hessenberg matrix with (2p × 2p)
blocks and also it is a restriction matrix of A to Km(A,B), i.e., Tm = VmAVm. Since
Vm+1 = [Vm, Vm+1], we have

Tm+1 = VT
m+1AVm+1

=

[
VT

mAVm VT
mAVm+1

V T
m+1AVm V T

m+1AVm+1

]
=

[
Tm VT

mAVm+1

V T
m+1AVm V T

m+1AVm+1

]
.

We know that Tm+1 is block upper Hessenberg, then we have V T
m+1AVm = Tm+1,mE

T
m

and

T̄m = VT
m+1AVm =

[
Tm

Tm+1,mE
T
m

]
.

9



Using (2.13) and multiplying by Vm+1 on the left, we obtain T = T̄m. As consequence

AVm = Vm+1 T̄m

= [Vm, Vm+1]

[
Tm

Tm+1,mE
T
m

]
= VmTm + Vm+1Tm+1,mE

T
m,

where Em = [02p; · · · ; I2p]=em ⊗ I2p
3. Application to model reduction problems.

The main purpose of this section is the computation of a reduced model order (1.3)
approaching the original model (1.1), by using the block Extended-Rational method. The
use of those large scale dynamical systems for either simulation or run-on-time control,
can be very costly due to limitations of memory and/or computational capacity, hence
the use of model reduction method.
We recall the linear time-invariant (LTI) multi-input and multi-output (MIMO) system
(1.1) {

ẋ(t) = Ax(t) +B u(t)
y(t) = C x(t).

To get the transfer function, we apply the transformation of Laplace

L(f)(s) :=

∫ ∞
0

e−stf(t),

to the original system (1.1), then we obtain :{
X(s) = AX(s) +B U(s)
Y (s) = C X(s),

where X(s),U(s) and Y(s) are the Laplace transforms of x(t), u(t) and y(t) respectively.
If we eliminate X(s) in the two equations cited above, we get what we call the transfer
function associated to the original system (1.1)

F (s) = C (s In −A)−1B.

We recall that most of the model order reduction techniques, for example the moment-
matching approaches, are based on the approximation of this transfer function, for more
details, see, e.g., [2, 22, 17] and the references therein.
We apply the Galerkin projection method onto the Extended-Rational block Krylov. The
process of this method is described as

1. Replacing x(t) ≈ Vmxm(t) on the original system (1.1) (where Vm is a orthonor-
mal basis of Km(A,B)).

2. Using the fact that VT
mVm = Im.

Following this process, we get the reduced system{
ẋm(t) = Tm xm(t) +Bm u(t)
ym(t) = Cm xm(t),

(3.1)
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and we can easily verify that the original transfer function F (s) can be approximated by

Fm(s) = Cm (s I2mp − Tm)−1Bm, (3.2)

where Tm = VT
mAVm, Cm = C Vm and Bm = VT

mB.

The computation of the error between the exact transfer function and its approxima-
tion, can be used to verify how the response of our reduced model is sufficiently close to
that of the original model. Unfortunately, we can’t calculate directly the error due to
the higher dimension of the original system. To remedy this problem, we propose the
following proposition.

Proposition 3.1. Let F be the transfer function defined in (1.2) and let Fm (3.2) be
its approximation obtained by the Galerkin projection method onto the extended-rational
block Krylov subspace Km(A,B). Then, under the condition ‖A‖ < |s| , we have the
follwing upper bound

F (s)− Fm(s) = C(sIn −A)−1Vm+1Tm+1,m ET
m(sI2mp − Tm)−1VT

mB, (3.3)

and

‖F (s)− Fm(s)‖≤ ‖B‖‖C‖‖Tm+1,m‖
(|s| − ‖A‖)

‖(sI2mp − Tm)−1‖. (3.4)

