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Abstract

We extend the one-sided gradient observer of the rotor electrical position of [8] to deal with per-
manent magnet synchronous electrical machines with salient poles. This is done by an appropriate
choice of the output function and involves a Cartesian description of the image of the unit circle
by a degree 2 polynomial function and an extension of a convex function. Global convergence of
the observer is established under the assumption of limited saliency or small currents.
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Foreword

This note reports on a work done by Jérémy Malaizé and myself in 2012. At that time, we were
both in the Paris area, Jérémy at IFP New Energy in Rueil-Malmaison and myself at CAS, Mines-
ParisTech in Fontainebleau. Unfortunately Jérémy left for Switzerland. This halted our collaboration
being both busy with other things.

The work remained as it was until, getting closer to retirement, I realized it would be a good idea
to make it public. Besides helping in the fight against covid 19, the containment has had the other
benefit of giving me time to dedicate to this objective.

What the reader will find in the lines below is an edited version of what we wrote in 2012.
The modifications concern only the technicalities. All the other aspects – introduction, references,
comments, . . . – have not been up-dated although progress has been made on the topic. And worse,
the data concerning the successful experiments made at that time on a test bed have been lost and
therefore cannot be reported. I apologize for this.

This manuscript has not been submitted for a journal publication and has not been reviewed in
any way.

Fontainebleau, April 2020
Laurent Praly
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1 Introduction

1.1 The context

The problem of estimating the mechanical state components, i.e. rotor position and speed, for
synchronous electrical machines from the measured electrical variables has a very long history [13],
rich in various and efficient methods. There are many technical reasons for solving this problem such
as cost reduction, wires removal and reliability improvement.

No matter what technique is considered for the control design for synchronous electrical machines,
it always comes down to feed an estimate of the rotor position to a state feedback, in charge of
controlling the torque delivered by the machine. It is now well established that to design such a
feedback, it is easier to work with a two-phase model expressed in a frame rotating with the motor.
The so called dq model, that is central to the well-known field-oriented control scheme, see [1] and
[13]. However, it turns out that, for the state estimation problem, a model expressed in a fixed frame
is more appropriate. This remark was made in [10]. Actually, in that paper it was shown that, by
immersing the standard four dimensional model leaving in R3×S1 into a five dimensional one leaving
in R5, it is possible to describe the dynamics of Surface-Mount Permanent Magnet Synchronous
Machines (SM-PMSM) by a system with a triangular structure. In particular, this makes possible the
reconstruction of the rotor position from a simple two-dimensional subsystem, completely decoupled
from the mechanical behavior of the motor. To be more specific, position estimation may be carried
out without any precise knowledge of the mechanical load connected to the machine shaft. There
is no need for inertia, friction or load torque knowledge. This is quite an appealing characteristics,
since it is usually rather complicated to accurately access these data, subject to changes when the
motor is in operation.

This two-dimensional subsystem has been used as a design tool for the gradient observer pro-
posed and studied experimentally in [6], [2] and theoretically in [9]. Unfortunately the study of the
corresponding error system, closely related to an averaged approximation of the periodically forced
van der Pol oscillator, is very difficult. Also in this literature, only SM-PMSM are considered, and
no generalization to other types of synchronous machines is proposed.

In the following, we suggest to modify the gradient observer mentioned above by taking advantage
of convexity. The importance of geodesic convexity, with respect to a metric adapted to the system
observability, of the level sets of the output function has been pointed out in [11]. Actually convexity
also has a long history in estimation and particularly in adaptive control. See [3, 5] for instance.
But, in trying to exploit it here, we end up facing a difficulty very similar in spirit to the one
presented on [4, page 418]. As in that paper we round it by a conditional correction term that makes
the study of the error system much easier than in [9]. Aside from a more accessible convergence
proof of the observer, we also propose a generalization of the triangular system structure for SM-
PMSM, to a broader class of synchronous machines including for instance Salient-Pole Permanent
Magnet Synchronous Machines or Brushless Direct Current Motor exhibiting a trapezoidal back-
emf. By combining convexity and this generalization, we provide a general framework for the rotor
position estimation for electrical synchronous machines. This approach enjoys some remarkable
properties, such as some theoretical guarantees regarding the convergence of the estimated position
with robustness to the mechanical load and its characteristics.

The paper is organized as follows. The end of Section 1 introduces the dynamical model considered
hereafter, and addresses what kind of electrical machines this approach may be applied to. Section
2 is devoted to the design of an observer for a dynamical system, with an elementary drift and a
convex output function. Under some mild assumptions, the proposed observer is proved to yield
global asymptotic convergence of the estimated state to the actual system state. In Section 3, we
address the problem of estimating the rotor position of a salient-pole permanent magnet synchronous
machines. It is showed to be a particular case of the general framework given in Section 2. Finally in
Section 4 we show how to extend the previous results to electrical machines with a back-emf assumed
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only to be periodic in the rotor position.

1.2 System modeling and problem statement

In the following, the equations of AC synchronous machines cast in the so-called stationary frame
are considered. By making use of the Faraday’s and Joule’s Laws, the phase-to-neutral voltages at
the motor terminals read [1, 14] :

v = Ri+
.
ϕ (1)

This allows us to relate the voltages v at the motor terminals to the derivative of the total flux
ϕ encompassed by the windings, and to the currents i within them, while R stands for the stator
windings resistance. For three-phase motors, without any assumption regarding the kind of machines
considered, the quantities v, i as well as ϕ are two dimensional vectors obtained via the Concordia
Transform applied to the three phase-to-neutral voltages, the three line currents and the total flux
seen by each of the three phases, respectively.

Actually, in AC synchronous machines the total flux must satisfy (1) in such a way that it remains
a prescribed function of the currents i as well as of the rotor electrical phase, denoted θ. Here we shall
investigate more the case of salient-pole synchronous machines for which the total flux satisfies[14] :

ϕ = L0i+ Φ

(
cos(θ)
sin(θ)

)
+ L1

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
i, (2)

where L0 and L1 are some inductances, while Φ is homogeneous to a magnetic flux :

• When L1 is zero, (2) degenerates to the modeling of surface-mount synchronous machines,
addressed in [8],

• When Φ equals zero, (2) describes the behavior of synchro-reluctant machines,

• For permanent magnet synchronous machine featuring saliency, Φ is considered to be constant,
up to the effects of the temperature changes,

• For wound-rotor synchronous machine, Φ is a time-varying control input.

Our problem is the determination of the electrical phase θ from the only knowledge of v and i,
and under a perfect knowledge of the motor physical parameters, namely R, Φ, L0 and L1. The
usual solution would go with first rewriting (1) and (2) as :

.
x = f(x, (v, ω)) , y = i

with the state x made of i and θ, the measured output y made of i and the input made of v and
ω, the rotor speed. But this has the drawback of asking for either the knowledge of ω or for a
model generating it, with involving possibly the mechanics of the motor and the knowledge of the
motor load, friction or inertia. Instead we follow the same approach as the one proposed in [10] for
surface-mount PMSM. For such motors, L1 equals zero in (2), and by eliminating θ, we find that the
total flux is constrained to satisfy at each time

C (ϕ, t) = 0 , (3)

where
C(ϕ, t) = |ϕ− L0i(t)|2 − Φ2 .

This says the total flux evolves on a circle with radius Φ and moving center L0i. This motivates for
considering the dynamical system

.
ϕ = v −Ri , y = C(ϕ, t) (4)
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with state ϕ, input v − Ri and measurement y which turns out to be identically zero for signals
coming form the motor. Below we go exactly the same way. We prove that, in the case of (2) or even
more generally, in the case where the total flux is expressed as the following truncated Fourier series
expansion of order N in θ, i.e.

ϕ =
N∑
n=0

ϕn(t)

(
cos (nθ + ψn(t))
sin (nθ + ψn(t))

)
, (5)

where, for any n between 0 and N , ϕn : R≥0 7→ R and ψn : R≥0 7→ [0, 2π[ define the magnitude and
the phase of the n-th term of the expansion, respectively, the constraint function C is a polynomial
in ϕ, with higher degree term |ϕ|2N , and the coefficients of which depend on the ϕn(t)’s (through
polynomials) and the ψn(t)’s (through sine and cosine functions).

With this, it remains to build an observer for the system (4). This is what we do in the next
section.

2 An observer for a system with an elementary drift and a convex
output function

This section is nothing but a reproduction of [8, Section II]. Its object is the proposition and the
analysis of an observer for a generic simple system. It will be the basis for the observer of the total
flux, we present in the next section.

2.1 Observer design

Consider a dynamical system with state x of dimension two, the dynamics of which simply reads:

.
x = u(t) , (6)

with x in R2, u : R≥0 → R2 a continuous function the value u(t) of which is known at each time t.
Assume further that u as well as its time integral are bounded on R≥0. Denote by t 7→ X (x0, t;u)
the solution of this dynamical system issued from x0 at time 0, under the action of u. According to
the assumptions, this solution is defined and bounded on R+.

