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Nowadays, images can be obtained in various ways such as capturing photos in single-exposure mode, applying Multiple Exposure Fusion algorithms to generate an image from multiple shoots of the same scene, mapping High Dynamic Range images to Standard Dynamic Range (SDR) images, converting raw formats to displayable formats, or applying post-processing techniques to enhance image quality, aesthetic quality,. . . When looking at some photos, one might have a feeling of unnaturalness. This paper deals with the problem of developing a model firstly to estimate if an image looks natural or not to humans and the second purpose is to try to understand how the unnaturalness feeling is induced by a photo: Are there specific unnaturalness clues or is unnaturalness a general feeling when looking at a photo? The study focuses on SDR images, especially on tonemapped images. The first contribution of the paper is the setting of an experiment gathering human naturalness opinions on 1,900 SDR images mainly obtained from tone mapping operators. Based on the collected data, the second contribution of the paper is to study the efficiency of different feature types including handcrafted features and learned features for image naturalness analysis. A binary classification model is then developed based on the determined features to classify if an image looks natural or unnatural.

I. INTRODUCTION

In recent years, more and more new camera models, photography techniques and image processing applications have been introduced to consumers. Three emphasises should be mentioned: High Dynamic Range (HDR) images, Multiple Exposure Fusion (MEF) algorithms and Tone Mapping Operators (TMOs). The dynamic range of images is the ratio between the highest and lowest luminance values. The dynamic range of irradiance in real scenes possibly reaches 1,00,000,000:1. The human eye can perceive the dynamic ranges from 10,000:1 to 1000,000:1 (depending on circumstances) while a normal display is able to present a low dynamic range (LDR -in recent years, LDR and SDR are considered as the same concept) from 100:1 to 300:1 [START_REF] Seetzen | High dynamic range display systems[END_REF], [START_REF] Reinhard | High dynamic range imaging: acquisition, display, and image-based lighting[END_REF], [START_REF] Kim | Natural hdr image tone mapping based on retinex[END_REF]. As a consequence, the luminance range of scenes displayed on standard screens is narrower than that of real scenes and it is also lower than the dynamic range perception of human eyes. In the past, the problem of high dynamic range was caused by the camera sensors and the display devices. The camera sensors were not able to cover the whole irradiance range of real scenes. Nowadays, the capability of professional camera sensors has increased and those sensors can capture high dynamic range of almost normal scenes (14 stops of dynamic range -the dynamic range is 2 14 :1). And when the dynamic range is too high to be covered (for example, 20 stops of dynamic range -the dynamic range is 2 20 :1) or with a none-professional camera, Multiple Exposure Fusion (MEF) algorithms can be used to help covering the whole range. MEF is a technique generating an image from multiple shoots taken under different exposures for a given scene [START_REF] Debevec | Recovering high dynamic range radiance maps from photographs[END_REF], [START_REF] Goshtasby | Fusion of multi-exposure images[END_REF], [START_REF] Mertens | Exposure fusion: A simple and practical alternative to high dynamic range photography[END_REF] by using fusion algorithms (see examples in Fig. 1). The MEF technique helps an image having a higher dynamic range than that of an image taken with a fixed exposure.

On the side of display devices, the work is in progress. Some of new commercial devices are able to present irradiance peaks around 1,000 cd / m 2 and black levels less than 0.05 cd / m 2 (the dynamic range is 20,000:1). Especially, some special models used in research can reach the highest luminance value of 10,000 cd / m 2 . Although the dynamic range of new display devices is quite high, it is still quite modest when compared to the dynamic range of real scenes and the perception range of human eyes [START_REF] Bashford-Rogers | Learning preferential perceptual exposure for hdr displays[END_REF]. Thus, nowadays the problem of high dynamic range images is mainly related to display devices.

8 bit data is currently used to present images displayed on standard screens. Although there is no direct relation between bit-depth and dynamic range, it is necessary to use more steps (more bits) to present a higher dynamic range. A pixel of any HDR image is represented by 3 colors and each color is coded by 10 bits, 12 bits, 16 bits or 32 bits. Although some new monitor models (HDR monitors) are able to display a high dynamic range content (20,000:1), most of the popular display devices are SDR screens that are able to display only SDRs of irradiance. Thus, it is necessary to map HDR images to SDR format before display on SDR screens. To perform this task, many Tone Mapping Operators (TMOs) have been proposed [START_REF] Khan | A tone-mapping technique based on histogram using a sensitivity model of the human visual system[END_REF], [START_REF] Kim | Natural hdr image tone mapping based on retinex[END_REF], [START_REF] Reinhard | Photographic tone reproduction for digital images[END_REF], [START_REF] Ashikhmin | A tone mapping algorithm for high contrast images[END_REF], [START_REF] Fattal | Gradient domain high dynamic range compression[END_REF], [START_REF] Durand | Fast bilateral filtering for the display of high-dynamic-range images[END_REF], [START_REF] Larson | A visibility matching tone reproduction operator for high dynamic range scenes[END_REF]. Generally, TMOs map colors of HDR images from a high dynamic range (from 10,000:1 to 1000,000:1) to a low range (from 100:1 to 300:1), this process can be considered as a range compression process.

Beside this, in order to correct the colors of images or to create special effects, some post-processing algorithms can be applied on SDR images. For example, in the first row of Fig. 2, post-production colors and contrast enhancements have been used to produce the image on the right. In the post-processed image of the second row, orange sky and sun-rays have been created by Adobe CameraRaw and Photoshop respectively. Additionally, an exposure enhancement algorithm has been used in that photo. In the last row, Nik Color Efex Pro and Photoshop have been used to enhance the colors and to create dodge and burning effects.

One problem of SDR images obtained by using those algorithms might be the loss of naturalness or the appearance of unnaturalness (see examples in Fig. 3). Those processing methods are like double-edge swords since they can significantly improve the image quality but they also can provoke the unnaturalness and decrease the image quality [START_REF] Trentacoste | Unsharp masking, countershading and halos: Enhancements or artifacts?[END_REF].

In this research, the naturalness concept is focused and it is defined on two sides. On one side, an image is considered as natural if the appearance of the image looks familiar for a human observer (it makes the observer have the feeling that the photo is a faithful representation of the scene). On the other side, if the observer has the feeling that something in the photo is wrong (due to color appearances, abnormal details or more subtil changes) so that the appearance of the photo does not look faithful, the photo is considered as unnatural. In our work, the naturalness concept is not supposed to be related to the image content itself (see Fig. 7). For example, augmented images are considered as natural in this study. The research focuses on collecting naturalness opinions from viewers to design features representing naturalness and unnaturalness. This study is not about image aesthetic assessment [START_REF] Deng | Image aesthetic assessment: An experimental survey[END_REF] or image quality assessment [START_REF] Mohammadi | Subjective and objective quality assessment of image: A survey[END_REF].

In this paper, there are two main contributions. The first one is an experiment of subjective image naturalness assessment without references. The experiment is conducted thoroughly at the laboratory with a set of SDR images obtained in various ways. The second contribution is the study of different features including handcrafted, shallow learned and deep learned features (features learned from shallow and deep convolutional neural networks respectively) for the image naturalness assessment task with the hope to define the best features representing naturalness / unnaturalness.

The paper is organized as follows. Section 2 presents the state of the art of image naturalness. Section 3 introduces the experiment of subjective image naturalness assessment and the dataset that has been collected. In section 4, feature definition and feature selection for image naturalness assessment are described. Section 5 presents the results of automatic natural / unnatural SDR image classification. Conclusions and some future works are presented in the last part.

II. IMAGE NATURALNESS STUDIES: STATE OF THE ART

In the literature, different definitions of image naturalness have been given. In [START_REF] Choi | Investigation of large display color image appearance-iii: Modeling image naturalness[END_REF], image naturalness is defined as the degree of correspondence between a photo displayed on a device and the memories about the corresponding reallife scene. An experiment is conducted with 13 observers, 8 color images and 22 manipulations of them to gather the perceived naturalness. The perceived naturalness is then compared with a naturalness index based on sharpness, colorfulness and reproduction of shadow details, memory colors of skin, grass and sky. In [START_REF] De Ridder | Naturalness and image quality: chroma and hue variation in color images of natural scenes[END_REF] and [START_REF] De Ridder | Naturalness and image quality: saturation and lightness variation in color images of natural scenes[END_REF], image naturalness is defined as the same as in [START_REF] Choi | Investigation of large display color image appearance-iii: Modeling image naturalness[END_REF] but high quality images should be considered as natural. By analyzing the chromatic, hue, saturation and lightness variations, they point out the significant roles of those factors in image quality and image naturalness. But those studies only focus on evaluating the impacts of some factors on naturalness instead of finding factors affecting photo naturalness. In [START_REF] Cadik | The naturalness of reproduced high dynamic range images[END_REF], image naturalness is defined as the degree of correspondence between a scene (seen directly) and the corresponding scenes in photos based on some criteria: brightness, contrast, colour reproduction, reproduction of details, simulation of glare, visual acuity and artifacts. An experiment is conducted to evaluate naturalness of SDR images generated by 14 different TMOs with a human naturalness assessment experiment with references. The real scene and the tone-mapped version of an HDR image of the same scene are shown to the observers. The observers have to give a subjective score (in range [0,. . . 10]) for the 5 criteria including brightness, contrast, visibility, reproduction of details and reproduction of colors. Based on the subjective scores, the TMOs are compared. In [START_REF] Trentacoste | Unsharp masking, countershading and halos: Enhancements or artifacts?[END_REF], a similar issue was discussed. The influences of the width and magnitude parameters of countershading in image quality enhancement and in provoking artifacts are studied. A subjective experiment was conducted in which observers were asked to adjust the magnitude parameter to the maximum level without artifacts under different settings of the width parameter. Based on the experimental results, some existing methods for image quality enhancement and tone mapping are improved to avoid noise and artifacts.

