
HAL Id: hal-02568859
https://hal.science/hal-02568859

Submitted on 30 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A probabilistic analysis of transactions success ratio in
real-time databases

Mourad Kaddes, Majed Abdouli, Laurent Amanton, Bruno Sadeg, Alexandre
Berred, Rafik Bouaziz

To cite this version:
Mourad Kaddes, Majed Abdouli, Laurent Amanton, Bruno Sadeg, Alexandre Berred, et al.. A
probabilistic analysis of transactions success ratio in real-time databases. International Journal of
Computer Aided Engineering and Technology, 2020, 12, pp.405-422. �10.1504/ijcaet.2020.10027747�.
�hal-02568859�

https://hal.science/hal-02568859
https://hal.archives-ouvertes.fr

A probabilistic analysis of transactions
success ratio in real-time databases

Mourad Kaddes* and Majed Abdouli

Department of Information System, FCIT,
University of Jeddah, Saudi Arabia and MIR@CL,
Po�le Technologique de Sfax BP 242, 3021, Sfax University, Tunisia
Email: mourad.kaddes@gmail.com Email: mabdouli@uj.edu.sa
*Corresponding author

Laurent Amanton and Bruno Sadeg

LITIS,
University of Le Havre,
25 rue Philipe Lebon 76600, Le Havre, France
Email: laurent.Amanton@univ-lehavre.fr, Bruno.Sadeg@univ-lehavre.fr

Alexandre Berred
LMAH,
University of Le Havre,
25 rue Philipe Lebon 76600, Le Havre, France
Email: alexandre.berred@univ-lehavre.fr

Rafik Bouaziz
MIR@CL,
Po�le Technologique de Sfax BP 242, 3021, Sfax University, Tunisia
Email: rafik.bouaziz@usf.tn

Abstract: Nowadays, due to rapidly changing technologies, applications
handling more data and providing real-time services are becoming more frequent.
Real-time database systems are the most appropriate systems to manage these
applications. In this paper, we study statistically the behaviour of real-time
transactions under the generalised earliest deadline first scheduling policy
(GEDF). GEDF is a new scheduling policy in which a priority is assigned to a
transaction according to both its deadline and a parameter which expresses the
importance of the transaction in the system. In this paper, we focus our study
on the influence of transactions composition. Precisely, we study the influence
of transaction distribution on the system performances and on approximation of
transactions success ratio behaviour by a probability distribution. To this end,
we have developed our RTDBS simulator and we have conducted intensive
Monte-Carlo simulations.

Keywords: real-time databases system; RTDBS; transactions; schedule;
generalised earliest deadline first; GEDF; stochastics; Monte-Carlo simulation.

1 Introduction

A real-time database systems (RTDBSs) can be considered as a combination of a traditional
database system and a real-time system. RTDBSs have to satisfy both temporal consistency
and logical consistency of the database, i.e., they must guarantee the transactions atomicity,
consistency, isolation, durability (ACID) properties on one hand, and they must schedule
the transactions in order to meet their individual deadlines, on the other hand (Han et al.,
2014; Ramamritham et al., 2004).

In RTDBSs, the main issue is the transaction scheduling. In fact, different scheduling
algorithms are proposed in the literature to schedule transaction in RTDBSs according to the
type of knowledge used [see Han et al. (2016), Li et al. (2016), Han et al. (2012), Shanker
et al. (2008)]. The most studies use EDF scheduling policy which is based on a priority
assignment according to the deadlines.

In Kaddes et al. (2013) and Semghouni et al. (2007), have proposed a new scheduling
protocol, generalised earliest deadline first (GEDF), in which transaction priority is

assigned according to both deadlines and a parameter, called SPriority, which expresses
the importance of transactions in order to address the weakness of EDF. In these works,

authors did not take account different types of interactions with users. Hence, we propose
to use different transactions size distributions and study their influence on the system

performance. Moreover, we present a reasonable approximation of the success ratio of user
transactions by probability density function under different size of transaction distributions.