The information about x is given by the measurement :

y(t) = h(x, t) ,

where h : R2 × R → R is an output function. Actually we restrict our attention to what we call
constrained solutions. A solution t 7→ Xc(x0, t;u) is called a constrained solution if its measurement
y is zero for all time, i.e. we have :

h(Xc(x0, t;u), t) = 0 ∀t ∈ R≥0 . (7)

or equivalently :

h(x0, 0) = 0 ,
∂h

∂x
(Xc(x0, t;u), t)u(t) +

∂h

∂t
(Xc(x0, t;u), t) = 0 ∀t ∈ R≥0 . (8)

We assume :

A1: The function h : R2 × R≥0 → R
(x, t) 7→ h(x, t)

is continuous, the function x 7→ h(x, t) is C2 for each

t and, for any positive scalar c, there exist positive real numbers h(c), hx(c) and ht(c) such
that :

|h(x, t)| ≤ h(c) ,

∣∣∣∣∂h∂x(x, t)

∣∣∣∣ ≤ hx(c) ,

∣∣∣∣∂h∂t (x, t)

∣∣∣∣ ≤ ht(c) ∀(x, t) : |x| ≤ c , t ≥ 0 .
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A2: There exists a strictly positive scalar hxx such that the Hessian matrix of h satisfies :

∂2h

∂x∂x
(x, t) ≥ 2hxxI, ∀(x, t) : h(x, t) ≥ 0 , t ≥ 0 .

A3: For any constrained solution t 7→ Xc(x0, t;u) of (6), and any unit vector w in R2, there exists
a sequence tn going to infinity as n grows indefinitely such that:

∂h

∂x
(Xc(x0, tn;u), tn) w > 0 .

Remark 1.

1. Besides some smoothness properties, A1 simply requires that the functions x 7→ h(x, t) and

x 7→ ∂h

∂x
(x, t) are bounded, uniformly in t, on any compact subset of R2.

2. Under Assumption A2, we have

h(x2, t) ≥ h(x1, t) +
∂h

∂x
(x1, t)[x2 − x1] + hxx|x1 − x2|2 ∀(x1, x2, t) (9)

This is a direct consequence of Taylor’s expansion with integral remainder, i.e. :

h(x2, t) = h(x1, t) +
∂h

∂x
(x1, t)[x2 − x1]

+
1

2
[x2 − x1]>

[∫ 1

0

∫ 1

0

(
∂2h

∂x2
(x2 + rs(x2 − x1), t)dr

)
sds

]
[x2 − x1] ,

with using the lower bound for
∂2h

∂x2
(x2 + rs(x2 − x1), t) given by A2. Hence Assumption A2

requires the function x 7→ h(x, t) is strongly convex, uniformly in t and therefore the sub-level
set {x : h(x, t) ≤ 0} is strictly convex for each t ≥ 0.

3. If A3 is fulfilled, the gradient of h evaluated along any constrained solution t 7→ Xc(x0, t;u)
of (6) points infinitely often in any direction of R2. This is a non-evanescent full spanning
condition.

We propose the following observer for the state x :

.
x̂ = u(t) − µ

∂h

∂x
(x̂, t)> max {0, h (x̂, t)} , (10)

where µ is an arbitrary strictly positive real number. It is an algorithm of a gradient type but
with a correction term which is “on” only when h(x̂, t) is non negative. In the following, we denote
X̂ (x̂0, t;u) its solution at time t, issued from x̂0 at time 0. Because of A1 it is well defined and
unique. Note that it depends on the actual constrained system solution Xc(x0, t;u) indirectly only
via u satisfying (8).

2.2 Observer convergence

Proposition 1. Under assumptions A1, A2 and A3, for any (x0, x̂0), we have :∣∣∣Xc(x0, t;u)− X̂ (x̂0, t;u)
∣∣∣ ≤ |x0 − x̂0| ∀t ≥ 0 (11)

and :
lim
t→∞

∣∣∣Xc(x0, t;u)− X̂ (x̂0, t;u)
∣∣∣ = 0 . (12)
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This Proposition says that the zero error set x =
{

(x, x̂) ∈ R2 : x = x̂
}

is globally and asymp-
totically stable but only when restricted to constrained solutions.

Proof. The error dynamics is obtained by combining (6) and (10), and simply reads :

.︷ ︷
x̂− x = − µ ∂h

∂x
(x̂, t) max {0, h (x̂, t)} . (13)

Let us consider :

V =
1

2
[x̂− x]>[x̂− x]

as a Lyapunov function candidate. Its time derivative is :

.
V = − µ max {0, h (x̂, t)} ∂h

∂x
(x̂, t) (x̂− x) .

With (9), this yields :

.
V ≤ −2µhxx V max {0, h (x̂, t)} ∀(x, x̂, t) : h(x, t) = 0 .

This implies (11).
Moreover, the evaluation of V along the solution at time t which we denote V (t) satisfies :

V (t) ≤ exp

(
−2µhxx

∫ t

0
max

{
0, h

(
X̂ (x̂0, s;u), s

)}
ds

)
V (0) .

The limit (12) follows when the following integral diverges :

I(t) =

∫ t

0
max

{
0, h

(
X̂ (x̂0, t;u), s

)}
ds .

Let us establish this holds by contradiction. We assume that V (t) does not converge to 0. This
implies that I converges. Since, by assumption, the integral of t 7→ u(t) is bounded, the function
t 7→ Xc(x0, t;u) is bounded. Then (11) implies the existence of a solution dependent positive scalar
c such that :

|Xc(x0, t;u)| ≤ c , |X̂ (x̂0, t;u)| ≤ c ∀t ≥ 0 .

On another hand A1 and (13) give :

|
.︷ ︷

x̂− x | ≤ µhx(c) max {0, h(x̂, t)} ∀(x, x̂, t) : |x̂| ≤ c , t ≥ 0 .

With the notation :
X̃ (t) = X̂ (x̂0, t;u)−Xc(x0, t;u) ,

this yields, for any 0 ≤ t1 ≤ t2,

|X̃ (t2)− X̃ (t1)| ≤
∫ t2

t1

|
.
X̃ (s)|ds ≤ µhx(c) |I(t2)− I(t1)| .

The convergence of I(t) implies that, for any sequence tn tending to infinity, I(tn) is a Cauchy
sequence, and so is X̃ (tn) as a consequence of the previous inequality. It follows that, as t tends to
infinity, X̃ (t) admits a limit, denoted X̃?, which is different from zero by assumption. Rewrite X̃ as :

X̃ (t) = X̃? + ε1(t),
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with ε1 : R+ → R2 tending to zero.

According to A1 and the fact that the function t 7→
.
X̂ (x̂0, t;u) is bounded, the function t 7→

X̂ (x̂0, t;u) is uniformly continuous, and the function t 7→ max
{

0, h(X̂ (x̂0, t;u), t)
}

has the same

property. For I converges, Barbalat’s Lemma may be invoked to come up with :

lim
t→∞

ε2(t) = 0 ,

where ε2(t) is defined as :

ε2(t) = max
{

0, h(X̂ (x̂0, t;u), t
} (

≥ h(X̂ (x̂0, t;u), t)
)
.

From the definition of X̃? and ε1, this translates into :

ε2(t) ≥ h(Xc(x0, t;u) + X̃? + ε1(t), t) .

Now (9) together with :
h(Xc(x0, t;u), t) = 0 ∀t ≥ 0

give :

ε2(t) ≥ h(Xc(x0, t;u) + X̃? + ε1(t), t ≥
∂h

∂x
(Xc(x0, t;u), t)

(
X̃? + ε1(t)

)
+ hxx|X̃? + ε1(t)|2 .

Since h satisfies A1, t 7→ Xc(x0, t;u) is bounded, X̃? is non-zero and ε1 and ε2 tend to zero. There
exists a time T > 0 such that we have :

−1

2
hxx|X̃?|2 ≥

∂h

∂x
(X (x0, t;u), t) X̃? ∀t ≥ T .

This is in contradiction with A3. So we must have :

lim
t→∞

V (t) = 0 .

This implies (12).

3 Rotor position estimation for permanent magnet synchronous
electrical machines with salient poles

From the design given in the previous section, a total flux observer for a permanent magnet syn-
chronous electrical machine with salient poles is :

.
ϕ̂ = v −Ri+ µ

∂h

∂ϕ
(ϕ̂, t)> max {0, h (ϕ̂, t)} , (14)

provided we can choose the output function h such that conditions A1 to A3 hold and the equation :

h(ϕ, t) = 0

is satisfied by the total flux given by any solution to (1) which is constrained, i.e. there exists θ such
that (2) holds. In Proposition 3 of Section 3.2 below, we establish such a choice is possible and leads
to the observer :

.
ϕ̂ = v −Ri if

[(
|ϕ̂− L0i(t)|2 − |L1i(t)|2

)2
− Φ2 |ϕ̂− (L0 − L1)i(t)|2

]
≤ 0
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and :

.
ϕ̂ = v −Ri

+ µ

[
4
(
|ϕ̂− L0i(t)|2 − |L1i(t)|2

)
(ϕ̂− L0i(t))− 2Φ2 (ϕ̂− (L0 − L1)i(t))

]
×

×
[(
|ϕ̂− L0i(t)|2 − |L1i(t)|2

)2
− Φ2 |ϕ̂− (L0 − L1)i(t)|2

]
if not. Its global convergence will be established in Proposition 3, under the assumption that the
electrical angular position does not stop. But before this, we describe how the particular output
function h is obtained.

3.1 Image of the unit circle by a degree 2 polynomial function

We have :

Proposition 2. If ϕ is given by (2), then, for each t, it satisfies

C(ϕ, t) = 0

where :

C(ϕ, t) =
(
|ϕ− L0i(t)|2 − |L1i(t)|2

)2
− Φ |ϕ− (L0 − L1)i(t)|2 . (15)

Moreover, when :
Φ > 2L1|i(t)| . (16)

we cannot have :
ϕ = (L0 − L1)i(t) .