Besides, some naturalness features have been proposed for tone-mapped Images Quality Assessment (IQA) in few studies. In [START_REF] Gu | Blind quality assessment of tone-mapped images via analysis of information, naturalness, and structure[END_REF], [START_REF] Yaacoub | A no-reference metric for quality assessment of tone-mapped high dynamic range images[END_REF], naturalness is mentioned as a factor to assess quality of images since it is considered as a feature in a feature set for IQA. In those researches, images obtained from a camera (including pictures of man-made objects as well as forest / natural environments) are considered as natural images. The naturalness in this work is computed based on statistics with 3,000 natural images. It is considered as the fitness of the standard deviation and the mean of pixel values to a Gaussian function and a Beta probability density function. In another De's studies [START_REF] De Ridder | Naturalness and image quality: chroma and hue variation in color images of natural scenes[END_REF], [START_REF] De Ridder | Naturalness and image quality: saturation and lightness variation in color images of natural scenes[END_REF] Image naturalness is defined as the degree of correspondence with (memorized) reality. High quality images should be considered as natural. Naturalness indexes:

-Chromatic variation.

-Hue variation.

-Saturation variation.

-Lightness variation.

Cadik's study [START_REF] Cadik | The naturalness of reproduced high dynamic range images[END_REF] Image naturalness is defined as the degree of correspondence between a scene (seen directly) and the corresponding scenes in photos based on some criteria: brightness, contrast, colour reproduction, reproduction of details, simulation of glare, visual acuity and artifacts. Naturalness indexes: -Brightness.

-Contrast.

-Colour reproduction.

-Reproduction of details.

-Reproduction of shadow details.

-Simulation of glare.

-Visual acuity.

-Artifacts.

Choi's study [START_REF] Choi | Investigation of large display color image appearance-iii: Modeling image naturalness[END_REF] Image naturalness is defined as the degree of correspondence between a photo displayed on a device and the memories about the real-life scene.

Naturalness features:

-Memory colors of skin, grass and sky.

-Sharpness.

-Colorfulness.

-Reproduction of shadow details.

Gu's study [START_REF] Gu | Blind quality assessment of tone-mapped images via analysis of information, naturalness, and structure[END_REF] and Yaacoub's study [START_REF] Yaacoub | A no-reference metric for quality assessment of tone-mapped high dynamic range images[END_REF] Images obtained from a camera (including pictures of man-made objects as well as forest / natural environments) are considered as natural images. (No definition for unnatural images) Naturalness feature is calculated based on standard deviation and mean of pixel values and a statistic of natural images.

Jiang's study [START_REF] Jiang | Blind tone-mapped image quality assessment based on brightest/darkest regions, naturalness and aesthetics[END_REF] Image naturalness definition is based on exposure of images. Over or under exposure images are considered as unnatural images while normal exposure images are considered as natural.

Naturalness features are calculated based on luminance and yellow intensities.

study, Jiang et al. [START_REF] Jiang | Blind tone-mapped image quality assessment based on brightest/darkest regions, naturalness and aesthetics[END_REF] define naturalness features based on the differences of normal exposure images and abnormal (over or under) exposure images. Simply, over or under exposure images are considered as unnatural images in that research. Naturalness features computed based on the luminance and yellow values. Those features are then used with details features and aesthetic features for tone-mapped image quality assessment. In those studies, it is concluded that naturalness plays a role in tone-mapped image quality assessment but naturalness is mentioned as a factor and there is no clear definition, conclusion or evaluation about the consistency of the naturalness. Table I presents an overview of naturalness features in previous studies.

In the state of the art about image naturalness, it is worthy to notice that none of those studies has the same definition of naturalness and their purposes are different from the purpose of this work. Moreover most of the naturalness features mentioned in previous researches are handcrafted features. But in the naturalness concept, we think that there is also an abstract part related to individual memories which cannot be precisely described to be inferred by handcrafted features. As a consequence, there is probably a need about naturalness 

III. EXPERIMENT OF SUBJECTIVE IMAGE NATURALNESS

ASSESSMENT

There are few research about image naturalness and one important challenge is that labelled natural / unnatural datasets are not available. Thus, there is a need of collecting such data so the first step before studying image naturalness is to organize an experiment of subjective image naturalness assessment without references. The description of the experiment includes the image sources, the experiment design, the experiment process, the observers, the experiment results and the naturalness dataset built from the data collected from the experiment.

A. Image sources

The dataset contains 2,727 SDR images coming from 3 main sources. The first one is 624 SDR images mapped from 208 HDR images coming from Debevec's [4], Fairchild's [START_REF] Fairchild | The hdr photographic survey[END_REF], Cadik's [START_REF] Čadík | Evaluation of hdr tone mapping methods using essential perceptual attributes[END_REF], Narwaria's [START_REF] Narwaria | Tone mapping-based high-dynamic-range image compression: study of optimization criterion and perceptual quality[END_REF], Yeganeh's [27], Korshunov's [START_REF] Korshunov | Crowdsourcing-based evaluation of privacy in hdr images[END_REF] and Krasula's [START_REF] Krasula | Preference of experience in image tone-mapping: Dataset and framework for objective measures comparison[END_REF] datasets. HDR images are not easy to collect and the number of images in each dataset is often small, so 7 HDR datasets are used in this research. Those HDR images are mapped to SDR images by using different TMOs including Reinhard's [START_REF] Reinhard | Photographic tone reproduction for digital images[END_REF] (based on global contrast), Ashikhmin's [START_REF] Ashikhmin | A tone mapping algorithm for high contrast images[END_REF] (using local contrast) and Khan's [START_REF] Khan | A tone-mapping technique based on histogram using a sensitivity model of the human visual system[END_REF] (based on histogram and human visual system) algorithms. In order to focus on both naturalness and unnaturalness, there is a need of considering not only a well known TMO like Reinhard's TMO but also an TMO generating artifacts like Ashikhmin's TMO and an TMO generating both natural and unnatural images like Khan's TMO.

The second image source includes 1,811 SDR images of ESPL-LIVE dataset [START_REF] Kundu | Large-scale crowdsourced study for tone-mapped hdr pictures[END_REF]. It includes 747 images tone-mapped from HDR images by using 4 TMOs [START_REF] Reinhard | Photographic tone reproduction for digital images[END_REF], [START_REF] Larson | A visibility matching tone reproduction operator for high dynamic range scenes[END_REF], [START_REF] Fattal | Gradient domain high dynamic range compression[END_REF], [START_REF] Durand | Fast bilateral filtering for the display of high-dynamic-range images[END_REF], 710 images grenerated directly from multi-exposure images by using 5 MEFs [START_REF] Kundu | Large-scale crowdsourced study for tone-mapped hdr pictures[END_REF], [START_REF] Raman | Bilateral filter based compositing for variable exposure photography[END_REF], [START_REF] Pece | Bitmap movement detection: Hdr for dynamic scenes[END_REF], [START_REF] Paul | Multi-exposure and multifocus image fusion in gradient domain[END_REF] and 354 images gained after applying 2 post-processing algorithms [START_REF] Kundu | Large-scale crowdsourced study for tone-mapped hdr pictures[END_REF].

The last part of the dataset contains 292 images including single-exposure, tone-mapped and post-processed images downloaded from Flickr website. The contents of the images are real world scenes including landscape, building, objects, people,. . . and they are taken under indoor, outdoor, day time, night time conditions. B. Experiment setup 1) Experiment design: The experiment was conducted at GIPSA Lab, France where the experimental conditions are controlled according to the ITU BT-500 for a subjective experiment. Every observer performed the experiment by interacting with an interface displayed on a 24 inch (16:10) Samsung display (see Fig. 4). The resolution and color profile of the display has been set to 1920 × 1200 pixels and sRGB respectively. The peak brightness of the display is 250 cd / m 2 . It is connected to a computer exporting a 32 bit color signal. The display and the computer are put in an experimental room where the light conditions are controlled thoroughly. The distance from observers to the display was fixed to 0.7 meter. Although the number of observers in the laboratory experiment is lower than that of some online crowd surveys, the thorough control of experimental conditions is the compensation ensuring the reliability of the experiment results. 2) Experiment process: The process of the experiment for an observer is described in Fig. 5. Before starting the experiment, the observer performs an eye sight and a color sensation tests. The observer then reads the instructions, views some examples and performs a trial experiment to understand the experiment precisely and to be familiar with the interface of the experiment. The observer is instructed to focus on image naturalness rather than image quality or image aesthetic. In the trial phase, the observer has to evaluate the naturalness of five photos covering different causes of unnaturalness (they were pre-evaluated by the authors) and not belonging to the official experiment phase. Each turn, only one photo is showed to the observer during a short time. As explained previously, naturalness is an abstract concept not so easy to define precisely to each observer. So in our opinion, defining a scale of naturalness (from 1 to 10 from example) would not have been meaningful. As a consequence, the observers have been asked to quote each image in a binary way: natural or unnatural so that we could trust more the provided quotation. Therefore, there are only two choices: the photo looks natural or it looks unnatural to the observer (see Fig. 4). The observer can click a button on the interface or use the keyboard to enter his/her decision. Although the maximum time for evaluating an image is 7 seconds, the actual time in the experiment ranges from 3 to 5 seconds per photo. After giving the subjective evaluation, an uniform gray background is displayed for 1 second and the next image is then presented automatically to the observer. In the next step, the official experiment is performed in the same way as the trial experiment but the number of photos is higher. In the official phase, the number of assessed photos per observer is 380. The total performing time per subject ranges from 25 to 30 minutes. 3) Observers: There were 45 people participating in the experiment which have quoted 1,900 images among the 2,727 available images. The number of men and women are 33 and 12 respectively. Among the 45 observers, 33 observers are familiar with image processing. The observers' ages range from 18 to 57. The average and the standard deviation of their ages are 26.2 and 7.53 respectively. The results show that 100 percent of them have normal or corrected to normal vision at that time.