To this purpose, we have conducted intensive Monte Carlo simulations on the RTDBS
simulator we have developed. This simulator is based on components generally encountered
in RTDBSs (Ramamritham et al., 2004; Kim et al., 1996).

The remainder of this paper is organised as follows. In first section, we briefly present
GEDF policy and the simulator components and the metrics used. The second section
presents the Monte Carlo simulation experiments and results. In last section, we conclude
the paper and discuss some aspects of our future work.

2 System model and simulator

2.1 Simulator

A transaction generator (TG) generates two types of transactions: user and update
transactions. Each update transaction access to one sensor data. User transactions access at
different data (real-time data and non-real-time data). The number of operations generated
for each user transaction follows a specific distributions (Binomial, Poisson, geometric,
uniform). Data accessed by the operations of the transaction are randomly generated and
built according to the level of data conflicts (see following section). User transactions are
submitted to the system following a Poisson process (see Figure 1) with an average rate λ,
into the active queue. The deadline controller (DC) supervises the transactions’ deadlines,
and informs the transaction scheduler (TS) when a transaction misses its deadline in order
to abort it. Freshness manager (FM) exploits the absolute validity interval (avi) to check the
freshness of a data item before a user transaction accesses it and blocks all user transactions
which read stale temporal data. Transactions data conflicts are resolved by the concurrency
controller (CC) according to transactions priorities. CC informs TS in the following cases:
a when a transaction is finished (committed) and its results are validated in the database

b when a transaction is blocked waiting for a conflict resolution

c when a transaction is restarted, following the commit of other transactions

·	·	·	 ·	·	·	

d when a transaction is rejected because its restart is impossible, i.e., its best execution
time (BET) is higher than its deadline minus the current time
(BETT > DT −	currenttime)

e when a transaction is transferred from the blocked queue to the active queue, i.e., its
data conflicts are resolved.

Figure 1 Simulator architecture

2.2 Conflicts level

In the database, some data are more important than others and they are frequently requested
by user transactions resulting data conflicts. In order to reproduce this behaviour, a drawing
probability is assigned to each data item in the following manner.

Let r1 < r2 < < rk < < rn, denote the ranking of the data items D1, D2, . . . ,
Dk, . . . , Dn respectively.

The probability of drawing the data item Di is given by the following formula:

P robDi

 ri
=

R

i=1

i=1 i i=1 i 1	

i=1 i i=1 i i=1 i

where R =
∑n ri, is the sum of all ranks. Thus, data with high probabilities will be

more drawn than those with low probabilities. Data item Dk is selected according to the
above probabilities, i.e., a uniform random variable is generated U		in (0, 1) and select

Dk if U		∈	(
∑k−1 ProbD ,

∑k ProbD], by convention k = 1 if U	∈	(0, ProbD]. The

Table 1 Drawing intervals of data items

Data D1 D2 . . .
Drawing interval [0, ProbD1]]ProbD1	, ProbD1	+ ProbD2] . . .
Data . . . Dk . . . Dn
Drawing interval . . .] ∑k−1 ProbD ,

∑k ProbD] . . .] ∑n−1 ProbD , 1]

2.3 Transaction priority

We consider only firm real-time transactions and we classify them into update and user
transactions. Update transactions are periodic and only write temporal data which capture
the continuously state changing environment. We assume that an update transaction is
responsible for updating a single temporal data item in the system. Each temporal data item
is updated following a more-less approach where the period of an update transaction is
assigned to be more than half of the validity interval of the temporal data (Xiong et al.,
2004). User transactions can read or write non-temporal data and only read temporal data.
They arrive in the system according to a Poisson process with an average rate λ.