Conversely, assume (16) holds. If ϕ satisfies :

C(ϕ, t) = 0 and ϕ 6= (L0 − L1)i(t) , (17)

then ϕ satisfies (2), with θ given by :(
cos(θ)
sin(θ)

)
=

ϕ− (L0 − L1)i(t)

|ϕ− (L0 − L1)i(t)|
. (18)

Proof. To ease the proof, we use the complex representation, with symbols in bold style type, of
vectors in R2 and introduce the following notations :

• ϕ = ϕα + jϕβ ∈ C is the complex representation of the total flux vector ϕ =
(
ϕα ϕβ

)>
,

• i = iα + jiβ ∈ C is the complex representation of the current vector i =
(
iα iβ

)>
,

• ξ = cos(θ) + j sin(θ),

• γ0 = L0i , γ1 = Φ , γ2 = L1i

where · is the conjugate complex.
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With these notations, the fact that ϕ satisfies (2) is equivalent to the fact that the polynomial :

P (ξ) = (γ0 −ϕ) + γ1 ξ + γ2 ξ
2

has a root on the unit circle S1.

Necessary condition :
To obtain a necessary condition, we note that the equation :

ϕ(ξ) = γ0 + γ1 ξ + γ2 ξ
2

defines a function ϕ : S1 7→ C, the image of which is a closed planar curve. Actually ξ is a parameter
giving a parametric expression of this curve. Let us derive its Cartesian equation. For this, we
eliminate ξ from the relationship between the real ϕα and imaginary ϕβ parts of ϕ.

Since ξ is on the unit circle, we have
ξξ = 1 .

Then, by multiplying P by ξ
2

and taking the conjugate complex of the resulting expression leads to
the other polynomial :

Q(ξ) = γ2 + γ1 ξ + (γ0 −ϕ) ξ2 .

By construction, if ξ is a root of P , it is a root of Q. So these two polynomials have a common
root, which is equivalent to the property that their resultant is zero, see [12, chapter 4]. Here, this
resultant is the determinant of the following block-matrix :

M =

(
A B

B
>

A
>

)
.

where A and B are the following two Toeplitz matrices

A =

(
γ0 −ϕ γ1

0 γ0 −ϕ

)
, B =

(
γ2 0
γ1 γ2

)
.

They satisfy :

AB
>

= B
>
A

and therefore : (
I 0

−B> A

)(
A B

B
>

A
>

)
=

(
A B

0 AA
> −B>B

)
.

We obtain algebraically :

det(M) = det
(
AA

> −B>B
)

= [|γ0 −ϕ|2 − |γ2|2]2 − |γ1[γ0 −ϕ]− γ2γ1|
2 . (19)

With the expressions above of the γi, (15) is nothing but the equation det(M) = 0.
When γ1 6= 0, a candidate solution to this equation could be :

ϕ = γ0 − γ2

γ1

γ1

Indeed in this case, we get the 2 equations :

0 = |γ0 −ϕ|2 − |γ2|2 , 0 = γ1[γ0 −ϕ]− γ2γ1 .
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But then, if ξ is the root of P with modulus 1, we get successively :

0 = γ1 (γ0 −ϕ) + |γ1|2 ξ + γ1γ2 ξ
2 ,

= γ2γ1 + |γ1|2 ξ + γ1γ2 ξ
2 ,

= γ2γ1ξ + |γ1|2 + γ1γ2 ξ

and therefore :
|γ1|2 = −2<

(
γ2γ1ξ

)
≤ 2|γ2||γ1| .

So the candidate solution is not a solution when :

|γ1| > 2|γ2| .

Sufficient condition :
Let ρ and θ be the polar coordinates of the vector ϕ− (L0 − L1)i(t) assumed not zero, i.e. :

ϕ − (L0 − L1) i(t) = ρ

(
cos(θ)
sin(θ)

)
.

(17) gives :(
|ϕ− (L0 − L1)i(t)|2 − 2L1i(t)

> [ϕ− (L0 − L1)i(t)]
)2

= Φ2 |ϕ− (L0 − L1)i(t)|2 ,(
ρ2 − 2ρL1i(t)

>
(

cos(θ)
sin(θ)

))2

= Φ2ρ2 ,(
ρ− 2L1i(t)

>
(

cos(θ)
sin(θ)

))2

= Φ2 .

So ρ is :

( 0 ≤ ) ρ = 2L1i(t)
>
(

cos(θ)
sin(θ)

)
± Φ .

The minus case is impossible because of (16). So we have :

ϕ− (L0 − L1)i(t) =

[
2L1i(t)

>
(

cos(θ)
sin(θ)

)
+ Φ

](
cos(θ)
sin(θ)

)
.

And, with the identity :

i + 2
(
cos(θ) sin(θ)

)
i

(
cos(θ)
sin(θ)

)
=

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
i ,

we have obtained (2).

3.2 Choice of the output function h

Proposition 2 says the total flux ϕ given, at time t, by any constrained solution is in the set {ϕ :
C(ϕ, t) = 0} with the constraint function C given as :

C(ϕ, t) =
(
|ϕ− L0i(t)|2 − |L1i(t)|2

)2
− Φ2 |ϕ− (L0 − L1)i(t)|2 ∀(ϕ, t) .

It says also the total flux :
ϕ = (L0 − L1)i(t) ,
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although in this set, should not be considered if :

Φ > 2L1|i(t)| .

But, importantly, it says nothing about pairs (ϕ, t) which are not in the set {(ϕ, t) : C(ϕ, t) = 0}.
This fact is exploited below in (30).

From this information we are tempted to choose the output function h to be used in the observer
satisfying :{

ϕ : h(ϕ, t) = 0
}

=
{
ϕ : C(ϕ, t) = 0 , ϕ 6= (L0 − L1)i(t)

}
∀t : Φ > 2L1|i(t)| .

But how to choose h outside the set {ϕ : C(ϕ, t) = 0} ? Our answer is

Proposition 3. Assume there exists a strictly positive real number ℘ in

]
0,

1

2

]
such that we have :

2
L1

Φ
|i(t)| ≤ 1

2
− ℘ ∀t > 0 .

Then, with the notation :

C(ϕ, t) =
(
|ϕ− L0i(t)|2 − |L1i(t)|2

)2
− Φ2 |ϕ− (L0 − L1)i(t)|2 ,

there exists a function h satisfying Conditions A1 and A2 and1 :

h(ϕ, t) = C(ϕ, t) ∀(ϕ, t) : C(ϕ, t) ≥ 0 and |ϕ− L0i(t)|2 − L2
1|i(t)|2 ≥

3Φ2 − 4ΦL1|i(t)|
4

,

(20)

To prove this result, we start by summarizing here the results about the constraint function C

which are established in appendix B. This is made easier by changing the coordinate ϕ of the total
flux in :

z =
ϕ

Φ
− L0

Φ
i(t) +

L1

Φ
i(t) (21)

and by introducing the notation :

e(t) = 2
L1

Φ
i(t) .

The expression of the constraint function C with this other coordinate is :

Φ2 C(ϕ, t) = Cz(z, t) =
(
|z|2 − e(t)>z

)2
− |z|2 . (22)

It is also appropriate to introduce the e-dependent function η :

[
3− 2|e(t)|

4
, 1− |e(t)|

]
7→ R as :

η(h) = h
2 − 1

4

[
|e(t)| −

√
|e(t)|2 + 4h

2|
]2

. (23)

Its properties, established in Appendix A, are :

1The last inequality is : |z|2 − e(t)>z ≥ 3− 2|e(t)|
4

.

12



Lemma 1. The function η takes strictly negative values on the interval

[
3− 2|e(t)|

4
, 1− |e(t)|

[
, is

strictly increasing on the open interval

]
4− e2 − e

√
e2 + 8

8
,+∞

[
and satisfies :

η

(
3− 2|e(t)|

4

)
≤ − ℘

12
, η(ha)− η(hb) ≥

ha − hb
3

> 0 ∀(ha, hb) : ha ≥ hb ≥
3− 2|e(t)|

4
.

Finally we denote D the set :

D =

{
(z, t) ∈ R2 × R≥0 : |z|2 − e(t)>z > 3− 2|e(t)|

4

}
.

For t fixed, this is R2 from which we have excluded :

Sex =

{
(z, t) : |z|2 − e(t)>z ≤ 3− 2|e(t)|

4

}
,

which is the disk with center
e(t)

2
and radius

√
3− 2|e(t)|+ |e(t)|2

4
.

Proposition 4. Let Cz be the constraint function defined in (22), i.e. :

Cz(z, t) =
(
|z|2 − e(t)>z

)2
− |z|2

1. The equation Cz(z, t) = 0 is the Cartesian form of a Limaçon of Pascal. See [7, pp. 44-51].

For |e(t)| ≤ 1

2
, it encircles a convex set. With point 2 in Remark 1, this motivates :

Assumption H: There exists a strictly positive real number ℘ in

]
0,

1

2

]
such that we have2 :

2
L1

Φ
|i(t)| = |e(t)| ≤ 1

2
− ℘ ∀t > 0 .