Proof. We have

F (s)− Fm(s) = C(sIn −A)−1B − Cm(sI2mp − Tm)−1Bm

= C(sIn −A)−1B − CVm(sI2mp − Tm)−1VT
mB

= C(sIn −A)−1
[
B − (sIn −A)Vm(sI2mp − Tm)−1VT

mB
]

= C(sIn −A)−1
[
B − (sVm −AVm)(sI2mp − Tm)−1VT

mB
]
,

using (2.12), we obtain

F (s)− Fm(s) = C(sIn −A)−1
[
B − (sVm − VmTm − Vm+1Tm+1,m ET

m)(sI2mp − Tm)−1VT
mB
]

= C(sIn −A)−1
[
B − VmV∗mB + Vm+1Tm+1,m ET

m(sI2mp − Tm)−1VT
mB
]
.

As B is in the extended-rational block Krylov subspace Km(A, V ), then we have
VmVT

mB = B. It follows that

F (s)− Fm(s) = C(sIn −A)−1Vm+1Tm+1,m ET
m(sI2mp − Tm)−1VT

mB.

By applying the 2-norm and using the fact that for ‖A‖< |s|, we have ‖(sIn − A)−1‖≤
1

(|s| − ‖A‖)
, then (3.4) holds.

3.1. An adaptive choice of interpolation points.
In the following, we introduce a new adaptive approach to select the interpolation

points. The proposed choice is based on the residual expression given as follows:
We know that the transfer function of (1.1) is given by F (s) = C (s In − A)−1B, which
we can rewrite as F (s) = CX where X is a solution of the following linear system of
equations : (s In −A)X = B.
The approximation Xm ∈ Range(Vm) can be determined by imposing the Galerkin con-
dition on the residual R(s) ⊥ Range(Vm), where

11



R(s) = B − (s In −A)Xm,
which gives

Xm = Vm(s I2mp − Tm)−1VT
mB.

Then, the residual can be expressed as follows :

R(s) = B − (s In −A)Xm

= B − (s In −A)Vm(s I2mp − Tm)−1VT
mB

= B − (sVm − Tm + Tm −AVm)(s I2mp − Tm)−1VT
mB

= (s In − VmVT
m)B + (AVm − VmTm)(sI2mp − Tm)−1VT

mB

= (AVm − VmTm)(sI2mp − Tm)−1VT
mB.

We know form Algorithm 1 that B=V1

[
Λ1,1

0

]
, then VT

mB=


I2p
02p
...

02p


[
Λ1,1

0

]
.

Using Proposition 2.4 and the new expression of VT
mB, we get the new expression of the

residual :

R(s) = Vm+1Tm+1,mET
m(sI2mp − Tm)−1


I2p
02p
...

02p


[
Λ1,1

0

]
.

The procedure to generate the set of interpolation points is defined as follows. We start
by two initial shifts σ1,σ2 and we construct the next shift σk+2 as :

σk+2 = argmax
ω∈S

‖R(s)‖2, k = 1 · · ·m− 2, (3.5)

where S is a set of frequency sample points.

Remark 3. Notice that the expression of R(s) allows us to reduce the computation
cost, while searching for the next shift σk+2 as it shown in the numerical test. This means
that to solve problem 3.5, it requires only a computation of matrices of low size.
In the following we present the block extended-rational Arnoldi algorithm. The algorithm
is summarized as follows :

Algorithm 2 Adaptive Block Extended-Rational Arnoldi algorithm (ABERAA)

• Inputs: A, B, C,σ1, σ2 ∈ R and m.
• Outputs: The reduced system (Tm, Bm, Cm)
• Compute : V1, V2 ∈ Rn,2×p by the Gram-Schmith orthogonalization process
• For k = 1, . . . ,m− 2

1. Determine σk+2 by solving (3.5)

2. Set : Ṽk+2 = [AV
(1)
k+1, (σk+2I −A)−1 V

(2)
k+1].