C. Experiment results and the naturalness dataset 17,100 no reference subjective evaluations of photo naturalness were collected from 45 observers for 1,900 SDR images. Each SDR image has been assessed by the 9 observers. The distributions of the evaluations wrt each transformation method are presented in Table II. The distributions of the different groups are various. Some transformation methods receive a significant difference between the number of positive evaluations (assessing an image as natural) and the number of Transformation method NI PV NV (or image source) Khan's TMO [START_REF] Khan | A tone-mapping technique based on histogram using a sensitivity model of the human visual system[END_REF] 178 732 870 Ashikhmin's TMO [START_REF] Ashikhmin | A tone mapping algorithm for high contrast images[END_REF] 178 230 1,372 Durand's TMO [START_REF] Durand | Fast bilateral filtering for the display of high-dynamic-range images[END_REF] 138 179 1,063 Fattal's TMO [START_REF] Fattal | Gradient domain high dynamic range compression[END_REF] 75 260 415 Reinhard's TMO [START_REF] Reinhard | Photographic tone reproduction for digital images[END_REF] 253 1,549 725 Larson's TMO [START_REF] Larson | A visibility matching tone reproduction operator for high dynamic range scenes[END_REF] 127 730 413 Paul's MEF [START_REF] Paul | Multi-exposure and multifocus image fusion in gradient domain[END_REF] 97 582 291 Pece's MEF [START_REF] Pece | Bitmap movement detection: Hdr for dynamic scenes[END_REF] 91 422 377 Raman's MEF [START_REF] Raman | Bilateral filter based compositing for variable exposure photography[END_REF] 133 negative evaluations (assessing an image as unnatural) such as Durand's method (179 versus 1,063), Surreal effect (117 versus 1,062), Grunge effect (47 versus 835), Ashikhmin's TMO (230 versus 1,372). In contrast, the difference in the numbers of positive evaluations and the number of negative evaluations is in-significant for Pece's method (422 versus 377), Khan's method (732 versus 870). In other cases, there is a slight difference between the number of positive evaluations and the number of negative evaluations: Reinhard's method (1,549 against 725), Fattal's method (260 against 415), Larson's method (730 against 413), Flickr dataset (1,631 against 997). The images are categorized into 10 groups based on the number of positive and negative evaluations they got. The results are showed in Fig. 6. A group is represented by a column in the chart. For example, the first left column in the chart corresponds to the 301 images that have been assessed as unnatural by the 9 observers (no one assessed them as natural) while the right last column shows that 143 images have been evaluated as natural by the 9 observers (no one evaluated them as unnatural). Because the purpose of the research is to study naturalness and unnaturalness signs, there is a need of relevant data. Thus, only the images with a significant difference between the number of positive evaluations and the number of negative evaluations have been considered. Based on the results of the Transformation method NI PV NV (or image source) Khan's TMO [START_REF] Khan | A tone-mapping technique based on histogram using a sensitivity model of the human visual system[END_REF] 59 231 300 Ashikhmin's TMO [START_REF] Ashikhmin | A tone mapping algorithm for high contrast images[END_REF] 123 73 1,034 Durand's TMO [START_REF] Durand | Fast bilateral filtering for the display of high-dynamic-range images[END_REF] 98 61 821 Fattal's TMO [START_REF] Fattal | Gradient domain high dynamic range compression[END_REF] 21 31 128 Reinhard's TMO [START_REF] Reinhard | Photographic tone reproduction for digital images[END_REF] 93 696 141 Larson's TMO [START_REF] Larson | A visibility matching tone reproduction operator for high dynamic range scenes[END_REF] 45 317 88 Paul's MEF [START_REF] Paul | Multi-exposure and multifocus image fusion in gradient domain[END_REF] 33 257 40 Pece's MEF [START_REF] Pece | Bitmap movement detection: Hdr for dynamic scenes[END_REF] 13 84 33 Raman's MEF [START_REF] Raman | Bilateral filter based compositing for variable exposure photography[END_REF] 67 experiment, an image in this study is considered as natural if there are at least 8 positive evaluations (in total 9 evaluations).

Similarly, if there are at least 8 negative evaluations (in total 9 evaluations), it is considered as unnatural. The others are considered as uncertain images because related to controversial evaluations. In this experiment, a binary classification approach is chosen instead of a regression approach because for our first experiment with the notion of unnaturalness, we would like to focus on very contrasted cases of natural and unnatural images to be able to learn a bit more about unnaturalness. Thus, the question for the observers is a binary question "does the image look natural or unnatural?" (not a regression question). The regression problem will be considered later in the future.

After discarding the uncertain images, 531 unnatural images and 355 natural images are kept. The details of the evaluation distribution of the reduced version are described in Table III. Obviously, natural images and unnatural images have been generated by different transformation methods. Some methods generate mainly natural images (Reinhard's method) or unnatural images (Ashikhmin's method). And some methods generate both natural and unnatural images such as Khan's method with 231 positive votes versus 300 negative votes, and Pece's method with 84 positive votes against 33 negative votes.

In order to balance the dataset 176 unnatural images are removed randomly. Then, the ground-truth of the image naturalness dataset is built from 355 unnatural and 355 natural photos. After applying data augmentation including re-scaling, shifting, flipping, cropping and padding, 200 modified versions of size 224×244 are generated from every original photo (See examples in Fig. 7) and the labels of the augmented versions are set the same as the label of the original one. Totally, there are 142,000 images in the naturalness dataset in which half of them are natural and the others are labelled as unnatural. The dataset is available at http://www.gipsalab.fr/∼quyettien.le/projets en.html. 

IV. FEATURE DEFINITION AND FEATURE SELECTION

There is a lot of factors responsible for the unnaturalness of an image. Some of them can be described and defined by looking at the images while it is not easy to explain and modelize the others (see examples in Fig. 8). As a consequence, in this study, the considered features for the purpose of image naturalness assessment are built based on the one side on hancrafted features designed to take into account some a priori about unnaturalness and on the other side on features learned directly either from Convolutional Neural Networks (CNNs) or from pre-trained models (in order to access to non priori, indescribable information). The proposed handcrafted features are designed to focus on the popular artifacts induced by TMO, MEF and post-processing methods such as the feeling of perceived luminance, contrast, reproduction of detail and colors, bloom, halo and dark band effects [START_REF] Cadik | The naturalness of reproduced high dynamic range images[END_REF]. In contrast, learned features are used to detect the abstract factors causing an unnaturalness feeling about photos.

A. Handcrafted features

Based on the ideas mentioned in [START_REF] Cadik | The naturalness of reproduced high dynamic range images[END_REF] the considered handcrafted features are:

1) Brightness features: SDR images generated by TMO, MEF or post-processing algorithms sometimes look unnatural because of the perceived brightness. The brightness channel is one of the 3 channels of the HSV (or HSB: Hue, Saturation and Value or Brightness) color space. The brightness of a pixel is also calculated as the maximum value of the red, green, blue values. By analyzing the brightness histogram of the photos in the dataset, some artifact signs related to brightness could be detected. As an example, in Fig. 9, according to the results of the experiment, the top left image looks more natural to the Fig. 8. Examples of unnatural images. In the left column, the images have clear artifact signs. The brightness in the first image is too low, there are halos surrounding the objects in the second image, the color saturation in the last one is too high. In contrast, when the observers look at the images of the right column, they have the feeling that the images are unnatural without being able to explain clearly why.

observers than those of the other color images. Looking at the brightness histogram in the last row, it appears that the density of medium brightness values in the natural image seems to be denser than those of the other images. In contrast, the two other images look too bright or too dark which can be detected on the brightness histograms that are distributed more in high or low values. The features representing the brightness histogram including mean (f 1 ), standard deviation (f 2 ), skewness (f 3 ), kurtosis (f 4 ) and continuity (f 5 ) of brightness are the first handcrafted features for image naturalness assessment. In which, the continuity of brightness is defined as:

f 5 = |H br (i) -H br (i + 1)| (1) 
where H br (i) and H br (i + 1) are the values of the i th and i + 1 th bins in the brightness histogram.