2. Under Assumption H, we have :

|za| ≤
3

2
, |za − zb| ≥

1

15
|Cz(za, t)− Cz(zb, t)|

for all (za, zb, t) satisfying :

Cz(za, t) ≤ 0 , Cz(zb, t) ≤ 0 .

3. Under Assumption H, for all h in

[
3− 2|e(t)|

4
, 1− |e(t)|

]
, all (z, t) in the super level set :

{
(z, t) ∈ D : Cz(z, t) ≥ η(h)

}
,

satisfy :

∂2Cz
∂z∂z

(z, t) ≥ 2℘I , d

(
z ,

{
ζ ∈ R2 : |ζ|2 − e(t)>ζ ≤ 3− 2|e(t)|

4

})
≥

h− 3−2|e(t)|
4

2
.

(24)
with d(·, ·) denoting the Euclidean distance.

2This says the saliency or the current should be small.
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4. Under Assumption H, the function Cz is globally convex on the super level set :{
(z, t) ∈ D : Cz(z, t) ≥ η

(
3− 2|e(t)|

4

)}
.

Namely for each t, each za and zb such that (za, t) and (zb, t) are in the super level set above
and for all s in [0, 1] such that, with :

zs = sza + (1− s)za,

(zs, t) is also in the super level set, we have :

sCz(za, t) + (1− s)Cz(zb, t) ≥ Cz(zs, t) .

Proof of Proposition 3.
In view of Proposition 4 and with Assumption H, we define partly the output function by letting :

hz(z, t) = Cz(z, t) ∀(z, t) ∈ {(z, t) ∈ D : Cz(z, t) ≥ 0} . (25)

This incomplete definition is already sufficient for the implementation of the observer since it gives
the function z 7→ max{0, hz(z, t)} or equivalently ϕ 7→ max{0, h(ϕ, t)}. But a complete definition is
needed for the analysis. Namely we still need to define hz outside the set :

{(z, t) ∈ D : Cz(z, t) ≥ 0} .

For this, we take advantage of the remark made at the beginning of this Section, about the fact that
nothing is imposed on pairs (ϕ, t) which are not in the set {(ϕ, t) : C(ϕ, t) = 0} and we rely on the
convex function extension [15, Theorem 3.2]. However, because of the time dependence and our need
to have bounds independent of t, we cannot use this result per se. Fortunately, we can follow step
by step its proof.

To match the notations in [15, Proof of Theorem 3.2],

• we denote :

ε =
1− 2|e(t)|

12
≥ ℘

6

and, for k in {0, 1, 2, 3},

Ωkε =

{
(z, t) ∈ D :

(
|z|2 − e(t)>z

)2
− |z|2 ≥ η(1− |e(t)| − kε)

}
,

knowing that we have :

η(1− |e(t)|) = 0 , η(1− |e(t)| − 3ε) = η

(
3− 2|e(t)|

4

)
≤ − ℘

12
< 0 .

With (25), the function h is already defined on Ω0 and, from point 2 in Proposition 4, we have :

|z| ≤ 3

2
, |e(t)| ≤ 1

2
∀(z, t) 6∈ Ω0 . (26)

Also, with point 3 of Proposition 4, for all (z, t) in Ωε \ Ω0, we have :

d

(
z ,

{
z ∈ R2 : |z|2 − e(t)>z ≤ 3− 2|e(t)|

4

})
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≥
1− |e(t)| − ε− 3−2|e(t)|

4

2
=

1− |e(t)| − 1−2|e(t)|
12 − 3−2|e(t)|

4

2
=

2− 4|e(t)|
24

= 2ε ,

≥ ℘

3
.

This implies, for all (z, t) in Ωε \ Ω0,

d

( {
z ∈ R2 : |z− z| ≤ ε

}
,

{
z ∈ R2 : |z|2 − e(t)>z ≤ 3− 2|e(t)|

4

} )
≥ ε ≥ ℘

6
.

Hence, for any ζ with modulus smaller than δ in [0, ε], (z − ζ, t) is in D. Moreover with point
2 of Proposition 4, we have :

Cz(z − ζ, t) ≥ Cz(z, t) − 15δ ≥ η(1− |e(t)| − ε) − 15δ .

Therefore, with Lemma 1, by letting :

δmax = min

{
ε ,

η(1− |e(t)| − ε)− η(1− |e(t)| − 2ε)

15

}
≥ ℘

6 ∗ 3 ∗ 15
> 0 ,

we get :
z − ζ ∈ Ω2ε ∀(z, ζ) : (z, t) ∈ Ωε \ Ω0 , |ζ| ≤ δmax .

• With δ in ]0, δmax[, we let3pδ : R2 → R be a C2 function satisfying :

pδ(z) = 0 ∀z : |z| ≥ δ ,

∫
R2

pδ(z)dz = 1 . (27)

It can be :

pδ(z) =
945

768

(|z|2 − δ2)4

δ8
if |z| ≤ δ ,

= 0 if δ < |z| .

• We let4 $ : R2 × R≥0 → [0, 1] be a C2 function satisfying :

$(z, t) = 1 if (z, t) ∈ Ω0 ,

= 0 if (z, t) 6∈ Ωε .
(28)

It can be :
$(z) = 1 if z ∈ Ω0 ,

= −(6x2 + 3x+ 1)(x− 1)3 if z ∈ Ωε \ Ω0 ,

= 0 if z 6∈ Ωε ,

where :

x =
Cz(z, t)

η(1− |e(t)| − ε)
.

With all this at hand, we define successively5 :

3pδ is denoted φ in [15, Proof of Theorem 3.2].
4$ is denoted α in [15, Proof of Theorem 3.2].
5In [15, Proof of Theorem 3.2], Cz is denoted f , Cz is denoted g and hz is denoted h.
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1. The function Cz as :

Cz(z, t) = Cz(z, t) if (z, t) ∈ Ω3ε ,

= η

(
3− 2|e(t)|

4

)
if (z, t) 6∈ Ω3ε .

From 4 in Proposition 4 and the [15, Proof of Theorem 3.1], this gives a continuous function
which is convex in z.

2. The function Cz as :

Cz(z, t) =

∫
R2

Cz(ζ, t)pδ(z − ζ)dζ =

∫
R2

Cz(z − ζ, t)pδ(ζ)dζ . (29)

From the [15, Proof of Theorem 3.2], this gives a C2 function which is convex in z.

3. The function hz as :

hz(z, t) = $(z)Cz(z, t) + (1−$(z))(Cz(z, t) + c|z|2) , (30)

where c is a strictly positive real number to be chosen. This gives a C2 function. Because of
(28), we have :m

hz(z, t) = Cz(z, t) if (z, t) ∈ Ω0 ,

= Cz(z, t) + c|z|2 if (z, t) 6∈ Ωε .

So (25) holds and, with (24), we get :

∂2hz
∂z∂z

(z, t) ≥ 2℘ I if (z, t) ∈ Ω0 ,

≥ c I if (z, t) 6∈ Ωε .

On the other hand, because of (26), the function z 7→
(
Cz(z, t),

∂Cz
∂z

(z, t),
∂2Cz
∂z∂z

(z, t)

)
is Lip-

schitz uniformly on t outside the set Ω0. So, as in [15, Proof of Theorem 3.2], with (27) and
the second expression in (29), it can be shown that δ can be chosen, independent of t, to make

the difference Cz − Cz as well as its first and second partial derivatives in z arbitrarily small
on Ωε \ Ω0. Then, by picking also c small enough, independently of t, we can obtain that the

Hessian of z 7→ (1−$(z))(Cz(z, t)−$(z)Cz(z, t) + c|z|2) is say smaller than ℘ for all t. This
implies :

∂2hz
∂z∂z

(z, t) ≥ min{c, ℘} I ∀(z, t) .

We end this paragraph on the choice of the output function h or hz by repeating that the only
objective is to satisfy Assumptions A1, A2 and A3 where Assumption A3 is the only one linking the
output function to the system. Above we have expressed this link by imposing that the level set
{(z, t) : hz(z, t) = 0} be equal to the level set {(z, t) : z 6= 0 , Cz(z, t) = 0}. To define hz outside
this set, we have chosen to keep hz as close as possible to Cz. But this is only one possibility. There
are others. We give one in Appendix C.
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3.3 Total flux observer

As written above the total flux observer we propose is :

.
ϕ̂ = v −Ri if

[(
|ϕ̂− L0i(t)|2 − |L1i(t)|2

)2
− Φ2 |ϕ̂− (L0 − L1)i(t)|2

]
≤ 0

and :

.
ϕ̂ = v −Ri

+ µ

[
4
(
|ϕ̂− L0i(t)|2 − |L1i(t)|2

)
(ϕ̂− L0i(t))− 2Φ2 (ϕ̂− (L0 − L1)i(t))

]
×

×
[(
|ϕ̂− L0i(t)|2 − |L1i(t)|2

)2
− Φ2 |ϕ̂− (L0 − L1)i(t)|2

]
if not. Let ϕ̂(ϕ̂0, t) denote its solution at time t, issued from ϕ̂0 at time 0. Also, we say the function
t 7→ϕs(ϕ0, t) is a constrained solution of the motor if it is a solution at time t of

.
ϕ = v(t)−Ri(t) (31)

going through ϕ0 at time 0 and such that, for each t, there exists θ(t), called electrical angular
position, satisfying :

ϕs(ϕ0, t) = L0i(t) + Φ

(
cos(θ(t))
sin(θ(t))

)
+ L1

(
cos(2θ(t)) sin(2θ(t))
sin(2θ(t)) − cos(2θ(t))

)
i(t) . (32)

Proposition 5. Assume :

1. v −Ri as well as its integral is bounded on R≥0;

2. there exists a strictly positive real number ℘ in

]
0,

1

2

]
such that we have :

2
L1

Φ
|i(t)| ≤ 1

2
− ℘ ∀t ≥ 0 . (33)

3. The time derivative of θ in (32) is not integrable.

Then, for any µ strictly positive and any (ϕ0, ϕ̂0), source of a constrained solution, we have :∣∣∣ϕs(ϕ0, t)− ϕ̂(ϕ̂0, t)
∣∣∣ ≤ |ϕ0 − ϕ̂0| ∀t ≥ 0

and
lim
t→∞

∣∣∣ϕs(ϕ0, t)− ϕ̂(ϕ̂0, t)
∣∣∣ = 0 .