GEDF is a dynamic scheduling policy where transactions are processed in an order
determined by their priorities, i.e., the next transaction to run is the transaction with the
highest priority in the active queue. The priority is assigned according to both the deadline
which expresses the criticality of time and the SPriority which expresses the importance of
the transaction. We consider that the zero value of Priority (Priority = 0), corresponds
to the highest priority in the system. A transaction T is assigned a priority by the formula:

Priority(T) = (1 −	a) ×	Deadline(T) + a ×	SPriority(T) (2)

where:

• 0 ≤	a ≤	1, is the weight of SPriority in the priority formula (see Table 2).

SPriority : system priority is a parameter related to each transaction. It expresses
the degree of importance of the task(s) executed by a transaction and defines its rank
among all the transactions in the system. Two weight functions are used according to
the transaction class to assign the SPriority value and are described in what follows.

2.3.1 Update transactions class

The SPriority of an update transaction T is computed according to the following formula:

SPriority

where:

update

 PeriodeT
= N ×	

MaxPeriode

(3)

• PeriodeT is the period of an update transaction T .

drawing intervals of data items are resumed in Table 1.

•	

∈	

i=1 j=1 k=1

• MaxPeriode is the longest period among the periods of update transactions.

• N is the value that divides the SPriority interval [0, MaxV alue] according to
transactions class, i.e. SPriorityupdate ∈]0, N] and
SPriorityuser ∈]N, MaxV alue].

2.3.2 User transactions class

The user transaction importance SPriority uses criteria based on both the transaction ‘write
set’ operations and the transaction ‘read set’ operations. A user transaction T is assigned a
SPriority value by the following formula:

SPriorityuser = MaxV alue −	γ ×	WeightT −	(1 −	γ) ×	DBAV alue (4)

where

1 WeightT denotes the weight assigned to the current user transaction and is given by

n m l

WeightT = (
∑

WreadT D +
∑

WwriteNT D −	
∑

WreadNT D) (5)

where

a WreadT D, WwriteNT D and WreadNT D denote respectively the weight
assigned to a read operation of a temporal data, the weight assigned to a write
operation of a non-temporal data and the weight assigned to a read operation of
a non-temporal data (see the transaction characteristics in Table 3).

b n, m, and l are respectively the numbers of ReadT D, WriteNT D, ReadNT D
operations in each user transaction.

2 γ]0, 1] is the rank assigned to the transaction weight in the SPriority formula (see

Table 3).

3 DBAV alue is a uniform random variable between 0 and (MaxV alue −	N), i.e.,
Random(MaxV alue −	N).

4 Maximum(γ ×	WeightT −	(1 −	γ) ×	DBAV alue) ≤	MaxV alue −	N , because the
user transactions SPriority belongs to]N, MaxV alue].

3 System performance metrics

To measure the system performances, we consider transaction success ratio as the main
metric. The success ratio is given by:

SRatio =
CommitT

SubmittedT (6)

where CommitT indicates the number of transactions committed by their deadlines, and
SubmittedT indicates all submitted transactions to the system in the sampling period. We
divide this metric into two parts according to the class of transactions:

1 Success ratio of update transactions

SRatioUpdate

 CommitTUpdate
=

SubmittedTUpdate

(7)

This ratio indicates the number of update transactions committed by their deadline. It
represents the consistency level of temporal data in the database.

2 Success ratio of user transactions

SRatioUser
 CommitTUser

=
SubmittedTUser

(8)

This ratio indicates the number of user transactions committed by their deadlines.

4 Simulation results

We carried out Monte Carlo simulations that allow us to study the transactions’ success
ratio behaviour and the system quality of service. According to the system parameters given
on Tables 2, 3 and 4, we repeat the experiment 1,000 times in each simulation in order to
obtain a sample of 1,000 values for the performances.

Table 2 Simulation parameters used for database characteristics

Database characteristics

Notation Signification Values

λ User transaction arrival rate. 0.1 to 2.3.
Time Duration of one experiment. 1,000 clock cycles.
DBSize Number of data in the DB. 300.
TD-size
Min avi,

Number of temporal data in the DB.
Minimal and maximal avi.

