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Botnet Fingerprinting: a Frequency Distributions
Scheme for Lightweight Bot Detection
Agathe Blaise, Mathieu Bouet, Vania Conan, Stefano Secci, Senior Member, IEEE

Abstract—Efficient bot detection is a crucial security matter
and widely explored in the past years. Recent approaches
supplant flow-based detection techniques and exploit graph-
based features, incurring however in scalability issues, with high
time and space complexity. Bots exhibit specific communication
patterns: they use particular protocols, contact specific domains,
hence can be identified by analyzing their communication with
the outside. A way we follow to simplify the communication graph
and avoid scalability issues is looking at frequency distributions of
protocol attributes capturing the specificity of botnets behaviour.
We propose a bot detection technique named BotFP, for BotFin-
gerPrinting, which acts by (i) characterizing hosts behaviour with
attribute frequency distribution signatures, (ii) learning benign
hosts and bots behaviours through either clustering or supervised
Machine Learning (ML), and (iii) classifying new hosts either
as bots or benign ones, using distances to labelled clusters or
relying on a ML algorithm. We validate BotFP on the CTU-13
dataset, which contains 13 scenarios of bot infections, connecting
to a Command-and-Control (C&C) channel and launching mali-
cious actions such as port scanning or Denial-of-Service (DDoS)
attacks. Compared to state-of-the-art techniques, we show that
BotFP is more lightweight, can handle large amounts of data,
and shows better accuracy.

Index Terms—Network security, data analysis, bot detection.

I. INTRODUCTION

Back in September 2019, the French cyber police freed
over 850,000 computers from a botnet named Retadup [2].
The worm spread through malicious email attachments, then
installed cryptomining software on infected machines. Over
nearly a million of infected hosts mined Minero cryptocur-
rency, reaping a huge amount of money – that is often the
first reason for attackers to handle a botnet. Retadup is also
suspected of being used in several ransomware attacks and
data thefts. At the end of 2019, hackers also mass-scan for
Docker vulnerability (Docker admin port TCP/2376) to mine
Monero cryptocurrency [3]. 2019 saw an increase up to 55% of
IoT malware attacks like Retadup [4]. Hence quickly detecting
botnets is a major concern.

The word "botnet" comes from the combination of "robot"
and "network". In this display, the attackers infect and control
thousands of machines, then send them malicious commands
to execute, like infecting, attacking or scanning other hosts.
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This large zombie network is then a major vector of large-
scale attacks such as phishing DDoS, trojans, spams, etc. To
communicate with bots, cybercriminals use Command-and-
Control (C&C) channels implemented in different ways (the
most popular ones are IRC, HTTP, P2P and Telnet [5]).

Botnet early detection is crucial to limit harms as soon
as possible. However bots often mimic normal traffic and
hide their payload characteristic by encryption. Recently they
are also more likely to use HTTP rather than IRC to be
confounded with classic web traffic. Also, HTTP being a
widely-used protocol, firewalls seldom block it, contrary to
IRC [6]. Furthermore, dynamic ports and runtime protocol
changes enable botnets to bypass signature-based firewalls
and intrusion detection systems (IDS). For robust detection
systems, several flow-based botnet detection approaches [7],
[8], [9], [10] were recently proposed, working without packet
payload information. Differently than flow-based detection,
other recently proposed botnet detection approaches consist in
characterizing and analyzing relationships between hosts in the
network, with techniques commonly referred to as graph-based
anomaly detection [11], [12], [13]. However these techniques
suffer from high time and space complexity, as they need to
compute complex features over very large graphs.

In this paper, we propose a lightweight bot detection
technique named BotFP that builds signatures modelling the
behaviours of hosts in a network. These signatures reflect the
communication pattern of each host, to highlight the differ-
ences between normal hosts and bots. In particular, we account
for the fact that a botnet performs various kinds of actions; one
can simultaneously infect and scan other hosts, perform click
fraud, launch DDoS attacks, actions that can be qualified by
finely analyzing IP addresses, TCP and UDP port numbers and
ICMP types and codes. Then, we aim at accurately defining
what constitutes bot and normal communications based on the
signatures of labelled host; we propose a clustering variant
(BotFP-Clus) - classifying new hosts based on their distances
to labelled clusters - and a supervised machine learning variant
(BotFP-ML ) - for which we evaluate three different supervised
ML classification approaches.