Proof. With the output function h given by Proposition 3, ϕ playing the role of x and v − Ri, the
role of u, a constrained solution ϕs(ϕ0, t) of (31) and (32) is a constrained solution of (6) and (7).
Moreover the observer (14) is nothing but the counter-part of (10). Hence the result follows directly
from Proposition 1 provided assumptions A1, A2 and A3 are satisfied. Proposition 3 guarantees this
is the case for assumptions A1 and A2. So it remains only to check that assumption A3 is satisfied.

It follows from Proposition 2 and (33) that ϕs(ϕ0, t) satisfies :

ϕs(ϕ0, t)− (L0 − L1)i(t) 6= 0 (34)
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and (∣∣ϕs(ϕ0, t)− L0i(t)
∣∣2 − |L1i(t)|2

)2
− Φ(t)2

∣∣ϕs(ϕ0, t)− (L0 − L1)i(t)
∣∣2 = 0

or equivalently(∣∣ϕs(ϕ0, t)− (L0 − L1)i(t)
∣∣2 − 2L1i(t)

> [ϕs(ϕ0, t)− (L0 − L1)i(t)
])2

(35)

= Φ(t)2
∣∣ϕs(ϕ0, t)− (L0 − L1)i(t)

∣∣2 .

On another hand, (32) implies :

ϕs(ϕ0, t)− L0i(t) + L1i(t) =
(

Φ + 2L1(cos(θ(t)) sin(θ(t)))i(t)
)(cos(θ(t))

sin(θ(t))

)
.

So the argument of ϕs(ϕ0, t) − (L0 − L1)i(t) is the electrical angular position θ(t). Let ρ be its
modulus. Let also λ and σ be the modulus and argument of 2L1i(t), i.e.

ϕs(ϕ0, t)− (L0 − L1)i(t) = ρ(t)

(
cos(θ(t))
sin(θ(t))

)
, 2L1i(t) = λ(t)

(
cos(σ(t))
sin(σ(t))

)
.

Note that (33) implies

λ(t) <
Φ

2
. (36)

Equations (35) and (34) become :(
ρ(t)2 − ρ(t)λ(t) cos(σ(t)− θ(t))

)2
= Φ2ρ(t)2 , ρ(t) 6= 0 .

With (36), this implies :
ρ(t) = λ(t) cos(σ(t)− θ(t)) + Φ .

On another hand, we have :

∂h

∂ϕ
(ϕs(ϕ0, t), t)

= 4
(∣∣ϕs(ϕ0, t)− L0i(t)

∣∣2 − |L1i(t)|2
) (
ϕs(ϕ0, t)− L0i(t)

)> − 2Φ2
(
ϕs(ϕ0, t)− (L0 − L1)i(t)

)
,

= 4
(
ρ(t)2 − ρ(t)λ(t) cos(σ(t)− θ(t))

)(
ρ(t)

(
cos(θ(t))
sin(θ(t))

)
− λ(t)

2

(
cos(σ(t))
sin(σ(t))

))
−2Φ2ρ(t)

cos(θ(t))

sin(θ(t))

 ,

= 4Φρ(t)

(
ρ(t)

(
cos(θ(t))
sin(θ(t))

)
− λ(t)

2

(
cos(σ(t))
sin(σ(t))

))
− 2Φ2ρ(t)

(
cos(θ(t))
sin(θ(t))

)
,

= 2Φρ(t)

(
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

)(
λ(t) cos(σ(t)− θ(t)) + Φ
−λ(t) sin(σ(t)− θ(t))

)
.

Then let w =
(

cos(ϑ) sin(ϑ)
)>

be an arbitrary unit vector. We obtain :

∂h

∂ϕ
(ϕs(ϕ0, t), t)w

= 2Φρ(t)

(
cos(ϑ) sin(ϑ)

)(
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

)(
λ(t) cos(σ(t)− θ(t)) + Φ
−λ(t) sin(σ(t)− θ(t))

)
,

= 2Φρ(t)
(

cos(ϑ− θ(t)) sin(ϑ− θ(t))
)(λ(t) cos(σ(t)− θ(t)) + Φ

−λ(t) sin(σ(t)− θ(t))

)
.
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Since
.
θ is not integrable, there exists a sequence tn going to infinity as n grows indefinitely such

that :
θ(tn) = ϑ .

This yields :
∂h

∂ϕ
(ϕs(ϕ0, tn), tn)w = λ(t) cos(σ(tn)− θ(tn)) + Φ >

Φ

2
.

So assumption A3 holds.

3.4 Rotor position estimation

To obtain a sensorless control for salient-pole synchronous machines, we can proceed exactly as in
[8, 6, 9]. It is sufficient for this to derive an estimate θ̂ of the electrical angular position θ from the
estimate ϕ̂ of the total flux.

Depending on the online implementation constraints and controllers’ resources, one of the follow-
ing method can be used.

3.5 Method 1

We know with Proposition 2 that, if the total flux satisfies :

C(ϕ, t) = 0 , (37)

then we have (18). Since, in an ideal context - perfect model, no noise, . . . - , Proposition 5 insures
the total flux estimate ϕ̂ satisfies this equation asymptotically, a first method is :(

cos(θ̂)

sin(θ̂)

)
=

ϕ̂− (L0 − L1)i(t)

|ϕ̂− (L0 − L1)i(t)|
.

3.6 Method 2

Total flux and electrical angular position are related by (2). With denoting :

ϕ =
(
ϕα ϕβ

)>
, i =

(
iα iβ

)>
and making use of some trivial trigonometric relations, (2) leads to the following system of polynomial
equations in c = cos(θ) and s = sin(θ) :

2L1iβcs+ 2L1iαc
2 + Φc− ϕα + (L0 − L1)iα = 0 ,

2L1iαcs− 2L1iβc
2 + Φs− ϕβ + (L0 + L1)iβ = 0 ,

c2 + s2 = 1 .

(38)

With ignoring the last trigonometric identity, the existence of at least one real solution to the first
two equations of this system is guaranteed. To see this, we eliminate s from the above two equations.
This yields :

2L1iβc
(
−2L1iβc

2 − ϕβ + (L0 + L1)iβ
)

= (2L1iαc+ Φ)
(
2L1iαc

2 + Φc− ϕα + (L0 − L1)iα
)
.

So we end up with a polynomial of degree 3 in c :

4L2
1|i|2 c3 + 4L1iαΦ c2

+
(
Φ2 − 2L2

1|i|2 − 2L1L0

(
i2α − i2β

)
+ 2L1 (iβϕβ − iαϕα)

)
c − Φ (ϕα − (L0 − L1)iα) .
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It has at least one real solution and all its root can be obtained via Cardan’s Method. Afterwards,
the corresponding s is determined from (38) as :

s = −
(2L1iβc)

(
2L1iαc

2 + Φc− ϕα + (L0 − L1)iα
)

+ (2L1iαc+ Φ)
(
−2L1iβc

2 − ϕβ + (L0 + L1)iβ
)

(2L1iβc)
2 + (2L1iαc+ Φ)2

.

Not knowing the actual flux ϕ, we replace it by its estimate ϕ̂ given by the observer. Proceeding
as above after this substitution gives us up to 3, but at least one, real estimates of pairs (ĉ, ŝ).
Among the real ones, say (ĉ1, ŝ1) is the one the norm of which is closest to 1. Then an estimate of
the electrical angular position is obtained from :

(
cos(θ̂)

sin(θ̂)

)
=

(
ĉ1
ŝ1

)
√
ĉ21 + ŝ21

.

3.7 Method 3

Acknowledging that the estimate ϕ̂ possibly does not satisfy (37) nor (2), we consider the following
least square problem :

(ĉ, ŝ) = arg min
(c,s):c2+s2=1

∣∣∣∣ϕ̂− L0i− Φ

(
c
s

)
− L1

(
2c2 − 1 2sc

2sc 1− 2c2

)
i

∣∣∣∣2 .

Then, determining a solution (ĉ, ŝ) has to to be performed numerically online.

4 Image of the unit circle by a polynomial function

If, instead of (2), the flux satisfies the more general expression (5), an observer can still be given by

(10) as long as we know the flux time derivative
.
ϕ and provided we can express (10) as an algebraic

constraint C(ϕ, t) = 0. Synchronous machines somehow falls under this scope, first because they are
fully described by (1), and second because there exists such a constraint that may be analytically
computed even when the total flux is expressed as (5). In the following, we give a systematic method
to derive the corresponding constraint function C.