Another important factor affecting the image naturalness is the brightness contrast. Obviously, the global brightness contrast of an over-exposed image or an under-exposed image is often low. However, a photo with a too high global brightness contrast could also look unnatural. In this study, the features representing the global brightness contrast of an image are defined as: Additionally, images mapped by some TMOs have artifact signs such as dark bands, halos or blooms (see examples in Fig. 3 and Fig. 10). Halos and dark bands surrounding details increase the contrast of local parts as in Fig. 10 (halos have high brightness values while dark bands have low brightness values). In order to detect the high contrast of local parts caused by halo and dark band effects, an image is divided into M parts and the local brightness contrast of the image is defined as the mean of brightness contrasts of the M parts:

f 6 = µ h br µ br (2) 
f 7 = µ l br µ br (3) 
f 8 = f 6 -f 7 f 6 + f 7 (4) 
f 9 = 1 M × M i=1 max i br -min i br max i br + min i br ( 5 
)
where max i br and min i br are the maximum and the minimum brightness values respectively in the i th part. In this study, M is set to 100 (10 × 10 as in the right column of Fig. 10).

2) Saturation features: The impression of colors is not only caused by brightness factors but is also affected by saturation factors. Thus saturation factors have significant influences on naturalness perception of images. Similarly to the brightness features, 9 features (f 10 to f 18 ) are defined based on saturation information (extracted from the channels of the HSV color space) to present the saturation distribution and the saturation contrast of an image.

3) The darkness channel and its relation with the brightness channel: Analyzing the darkness channel and its relation with the brightness channel is an effective way to classify overexposed, under-exposed and well exposed images. Considering an image in the RGB color space, the darkness channel (I da ) and the brightness channel (I br ) are defined based on the RGB channels as:

I da (x, y) = min R(x, y), G(x, y), B(x, y) (6) 
I br (x, y) = max R(x, y), G(x, y), B(x, y)

where (x, y) are the coordinates of a pixel. R(x, y), G(x, y) and B(x, y) are red, green and blue levels at point (x, y) respectively. The difference between the two channels is defined as:

I di (x, y) = I br (x, y) -I da (x, y) (8) 
In Fig. 9, it appears that the pixel values of darkness channel in the under-exposed image (the last column) are very low while those of the brightness channel in the over-exposed image (the second column) are too high. Beside this, the difference between the brightness and darkness channels of the over-exposed image is higher than that of the well exposed image. In contrast, this difference for the under-exposed image is less significant than that of the natural one. Therefore the information of the darkness channel and its relation with the brightness channel is an important clue to evaluate the naturalness of a photo. The 8 next features (f 19 to f 26 ) for image naturalness assessment are the mean, standard deviation, kurtosis, skewness of I da and I di respectively.

Obviously, some details in the darkness and brightness channels of the images in the 2 last columns (Fig. 9) are lost. By comparing the details of the original image in gray scale and the details of the darkness and brightness channels, the reproduction of details and the balance between the darkness and the brightness channels can be evaluated. Thus the 2 last handcrafted features are defined as:

f 27 = |G Ig -G I da | G Ig (9) 
f 28 = |G Ig -G I br | G Ig (10) 
where G Ig , G I da , G I br are the gradient images [START_REF] Acharjya | A study on image edge detection using the gradients[END_REF] of the original image in gray scale, the darkness and the brightness channels respectively. G is the sum of pixel values of the image G. Note that the black padding regions (generated by the data augmentation methods) of images are discarded before calculating the handcrafted features.

To sum up, the overview of the considered handcrafted features is presented in Table IV. The features are presented in 3 groups including brightness features (9 features), saturation features (9 features) and darkness features (10 features).

B. Learned features

In some cases, it is possible to explain why an image looks unnatural to an observer but in general, it is a tough task. No direct relation appears between the unnatural feeling and the image clues such as color, brightness, saturation and so on. As a result, besides being handcrafted, features have also be learned directly from images by using CNNs [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. Because of the modest image number of the naturalness dataset, the 2 approaches used for learning features in this study are shallow CNNs and transfer learning [START_REF] Pan | A survey on transfer learning[END_REF] using deep features learned from deep CNNs.

1) Shallow learned features: In the first approach, shallow learned features are learned from shallow CNNs (models with a low number of convolutional layers and a shallow architecture). The general structure of the 4 considered models (see Fig. 11) includes a convolutional layer receiving input color images of size 224×224, a global average pooling layer transforming 3D outputs from the convolutional layer into 1D outputs, a batch normalization layer normalizing the outputs from the global pooling layer and a fully connected layer on the top for predicting the input images as natural or unnatural. The size and the number of kernels in the convolutional layer are designed according to the number of samples in the dataset (142,000 samples of size 224×224). In order to learn various types of features, different models using different kernel sizes and different kernel numbers (490 kernels of size 5×5, 229 kernels of size 9×9, 65 kernels of size 17×17 and 65 kernels of size (2×17)×(2×17) -an average pooling layer is used to resize the input image by 50 percent) are designed as in Fig. 11. After the training phase, the models without the prediction layer are considered as feature extractors computing the learned features from the input images. The 4 feature extractors calculate 65, 65, 229 and 490 shallow learned features (features learned from shallow CNNs) for the purpose of image naturalness assessment. In the training process, the Adam optimizer and a binary cross-entropy loss function are used and the batch size is assigned to 128. The learning rate and the number of iterations are set to 10 -6 and 3,000 respectively. 

Features Formula

Brightness features f 1 =

N i=1 I br (i) N f 2 = N i=1 (I br (i)-f 1 ) 2 N -1 f 3 = N i=1 (I br (i)-f 1 ) 3 N ×f 3 2 f 4 = N i=1 (I br (i)-f 1 ) 4 N ×f 4 2 f 5 = |H br (i) -H br (i + 1)| f 6 = µ h br µ br f 7 = µ l br µ br f 8 = f 6 -f 7 f 6 +f 7 f 9 = 1 M × M i=1 max i br -min i br max i br +min i br I br is the brightness channel.
Saturation features

f 10 = N i=1 Isa(i) N f 11 = N i=1 (Isa(i)-f 10 ) 2 N -1 f 12 = N i=1 (Isa(i)-f 10 ) 3 N ×f 3 11 f 13 = N i=1 (Isa(i)-f 10 ) 4 N ×f 4 11 f 14 = |Hsa(i) -Hsa(i + 1)| f 15 = µ h sa µsa f 16 = µ l sa µsa f 17 = f 15 -f 16 f 15 +f 16 f 18 = 1 M × M i=1 max i sa -min i sa max i sa +min i sa
Isa is the saturation channel.

Darkness features

f 19 = N i=1 I da (i) N f 20 = N i=1 (I da (i)-f 19 ) 2 N -1 f 21 = N i=1 (I da (i)-f 19 ) 3 N ×f 3 20 f 22 = N i=1 (I da (i)-f 19 ) 4 N ×f 4 20 f 23 = N i=1 I di (i) N f 24 = N i=1 (I di (i)-f 23 ) 2 N -1 f 25 = N i=1 (I di (i)-f 23 ) 3 N ×f 3 24 f 26 = N i=1 (I di (i)-f 23 ) 4 N ×f 4 24 f 27 = |G Ig -G I da | G Ig f 28 = |G Ig -G I br | G Ig
I da is the darkness channel. I di is the differences between the brightness and darkness channels.

I di = I br -I da
2) Deep learned features: Deep learned features are learned from deep CNNs (models with a high number of convolutional layers and a deep architecture). To learn deep features directly, there is a need of a very high number of images and it is impossible for the case of this study. Considering deep features learned by pre-trained models could be a good solution. Although the deep learned features (features learned from deep CNNs) have been learned for a given task, they can be considered to be used for different tasks [START_REF] Pan | A survey on transfer learning[END_REF] the fully connected layers are in charge of combining features learned from the convolution layers to solve the task. In other words, after removing the fully connected layers of a pretrained deep neural network, the model can be considered as a feature extractor. In our study, several deep models including VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], Xception [START_REF] Chollet | Xception: Deep learning with depthwise separable convolutions[END_REF], ResNet [START_REF] He | Deep residual learning for image recognition[END_REF], NASNet large and NASNet mobile [START_REF] Zoph | Learning transferable architectures for scalable image recognition[END_REF], MobileNet [START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF], Inception [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF], DenseNet [START_REF] Huang | Densely connected convolutional networks[END_REF], Inception ResNet [START_REF] Szegedy | Inception-v4, inceptionresnet and the impact of residual connections on learning[END_REF] pre-trained on the ImageNet dataset for the task of image classification are transferred to the new purpose of image naturalness assessment by keeping the convolution layers and replacing the top fully connected layers and training them for the new task. Instead of using all pre-learned features for the new task, there is a feature selection process to extract relevant features. The feature selection algorithm is presented in the next part.