15% ×	DBSize
Min avi=5 clock cycles,

Max avi Max avi=100 clock cycles.

4.1 Influence of transaction size distribution

Applications can have different types of interactions with users. For example, many
applications fixed the user request (fixed size transactions) but others applications authorise
ad hoc request (variable size transaction). For this, we propose to analyse the influence of
the distribution of user transactions size on performance of the system under GEDF .

The distribution function of user transactions size is depicted in Figure 2. It shows that,
with geometric and uniform distributions, we obtain a large variation of user transactions
size. Unlike with the binomial and Poisson distributions the size of transactions is
homogeneous around the average. Figures 3 and 4 depicted graphically the influence of
transaction size distribution on system performance under EDF and GEDF protocol
respectively.

Figure 2 User transaction size distribution (see online version for colours)

Distribution Function

0 10 20 30 40 50

operation number

Figures 3 and 4 show clearly that transaction size distribution have less influence on
system performance with GEDF. In fact, with GEDF, transaction priorities are computed
using partially deadline and transaction importance. Therefore, transaction priorities are
less affected by transaction distribution size. For example, when database size is 300, the
difference between SRatio (respectively SRatiouser) obtained under various transaction
size distributions, reaches 6% (respectively 15%) with EDF and decreases with GEDF :
it reaches 4% (respectively 11%) when a = 0.3 for example. For a database size equal
to 500, the difference between various SRatiouser obtained under different distributions
increases. It reaches 20% under EDF and 13% under GEDFa=0.3.

P

0.
2

0.
4

0.
6

0.
8

3

3

Table 3 Simulation parameters used for transaction characteristics

Transaction characteristics

Notation Definition Values
φ Probability to execute a φ(Read) = 2/3,

‘read’ or a‘write’ operation. φ(Write) = 1 −	φ(Read) = 1/3.
Updatesize Operations in update transactions. 1 write operation.
D−UpT Deadline of update transaction D−UpT = 1 ×	Avi.

(more-less approach).
P−UpT Period of update transaction P−UpT = 2 ×	Avi.

(more-less approach).
SPriority Intervals of SPriority. SPriorityUpdate ∈	[0, 16] and

SPriorityUser ∈]16, 80].
γ Initialisation of γ. γ = 0.8.
WreadT D (WreadNT D) Reading weight of WreadT D = WreadNT D = 1.

one temporal data
(non-temporal data)

WwriteNTD Writing weight of non-temporal data. WwriteNTD = 2.

Figure 3 Comparison between different user transactions distributions with EDF protocol when

DBsize = 300, (a) Sratios (b) Sratiosuser (see online version for colours)

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

l

(a)
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

l
(b)

Binomial
Uniform

fixed
Geometric

Poisson

m
ea

n(
SR

at
io

us
er

)
m

ea
n(

SR
at

io
)

Figure 4 Comparison between different user transactions distributions with GEDFa=0.3 protocol
when DBsize = 300, (a) Sratios (b) Sratiosuser (see online version for colours)

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

l
(a)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

l
(b)

With GEDF, update transactions have highest priorities, hence the success ratio of update
transactions SRatioupdate is maximal, i.e., 100% for all system workload conditions.
Moreover, update transactions performances are independent from user transactions, i.e.,
the user transactions number and size has no significant effect on the update transactions
performances.

In Kaddes et al. (2013), the authors have shown that, when system is not overloaded,
EDF gives a better success ratio than GEDF . This situation is reversed when system
becomes overloaded. Simulations conducted using different transaction size distributions
have shown that there is no significant influence on the inflection point under different

Binomial
Uniform

fixed
Geometric

Poisson

Binomial
Uniform

fixed

Poisson

m
ea

n(
SR

at
io

)
m

ea
n(

SR
at

io
us

er
)

s2 s2

n i=1 n i=1

user transaction size distributions. In fact, we obtain the inflection point when λ = 0.6
and λ = 0.4, with DBsize = 300 and DBsize = 500, respectively, i.e., SRatioEDF >
SRatioGEDF when λ < 0.4 (0.6) and SRatioEDF <= SRatioGEDF λ >= 0.4 (0.6).
Furthermore, when the workload increases, the optimal value of a increases too. Figure 10
illustrates graphically the comparison.

