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Abstract: Nowadays, due to rapidly changing technologies, applications 
handling more data and providing real-time services are becoming more frequent. 
Real-time database systems are the most appropriate systems to manage these 
applications. In this paper, we study statistically the behaviour of real-time 
transactions under the generalised earliest deadline first scheduling policy 
(GEDF). GEDF is a new scheduling policy in which a priority is assigned to a 
transaction according to both its deadline and a parameter which expresses the 
importance of the transaction in the system. In this paper, we focus our study 
on the influence of transactions composition. Precisely, we study the influence 
of transaction distribution on the system performances and on approximation of 
transactions success ratio behaviour by a probability distribution. To this end, 
we have developed our RTDBS simulator and we have conducted intensive 
Monte-Carlo simulations. 
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1 Introduction 

 
A real-time database systems (RTDBSs) can be considered as a combination of a traditional 
database system and a real-time system. RTDBSs have to satisfy both temporal consistency 
and logical consistency of the database, i.e., they must guarantee the transactions atomicity, 
consistency, isolation, durability (ACID) properties on one hand, and they must schedule 
the transactions in order to meet their individual deadlines, on the other hand (Han et al., 
2014; Ramamritham et al., 2004). 

In RTDBSs, the main issue is the transaction scheduling. In fact, different scheduling 
algorithms are proposed in the literature to schedule transaction in RTDBSs according to the 
type of knowledge used [see Han et al. (2016), Li et al. (2016), Han et al. (2012), Shanker 
et al. (2008)]. The most studies use EDF scheduling policy which is based on a priority 
assignment according to the deadlines. 

In Kaddes et al. (2013) and Semghouni et al. (2007), have proposed a new scheduling 
protocol, generalised earliest deadline first (GEDF), in which transaction priority is 

assigned according to both deadlines and a parameter, called SPriority, which expresses 
the importance of transactions in order to address the weakness of EDF. In these works, 

authors did not take account different types of interactions with users. Hence, we propose 
to use different transactions size distributions and study their influence on the system 

performance. Moreover, we present a reasonable approximation of the success ratio of user 
transactions by probability density function under different size of transaction distributions. 

To this purpose, we have conducted intensive Monte Carlo simulations on the RTDBS 
simulator we have developed. This simulator is based on components generally encountered 
in RTDBSs (Ramamritham et al., 2004; Kim et al., 1996). 

The remainder of this paper is organised as follows. In first section, we briefly present 
GEDF policy and the simulator components and the metrics used. The second section 
presents the Monte Carlo simulation experiments and results. In last section, we conclude 
the paper and discuss some aspects of our future work. 

 
 

2 System model and simulator 
 

2.1 Simulator 
 

A transaction generator (TG) generates two types of transactions: user and update 
transactions. Each update transaction access to one sensor data. User transactions access at 
different data (real-time data and non-real-time data). The number of operations generated 
for each user transaction follows a specific distributions (Binomial, Poisson, geometric, 
uniform). Data accessed by the operations of the transaction are randomly generated and 
built according to the level of data conflicts (see following section). User transactions are 
submitted to the system following a Poisson process (see Figure 1) with an average rate λ, 
into the active queue. The deadline controller (DC) supervises the transactions’ deadlines, 
and informs the transaction scheduler (TS) when a transaction misses its deadline in order 
to abort it. Freshness manager (FM) exploits the absolute validity interval (avi) to check the 
freshness of a data item before a user transaction accesses it and blocks all user transactions 
which read stale temporal data. Transactions data conflicts are resolved by the concurrency 
controller (CC) according to transactions priorities. CC informs TS in the following cases: 
a when a transaction is finished (committed) and its results are validated in the database 

b when a transaction is blocked waiting for a conflict resolution 

c when a transaction is restarted, following the commit of other transactions 



 

·	·	·	 ·	·	·	

 
 

 

  

 

 

 

 

 

 
 

 
 

 

 

 

d when a transaction is rejected because its restart is impossible, i.e., its best execution 
time (BET) is higher than its deadline minus the current time 
(BETT > DT −	currenttime) 

e when a transaction is transferred from the blocked queue to the active queue, i.e., its 
data conflicts are resolved. 

 
Figure 1 Simulator architecture 

 

 
 

2.2 Conflicts level 
 

In the database, some data are more important than others and they are frequently requested 
by user transactions resulting data conflicts. In order to reproduce this behaviour, a drawing 
probability is assigned to each data item in the following manner. 