3) Feature selection: When using transfer learning, features are primarily learned for a different task. Some features can be transfered well to perform a new task while the remaining are not relevant. Additionally, combining several feature sets could increase the performance but it also increases the number of features. This increase makes the computation complicated and sometimes it also increases the requirement of data. Therefore, simplifying a feature set by selecting the most relevant features is a good solution. Thus, there is a need of selecting and keeping the most relevant features and discarding the irrelevant features from a feature set. The relevance of each feature for the purpose of INA needs to be evaluated. This is done by using the relief method [START_REF] Kira | A practical approach to feature selection[END_REF]. The training set S containing 113,600 images (56,800 natural images and 56,800 unnatural images) selected randomly from the dataset is considered as the evaluation set to compute the relevance of the features. All features of each image in S are calculated and normalized to range [0,. . . 1]. The relevance of a given feature f is calculated as:

r(f ) = dif (f, N, U ) -dif (f, N, N ) -dif (f, U, U ) (11) dif (f, X, Y ) = X i=1 Y j=1 (d(f, X i , Y j )) X × Y (12) 
where N and U are the natural images and the unnatural images of the evaluation set S respectively. The number of images in set X is presented as X . X i is the i th image of the set X while the absolute difference between f values of the 2 images x and y is represented as d(f, x, y). The feature relevances are then normalized to range [0,. . . 1]. The highest r(f ) values illustrate the most relevant features.

In order to reduce the number of features and keep the most relevant features F T , it is necessary to find a threshold T to be applied on feature relevance R to discard irrelevant features (features having the relevance smaller than the threshold T ). To find the threshold, an algorithm based on the feature relevance and the binary search algorithm is applied [START_REF] Le | Large Field/Close-Up Image Classification: From Simple to Very Complex Features[END_REF]. The details of the algorithm are described in Fig. 12. The first step of the algorithm is to initialize a lower threshold T 1 and an upper threshold T 2 to 0 and 1 respectively. T 1 and T 2 are then considered as the thresholds to select 2 feature sets F T1 and F T2 (F Tj = {f x |r x ≥ T j }). F T1 and F T2 are then applied to classify natural and unnatural images by using 2 SVM models. Comparing the 2 models trained on S 1 with 85,200 images selected from S and tested on S 2 containing 28,400 images coming from S can point out which threshold is the best (T 1 or T 2 ). The better threshold is kept while the worse threshold is updated to reduce the distance between the 2 thresholds. After performing K iterations, the final threshold T is computed as the average of the 2 thresholds T 1 and T 2 . The algorithm is then applied on the feature sets to keep the most relevant features only. To evaluate the feature selection method, look at the improvement of the classification performance in Table VII and Table VIII in the experimental section. After selecting the most relevant features, the accuracy of the classification based on shallow learned features increases from 0.789 (with 849 features) to 0.808 (with 731 features) while the accuracy and the loss of the classification based on the deep learned

B F = {f1, f2,… fn} R = {r1, r2,… rn} K, S1, S2 T1 = 0 T2 = 1 i = 0 i < K j = 1 j < 3 FTj = {fx | rx ≥ Tj}
Train the SVM with FTj, S1 Test the SVM with FTj, S2 Get the accuracy Aj

j = j + 1 A1 < A2 5 1 2 1 1 T T T T    A1 > A2 5 1 2 2 2 T T T T    5 1 2 1 1 T T T T    5 1 2 2 2 T T T T    i = i + 1 E 2 2 1 T T T   True True True
True False False False False Fig. 12. Flowchart of the algorithm finding the optimal threshold. The input includes the feature set F , the feature relevance set R, the number of iterations K, the training set S 1 and the testing set S 2 . T 1 , T 2 are the lower and upper thresholds respectively. F T j is the reduced feature set selected with the threshold T j . A j is the accuracy of the SVM classifier trained and tested with S 1 and S 2 respectively with the feature set F T j . The output of the algorithm is the optimal threshold T .

features improves from 0.858, 0.299 (with 2,048 features) to 0.865, 0.139 (with 425 features) respectively. The feature reduction helps simplifying the feature sets and increasing the performance.

V. EXPERIMENTS AND RESULTS

There are several purposes in this part. The first goal is to automatically answer the question "does an image look natural or not?". The second one is to evaluate the efficiency of each feature set (handcrafted features, shallow learned features and deep learned features towards naturalness assessment). The last goal is to try to define more precisely the most relevant features describing unnaturalness.

Image naturalness assessment is considered here as a binary classification problem (natural / unnatural image) reflecting the fact that an observer might or might not feel that the image is natural. In order to evaluate the performance of each feature set, the classification is performed separately with the handcrafted features, the shallow learned features and the deep learned features.

A. Dataset and setup

The system having the general structure as in Fig. 13 is trained and tested to evaluate the classification performances of each feature set. The general structure includes an input layer, an output layer and P hidden blocks (in this study, P is set to 4). Each block contains a fully connected layer, a batch normalization layer and a dropout layer. The output layer contains 2 neurons corresponding to the 2 classes (natural and unnatural). The model is designed to learn how to combine the computed features for the classification task. Only the fully connected layers are trained in the training process so the convergence is fast. In the experiment, the number of iterations is set to 150. The Adam optimizer is used and the loss function is the binary cross-entropy loss. The learning rate and the minibatch size are set to 10 -3 , 512 respectively. Regarding the feature extraction block, each of the 3 feature sets is tested alone. The model is trained on the 113,600 images of the training set S and tested on a testing set S 1 including 28,400 images (14,200 natural images and 14,200 unnatural images) generated from the 142 remaining original images by applying the data augmentations. There is no overlapping images (images generated from the same original images) between the training set and the testing set. Additionally, the classifier is also tested on a testing set S 2 containing 142 images (71 natural images and 71 unnatural images) obtained from 142 original images by re-scaling and padding (just to convert images to the format of size 224 × 224 without cropping) to evaluate the influence of data augmentation on performances. It helps to demonstrate the validity of the data augmentation process regarding the labelling in particular. This is mainly because we focus on the 

Evaluation criteria Formula

Accuracy A = T P +T N T P +F P +T N +F N

Lower accuracy

A l = A -Ia Upper accuracy Au = A + Ia Loss L = n i=1 |y i -o i | n Lower loss L l = L -I l Upper loss Lu = L + I l
naturalness of the image and not the naturalness of the image content. The model is evaluated based on the Accuracy (A) depending on T P, T N, F P, F N (true positive, true negative, false positive and false negative expressed as a number of images) and on the Loss (L) described in Table V. The lower accuracy (A l ) and the upper accuracy (A u ) reflect the range of accuracy within the 95% confidence interval [START_REF] Mitchell | Machine Learning[END_REF], [START_REF] Diciccio | Bootstrap confidence intervals[END_REF]. In general, the accuracy (or overall accuracy) is the most popular metric for evaluating classification performance while the loss (or mean absolute error) reflects the classification certainty. In Table . V, n is the class number (in this case n = 2), y and o are the target and the output (prediction) values respectively. The lower loss (L l ) and the upper loss (L u ) present the range of loss within the 95% confidence interval [START_REF] Mitchell | Machine Learning[END_REF], [START_REF] Diciccio | Bootstrap confidence intervals[END_REF]. I a and I l are the accuracy interval and the loss interval. They are calculated as:

I a = z × A × (1 -A) N (13) 
I l = z × L × (1 -L) N ( 14 
)
where N is the number of testing samples (in this study, N is 28,400 for S 1 and 142 for S 2 ) and z is the number of standard deviations from the Gaussian distribution (z = 1.96 for 95% confidence interval).

The experiments have been performed on a PC equipped with an Intel(R) Xeon(R) CPU X5650 2.67 GHz (12 CPUs) and 24 GB memory. The feature computational time T F (the time for computing features from images directly), the classification time T C (the time for classifying images based on computed features), the classification accuracy and the loss with each feature set are estimated in two cases with and without a graphic card (NVIDIA GeForce GTX 1080 Ti) to compare the impacts of the feature set choice on the classification and to evaluate the balance between the computational cost and the classification accuracy.

B. Results and discussions 1) Handcrafted features based classification:

In this first case, the feature extractor box in Fig. 13 computes the handcrafted features defined in section IV-A. Table VI shows the performances of the classification based on handcrafted features. The impact of each handcrafted feature subset is also estimated and is showed in the table. It appears that the overall accuracy of classification based on the separate feature subsets is quite low (0.712, 0.640, 0.716 for the brightness, saturation and darkness channels features respectively) and the loss is high (0.389, 0.495, 0.401 for the brightness, saturation and darkness channels features respectively). By combining them, the overall accuracy increases to 0.812 and the loss decreases to 0.321. Beside this, it appears that the F P value is much higher than the F N value (3,832 versus 1,520), the handcrafted features appear to be more sensitive to unnatural images in this case. Additionally, the feature computation of the handcrafted features is performed quite fast and the difference between computations with and without the graphic card is insignificant (63 ms, without the graphic card and 59 ms, with the graphic card).

Classification examples based on handcrafted features are shown in Fig. 14 (because of the size reduction and the PDF transformation, the perception of contrast and therefore the impression of image naturalness might have been changed a little in the figure). As expected, the unnatural images caused by low saturation are well classified with those features. Although halos around details and contrast factors have been considered during the feature design stage, there are some images with those artifacts in the misclassified unnatural images. Additionally, the classifier based on the handcrafted features appears to be too sensitive to colorfulness since most of the well classified unnatural images and the misclassified natural images are colorful while the well classified natural images and the misclassified unnatural images are less colorful. It seems that the handcrafted features are not able to detect all the cases and sometimes they are too sensitive to some factors. So some discriminant features are not taken into account with the considered handcrafted features.