3. Orthogonalize Ṽk+2 with respect to to V1, . . . ,Vk+1 to get Vk+2,
End For.

• Compute : Tm using proposition (2.3), Bm and Cm

12



Remark 4. Note that a LU factorization is proposed to solve the shifted matrices

(σk+2I − A)−1 V
(2)
k+1 or a solver such GMRES with pre-conditioner can be used instead,

also qr decomposition is used to get Vk+2 and after m iteration we end up by O(p2mn)
as total number of arithmetic operations.

Beside Krylov techniques used to construct a reduced order dynamical system as it is
shown in the above section, we can find what we called Lyapunov balanced truncation,
one of the most known reduction techniques. This method was first introduced by Mullis
and robert (1976) and later in the systems and control literature by Moore (1981). The
method is based on the solutions of two large coupled Lyapunov matrix equation. Next, we
give a brief description on how to solve such a matrix equation using the block Extended-
Rational method.

4. Application to the Lyapunov equation.

We consider the following continuous-time algebraic Lyapunov equation :

AX +XAT +BBT = 0, (4.1)

where A ∈ Rn×n is large and sparse stable matrix. The matrix B ∈ Rn×p is assumed
to be of full rank with p� n.
In [5], a standard and widely direct method used for the solution of Lyapunov equations
for small dimensional problems. In our case, the matrix A is large and sparse, then using
a direct method would be unsuitable. Thus, iterative methods have to be used. We refer
to [7, 27, 38], those are Krylov-type subspace methods based on the Arnoldi process. The
alternating directional implicit (ADI) iterations could also be applied, see ([10]) and the
references therein. In what follows, we use the block Extended-Rational Krylov method
in order to solve the Lyapunov equation (4.1).
We seek for a low rank approximate solution to the Lyapunov matrix equation (4.1). We
project the initial problem onto the block extended-rational Krylov subspace Km(A,B).
We consider the low-rank approximate solution under the following form

Xm = VmYmVT
m, (4.2)

where Vm = [V1, · · · , Vm] an orthonormal basis of the block extended-rational Krylov
subspace Km(A,B) and Ym ∈ R2mp×2mp. Note that rank(Xm)≤ 2mp.
We denote by R(Xm) the residual corresponding to the approximation Xm given by

Rm := R(Xm) = AXm +XmA
T +BBT . (4.3)

Using the expression (4.2) in the residual equation, multiplying on the left by VT
m and

on the right by Vm (Galerkin condition), we get the low-dimensional continuous-time
Lyapunov equation

TmYm + YmTT
m + (VT

mB)(VT
mB)T = 0. (4.4)

where VT
mB = E1Λ(1,1). In fact, using step 1 of algorithm 1, we get

V1 Λ = [B, (s1I −A)−1B].
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Then

B = V1

[
Λ(1,1)

0

]
.

Multiplying on the left by VT
m, we get

VT
mB = E1Λ(1,1),

where E1 = [Ip; 0(2m−1)p,p)] is the first p columns of the identity matrix I2mp and Λ(1,1)

is the p× p matrix obtained from the QR decomposition

V1 Λ = [B, (s1I −A)−1B] with Λ =

[
Λ(1,1) Λ(1,2)

0 Λ(2,2)

]
. (4.5)

In order to stop iterations, we need to compute the residual Rm given by (4.2) without
involving Xm, since it become expensive as m increases. The next result shows how
to compute the residual norm Rm without involving the approximate solution, which is
given only in a factored form at the end of the process.

Theorem 4.1. Let Vm = [V1, · · · , Vm] be an orthonormal basis of the extended-
rational block Krylov subspace Km(A,B). Let Xm = VmYmVT

m be the approximate solu-
tion of the Lyapunov matrix equation (4.1), then the residual norm is given by

‖Rm‖ = ‖Tm+1,mE
T
mYm‖, (4.6)

where Em = [02p×2(m−1)p, I2p]T .