4.2 Stochastic behaviour of the success ratio

In order to give a complete description of the behaviour of performance of system, we
propose in this section to give a reasonable approximation of the probability density
function of user transaction success ratio. Moreover, we analyse the influence of user
transaction size distribution on the frequency distribution of SRatiouser in order to refine
the studies of the behaviour of user success ratio under different scheduling policies (mainly
GEDFa=0.3, GEDFa=0.5 and EDF), system load and database size. To this end, we
follow theses steps:

We recall that a random variable X follows a standard beta distribution with parameters
p and q if its probability density is given by:

xp−1(1 −	x)q−1

where

f (x, p, q) =

B(p, q)
, x ∈	[0, 1], (9)

∫ 1

By using the moment method, we estimate the parameters p and q by:

p� = x
[

 x(1 −	x) −	1
]

q� = (1 −	x)

[
 x(1 −	x) −	1

]

where x = 1
∑n xi is the sample mean and s2 = 1

∑n (xi −	x)2 is the sample

Figures 5, 6 and 7 show some frequency distributions of the success ratio given by
simulations and their approximation by beta density. Each histogram represents a sample
of 1,000 values of success ratio. Figure 5 shows the histogram when using a fixed size
transaction, i.e., 25 operations per transaction. Figures 6 and 7 show the histogram when the
transaction size follows binomial and geometric distribution respectively. They summarise
the results obtained when DBsize = 300, under differen t system workloads, i.e., with
user transactions arrival rate λ = 0.5 (normal workload), λ = 0.8 (average workload) and
λ = 1.3 (high workload).

B(p, q) =
0

xp−1(1 −	x)q−1dx.

variance.

Figure 5 SRatiouser frequency distribution and its equivalent beta density when user transactions
size is fixed, under GEDFa=0.3, (a) λ=05 (b) λ=08 (c) λ=13 (see online version for
colours)

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

l
(a)

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

l
(b)

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

l
(c)

EDF
a=03
a=05

EDF
a=03
a=05

EDF
a=03
a=05

m
ea

n(
Sr

at
io

)
m

ea
n(

Sr
at

io
)

m
ea

n(
Sr

at
io

)

Figure 6 SRatiouser frequency distribution and its equivalent beta density when user
transactions size follow a binomial distribution, under GEDFa=0.3, (a) λ = 05
(b) λ = 08 (c) λ = 13 (see online version for colours)

p= 29.4074303 q= 9.6974725

0.0 0.2 0.4 0.6 0.8 1.0

X

(a)

p= 30.3033084 q= 43.0994634 p= 31.016049 q= 136.3736241

0.0 0.2 0.4 0.6 0.8 1.0

X

(b)

0.0 0.2 0.4 0.6 0.8 1.0

X

(c)

Figure 7 SRatiouser frequency distribution and its equivalent beta density when user
transactions size follow a geometric distribution, under GEDFa=0.3, (a) λ = 05
(b) λ = 08 (c) λ = 13 (see online version for colours)

p= 27.1048481 q= 10.2147083 p= 27.1048481 q= 10.2147083

0.0 0.2 0.4 0.6 0.8 1.0

X

(a)

0.0 0.2 0.4 0.6 0.8 1.0

X

(b)

p= 31.3989753 q= 149.324601

0.0 0.2 0.4 0.6 0.8 1.0

X

(c)