2) Shallow learned features based classification: In Fig. 13, the feature extractors are now made of the shallow CNNs described in section IV-B1. Beside the classifications based on separate feature sets, the classification with the combination of all the shallow learned features is also performed. The details T r u e c l a s s i f i c a t i o n s F a l s e c l a s s i f i c a t i o n s Na t u r a l i ma g e s Un a t u r a l i ma g e s VII. Obviously, the classification based on the combination of shallow learned features has the best overall accuracy (0.786) and the best loss (0.269) but the number of features is also the highest (849 features) among the shallow learned feature sets (65, 65, 229 and 490 features). In addition to this, the computational time for the shallow learned features without the graphic card is high (114 ms per photo) but it decreases a lot (to 64 ms per photo) when using the graphic card. In order to study the compromise between the number of features and the accuracy, the feature reduction algorithm based on the Relief method (see Fig. 12) is applied on the combined feature set to reduce the feature number from 849 to 731. Although the number of features decreases, the feature computational time does not change because the two feature sets are computed by the same CNNs. By keeping the most relevant features only for the classification, the overall classification accuracy increases from 0.786 to 0.808 but the loss increases slightly from 0.269 to 0.274. Fig. 15 shows classification examples based on the combination of the shallow learned feature sets. Focusing on the true classification samples of unnatural images, it appears that the filters in the shallow models are efficient to detect unnatural images caused by halos around details. Contrary to the classification based on handcrafted features, the shallow learned features based classifier is not efficient to detect color saturation artifacts since the color saturation of 5 (of the 8) misclassifed unnatural images is low. With the handcrafted features, the classifier focuses on the characteristics of the whole image while the shallow learned features based classifier focuses on each sub region of the image (the size of sub regions depends on the size of kernels). It explains the differences between the classification results based on the two feature sets.

T r u e c l a s s i f i c a t i o n s F a l s e c l a s s i f i c a t i o n s

Na t u r a l i ma g e s Un a t u r a l i ma g e s Fig. 15. Classification examples with shallow learned features. The four first rows and the four last rows show natural and unnatural images respectively. The two left columns contain well classified images associated with a low loss value while the two right columns contain misclassified images associated with a high loss value.

3) Deep learned features based classification:

The feature extractor is successively made of the nine pre-trained deep models described in section IV-B2 followed by the feature selection process described in section IV-B3. After training and testing the models using the 9 reduced feature sets, the highest overall accuracy (0.865) is obtained with the model using the features learned from the ResNet extractor. The ResNet model was pre-trained on ImageNet dataset using an SGD optimizer, a batch size of 256, a momentum of 0.9. The model was trained for 60 × 10 4 iterations with the learning rate starting at 0.1 and divided by 10 when the error reaches a plateaus [START_REF] He | Deep residual learning for image recognition[END_REF]. In this case, there is no re-trained ResNet layers.

The model without the last layer (the fully connected layer) is considered as the feature extractor for the proposed model as in Fig. 13. Specifically, 425 learned features are extracted from the 2,048 ResNet features by applying the Relief based feature reduction algorithm. The details of the best classification are showed in Table VIII. The overall accuracy and the loss of the classification are quite good at 0.865 and 0.139 respectively. The number of features used in the classification process is high (425 features) but the computation of the features with the graphic card is quite fast, 47 ms (the computational time without the graphic card is 93 ms). Classification examples based on the ResNet features are presented in Fig. 16. It appears that some of the well classified unnatural images have halos around details. Secondly, brightness factors are not detected well since there are some misclassified unnatural images having a too low brightness. Beside this, it is similar to the handcrafted features based classification since most of the well classified unnatural images are colorful. There are some overlapping images (4 of 8) between the misclassified natural images based on the shallow learned features and the ones based on the deep learned features. It demonstrates that some similar characteristics are learned from the training samples by both deep and shallow CNNs.

4) Discussions: The general purpose of the study is the naturalness of images (not naturalness of scenes). There are several images of the same scene generated from the same original image but in various ways and they might look totally different (See the first row of Fig. 9 where 3 images of the same scene are generated in 3 different ways). Table IX reflects that the classifications performed on S 1 and S 2 are similar since the differences in classification accuracy and

T r u e c l a s s i f i c a t i o n s F a l s e c l a s s i f i c a t i o n s

Na t u r a l i ma g e s Un a t u r a l i ma g e s That is why we kept the same natural or unnatural label after data augmentation. According to ( 13) and ( 14), the intervals of accuracy and loss depend on the number of testing samples. Indeed, the accuracy and loss intervals of the classification performed on S 1 (from 0.004 to 0.005) is much smaller than those of the classification executed on S 2 (from 0.052 to 0.077) because the number of samples in S 1 is much bigger than that of S 2 (28,400 versus 142). The highest confidence of the classification results is obtained with the biggest testing set S 1 . In Fig. 17, it is seen that the classifications based on different feature sets act differently since some images are classified well with a feature set but they are misclassified with the others. Table X presents a general comparison between the classifications based on the 3 feature and sets. By using deep learned features, the classification accuracy and the classification loss reach the best values (Accuracy: 0.865 compared to 0.812, 0.808 and Loss: 0.139 versus 0.321, 0.274 for the handcrafted, shallow learned features based classifications respectively). Additionally, the classification accuracy with the handcrafted features and the one with the shallow learned features are almost equal. Looking at Fig. 18, it appears that the evolution of the loss function is quite different between the feature sets. With handcrafted features and shallow learned features, the loss values constantly increase from low values to high values (even not reaching 0 or 1 in the case of handcrafted features). In contrast, with deep learned features, the loss values in true classifications are nearly zero and they are nearly one in false classifications. This makes the decision more reliable. Moreover, the average loss of the classification based on deep learned features is much smaller than that of the others. Additionally, it appears that the handcrafted features (when well designed) are quite efficient since an overall accuracy of 0.812 is obtained with only 28 features. The classification accuracy with handcrafted features is similar to the accuracy with shallow learned features (accuracy: 0.812 versus 0.808) but the classification certainty for shallow learned features is better (loss: 0.274 against 0.321). Although the number of handcrafted features is smaller than that of the learned features (28 versus 731 and 425), the feature computational time of the handcrafted features and the learned features with the graphic card are almost the same (59 ms, 64 ms and 47 ms for the handcrafted features, the shallow learned features and the deep learned features respectively). Deep learned features are quite efficient since the classification accuracy and the loss are better than those of handcrafted features and shallow learned features (accuracy: 0.865, loss: 0.139). It is seen that the problem of naturalness is abstract and too complicated for shallow CNN architectures to learn features reflecting this problem. Using simple and shallow CNN architectures could not be a good choice for this problem (the classification performance with shallow learned features is even lower than that with handcrafted features).

The last discussion of this part is "did the models learn to recognize the signatures of the transformation methods or did they learned to access to naturalness / unnaturalness?" Transformation method (or A ± Ia L ± I l image source) of the testing set Khan's TMO [START_REF] Khan | A tone-mapping technique based on histogram using a sensitivity model of the human visual system[END_REF] 0.756±0.008 0.282±0.008 Ashikhmin's TMO [START_REF] Ashikhmin | A tone mapping algorithm for high contrast images[END_REF] 0.795±0.005 0.214±0.005 Durand's 0.833±0.005 0.187±0.005 TMO [START_REF] Durand | Fast bilateral filtering for the display of high-dynamic-range images[END_REF] Fattal's TMO [START_REF] Fattal | Gradient domain high dynamic range compression[END_REF] 0.679±0.014 0.340±0.014 Reinhard's TMO [START_REF] Reinhard | Photographic tone reproduction for digital images[END_REF] 0.694±0.007 0.306±0.007 Larson's TMO [START_REF] Larson | A visibility matching tone reproduction operator for high dynamic range scenes[END_REF] 0.906±0.006 0.119±0.007 Paul's MEF [START_REF] Paul | Multi-exposure and multifocus image fusion in gradient domain[END_REF] 0.755±0.010 0.253±0.010 Pece's MEF [START_REF] Pece | Bitmap movement detection: Hdr for dynamic scenes[END_REF] 0 Additionally, there are few images per group, so it is unlikely that the signatures of the transformation methods are learned in this case. In order to verify this assumption, an additional experiment has been performed. The images are categorized in 14 groups as in Table III. The experiment is performed 14 times, each time the augmented images from only one group are considered as the testing set while the classifier using the reduced ResNet feature set (425 features) is trained with the augmented images from the remaining ones, so the signatures of the transformation method in the testing set can not be learned. The initialization of the training process is similar to that of the previous one with the reduced ResNet feature set. The results are showed in Table XI. Although the accuracy and the loss change a little bit compared to the accuracy and the loss of the model trained in the previous way (from 0.865 to 0.801 for accuracy and from 0.139 to 0.221 for loss), the accuracy and the loss values are quite good at 0.801, 0.221 respectively. The differences between the 2 tests are insignificant so it can be concluded that the extracted features are for image naturalness assessment and the solved problem here is not the classification of transformation methods. 5) Towards unnatural image understanding: Although this part sounds a little speculative, the authors want to share with the readers experiences obtained after working with the human subjective image naturalness experiments and analyzing the obtained results. This might be helpful for other studies.