Proof. According (2.12) and (4.2), we have

Rm(Xm) = AXm +XmA
T +BBT

= AVmYmVT
m + VmYmVT

mA
T +BBT

= (VmTm + Vm+1Tm+1,mE
T
m)YmVm + VmYm(TT

mVT
m + EmT

T
m+1,mV

T
m+1) +BBT ,

using the fact that B = V 1
1 Λ(1,1), as it is described in 4.5, we get

Rm(Xm) = [Vm, Vm+1]

[
TmYm + YmTT

m + E1Λ(1,1)(E1Λ(1,1))T (Tm+1,mE
T
mYm)T

Tm+1,mE
T
mYm 0

] [
Vm

Vm+1

]
.

Since BT
m = E1Λ(1,1) and Ym is the symmetric solution of the reduced Lyapunov matrix

equation (4.4), we get

Rm(Xm) = Vm+1

[
0 (Tm+1,mE

T
mYm)T

Tm+1,mE
T
mYm 0

]
VT

m+1,

and then

‖Rm‖ = ‖Tm+1,mE
T
mYm‖.

Remark 5. We can easily verify that the approximation Xm can be an exact solution
of a perturbed continuous-time Lyapunov equation and that can be done by multiplying

14



the reduced Lyapunov equation (4.4) on the left by Vm and on the right by VT
m and using

(2.12). This perturbed Lyapunov equation is given by

(A−Gm)TXm +Xm(A−Gm) +BBT = 0,

where Gm = VmTm+1,mV
T
m+1.

It is important to note that the theorem above, allows us to achieve the convergence which
can be verified by the test (‖Rm‖ < ε), without computing the approximate solution Xm.
Using the fact that Xm is symmetric positive semidefinite, Xm can be decomposed into
product of two matrices of low-rank as Xm = ZZT where Z a matrix of rank smaller
than or equal to 2m, thus we need just to store Z in order to compute the approximate
solution Xm. Let Ym = UΣV T be the SVD of Ym where Σ is the matrix of the singular
values of Ym sorted in decreasing. Let dtol some tolerance, we define Uk, Vk as the first
k columns respectively of U and V corresponding to the k singular values magnitude
greater than dtol. Setting Σk = [σ1, · · · , σk], we get the approximation Ym ≈ UkΣkV

T
k ,

and it follows that

Xm ≈ ZmZ
T
m,

with Zm = VmUk(Σk)1/2.

All these results are summarized in the following algorithm

Algorithm 3 Extended-Rational block Arnoldi Lyapunov algorithm (ERBALA)

• Inputs: A, B, tolerance ε, dtol, number of iteration mmax.
• Outputs: the approximate solution Xm ≈ ZmZ

T
m

• For m = 1, · · · ,mmax

• Using Algorithm 1 to compute Vm an orthonormal basis and compute Tm the
block Hessenberg matrix.

• Solve the low-dimensional Lyapunov equation (4.4).
• Compute the residual norm

‖Rm‖ = ‖Tm+1,mE
T
mYm‖

• if Rm < ε then

1. Compute the SVD of Ym = UΣV where Σ = diag[σ1, · · · , σ2m]
2. Determine k such that σk+1 < dtol ≤ σk, set Σk = daig[σ1, · · · , σk] and

compute Zm = VmUk(Σk)1/2

end if.

• End For

5. Model Reduction of Second-Order Systems.
Linear PDEs modeling structures in many areas of engineering (plates, shells, beams ...)
are often second order in time see, e.g., [33, 34, 39]. The spatial semi-discretization of its
models by a method of finite elements leads to systems written in the form:{

Mq̈(t) +Dq̇(t) +Kq(t) = Bu(t)
y(t) = Cq(t),

(5.1)
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where M ∈ Rn×n is the mass matrix, D ∈ Rn×n is the damping matrix and K ∈ Rn×n

the stiffness matrix. When the source term Bu(t) is null, the system is said to be free,
otherwise, it is said forced. If D = 0, the system is said to be undamped. We assume
that the mass matrix M is invertible, then the system (5.1) can be written as{

q̈(t) +DM q̇(t) +KMq(t) = BMu(t)
y(t) = Cq(t),

(5.2)

where DM = M−1D, KM = M−1K and BM = M−1B, for simplicity we still denote
K, D, and B instead of DM , KM and BM respectively. The transfer function associated
with the system (5.2) is given by using the Laplace transform as:

F (ω) := C(ω2In + ωD +K)−1B ∈ Rp×p. (5.3)

It is usually difficult to get the efficient solution of various control or simulation tasks
because the original system is too large to allow it. In order to solve this problem, methods
that produce a reduced system of size m � n that preserves the essential properties of
the full order model have been developed. The reduced model have the following form:{

q̈m(t) +Dmq̇m(t) +Kmqm(t) = Bmu(t)
ym(t) = Cmq(t),

(5.4)

where Dm, Km ∈ Rm×m, Bm, C
T
m ∈ Rm×p and qm(t) ∈ Rm. The transfer function

associated to the system (5.4) is given by:

Fm(ω) := Cm(ω2Im + ωDm +Km)−1Bm ∈ Rp×p. (5.5)

Second-order systems (5.2) can be written as a first order linear systems. In fact,
[
q̇(t)
q̈(t)

]
=

[
0 In
−K −D

] [
q(t)
q̇(t)

]
+

[
0
B

]
u(t)

y(t) =
[
C 0

] [ q(t)
q̇(t)

]
,

(5.6)

which is equivalent to {
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t),

(5.7)

with x(t) =

[
q(t)
q̇(t)

]
, A =

[
0 In
−K −D

]
, B =

[
0
B

]
and C =

[
C 0

]
.

Thus, the corresponding transfer function is defined as,

F(ω) := C(ωI2n −A)−1B ∈ Rp×p. (5.8)

We note that F(ω) = F (ω). In fact, setting

X = (ωI2n −A)−1B =

[
X1

X2

]
,

wich gives F(ω) = CX, where X verifies (ωI2n −A)X = B. Using the expressions of the
matrices A, B and C, we get,

(ω2In + ωD +K)X1 = B and F(ω) = CX1.
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Hence

F(ω) = F (ω) = C(ω2In + ωD +K)−1B.

We can reduce the second-order system (5.2) by applying linear model reduction tech-
nique presented in the previous section to (A, B, C) to yield a small linear system
(Tm, Bm, Cm). Unfortunately, there is no guarantee that the matrices defining the re-
duced system have the necessary structure to preserve the second-order form of the origi-
nal system. For that we follow the model reduction techniques of second-order structure-
preserving, presented in [8, 11, 12].

5.1. The structure-preserving of the second-order reduced model.
Using the Krylov subspace-based methods discussed in the previous section do not guar-
anty the second-order structure when applied to the linear system (5.7). The Authors in
[8, 12] proposed a result, that gives a simple sufficient condition to satisfy the interpola-
tion condition and produce a second order reduced system.

Lemma 5.1. Let (A, B, C) be the state space realization defined in (5.7). If we
project the state space realization with 2n× 2mp bloc diagonal matrices

Vm =

[
V1
m 0
0 V2

m

]
, VT

mVm = I2mp,

where V1
m and V2

m ∈ Rn×mp, then the reduced transfer function

Fm(ω) := CVm(ωI2mp − VT
mAVm)−1VT

mB,

is a second order transfer function, on condition that the matrix (V2
m)TV1

m is invertible.
Theorem 5.2. Let F(ω) := C(ωI2n −A)−1B = C(ω2In + ωD +K)−1B, with

A =

[
0 In
−K −D

]
, B =

[
0
B

]
and C =

[
C 0

]
,

be a second order transfer function. Let Vm ∈ R2n×mp be defined as:

Vm =

[
V1

m

V2
m

]
,

where V1
m, and V2

m ∈ Rn×mp, with (V1
m)TV1

m = (V2
m)TV2

m = Imp. Let us construct the
2n× 2mp projecting matrices as

Vm =

[
V1

m 0
0 V2

m

]
.