 

Let r1 < r2 < < rk < < rn, denote the ranking of the data items D1, D2, . . . , 
Dk, . . . , Dn respectively. 

The probability of drawing the data item Di is given by the following formula: 
 

P robDi 

 ri 
= 

R 



 

i=1 

i=1 i i=1 i 1	

i=1 i i=1 i i=1 i 

where  R = 
∑n ri, is the sum of all ranks. Thus, data with high probabilities will be 

more drawn than those with low probabilities. Data item Dk is selected according to the 
above probabilities, i.e., a uniform random variable is generated U		in (0, 1) and select 

Dk if U		∈	(
∑k−1 ProbD , 

∑k ProbD ], by convention k = 1 if U	∈	(0, ProbD ]. The 
 

 
Table 1 Drawing intervals of data items 

 

Data D1 D2 . . . 
Drawing interval [0, ProbD1	] ]ProbD1	, ProbD1	+ ProbD2	] . . . 
Data . . . Dk . . . Dn 
Drawing interval . . . ] ∑k−1 ProbD  , 

∑k     ProbD  ] . . . ] ∑n−1 ProbD , 1] 
 

 

2.3 Transaction priority 
 

We consider only firm real-time transactions and we classify them into update and user 
transactions. Update transactions are periodic and only write temporal data which capture 
the continuously state changing environment. We assume that an update transaction is 
responsible for updating a single temporal data item in the system. Each temporal data item 
is updated following a more-less approach where the period of an update transaction is 
assigned to be more than half of the validity interval of the temporal data (Xiong et al., 
2004). User transactions can read or write non-temporal data and only read temporal data. 
They arrive in the system according to a Poisson process with an average rate λ. 

GEDF is a dynamic scheduling policy where transactions are processed in an order 
determined by their priorities, i.e., the next transaction to run is the transaction with the 
highest priority in the active queue. The priority is assigned according to both the deadline 
which expresses the criticality of time and the SPriority which expresses the importance of 
the transaction. We  consider that the zero value of Priority  (Priority  = 0),  corresponds 
to the highest priority in the system. A transaction T is assigned a priority by the formula: 

 
Priority(T ) = (1 −	a) ×	Deadline(T ) + a ×	SPriority(T ) (2) 

where: 

• 0 ≤	a ≤	1, is the weight of SPriority in the priority formula (see Table 2). 

SPriority : system priority is a parameter related to each transaction. It expresses 
the degree of importance of the task(s) executed by a transaction and defines its rank 
among all the transactions in the system. Two weight functions are used according to 
the transaction class to assign the SPriority value and are described in what follows. 
 

2.3.1 Update transactions class 

The SPriority of an update transaction T is computed according to the following formula: 
 

 
SPriority 

 
where: 

 
 
update 

   PeriodeT  
= N ×	

MaxPeriode 

 
(3) 

 

• PeriodeT is the period of an update transaction T . 

drawing intervals of data items are resumed in Table 1. 

•	



 

∈	

i=1 j=1 k=1 

• MaxPeriode is the longest period among the periods of update transactions. 

• N is the value that divides the SPriority interval [0, MaxV alue] according to 
transactions class, i.e. SPriorityupdate ∈]0, N ] and 
SPriorityuser ∈]N, MaxV alue]. 

 
2.3.2 User transactions class 

The user transaction importance SPriority uses criteria based on both the transaction ‘write 
set’ operations and the transaction ‘read set’ operations. A user transaction T is assigned a 
SPriority value by the following formula: 

 
SPriorityuser = MaxV alue −	γ ×	WeightT −	(1 −	γ) ×	DBAV alue (4) 

 

where 
 

1 WeightT  denotes the weight assigned to the current user transaction and is given by 
 

n m l 

WeightT = (
∑ 

WreadT D + 
∑ 

WwriteNT D −	
∑ 

WreadNT D) (5) 

where 
 

a WreadT D, WwriteNT D and WreadNT D denote respectively the  weight 
assigned to a read operation of a temporal data, the weight assigned to a write 
operation of a non-temporal data and the weight assigned to a read operation of 
a non-temporal data (see the transaction characteristics in Table 3). 

b n, m, and l are respectively the numbers of ReadT D, WriteNT D, ReadNT D 
operations in each user transaction. 

 
2 γ ]0, 1] is the rank assigned to the transaction weight in the SPriority formula (see 

Table 3). 