D
en

si
ty

1
2

3
4

0
5

D
en

si
ty

2
4

6
0

D
en

si
ty

0
4

8
12

D

en
si

ty

0
1

2
3

4
5

D
en

si
ty

D

en
si

ty

0
4

8
12

0

1
2

3
4

5

Figure 8 Comparison of pˆuser under different user transactions size distribution, DBsize = 300,
(a) comparison of p ûser under EDF using different distribution of user transactions
(b) comparison of p ûser under GEDFa=0.3 using different distribution of user
transactions (c) comparison of p̂user user under GEDFa=0.5 using different
distribution of user transactions (see online version for colours)

p= 44.0576755 q= 15.0816841 p= 57.3041702 q= 55.1077269

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

 X X

(a)

p= 71.6275067 q= 169.8097294

(b)

0.0 0.2 0.4 0.6 0.8 1.0

X

(c)

Since the histogram of SRatiouser can be approximated by a beta density independently
of the size distribution of user transaction, we have decided to analyse the influence
of the size’s distribution of user transactions by comparing the beta parameters (p�user
and q�user). Those parameters have been obtained by using the moment method, with
various scheduling policies and various system workloads. Figures 9(a) and 9(b) present
the evolution of p�user under EDF and GEDFa=0.3 when the system load increases.
We observe that when the variation of transaction size is small (binomial or Poisson
distributions), or null (fixed transaction size), the value of p�user is almost constant under
different system workloads. Whereas, when the variation of user transactions size is
important (geometric or uniform distribution), the p�user parameter grows up when the load
of the system increases. We note the same behaviour of p�user under different scheduling
policies. However, as shown in Figures 10(a) and 10(b), the q�user curve appearance is not
influenced by the user-transaction size distribution.

D
en

si
ty

0
2

4
6

D
en

si
ty

0
4

8
12

D
en

si
ty

2
4

6
0

8

Figure 9 Comparison of qˆuser under different user transactions size distribution, DBsize = 300,
(a) comparison of q ûser under EDF using different distribution of user transactions
(b) comparison of q ûser under GEDFa=0.3 using different distribution of user
transactions (c) comparison of q̂user user under GEDFa=0.5 using different
distribution of user transactions (see online version for colours)

80

70

60

50

40

30

20

10
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

l

(a)

90

80

70

60

50

40

30

20
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

l

(b)

90
85
80
75
70
65
60
55
50
45
40

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
l

(c)

Binomial
Uniform

fixed
Geometric

Poisson

Binomial
Uniform

fixed
Geometric

Poisson

Binomial
Uniform

fixed
Geometric

Poisson

m
ea

n(
P u

se
r)

m
ea

n(
P u

se
r)

m
ea

n(
P u

se
r)

Figure 10 Success ratio according different transactions size distributions, (a) success ratio when
transactions size is fixed and DBsize = 500 (b) success ratio when transactions size
follows a uniform distribution and DBsize = 500 (c) success ratio when transactions
size follows a binomial distribution and DBsize = 500 (d) success ratio when
transactions size follows a Poisson distribution and DBsize = 500 (e) success ratio
when transactions size follows a geometric distribution and DBsize = 500 (see online
version for colours)

700

600

500

400

300

200

100

0
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

l

(a)

400

350

300

250

200

150

100

50

0
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

l

(b)

400

350

300

250

200

150

100

50

0
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

l

(c)

Binomial
Uniform

fixed
Geometric

Poisson

Binomial
Uniform

fixed
Geometric

Poisson

Binomial
Uniform

fixed
Geometric

Poisson

m
ea

n(
Q

us
er

)
m

ea
n(

Q
us

er
)

m
ea

n(
Q

us
er

)

Table 4 Simulation parameters used for system characteristics

System characteristics

Notation Definition Values

Quantum Execution capacity in one clock cycle. 20 Tasks/clock cycle
Task Atomic action. one Read or Write operation.
ReadTime Consumption of a read operation. 1 quantum unit.
WriteTime Consumption of a write operation. 2 quantum units.
a Initialisation of the parameter a in a = 0, 0.3, 0.5.

 formula (2) when using GEDF .