Define the second order transfer function of order m by

Fm(ω) = CVm(ωI2mp − VT
mAVm)−1VT

mB

= Cm(ωI2mp −Am)−1Bm.

If we have

Range{(s1I −A)−1B, ..., (smI −A)−1B} ⊆ Range(Vm),

where σi, for i = 1, ...m, are the interpolation points. Then the reduced order transfer
function Fm(ω) interpolates the values of the original transfer function F(ω) and pre-
serves the structures of the second-order model provided that the matrix (V2

m)TV1
m is

non-singular.
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6. Numerical examples.

In this section, we give some experimental results to show the effectiveness of the
proposed approaches. All the experiments were performed on a computer of Intel Core
i5 at 1.3GHz and 8GB of RAM. The algorithms were coded in Matlab R2014a. We used
different known benchmark models listed in Table 6.1.

We use the following functions from LYAPACK [32]

• lp lgfrq : Generates a set of logarithmically distributed frequency sampling
points.

• lp gnorm : Computes ‖F (s)− Fm(s)‖.

Table 6.1
Test matrices

Matrix A size n size p ‖A‖F cond(A)
CDplayer 120 2 2.3095e+05 1.8149e+04
ISS 270 3 2.0594e+04 9.6800e+03
FOM 1006 6 1.8283e+04 1000
RAIL5177 5177 2 5.6430e+003 3.7420e+007
Eady 598 4 1.2660e+02 5.3727e+02
MNA3 4863 4 2.1168e+05 1.8156e+08
MNA5 10913 5 147.6687 6.2170e+04
FDM 40.000 5 2.8758e+08 9.7945e+04

The matrices for the benchmark problems FDM, CDplayer, FOM, Eady, Beam,
MNA3, MNA5 and RAIL5177 are obtained from NICONET [31] while the matrices
for the Flow model are obtained from the discretization of a 2D convective
thermal flow problem ( flow meter model v0.5) from the Oberwolfach collec-
tion 1. Some informations on these matrices are reported in Table 6.1. For more details
see [32].

Example 1 : In the first experiment, we consider the International Space Station
(ISS). It has 270 states, three inputs and three outputs, for more details on this system
see [25, 13]. The figure 6.1 shows the singular values of the transfer function and its
approximation, and we plot the error norm ‖F (iω) − Fm(iω)‖2 versus the frequencies
ω ∈ [10−1, 105].

frequencies
10-1 100 101 102 103 104 105

||F
(s

)|
|,|

|F
m

(s
)|

| 2

10-3

10-2

10-1

100

101

102

103

Original function transfer
Reduced function tranfer

frequencies
10-1 100 101 102 103 104 105

||F
(s
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Fig. 6.1. The ISS model. Left : singular values versus frequencies. Right : error norms vs frequencies.

1Oberwolfach model reduction benchmark collection, 2003. http://www.imtek.de/simulation/benchmark
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Example 2 : In this example, we use the CDplayer that describes the dynamics between
a lens actuator and the radial arm position in a portable CD player. For more details on
this system see [13]. The figure 6.2 shows the singular values of the transfer function and
its approximation, and we plot the error norm ‖F (iω)− Fm(iω)‖2 versus the frequencies
ω ∈ [10−1, 105].
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Fig. 6.2. The CDplayer model. Left : singular values versus frequencies. Right : error norms vs
frequencies.