It seems that the feeling of unnaturalness comes from 2 main causes: visible unnaturalness clues and viewers' experience.

The first unnaturalness clue is color. It includes brightness, color saturation and hue. In general, it is impossible for a camera to cover the whole range of brightness of real scenes. By applying algorithms (TMOs, MEFs), the brightness range of a real scene is compressed and it leads to the fact that the brightness distribution, the brightness range and the brightness contrast of photos and those of real scenes are different. For instance, in the first row of Fig. 3, the left photo is too bright (over exposure) while the right one is too dark (under exposure). Additionally, the left image of the second row has a too high brightness contrast since some regions are too bright while some regions are too dark. Beside being compressed, the brightness also could be affected by using post processing algorithms. For example, when a photo has been taken under dark conditions, if the photographer wants to make it brighter, he / she might post-process the photo to increase the brightness. Generally, if the difference is insignificant, it might not be detected by viewers' eyes but if the difference is important, it becomes an artifact sign. Besides this, choosing parameters for transforming algorithms is a very important task. If parameters of a method are chosen correctly for a given photo, the photo quality can increase significantly but a wrong chosen parameter can make the photo horrible [START_REF] Trentacoste | Unsharp masking, countershading and halos: Enhancements or artifacts?[END_REF] and of course unnatural. TMOs, MEFs and post-processing re-produce brightness, color saturation and hue of images. An abnormal color saturation (too high or too low) could be detected by human eyes. Unusual hues in photos make photos unnatural to viewers. For instance, it is impossible to have orange sky as in Fig. 2 or dark blue sky as in Fig. 3.

Beside color, the second visible unnaturalness clue is the reproduction of details. In order to reproduce lost details, to enhance sharpness or to reduce noise in photos, some postprocessing algorithms modify photo details. Those changes could lead to artifact signs such as blurriness, graininess, halo, dark band effects. Additionally, when combining multiple shoots taken under different exposures, MEFs try to preserve details coming from different images. Sometimes, the details are not combined well and some artifact clues such as motion blur, ghost effects are produced. TMOs generate unnatural details in a different way. When compressing color range, some TMOs try to preserve local contrast and global contrast in photos. The reduction of the dynamic range might produce artifact details (too sharp, contrast details, halo bands) or some details could be lost after mapping.

When the unnaturalness feeling comes from viewers' experience, unnaturalness clues are not obvious. As a matter of fact, the observers compare scenes in photos to scenes retrieved from their memory (what they have seen) [START_REF] Witzel | Memory Color[END_REF] to find differences and similarities, so assessment results depend on individual factors [START_REF] Granzier | Effects of memory colour on colour constancy for unknown coloured objects[END_REF]. For example, some viewers think dark photos and bright photos are unnatural because they are not familiar with those scenes while some people disagree because they have seen similar scenes in few cloudy days or few sunny days (see examples in Fig. 19). Another example is about the tree colors. Green colors of trees are not the same and they vary under different light conditions. However, some viewers fix a range of green colors for plants in their mind. Except those colors, they consider that other green colors are unnatural. In this case, when evaluating the naturalness of scenes with trees in photos, viewers often focus on 3 questions "What trees are they?", "What are their colors?" and "Do they and their colors match?". As a result, it is not easy to design handcrafted features in this case because naturalness appears to be an individual feeling while deep learning helps us to learn others features that are not always explained by building on a combination of different handcrafted features.

How to explain that during our naturalness assessment experiment, people all agree on the evaluation of some images and completely disagree about some other images? Looking at Fig. 6, the images are categorized in 10 image groups based on the corresponding evaluations. In order to analyze the confidence of naturalness labels of those images, the 10 groups are merged into 5 categories in which each category is presented by a pair of values (X, Y ). X is the number of observers having the same opinion about the naturalness of an image while Y is the number of observers having the opposite opinion. According this definition, there are 5 categories: (9,0), (8,1), (7,2), (6,3) and [START_REF] Goshtasby | Fusion of multi-exposure images[END_REF][START_REF] Debevec | Recovering high dynamic range radiance maps from photographs[END_REF]. The naturalness label of each image is decided by the majority of the observers so it appears that the confidence of the labels in category (9,0) is the highest and the confidence in category [START_REF] Goshtasby | Fusion of multi-exposure images[END_REF][START_REF] Debevec | Recovering high dynamic range radiance maps from photographs[END_REF] is the lowest. Analyzing each category, it appears that images with the highest confidence labels generally present obvious visible artifact. Thus, the answer here is that the unnaturalness clue is clearer to viewers and it is easier for them to make the decision in the cases with clear unnaturalness signs. On the contrary, images with the lowest confidence labels are images on which the naturalness / unnaturalness feeling is more related to the viewer's experience. The feeling of unnaturalness based on viewers' experience sometimes is not the same and the image naturalness in those cases could be controversial.

Overall, the naturalness concept can definitely be defined based on 2 terms. The first one is memory color that reflects the typical color of an object that a beholder acquires through viewers' experience with that object [START_REF] Witzel | Memory Color[END_REF]. The second term is obvious artifacts that can be recognized by eyes such as very high or very low contrast, too sharp details, loss details, artifact details (see Fig. 3). That is why the problem of naturalness assessment is so tricky.

VI. CONCLUSIONS

In this paper, 2 main contributions have been presented. Firstly, an experiment of subjective image naturalness classification without references was organized. It was performed under strict experimental conditions. From 45 observers, over 17,000 subjective naturalness evaluations for 1,900 SDR images have been obtained to establish a naturalness dataset for the purpose of analyzing photo naturalness automatically. Secondly, the image naturalness is evaluated in different ways using handcrafted features, features learned directly from CNN and transferred learned features. The experiments on the naturalness dataset point out the roles of the different feature types in the task of image naturalness evaluation. Handcrafted features are simple and quite efficient while deep learned features are complicated but get higher a performance and shallow learned features are not a good choice for analyzing image naturalness.

According to the current results, the direction of our research in the future is to organize an experiment with an HDR screen firstly to answer the question "are TMOs introducing unnaturalness in images or are the HDR images with unnatural artifacts even when displayed on an HDR screen?" and secondly to analyze the similar points of naturalness features for HDR images and SDR images. The second future direction is to develop a system giving naturalness score to images (regression problem). Finally, detecting unnatural images will be considered as the first step before developing methods in order to restore them.

Fig. 1 .

 1 Fig. 1. Examples of MEF. The first and the third rows present images generated with the multi-exposure images of the second and the fourth rows respectively. (image source: https://petapixel.com).

Fig. 2 .

 2 Fig. 2. Examples of post processing methods. The first column contains original images (produced directly by cameras) while the second one presents the corresponding post-processed images. (image source: https://petapixel.com).

Fig. 3 .

 3 Fig. 3. Examples of artifacts. 1A: Over exposure, lost details. 1B: Under exposure, lost details. 2A: Too high contrast. 2B: Too low contrast, incorrect color reproduction. 3A: Bloom effect, incorrect color reproduction. 3B: Hallow effect, incorrect color reproduction.

Fig. 4 .

 4 Fig. 4. The interface for assessing image naturalness.

Fig. 5 .

 5 Fig. 5. The process of the experiment for an observer. There are 4 main steps including testing eyes, reading instructions, doing the trial test and doing the official test.

Fig. 6 .

 6 Fig. 6. Results of the subjective naturalness experiment.

Fig. 7 .

 7 Fig. 7. Examples of data augmentation including re-scaling, shifting, flipping, cropping and padding (the black padding parts in those image are not presented to the observers). The two first rows present augmented versions of a natural image while the two last rows present augmented versions of an unnatural image (based on observers' evaluations). The data augmentation operations do not change the feeling of naturalness or unnaturalness so that the same label is kept.

Fig. 9 .

 9 Fig.9. The first row presents the color images. The second and the third rows illustrate the corresponding darkness and brightness channels (Eq. 6 and Eq. 7) of them. The fourth row shows the absolute difference (Eq. 8) between the darkness and the brightness channels. The brightness histograms of the color images are presented in the last row.

Fig. 10 .

 10 Fig. 10. The left column presents the color images. The right one illustrates the corresponding brightness channels of them. The first left image labelled as unnatural contains artifact signs: halo, dark band and bloom effects while the second color image is assessed as natural by the observers.

Fig. 11 .

 11 Fig. 11. Four different architectures of the shallow CNN. 2×2 AVG Pool: Average pooling layer with the pooling of size 2×2 that reduces the size of the input image by 50 percent. W×W CONV, N: N kernels of size W×W of the convolutional layer. Global AVG Pool: global average pooling layer. BN: Batch normalization layer. FC 2: The fully connected layer containing 2 output neurons (the prediction layer).

Fig. 13 .

 13 Fig.[START_REF] Larson | A visibility matching tone reproduction operator for high dynamic range scenes[END_REF]. General structure of the network designed for natural / unnatural image classification. Features extracted from an RGB input image of size 224×224×3 by the feature extractor are passed through the layers to classify the image as natural or unnatural. There are 4 hidden blocks with a fully connected layer, a batch normalization layer and a dropout layer in each block.

Fig. 14 .