3 DBAV alue is a uniform random variable between 0 and (MaxV alue −	N ), i.e., 
Random(MaxV alue −	N ). 

4 Maximum(γ ×	WeightT −	(1 −	γ) ×	DBAV alue) ≤	MaxV alue −	N , because the 
user transactions SPriority belongs to ]N, MaxV alue]. 



 
 

3 System performance metrics 
 

To measure the system performances, we consider transaction success ratio as the main 
metric. The success ratio is given by: 

 
 

SRatio = 
CommitT 

SubmittedT (6) 

where CommitT indicates the number of transactions committed by their deadlines, and 
SubmittedT indicates all submitted transactions to the system in the sampling period. We 
divide this metric into two parts according to the class of transactions: 

 
1 Success ratio of update transactions 

 

 
SRatioUpdate 

  CommitTUpdate  
= 

SubmittedTUpdate 

 
(7) 

 

This ratio indicates the number of update transactions committed by their deadline. It 
represents the consistency level of temporal data in the database. 

2 Success ratio of user transactions 
 

SRatioUser 
  CommitTUser  

= 
SubmittedTUser 

 
(8) 

 

This ratio indicates the number of user transactions committed by their deadlines. 
 
 

4 Simulation results 
 

We carried out Monte Carlo simulations that allow us to study the transactions’ success 
ratio behaviour and the system quality of service. According to the system parameters given 
on Tables 2, 3 and 4, we repeat the experiment 1,000 times in each simulation in order to 
obtain a sample of 1,000 values for the performances. 

 
Table 2 Simulation parameters used for database characteristics 

Database characteristics 

Notation Signification Values 

λ User transaction arrival rate. 0.1 to 2.3. 
Time Duration of one experiment. 1,000 clock cycles. 
DBSize Number of data in the DB. 300. 
TD-size 
Min avi, 

Number of temporal data in the DB. 
Minimal and maximal avi. 

15% ×	DBSize 
Min avi=5 clock cycles, 

  

Max avi Max avi=100 clock cycles. 



 
 

4.1 Influence of transaction size distribution 
 

Applications can have different types of interactions with users. For example, many 
applications fixed the user request (fixed size transactions) but others applications authorise 
ad hoc request (variable size transaction). For this, we propose to analyse the influence of 
the distribution of user transactions size on performance of the system under GEDF . 

The distribution function of user transactions size is depicted in Figure 2. It shows that, 
with geometric and uniform distributions, we obtain a large variation of user transactions 
size. Unlike with the binomial and Poisson distributions the size of transactions is 
homogeneous around the average. Figures 3 and 4 depicted graphically the influence of 
transaction size distribution on system performance under EDF and GEDF protocol 
respectively. 

 
Figure 2 User transaction size distribution (see online version for colours) 
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Figures 3 and 4 show clearly that transaction size distribution have less influence on 
system performance with GEDF. In fact, with GEDF, transaction priorities are computed 
using partially deadline and transaction importance. Therefore, transaction priorities are 
less affected by transaction distribution size. For example, when database size is 300, the 
difference between SRatio (respectively SRatiouser) obtained under various transaction 
size distributions, reaches 6% (respectively 15%) with EDF and decreases with GEDF : 
it reaches 4% (respectively 11%) when a = 0.3 for example. For a database size equal 
to 500, the difference between various SRatiouser obtained under different distributions 
increases. It reaches 20% under EDF  and 13% under GEDFa=0.3. 
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Table 3 Simulation parameters used for transaction characteristics 

Transaction characteristics 
 

Notation Definition Values 
φ Probability to execute a φ(Read) = 2/3, 

‘read’ or a‘write’ operation. φ(Write) = 1 −	φ(Read) = 1/3. 
Updatesize Operations in update transactions. 1 write operation. 
D−UpT Deadline of update transaction D−UpT = 1 ×	Avi. 

(more-less approach). 
P−UpT Period of update transaction P−UpT = 2 ×	Avi. 

(more-less approach). 
SPriority Intervals of SPriority. SPriorityUpdate ∈	[0, 16] and 

SPriorityUser ∈]16, 80]. 
γ Initialisation of γ. γ = 0.8. 
WreadT D (WreadNT D) Reading weight of WreadT D = WreadNT D = 1. 

one temporal data 
(non-temporal data) 

WwriteNTD Writing weight of non-temporal data. WwriteNTD = 2. 
 