Example 3 : In this example we compare the performance of the Rational Krylov
subspace method with that of the Extended-Rational Krylov subspace method. We use
three models : BEAM, EADY, FOM. For more details about these models, see [13].
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Fig. 6.3. The BEAM model. Left : error norms vs frequencies for m=10. Extended-Rational
Krylov(solid line), Rational Krylov (dotted line) Right : error norms vs frequencies for m=20. Extended-
Rational Krylov(solid line), Rational Krylov (dotted line).
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Fig. 6.4. The EADY model. Left : error norms vs frequencies for m=10. Extended-Rational
Krylov(solid line), Rational Krylov (dotted line) Right : error norms vs frequencies for m=20. Extended-
Rational Krylov(solid line), Rational Krylov (dotted line).
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Fig. 6.5. The FOM model. Left : error norms vs frequencies for m=10. Extended-Rational
Krylov(solid line), Rational Krylov (dotted line) Right : error norms vs frequencies for m=20. Extended-
Rational Krylov(solid line), Rational Krylov (dotted line).

Example 4 In this example, we use the FDM model : (n =10.000 and n =40.000 with
p =5). This model is obtained from the centred finite difference discretization of the
operator

LA(u) = ∆u− f(x, y)
∂u

∂x
− g(x, y)

∂u

∂y
− h(x, y)u,

on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions with

 f(x, y) = log(x+ 2 ∗ y + 1),
g(x, y) = ex+y,
h(x, y) = x+ y,

and the matrices B and C are random matrices with entries uniformly distributed in [0,
1]. The number of inner grid points in each direction is n0 = 100 and n0 = 200, besides
the dimension of A is n = n20. In the following table, you find a comparison results of the
execution times and the H∞ norm ‖F − Fm‖H∞ of the known IRKA algorithm suggested
in [24] and our algorithm ABERAA.
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Table 6.2
The calculation time and the Err-H∞

Models ABERAA IRKA
time Err-H∞ time Err-H∞

FDM10.000 m=6 3.79 sec 8.2 × 10−3 46.64 sec 1.02× 10−3

m=12 7.93 sec 6.38× 10−7 164.42 sec 8.82× 10−2

m=18 14.8 sec 1.9× 10−10 245.5 sec 2.37× 10−2

FDM40.000 m=6 11.83 sec 3.10 × 10−2 257.26 sec 3.37 × 10−2

m=12 19.97 sec 2.30 × 10−5 853.43 sec 1.76 × 10−2

m=18 30.95 sec 1.07 × 10−7 976.69 sec 7 × 10−3

We continue the comparison of the algorithm IRKA and ABERAA algorithm, here we
use the MNA3, MNA5, RAIL3113 and RAIL5177 models from Table 6.1. We plot the curve
corresponding to the error norm ‖F (iω)−Fm(iω)‖2 versus frequencies for IRKA (red line)
and ABERAA (blue line) with ω ∈ [10−1, 105].
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Fig. 6.6. Left: The MNA3 model : ABERAA(blue line) and IRKA(red line) with m = 10 and ω ∈
[10−1, 105]. Right: The MNA5 model : ABERAA(blue line) and IRKA(red line) with m = 20 and ω ∈
[10−1, 105].
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Fig. 6.7. Left: The RAIL3113 model : ABERAA(blue line) and IRKA(red line) with m = 10 and
ω ∈ [10−1, 105]. Right: The RAIL5177 model : ABERAA(blue line) and IRKA(red line) with m = 20 and
ω ∈ [10−1, 105].

6.1. Examples of Lyapunov matrix equation. The results listed in the table
below show the effectiveness of our method ERBALA as it is described in the Algorithm
3. We compare the results with the ones of the Rational method. For each example, we
show the number iterations needed for convergence, the CPU-time in seconds and the
rank of the obtained approximate solution. We use matrices from the table (6.1). The
model FDM already described in the Example 4. For both models FDM and FOM we chose
B as random matrix.

Table 6.3
Performance of the ERBALA.