 14 Fig. 14. Classification examples with handcrafted features. The four first rows and the four last rows show natural and unnatural images respectively. The two left columns contain well classified images associated to a very low loss value while the two right columns contain misclassified images associated to a very high loss value.

Fig. 16 .

 16 Fig. 16. Classification examples with deep learned features. The four first rows and the four last rows show natural and unnatural images respectively. The two left columns contain well classified images associated with a low loss value while the two right columns contain misclassified images associated with a high loss value.

Fig. 17

 17 Fig. 17. Classification losses based on the 3 feature sets. Y axis represents the loss values while X axis represents the images. Each horizontal line is the border between true classifications (loss < 0.5) and false classifications (loss > 0.5).

Fig. 18 .

 18 Fig. 17. Classification losses based on the 3 feature sets. Y axis represents the loss values while X axis represents the images. Each horizontal line is the border between true classifications (loss < 0.5) and false classifications (loss > 0.5).

Fig. 19 .

 19 Fig. 19. Examples of controversial images. The images in the left column are assessed as natural by 5 observers and as unnatural by 4 observers. The images in the right column are assessed as unnatural by 5 observers and as natural by 4 observers.

TABLE I OVERVIEW

 I OF NATURALNESS INDEXES AND NATURALNESS FEATURES IN PREVIOUS STUDIES.

TABLE II THE

 II DISTRIBUTION OF THE NATURALNESS EVALUATIONS WRT EACH TRANSFORMATION METHOD (OR IMAGE SOURCE) FOR THE WHOLE DATASET. NI: NUMBER OF IMAGES, PV: NUMBER OF POSITIVE VOTES (EVALUATING IMAGES AS NATURAL IMAGES), NV: NUMBER OF NEGATIVE VOTES (EVALUATING IMAGES AS UNNATURAL IMAGES).

TABLE III THE

 III DISTRIBUTION OF THE NATURALNESS EVALUATIONS FOR THE SELECTED IMAGES (IMAGES WITH AT LEAST 8 POSITIVE VOTES OR 8 NEGATIVE VOTES). NI: NUMBER OF IMAGES, PV: NUMBER OF POSITIVE VOTES (EVALUATING IMAGES AS NATURAL IMAGES), NV: NUMBER OF NEGATIVE VOTES (EVALUATING IMAGES AS UNNATURAL IMAGES).

  . The general structure of deep CNNs includes convolution layers at the bottom and fully connected layers on the top. The convolution layers are responsible for learning features while
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TABLE V OVERVIEW

 V OF EVALUATION CRITERIA.

TABLE VI IMAGE

 VI NATURALNESS ASSESSMENT BASED ON THE 28 HANDCRAFTED FEATURES AND IMPACT OF EACH HANDCRAFTED FEATURE GROUP ON THEASSESSMENT.

	Classification based on handcrafted feature subsets
	performed on the testing set S 1 9 Brightness features A = 0.712	L = 0.389
	9 Saturation features	A = 0.640	L = 0.495
	10 Darkness channel features	A = 0.716	L = 0.401
	Classification based on all the handcrafted features
	(28 features) performed on the testing set S 1 Prediction
			Natural	Unnatural
	Ground truth	Natural TP = 12,680 Unnatural FP = 3,832	FN = 1,520 TN = 10,368
	A = 0.812 L = 0.321	Ia = 0.005 I l = 0.005	A l = 0.807 L l = 0.316	Au = 0.817 Lu = 0.326
	Classification based on all the handcrafted features
	(28 features) performed on the testing set S 2 Prediction
			Natural	Unnatural
	Ground truth	Natural Unnatural	TP = 66 FP = 19	FN = 5 TN = 52
	A = 0.831 L = 0.326	Ia = 0.062 I l = 0.077	A l = 0.769 L l = 0.249	Au = 0.893 Lu = 0.403
	Processing time without the graphic card
	T F	63 ms	T C	2 ms
	Processing time with the graphic card
	T F	59 ms	T C	2 ms

TABLE VII IMAGE

 VII NATURALNESS ASSESSMENT BASED ON THE SHALLOW LEARNED FEATURES AND IMPACT OF EACH SHALLOW LEARNED FEATURE GROUP ONTHE ASSESSMENT.

	Classification based on the separate feature
	subsets learned from the shallow convolutional
	networks performed on the testing set S 1 Features learned from the A = 0.756 model with 490 5×5 kernels	L = 0.337
	Features learned from the model with 299 9×9 kernels	A = 0.766		L = 0.305
	Features learned from the model with 65 17×17 kernels	A = 0.753		L = 0.329
	Features learned from the		
	model with 65 17×17 kernels	A = 0.741		L = 0.332
	and an average pooling layer		
	Classification based on all the shallow learned features
	(849 features) performed on the testing set S 1 Prediction
			Natural		Unnatural
	Ground truth	Natural TP = 11,504 Unnatural FP = 3,376	FN = 2,669 TN = 10,824
	A = 0.786 L = 0.269	Ia = 0.005 I l = 0.005	A l = 0.781 L l = 0.264	Au = 0.791 Lu = 0.274
	Classification based on the reduced shallow learned feature
	set (731 features) performed on the testing set S 1 Prediction
			Natural		Unnatural
	Ground truth	Natural TP = 11,131 Unnatural FP = 2,390	FN = 3,069 TN = 11,810
	A = 0.808 L = 0.274	Ia = 0.005 I l = 0.005	A l = 0.803 L l = 0.269	Au = 0.813 Lu = 0.279
	Classification based on the reduced shallow learned feature
	set (731 features) performed on the testing set S 2 Prediction
			Natural		Unnatural
	Ground truth	Natural Unnatural	TP = 65 FP = 19		FN = 6 TN = 52
	A = 0.824 L = 0.277	Ia = 0.063 I l = 0.074	A l = 0.761 L l = 0.203	Au = 0.887 Lu = 0.351
	Processing time without the graphic card
	T F	114 ms	T C		2 ms
	Processing time with the graphic card
	T F	64 ms	T C		2 ms

TABLE VIII IMAGE

 VIII NATURALNESS ASSESSMENT BASED ON THE FEATURES LEARNED FROM THE RESNET MODEL PRE-TRAINED ON THE IMAGENET DATASET.

	Classification based on the ResNet feature set
	(2,048 features) performed on the testing set S 1 Prediction
			Natural	Unnatural
	Ground truth	Natural TP = 12,539 Unnatural FP = 2,359	FN = 1,661 TN = 11,841
	A = 0.858 Ia = 0.004 L = 0.299 I l = 0.005	A l = 0.854 L l = 0.294	Au = 0.862 Lu = 0.304
	Classification based on the reduced ResNet feature set
	(425 features) performed on the testing set S 1 Prediction
			Natural	Unnatural
	Ground truth	Natural TP = 12,709 Unnatural FP = 2,336	FN = 1,491 TN = 11,864
	A = 0.865 Ia = 0.004 L = 0.139 I l = 0.004	A l = 0.861 L l = 0.135	Au = 0.869 Lu = 0.143
	Classification based on the reduced ResNet feature set
	(425 features) performed on the testing set S 2 Prediction
			Natural	Unnatural
	Ground truth	Natural Unnatural	TP = 66 FP = 11	FN = 5 TN = 60
	A = 0.887 Ia = 0.052 L = 0.132 I l = 0.056	A l = 0.835 L l = 0.076	Au = 0.939 Lu = 0.188
	Processing time without the graphic card
	T F	93 ms	T C	2 ms
	Processing time with the graphic card
	T F	47 ms	T C	2 ms

TABLE IX IMAGE

 IX NATURALNESS ASSESSMENT BASED ON THE 3 FEATURE SETS PERFORMED ON THE TESTING SETS S 1 AND S 2 . loss are insignificant. This means that the image naturalness assessment is not affected by data augmentation.

	Feature set	A ± Ia (testing	L ± I l (testing	A ± Ia (testing	L ± I l (testing
	Handcrafted	on S 1 ) 0.812	on S 1 ) 0.321	on S 2 ) 0.831	on S 2 ) 0.326
	features	± 0.005	± 0.005	± 0.062	± 0.077
	Shallow learned	0.808	0.274	0.824	0.277
	features	± 0.005	± 0.005	± 0.063	± 0.074
	Deep learned	0.865	0.139	0.887	0.132
	features	± 0.004	± 0.004	± 0.052	± 0.056

classification

TABLE X IMAGE

 X NATURALNESS ASSESSMENT BASED ON THE HANDCRAFTED, THE SHALLOW, THE DEEP LEARNED FEATURES. (N F AND T F ARE THE

	NUMBER OF FEATURES AND THE FEATURE COMPUTATIONAL TIME
			RESPECTIVELY)	
	Feature set	N F	T F (ms)	A ± Ia	L ± I l
	Handcrafted features	28	59	0.812 ±0.005 ±0.005 0.321
	Shallow learned features	731	64	0.808 ±0.005 ±0.005 0.274
	Deep learned features	425	47	0.865 ±0.004 ±0.004 0.139
			TABLE XI	
	CROSS VALIDATION OF THE MODEL USING THE REDUCED RESNET
	FEATURE SET (425 FEATURES). EACH GROUP OF IMAGES IS CONSIDERED
	AS THE TESTING SET WHILE THE REMAINING GROUPS ARE CONSIDERED
			AS THE TRAINING SET.