SP Scheduling policy. ‘EDF ’, ‘GEDF ’.
CC Concurrency control protocol. ‘2PL-HP’.

Table 5 Estimation et results of K.S. test using different user transaction size distribution

Distribution λ

Estimation Results of k.S. test

5 Conclusions

The analysis of the system performances we have conducted in this paper allows us to
show that GEDF gives best performance when the system come overload independently of
user-application interaction type i.e. independently of size distribution of user transactions.
We have show also that GEDF is less affected by user transaction size distribution, i.e.,
with GEDF the performance of system is less sensible to the type of interaction with users.
Furthermore, we have seen that the frequency distribution of the success ratio of the user
transaction can be approximated by a beta distribution. In the future work, we plan to adapt
the GEDF protocol to extended transactions models such as nested transaction model and
analyse it’s influence on the system performances.

 p̂user q̂user distance p-value

Fixed size 0.5 29.40743 9.697472 0.0183 0.8901
 0.8 32.57398 61.95368 0.0209 0.771
 1.3 32.07181 119.2753 0.0245 0.8519

Binomial 0.5 27.10485 10.21471 0.0202 0.8069
 0.8 31.51974 65.38273 0.0219 0.7221
 1.3 31.39898 149.3246 0.0202 0.8057

Geometric 0.5 44.05768 15.08168 0.0239 0.6128
 0.9 59.03434 72.4644 0.0176 0.9138

 1.3 71.6275 169.8097 0.0158 0.963

References
Han, S., Lam, K-Y., Wang, J., Son, S.H. and Mok, A.K. (2012) ‘Adaptive co-scheduling for periodic

application and update transactions in real-time database systems’, J. Syst. Softw., Vol. 85, No. 8,
pp.1729–1743.

Han, S., Chen, D., Xiong, M., Lam, K.Y., Mo, A.K. and Ramamritham, K. (2014) ‘Schedulability
analysis of deferrable scheduling algorithms for maintaining real-time data freshness’, IEEE
Transactions on Computers, Vol. 63, No. 4, pp.979–994.

Han, S., Lam, K-Y., Chen, D., Xiong, M., Wang, J., Ramamritham, K. and Mok, A.K. (2016) ‘Online
mode switch algorithms for maintaining data freshness in dynamic cyber-physical systems’,
IEEE Transactions on Knowledge and Data Engineering, Vol. 28, No. 3, pp.756–769.

Kaddes, M., Amanton, L., Sadeg, B., Berred, A. and Abdouli, M. (2013) ‘Enhancement of generalized
earliest deadline first policy’, in Procedding of ICEIS 2013, Vol. 1, pp.183–190.

Kim, Y-K. and Son, S.H. (1996) ‘Supporting predictability in real-time database systems’,
Proceedings of the 2nd IEEE Real-Time Technology and Applications Symposium (RTAS ’96),
pp.38–46.

Li, J., Chen, J-J., Xiong, M., Li, G. and Wei, W. (2016) ‘Temporal consistency maintenance
upon partitioned Multiprocessor platforms’, IEEE Transactions on Computers, Vol. 65, No. 5,
pp.1632–1645.

Ramamritham, K., Son Sang, H. and Dipippo, L.C. (2004) ‘Real-time databases and data services’,
Real-Time Syst., Vol. 23, Nos. 2–3, pp.179–215.

Semghouni, S., Amanton, L., Sadeg, B. and Berred, A. (2007) ‘On new scheduling policy for the
improvement of firm RTDBSs performances’, Data Knowl. Eng., Vol. 63, No. 2, pp.414–432.

Shanker, U., Misra, M. and Sarje, A.K. (2008) ‘Distributed real-time database systems: background
and literature review’, Distrib. Parallel Databases, Vol. 23, No. 2, pp.127–149.

Xiong, M. and Ramamritham, K. (2004) ‘Deriving deadlines and periods for real-time update
transactions’, IEEE Transactions on Computers, Vol. 53, No. 5, pp.567–583.