As in section 3.1, we use the complex representations and adopt the following notations :

• ϕ = ϕα + jϕβ ∈ C is the complex representation of the total flux vector ϕ =
(
ϕα ϕβ

)>
,

• ξ = cos(θ) + j sin(θ),

• γk = ϕk [cos(ψk) + j sin(ψk)].

As in section 3.1, the fact that ϕ satisfies (5) is equivalent to the fact that the polynomial

P (ξ) = (γ0 −ϕ) + γ1 ξ + γ2 ξ
2 + . . . + γN ξ

N .

has a root on the unit circle.
With A and B denoting the following Toeplitz matrices :

A =


γ0 −ϕ γ1 . . . . . . γN−1

0 γ0 −ϕ γ1 γN−2
... 0

. . .
. . .

...
...

. . .
. . . γ1

0 . . . . . . 0 γ0 −ϕ

 , B =



γN 0 . . . . . . 0

γN−1 γN
. . .

...
... γN−1

. . .
. . .

...
...

. . .
. . . 0

γ1 . . . . . . γN−1 γN


. (39)
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we have the following result.

Proposition 6. If ϕ is given by (5), then, for each t, we have :

C(ϕ, t) = 0 ,

where C(ϕ, t) is a polynomial of degree 2N in the components (ϕα, ϕβ) of ϕ, with real coefficients and
leading term (ϕ2

α + ϕ2
β)N , given by :

C(ϕ, t) = det
(
AA

> −B>B
)
. (40)

Proof. The proof goes exactly the same way as the proof of Proposition 2. Namely if ξ is a root of
P with modulus 1, then it is also a root of :

Q(ξ) = γN + γN−1 ξ + . . . + γ1 ξ
N−1 + (γ0 −ϕ) ξN .

So P and Q have a common root which is equivalent to :

det(M) = 0

where :

M =

(
A B

B
>

A
>

)
.

There A and B are Toeplitz matrices which, because of

j∑
`=i

γ̄N+i−` γj−l =

j∑
k=i

γk−i γ̄N+k−j

satisfy :

AB
>

= B
>
A

and therefore : (
I 0

−B> A

)(
A B

B
>

A
>

)
=

(
A B

0 AA
> −B>B

)
,(

A
> −B

0 I

)(
A B

B
>

A
>

)
=

(
A
>
A−BB> 0

B
>

A
>

)
.

So we have algebraically :

det(M) = det
(
AA

> −B>B
)

= det
(
AA> −B>B

)
= det(M) .

Hence det(M) is real. It is an homogeneous polynomial of degree 2N in (ϕ − γ0,γ1, . . . ,γN ) and
a polynomial, with real coefficients, of degree 2N in the components of ϕ. Also, given the multi-
linearity of the determinant function, the higher degree term in ϕ−γ0, respectively in ϕ, is |ϕ−γ0|2N ,
|ϕ|2N respectively.

To study the properties of the constraint function (40), we assume that γ1 is not zero. In the
case where γ2 to γN are zero, we obtain :

C(ϕ, t)
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= det



−ϕ+ γ0 γ1 0 . . . . . . . . . . . . . . . . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
... 0 −ϕ+ γ0 γ1 0

...
... 0 −ϕ+ γ0 γ1 0

...
... 0 γ1 −ϕ+ γ0 0

...
... 0 γ1 −ϕ+ γ0

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . . . . . . . . . . . . . . . . 0 γ1 −ϕ+ γ0


= |ϕ− γ0|2(N−1)

(
|ϕ− γ0|2 − |γ1|2

)
.

Hence, in this case, for N > 1, C is zero if and only if either :

ϕ = ϕ0

(
cos(ψ0)
sin(ψ0)

)

or ϕ is in the circle with center ϕ0

(
cos(ψ0)
sin(ψ0)

)
and radius |γ1|.

When γ2 to γN are not zero but small in modulus, we let :

ρ [cos($) + j sin($)] = ϕ− γ0 , ε =

√√√√ N∑
k=2

|γk|2 , γ
k

=
γk
ε
.

In the general case, the equation C = 0 can be rewritten :

ρ2N − ρ2(N−1)|γ1|2 + ε
2N−1∑
k=0

ρkε2N−1−kck

(
cos($), sin($),γ

2
, . . . ,γ

N

)
= 0 ,

where the ck are polynomials in their arguments which are bounded. It follows from Rouché Theorem
that, for any strictly positive real number r < |γ1|, there exists a strictly positive real number ε∗
such that, for all ε in [0, ε∗], all $ in [0, 2π[ and all N − 1-uple of complex numbers γ

k
satisfying :

N∑
k=2

|γ
k
|2 = 1, (41)

the above equation in ρ has 2N complex zeros, one in the ball with center |γ1| and radius r, and
therefore real and strictly positive, one in the ball with center −|γ1| and radius r and therefore real
and strictly negative, the other 2(N − 1) in the the ball centered at the origin and radius r. Since we
are interested only with ρ non negative, we focus on the root in the ball with center |γ1| and radius
r. It can be expressed as :

ρ = R
(

cos($), sin($),γ
2
, . . . ,γ

N

)
,

where : ∣∣∣R(cos($), sin($),γ
2
, . . . ,γ

N

)
− |γ1|

∣∣∣ ≤ r .
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By letting (cos($), sin($)) go around the unit circle, we obtain the counterpart of the Limaçon of
Pascal.

Appendices

A Proof of Lemma 1

We study the properties of the function η : R≥0 → R defined as :

η(h) = h
2 − 1

4

[
e−

√
e2 + 4h

]2
where e is a given real number in

[
0,

1

2
− ℘

]
. Its graph is shown on Figure 1

Before this, it is useful to note that, actually from its construction given in Section B.3, the

function η is the composition of the function h 7→ e

2
−
√
e2

4
+ h and the function z 7→

(
z2 − ez

)2−
z2 , i.e.

η(h) =
(
z2 − ez

)2 − z2∣∣∣
z= e

2
−
√
e2

4
+h

,

= z2[(z − e)2 − 1]
∣∣∣
z= e

2
−
√
e2

4
+h

.

Since the function z 7→ (z−e)2−1 is strictly negative for all z in the open interval ]e−1, 0[, and :

e− 1 =
e

2
−
√
e2

4
+ (1− e) , 0 =

e

2
−
√
e2

4
,

a direct consequence is :
η(h) < 0 ∀h ∈]0, 1− e[ . (42)

The first derivative of η is :

dη

dh
(h) = 2h +

1

2

[
e−

√
e2 + 4h

]
4

2
√
e2 + 4h

,

= 2h− 1 +
e√

e2 + 4h
.

It is zero on R≥0 if and only if :

h = 0 or =
4− e2 − e

√
e2 + 8

8
.

According to (45) the former case is given by the local maximizer z = 0 of the function Cz, while
the latter is given by the saddle point z. This implies η is non increasing on the closed interval[

0,
4− e2 − e

√
e2 + 8

8

]
and strictly increasing on the open interval

]
4− e2 − e

√
e2 + 8

8
,+∞

[
.

The second derivative is :
d2η

dh
2 (h) = 2

(
1− e

(e2 + 4h)3/2

)
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It is negative on

[
0,
e2/3 − e2

4

]
and strictly positive on

]
e2/3 − e2

4
,+∞

[
. This implies η is strictly

convex on

]
e2/3 − e2

4
,+∞

[
, its first derivative is strictly increasing on this interval and

η(ha) ≥ η(hb) +
dη

dh
(hb)(ha − hb) =

2hb − 1 +
e√

e2 + 4hb

 (ha − hb) ∀ha , hb ≥
e2/3 − e2

4
.

(43)

To have the 3 properties (42), monotonicity of
dη

dh
and (43) on the same interval, it is sufficient

to pick a bound between
4− e2 − e

√
e2 + 8

8
and 1− e. We choose

3− 2e

4
. We have established that

η and its derivative are strictly increasing on

[
3− 2e

4
,+∞

[
and satisfies :

η(ha) ≥ η(hb) +

2hb − 1 +
e√

e2 + 4hb

 (ha − hb) ≥
1

3
(ha − hb) ∀ha , hb ≥

3− 2e

4
.

So we have in particular :

0 = η(1− e) ≥ η

(
3− 2e

4

)
+

1− e− 3−2e
4

3
= η

(
3− 2e

4

)
+

1− 2e

12
≥ η

(
3− 2e

4

)
+

℘

12
.

B Properties of the constraint function (15)

B.1 About point 1 in Proposition 4

The equation :

0 = Cz(z, t) =
(
|z|2 − e(t)>z

)2
− |z|2

is the Cartesian form of a Limaçon of Pascal. A lot is known about this curve. See [7, pp. 44-51] for

example. Its shape depends on the position of |e| with respect to
1

2
and 1. In particular, (see Figure

2)

– for 1 < |e(t)| it is not simple (it has two loops),

– for
1

2
< |e(t)| ≤ 1 it encircles a non (Euclidean-) convex set,

– for |e(t)| ≤ 1

2
it encircles a (Euclidean-) convex set.

So, knowing from point 2 of Remark 1 that the sub-level set {ϕ : h(ϕ, t) ≤ 0}, where the actual total
flux evolves, should be convex and since the change of coordinates in (21) is affine, we impose6 the
existence of a strictly positive real number ℘ such that we have :(

2
L1

Φ
|i(t)| =

)
|e(t)| ≤ 1

2
− ℘ ∀t > 0 .