 
Figure 3 Comparison between different user transactions distributions with EDF protocol when 

DBsize = 300, (a) Sratios (b) Sratiosuser (see online version for colours) 
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Figure 4    Comparison between different user transactions distributions with GEDFa=0.3 protocol 
when DBsize = 300, (a) Sratios (b) Sratiosuser (see online version for colours) 
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With GEDF, update transactions have highest priorities, hence the success ratio of update 
transactions SRatioupdate is maximal, i.e., 100% for all system workload conditions. 
Moreover, update transactions performances are independent from user transactions, i.e., 
the user transactions number and size has no significant effect on the update transactions 
performances. 

In Kaddes et al. (2013), the authors have shown that, when system is not overloaded, 
EDF gives a better success ratio than GEDF . This situation is reversed when system 
becomes overloaded. Simulations conducted using different transaction size distributions 
have shown that there is no significant influence on the inflection point under different 
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user transaction size distributions. In fact, we obtain the inflection point when λ = 0.6 
and λ = 0.4, with DBsize = 300 and DBsize = 500, respectively, i.e., SRatioEDF > 
SRatioGEDF when λ < 0.4 (0.6) and SRatioEDF <= SRatioGEDF λ >= 0.4 (0.6). 
Furthermore, when the workload increases, the optimal value of a increases too. Figure 10 
illustrates graphically the comparison. 

 

4.2 Stochastic behaviour of the success ratio 
 

In order to give a complete description of the behaviour of performance of system, we 
propose in this section to give a reasonable approximation of the probability density 
function of user transaction success ratio. Moreover, we analyse the influence of user 
transaction size distribution on the frequency distribution of SRatiouser in order to refine 
the studies of the behaviour of user success ratio under different scheduling policies (mainly 
GEDFa=0.3, GEDFa=0.5  and EDF ), system load and database size. To this end, we 
follow theses steps: 

We recall that a random variable X follows a standard beta distribution with parameters 
p and q if its probability density is given by: 

 
xp−1(1 −	x)q−1 

 
where 

f (x, p, q) = 

B(p, q) 
,  x ∈	[0, 1], (9) 

∫ 1 

   
By using the moment method, we estimate the parameters p and q by: 

p� = x 
[ 

 x(1 −	x) −	1
]

 
q� = (1 −	x) 

[
 x(1 −	x) −	1

]
 

where  x = 1 
∑n xi is the sample mean and s2 = 1 

∑n   (xi −	x)2 is the sample 
 

Figures 5, 6 and 7 show some frequency distributions of the success ratio given by 
simulations and their approximation by beta density. Each histogram represents a sample 
of 1,000 values of success ratio. Figure 5 shows the histogram when using a fixed size 
transaction, i.e., 25 operations per transaction. Figures 6 and 7 show the histogram when the 
transaction size follows binomial and geometric distribution respectively. They summarise 
the results obtained when DBsize = 300, under differen t system workloads, i.e., with 
user transactions arrival rate λ = 0.5 (normal workload), λ = 0.8 (average workload) and 
λ = 1.3 (high workload). 

B(p, q) = 
0 

xp−1(1 −	x)q−1dx. 

variance. 



 

 

Figure 5 SRatiouser frequency distribution and its equivalent beta density when user transactions 
size is fixed, under GEDFa=0.3, (a) λ=05 (b) λ=08 (c) λ=13 (see online version for 
colours) 
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Figure 6 SRatiouser frequency distribution and its equivalent beta density when user 
transactions size follow a binomial distribution, under GEDFa=0.3, (a) λ = 05 
(b) λ = 08 (c) λ = 13 (see online version for colours) 
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Figure 7 SRatiouser frequency distribution and its equivalent beta density when user 
transactions size follow a geometric distribution, under GEDFa=0.3, (a) λ = 05 
(b) λ = 08 (c) λ = 13 (see online version for colours) 
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Figure 8 Comparison of pˆuser under different user transactions size distribution, DBsize = 300, 
(a) comparison of p ûser under EDF using different distribution of user transactions 
(b) comparison of p ûser under GEDFa=0.3 using different distribution of user 
transactions (c) comparison of p̂user  user under GEDFa=0.5  using different 
distribution of user transactions (see online version for colours) 
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Since the histogram of SRatiouser can be approximated by a beta density independently 
of the size distribution of user transaction, we have decided to analyse the influence 
of the size’s distribution of user transactions by comparing the beta parameters (p�user 
and  q�user).  Those  parameters  have  been  obtained  by  using  the  moment  method,  with 
various scheduling policies and various system workloads. Figures 9(a) and 9(b) present 
the evolution of p�user under EDF and GEDFa=0.3 when the system load increases. 
We observe that when the variation of transaction size is small (binomial or Poisson 
distributions), or null (fixed transaction size), the value of p�user is almost constant under 
different system workloads. Whereas, when the variation of user transactions size is 
important (geometric or uniform distribution), the p�user parameter grows up when the load 
of the system increases. We note the same behaviour of p�user under different scheduling 
policies. However, as shown in Figures 10(a) and 10(b ), the q�user curve appearance is not 
influenced by the user-transaction size distribution. 
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Figure 9 Comparison of qˆuser under different user transactions size distribution, DBsize = 300, 
(a) comparison of q ûser under EDF using different distribution of user transactions 
(b) comparison of q ûser under GEDFa=0.3 using different distribution of user 
transactions (c) comparison of q̂user  user under GEDFa=0.5  using different 
distribution of user transactions (see online version for colours) 