Model / Method Extended-Rational method Rational Method

FOM, n = 1006, p = 5,
Iteration 16 35
Residual norm 4.05 10−8 9.85 10−8

CPU-time 0.67 4.29
Rank 91 91

FLOW , n = 9669, p = 3,
Iteration 41 70
Residual norm 8.7 10−8 9 10−6

CPU-time 16.44 68.23
Rank 238 210
FDM , n = 12100, p = 4,
Iteration 16 53
Residual norm 9.25 10−8 9.86 10−8

CPU-time 14.11 > 200
Rank 85 85

6.2. Examples of Second order Systems.
Example 5: Linear 1D Beam
Moving structures are an essential part for many micro-system devices, among them
fluidic components like pumps and electrically controllable valves, sensing cantilevers,
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and optical structures. While the single component can easily be simulated on a usual
desktop computer, the calculation of a system of many coupled devices still presents a
challenge. This challenge is raised by the fact that many of these devices show a nonlinear
behavior. This model describes a slender beam with four degrees of freedom per node:
”x the axial displacement”, ”Θx the axial rotation”, ”y the flexural displacement” and
”Θz the flexural rotation”. The model is from the Oberwolfach collection. The matrices
are obtained by using the finite element discretization presented in [40]. We used two
examples of linear 1D Beam model:

The file name Degrees of freedom Num. nodes Dimension n
1DBeam-LF100 flexural (Θz and y) 10000 n = 19998
1DBeam-LF5000 ( Θz and y ), ( Θx and x ) 50000 n = 19994
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Fig. 6.8. 1DBeam-LF5000 model: m=20.
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Fig. 6.9. The error norm.

Figures 6.8 above represent the norm of the original transfer function ‖H(jω)‖2 and the
norm of the reduced transfer function ‖Hm(jω)‖2 versus the frequencies ω ∈ [10−3, 103]
of the 1Dbeam-LF50000 model and it is a second-order model of dimension 2×n = 39988
with one input and one output. Figure 6.9 represents the exact error ‖H(jω)−Hm(jω)‖2
versus the frequencies. The plots in Figures 6.10 and 6.11, represent the original transfer
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Fig. 6.10. 1DBeam-LF5000 model, m=20.
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Fig. 6.11. 1DBeam-LF5000 mode, m=40.

function ‖H(jω)‖2 and the norm of the reduced transfer function ‖Hm(jω)‖2 where we
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modified the matrices B and C (random matrices) to get a MIMO system with four inputs
and four outputs.

Example 6: Butterfly Gyroscope
The structural model of the gyroscope has been done in ANSYS (the global leader in
engineering simulation) using quadratic tetrahedral elements. The model used here is a
simplified one with a coarse mesh as it is designed to test the model reduction approaches.
It only includes the pure structural mechanics problem. The load vector is composed from
time-varying nodal forces applied at the centers of the excitation electrodes. The Dirichlet
boundary conditions have been applied to all degrees of freedom of the nodes belonging
to the top and the bottom surfaces of the frame. This benchmark is also part of the
Oberwolfach Collection. It is a second-order model of dimension n = 17361, (then the
matrix A is of size 2× n = 34722) with the matrix B = CT to get a MIMO system with
12 inputs and 12 outputs.

The plots in Figure 6.12 represent ‖H(jω)‖2 and the norm of the reduced transfer func-
tion ‖Hm(jω)‖2. Figure 6.13 represent the exact error ‖H(jω) − Hm(jω)‖2 versus the
frequencies. The dimension of the reduced model is m = 40. The execution time was
41.83 seconds with H∞-err norms equal to 1.73× 10−3.
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Fig. 6.12. Butterfly model, m=40.
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Fig. 6.13. The error norm.

Conclusion.

A Krylov-based method has been explored in this paper. This method is based on a
projection technique onto a new proposed Krylov subspace named the block Extended-
Rational Krylov subspace. A variety of applications of this method have been presented
such as the construction of reduced dynamical system of first and second order, as well as
the solution of Lyapunov matrix equation. An adaptive method to choose the interpola-
tion points, that are used into the construction of the block Extended-rational Krylov sub-
space has been established. Moreover, we have derived from the block Extended-Rational
Arnoldi process some new algebraic properties and a new error expression between the
original transfer function and its approximation. Numerical results are finally reported
to confirm the performance of our method compared with other known methods.
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