This says the saliency or the current should be small.

6This constraint is imposed to obtain an Euclidean convexity. It can be relaxed if geodesic convexity for some
appropriately chosen metric is considered.

24



0 0.2 0.4 0.6 0.8 1
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

2

e=0

e=0.16

e=0.32

e=0.5

Figure 1: Function η for various values of |e|
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Figure 2: Limaçon of Pascal for various values of |e|
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B.2 About point 2 in Proposition 4

Let (z, t) satisfy :

0 ≥ Cz(z, t) =
(
|z|2 − e(t)>z

)2
− |z|2 .

We obtain :
|z|2 − |e(t)| |z| ≤ |z|2 − e(t)>z ≤

∣∣∣|z|2 − e(t)>z∣∣∣ ≤ |z| .
With Assumption H, this implies :

|z| ≤ 1 + |e(t)| ≤ 3

2
.

Let (za, zb, t) be such that :

Cz(za, t) ≤ 0 , Cz(zb, t) ≤ 0 .

Since, under Assumption H, for each t, the set {z : Cz(z, t) ≤ 0} is convex, we have :

Cz(zs, t) ≤ 0 ,

where :
zs = zb + s(za − zb) s ∈ [0, 1] .

This yields : ∣∣∣∣∂Cz∂z (zs, t)

∣∣∣∣ = 2
∣∣∣(|zs|2 − e(t)>zs) (2zs − e(t))> − z>s

∣∣∣ ,
≤ 2

(∣∣∣|zs|2 − e(t)>zs∣∣∣ (2|zs|+ |e(t)|) + |zs|
)
,

≤ 2 (|zs|(2|zs|+ |e(t)|) + |zs|)) ,
≤ 2(1 + |e(t)|)(3 + 4|e(t)|) ≤ 15 .

So we get :

|Cz(za, t)− Cz(zb, t)| =

∣∣∣∣∫ 1

0

∂Cz
∂z

(zb + s[za − zb])ds[za − zb]
∣∣∣∣ ,

≤ sup
s∈[0,1]

∣∣∣∣∂Cz∂z (zb + s[za − zb])
∣∣∣∣ |za − zb| ,

≤ 15 |za − zb| .

B.3 About point 3 in Proposition 4

To obtain information on the level sets of the constraint function Cz, we compute :

∂C

∂ϕ
(ϕ, t) =

1

Φ

∂Cz
∂z

(z, t) =
2

Φ

((
|z|2 − e(t)>z

)
(2z − e(t))> − z(t)>

)
,

∂2C

∂ϕ∂ϕ
(ϕ, t) =

1

Φ2

∂2Cz
∂z∂z

(z, t) =
2

Φ2

(
(2z − e(t)) (2z − e(t))> + 2

(
|z|2 − e(t)>z

)
− 1
)
.

Hence the eigen vectors of the Hessian are (2z − e(t)) and its orthogonal. So its eigen values are :

2

Φ2

(
|2z − e(t)|2 + 2

(
|z|2 − e(t)>z

)
− 1
)

,
2

Φ2

(
2
(
|z|2 − e(t)>z

)
− 1
)
. (44)
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The gradient is zero if and only if z is colinear with e(t), i.e. we have :

z = ζ e(t) ,

with ζ satisfying :
0 = ζ

[
|e(t)|2 (ζ − 1) (2ζ − 1)− 1

]
.

Therefore the gradient is zero at :

z = z1 = ζ1e(t) = 0 ,

z = z2 = ζ2e(t) =
3|e(t)|+

√
8 + |e(t)|2

4

e

|e|
,

z = z3 = ζ3e(t) =
3|e(t)| −

√
8 + |e(t)|2

4

e

|e|
.

(45)

We obtain :
Cz(z, t) = 0 , Cz(z, t) < 0 , Cz(z, t) < 0 .

The Hessian at these stationary points is :

∂2Cz
∂z∂z

(zi, t) = 2
(

(2ζi − 1)2 e(t)e(t)> + 2
(
ζ2i − ζi

)
|e(t)|2 − 1

)
.

Its eigen values are :
−2
(
1− |e(t)|2

)
, −2 ,

for ζ1, and :

2
(

(2ζi − 1)2 + 2
(
ζ2i − ζi

))
|e(t)|2 − 2 = 2

(
2 + (3ζi − 2)|e(t)|2)

)
,

4
(
ζ2i − ζi

)
|e(t)|2 − 2 = 2(ζi − 1)|e(t)|2 ,

for ζ2 and ζ3. We conclude the constraint function Cz has 3 stationary points, all in the sub-level set
{z : Cz(z, t) ≤ 0}, a global strict minimum at z, a local strict maximum at z = 0, and a saddle point at

z. It follows that, for η in ]Cz(z, t),Cz(z, t)], the super-level set
{
z ∈ R2 : (|z|2 − e(t)>z)2 − |z|2 ≥ η

}
have two connected components. See figure 3.

With Proposition 2, we know that the solution z = 0 to |z|2 − e(t)>z)2 − |z|2 = 0 should be
disregarded. In other words, we can eliminate a neighborhood of the connected component containing
z = 0. To do so we restrict the domain of the constraint function Cz and correspondingly of C by
removing the set :

Sex =
{

(z, t) : |z|2 − e(t)>z ≤ h
}
,

where the bound h is chosen as :

h =
3− 2|e(t)|

4
.

With t fixed, this is the disk with center
e(t)

2
and radius

√
h +
|e(t)|2

4
, in grey in Figure 3. It contains

the local maximizer z = 0 and the saddle point z.
From now on, the domain of definition of Cz is considered as being :

D =
{

(z, t) ∈ R2 × R≥0 : |z|2 − e(t)>z > h
}
.

Then, by super-, sub-, level set of Cz, we mean :

{(z, t) ∈ D : Cz(z, t) > (≤) (=) η} .
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Figure 3: Level sets of Cz with the excluded disk in grey

It follows from the above analysis, and (44) in particular, that, for all (z, t) in D, the corresponding
Hessian, in z, of Cz satisfies :

∂2Cz
∂z∂z

(z, t) ≥ 2
(

2
(
|z|2 − e(t)>z

)
− 1
)
≥ 2

(
2h− 1

)
I = (1− 2|e(t)|) I ≥ 2℘ I . (46)

To continue our analysis of the super-level sets of Cz, we address the the following maximization
problem :

η(h) = sup
z: h≤|z|2−e(t)>z≤h

{(
|z|2 − e(t)>z

)2
− |z|2

}
, (47)

with h arbitrary in [h, 1− |e(t)|]. Our motivation is that, if (z, t) satisfies :(
|z|2 − e(t)>z

)2
− |z|2 > η(h) ,

then we have :

– either |z|2 − e(t)>z < h . In this case (z, t) is not in D.

– or |z|2 − e(t)>z > h . In this case we have (46) and, by comparing the radius of the disks,

we see that the distance d
(
z ,
{
ζ ∈ R2 : |ζ|2 − e(t)>ζ ≤ h

})
between z and the excluded
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disk
{
ζ ∈ R2 : |ζ|2 − e(t)>ζ ≤ h

}
is larger or equal to :√

h +
|e(t)|2

4
−
√

h +
|e(t)|2

4
=

h− h√
h + |e(t)|2

4 +
√

h + |e(t)|2
4

,

≥
h− h

2

√
1− |e(t)|+ |e(t)|2

4

≥
h− h

2
.

When |e(t)| = 0, this maximization problem reduces to :

η = sup
z: h≤|z|2≤h

{
|z|4 − |z|2

}
.

Since h ≥ h =
3

4
, its solution is :

η = h
2 − h .

When |e(t)| 6= 0, according to the Karush-Kuhn-Tucker conditions, a necessary condition for z to
be a maximizer is the existence of real numbers λ and λ satisfying :

∂

∂z

{(
|z|2 − e(t)>z

)2
− |z|2 + [λ+ λ]

[
|z|2 − e(t)>z

]}
= 0

min
{
λ , |z|2 − e(t)>z − h

}
= 0 , max

{
λ , |z|2 − e(t)>z − h

}
= 0 .

Hence, when λ 6= 0, respectively λ 6= 0, the maximizer zsup is located at a point of tangency of
the two planar curves :(

|z|2 − e(t)>z
)2
− |z|2 = η ,

|z|2 − e(t)>z = h , respectively = h ,

for some η. So the gradients must be colinear, i.e.

0 =
(

(|z|2 − e(t)>z) (2z − e(t))− z
)
∧ (2z − e(t)) = z ∧ e(t) .

This implies the maximizer zsup is colinear with e(t) and there exists a real number ζ solution of :

zsup = ζe(t) , (ζ2 − ζ)|e(t)|2 = h , respectively = h .

We get :

ζ =
1

2
±

√
1

4
+

h

|e(t)|2
, respectively =

1

2
±

√
1

4
+

h

|e(t)|2

and

η = h
2 −

[
|e(t)|

2
−
√
|e(t)|2

4
+ h

]2
= η(h) , respectively = h2 −

[
|e(t)|

2
−
√
|e(t)|2

4
+ h

]2

Since, according to Lemma 1, the function h 7→ η(h) defined in (23) is strictly increasing on

]
1

2
,+∞

[
,

the largest value for η is :

η = h
2 −

[
|e(t)|

2
−
√
|e(t)|2

4
+ h

]2
.
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This formula covers also the case |e(t)| = 0.
When λ = λ = 0, the maximizer zsup is a zero of the gradient of Cz and therefore z, z or z. But

z and z do not satisfy
|z|2 − e(t)>z ≥ h .