 
80 

 

70 
 

60 
 

50 
 

40 
 

30 
 

20 
 

10 
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

l 

(a) 
 

90 
 

80 
 

70 
 

60 
 

50 
 

40 
 

30 
 

20 
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

l 

(b) 
 

90 
85 
80 
75 
70 
65 
60 
55 
50 
45 
40 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 
l 

(c)  

Binomial 
Uniform     

fixed   
Geometric   

Poisson     

Binomial 
Uniform     

fixed   
Geometric   

Poisson     

Binomial 
Uniform     

fixed 
Geometric 

Poisson     

m
ea

n(
P u

se
r) 

m
ea

n(
P u

se
r)  

m
ea

n(
P u

se
r) 



 

 

Figure 10 Success ratio according different transactions size distributions, (a) success ratio when 
transactions size is fixed and DBsize = 500 (b) success ratio when transactions size 
follows a uniform distribution and DBsize = 500 (c) success ratio when transactions 
size follows a binomial distribution and DBsize = 500 (d) success ratio when 
transactions size follows a Poisson distribution and DBsize = 500 (e) success ratio 
when transactions size follows a geometric distribution and DBsize = 500 (see online 
version for colours) 
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Table 4 Simulation parameters used for system characteristics 

System characteristics 

Notation Definition Values 

Quantum Execution capacity in one clock cycle. 20 Tasks/clock cycle 
Task Atomic action. one Read or Write operation. 
ReadTime Consumption of a read operation. 1 quantum unit. 
WriteTime Consumption of a write operation. 2 quantum units. 
a Initialisation of the parameter a in a = 0, 0.3, 0.5. 

 formula (2) when using GEDF .  

SP Scheduling policy. ‘EDF ’, ‘GEDF ’. 
CC Concurrency control protocol. ‘2PL-HP’. 

 
Table 5 Estimation et results of K.S. test using different user transaction size distribution 

 

Distribution λ 

 
Estimation Results of k.S. test 

 
 
 
 
 
 
 
 
 
 
 
 
 

5 Conclusions 
 

The analysis of the system performances we have conducted in this paper allows us to 
show that GEDF gives best performance when the system come overload independently of 
user-application interaction type i.e. independently of size distribution of user transactions. 
We have show also that GEDF is less affected by user transaction size distribution, i.e., 
with GEDF the performance of system is less sensible to the type of interaction with users. 
Furthermore, we have seen that the frequency distribution of the success ratio of the user 
transaction can be approximated by a beta distribution. In the future work, we plan to adapt 
the GEDF protocol to extended transactions models such as nested transaction model and 
analyse it’s influence on the system performances. 

 p̂user q̂user  distance p-value  

Fixed size 0.5 29.40743 9.697472  0.0183 0.8901  
 0.8 32.57398 61.95368  0.0209 0.771  
 1.3 32.07181 119.2753  0.0245 0.8519  

Binomial 0.5 27.10485 10.21471  0.0202 0.8069  
 0.8 31.51974 65.38273  0.0219 0.7221  
 1.3 31.39898 149.3246  0.0202 0.8057  

Geometric 0.5 44.05768 15.08168  0.0239 0.6128  
 0.9 59.03434 72.4644  0.0176 0.9138  

 1.3 71.6275 169.8097  0.0158 0.963  
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