Also, although the global minimizer z of Cz may satisfy this inequality for some |e(t)|, its correspond-
ing value :

η =
(
|z|2 − e(t)>z

)2
− |z|2

is smaller than all the possible ones.
All this implies that η(h) in (47) is

η(h) =
(
|zsup|2 − e(t)>zsup

)2
− |zsup|2

∣∣∣∣
zsup=

(
|e(t)|

2
−
√
|e(t)|2

4
+h

)
e(t)
|e(t)|

,

= h
2 −

[
|e(t)|

2
−
√
|e(t)|2

4
+ h

]2
.

In conclusion, we have established that, for all h in

[
3− 2|e(t)|

4
, 1− |e(t)|

]
, all (z, t) in the super

level : {
(z, t) ∈ D :

(
|z|2 − e(t)>z

)2
− |z|2 ≥ η(h)

}
,

satisfy :

∂2Cz
∂z∂z

(z, t) ≥ 2℘ , d

(
z ,

{
ζ ∈ R2 : |ζ|2 − e(t)>ζ ≤ 3− 2|e(t)|

4

})
≥

h− 3−2|e(t)|
4

2
.

B.4 About point 4 in Proposition 4

We want to show that, for each t, each za and zb such that (za, t) and (zb, t) are in the super level set

Ω3ε =

{
(z, t) ∈ D :

(
|z|2 − e(t)>z

)2
− |z|2 ≥ η

(
3− 2|e(t)|

4

)}
.

and for all s in [0, 1] such that, with :

zs = sza + (1− s)za ,

(zs, t) is also in Ω3ε, we have :

sCz(za, t) + (1− s)Cz(zb, t) ≥ Cz(zs, t) .

Actually this inequality is a straightforward consequence of the following :

(i) Cz(za, t) ≥ Cz(zs, t) +
∂Cz
∂z

(zs, t)(za − zs) ,

(ii) Cz(zb, t) ≥ Cz(zs, t) +
∂Cz
∂z

(zs, t)(zb − zs) ,

As in (9), point 3 of Proposition 4 implies :

Cz(zβ, t) ≥ Cz(zα, t) +
∂Cz
∂x

(zα, t)(zβ − zα) + ℘|zα − zβ|2 (48)

30



Ω3ε

Ω3ε

Ω3ε

za

zb

zs

zsa

zsb

zas

zbs

Figure 4: Illustration of the set Ω3ε.

provided the segment [zα, zβ] is entirely contained in Ω3ε. So we are done if the entire segment [za, zb]
is contained in Ω3ε.

If it is not, by assumption, zs is in Ω3ε. In this case we introduce the notations zsa, zas, zbs and
zsb, reported in Figure 4. These points are defined to satisfy :

Cz(zsa, t) = Cz(zas, t) = Cz(zbs, t) = Cz(zsb, t) = η

(
3− 2|e(t)|

4

)
and the 3 segments [za, zsa], [zas, zbs] and [zsb, zb] are each entirely contained in Ω3ε with zs in [zas, zbs].
Depending on the configuration, we may have for example zsa = zas, in which case, we consider the
segment [za, zbs], and similarly. Then (48) gives us :

Cz(za, t) ≥ Cz(zsa, t) +
∂Cz
∂x

(zsa, t)(za − zsa) ,

Cz(zsa, t) = Cz(zas, t) ≥ Cz(zs, t) +
∂Cz
∂x

(zs, t)(zas − zs) , (49)

Cz(zsb, t) = Cz(zbs, t) ≥ Cz(zs, t) +
∂Cz
∂x

(zs, t)(zbs − zs) , (50)

Cz(zb, t) ≥ Cz(zsb, t) +
∂Cz
∂x

(zsb, t)(zb − zsb) .

This yields :

Cz(za, t) ≥ Cz(zs, t) +
∂Cz
∂x

(zs, t)(zas − zs) +
∂Cz
∂x

(zsa, t)(za − zsa) ,

Cz(zb, t) ≥ Cz(zs, t) +
∂Cz
∂x

(zs, t)(zbs − zs) +
∂Cz
∂x

(zsb, t)(zb − zsb) .
(51)

By definition, any point in the segment [za, zsa], respectively [zsb, zb] is in the super level set Ω3ε.
This implies :

Cz(zsa + r[za − zsa]) ≥ Cz(zsa, t) , Cz(zsb, t) ≤ Cz((zsb + r[zb − zsb]), t) ∀r ∈ [0, 1]
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and, consequently :

∂Cz
∂z

(zsa, t)(za − zsa) ≥ 0 ,
∂Cz
∂z

(zsb, t)(zb − zsb) ≥ 0 . (52)

On another hand, in (49) and (50), we have :

0 ≥ Cz(zas, t)− Cz(zs, t) , 0 ≥ Cz(zbs, t)− Cz(zs, t) .

This gives :

0 ≥ ∂Cz
∂z

(zs, t)(zas − zs) , 0 ≥ ∂Cz
∂z

(zs, t)(zbs − zs) .

Now since zas and zsa, respectively zbs and zsb are in the segment [za, zs], respectively [zb, zs], we
have also :

∂Cz
∂z

(zs, t)(zas − zs) ≥
∂Cz
∂z

(zs, t)(za − zs) ,
∂Cz
∂z

(zs, t)(zbs − zs) ≥
∂Cz
∂z

(zs, t)(zb − zs) . (53)

(51), (52) and (53) give (i) and (ii).

C Another way of choosing the output function

We start by noting that solutions of :

Cz(z, t) = (|z|2 − e(t)>z)2 − |z|2 = 0

are solutions of :

|z|2 − |z| = e(t)>z , |z|2 + |z| = e(t)>z ( ≤ |e(t)| |z| ) .

When |e(t)| ≤ 1

2
, the second equation has no solution. So we have :{

(z, t) : z 6= 0 , Cz(z, t) = 0
}

=
{

(z, t) : z 6= 0 , |z|2 − |z| − e(t)>z = 0
}
.

Actually this level set is also : {
(z, t) : |z| − 1− e(t)> z

|z|
= 0

}
.

The corresponding sub-level set : {
(z, t) : |z| − 1− e(t)> z

|z|
≤ 0

}
(54)

is convex.
Then, to build up hz, we introduce a t-dependent strictly Hurwitz matrix A(t) and a point ze(t)

in the set

{
z : |z| − 1− e(t)> z

|z|
< 0

}
satisfying :

[
|z|2 (z − e(t)) + (e(t)>z) z

|z|3

]>
A(t)[z(s)− ze(t)] =

∂

∂z

{
|z| − 1− e(t)> z

|z|

}
A(t)[z(s)− ze(t)] < 0

∀(z, t) : |z| − 1− e(t)> z

|z|
= 0 .
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In this case, if Z(z, s; t) denotes the solution of :

dz

ds
(s) = A(t)[z(s)− ze(t)]

going through z when s = 0, i.e.

Z(z, s; t) = exp(A(t)s)[z − ze(t)] + ze(t)

Then, for all (z, t) 6= (ze(t), t), there exists S(z, t) solution of :

|Z(z, S(z, t); t)| − 1− e(t)> Z(z, S(z, t); t)

|Z(z, S(z, t); t)|
= 0

satisfying :
lim

z→ze(t)
S(z, t) = −∞ .

Then we can pick :
hz(z, t) = exp(S(z, t))− 1 .

The convexity of the sub-level sets of hz follows from the convexity of (54) and the property that the
function z 7→ Z(z, s; t) transforms straight lines into straight lines for all (s, t).

For example, with :
A = −I , ze = 0 ,

we obtain :

−

[
|z|2 (z − e(t)) + (e(t)>z) z

|z|3

]>
z = −|z| ,

≤ −(1− |e(t)|) ≤ −1

2
∀(z, t) : |z| − 1− e(t)> z

|z|
= 0 .

Also the corresponding flow
Z(z, s; t) = exp(−s)z

transforms straight lines into straight lines. Then S(z, t) is solution of :

exp(−S(z, t))|z| − 1− e(t)> z

|z|
= 0 .

This yields :

hz(z, t) =

(
|z|2

|z|+ e(t)>z

)
− 1 . (55)

It remains to modify this function on a neighborhood of the origin to make it C2 and meet Assump-
tions A1, A2 and A3. This can be done with arguments similar to those used in Sections 3.2 and
3.3. Its level sets are shown on Figure 5.

With the notation :
tmp = ϕ− (L0 − L1)i(t) ,

this leads to the flux observer :

.
ϕ̂ = v −Ri if

∣∣∣tmp∣∣∣2
Φ
∣∣∣tmp∣∣∣+ 2L1i(t)>tmp

≤ 1

and :
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Figure 5: Level sets of hz in (55)

.
ϕ̂ = v −Ri + µ


(

Φ
∣∣∣tmp∣∣∣+ 4L1i(t)

>tmp
)
tmp− 2

∣∣∣tmp∣∣∣2 L1i(t)(
Φ
∣∣∣tmp∣∣∣+ 2L1i(t)>tmp

)2



∣∣∣tmp∣∣∣2
Φ |tmp|+ 2L1i(t)>tmp

− 1


if not.
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