For our evaluation, we use the CTU-13 bot traffic
dataset [14], containing 13 scenarios of different botnet sam-
ples. On each scenario a specific malware sample is executed,
which used several protocols and performed different actions.
We first learn from a training set what constitute normal
communications and malicious behaviours, based on the dis-
tribution of IP addresses and port numbers used by hosts.
We compare our two approaches, BotFP-Clus and BotFP-ML,
in terms of bot detection performances and complexity. We
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demonstrate that the former enables to detect all bots with a
better recall and a reduced complexity. Then, we show that,
while having a comparable or lower time complexity than state
of the art bot detection techniques, we outperform them all
with a recall from 84% to 100% and a precision from 75% to
93%, depending on the method. We also show that using an
adaptive quantification based on the volume of traffic enhances
the results. For the sake of reproducibility and further research,
we made the source code publicly available at [15].

The paper is structured as follows. Section II addresses
related work in the field of bot detection and positions our
work with respect to the state of the art. Section III introduces
the dataset and metrics we used. Section IV presents the data
processing methodology, as well as our rationale about look-
ing at per-host fingerprints to describe host communications.
In Section V, we introduce two signature-based algorithms
to detect bots, namely BotFP-Clus, based on a clustering
technique, and BotFP-ML, composed of various supervised
machine learning techniques; while Section IV describes to the
computation of attribute distribution signatures, in Section V
we introduce two different techniques based on the aforemen-
tioned signatures. In Section VI, we numerically evaluate the
proposals, discussing the performance in terms of precision
and recall. In Section VII, we qualify the space and time
complexity of BotFP, and we compare it to other recent bot
detection methods. Finally, Section VIII concludes this paper.

II. RELATED WORK

Considering the importance of the matter, an extensive
number of works exist in the field of bot detection. While
traditional approaches rely on statistical and machine learning
approaches over per-flow features, recently studied graph-
based approaches analyze the relations between several hosts
of a network.

A. Flow-based techniques
Flow-based techniques work by removing the packet pay-

load and inspecting the packet header only [16]. Let us classify
them as follows.

1) Statistical methods: BotHunter [7] aims to recognize
the infection and coordination dialog that occurs during a
successful malware infection. A similar approach, BotSnif-
fer [8], focuses on the detection of C&C channels which
are essential to a botnet. Therefore it exploits the underlying
spatio-temporal correlation and similarity property of botnet
C&C (horizontal correlation). The C&C server uses to contact
every bot at the same time, then each of them uses to undertake
some malicious actions following the C&C commands; these
behaviours can be observed simultaneously in a network to
spot a C&C channel, thus an underlying botnet.

BotHunter and BotSniffer perform their evaluation on their
own honeynet or on traces authors built by executing malware
binaries. However these traces are not publicly available
and [9] highlighted the lack of suitable comparisons for botnet
detection algorithms due to the lack of public botnet datasets.
Hence they propose a labeled botnet dataset including botnet,
normal and background traffic. In addition, the authors present

two methods to identify botnets in these traces. The first
one named BClus is a botnet detection approach. It creates
models of known botnet behaviour by computing features per
source IP address, then it uses them to detect similar traffic on
the network. The second one named CAMNEP is a Network
Behaviour Analysis system that combines various state-of-the
art anomaly detection methods, such as MINDS, Xu, Lakhina
volume and Lakhina entropy [17].

2) Machine learning methods: include artificial neural net-
work, support vector machines (SVM), k-nearest neighbor
(k-NN), decision trees and clustering. They can be divided
into subcategories known as: supervised, unsupervised and
hybrid techniques. Supervised ones learn from a labelled
dataset what constitutes either normal traffic or attacks – there
exists different techniques such as SVM-based classifiers, rule-
based classifiers and ensemble-learning detectors [18]. Due
to its excellent generalization performance, Support Vector
Machines (SVM) are mainly used in many security applica-
tions [19], [20]. Unsupervised approaches learn by themselves
what is normal or abnormal – among them, [21] proposes
an unsupervised learning based ML solution to identifying
known and unknown anomalies in IoT, more especially with
auto-encoders; [11] also proposes an unsupervised approach,
identifying the most dissimilar graphs. Hybrid approaches
benefit from only a small part of labelled traffic, meant to
be enough to learn from, as proposed in [22].

3) Other methods: use various entropy measures. For in-
stance, [23] proposes a technique to detect large-scale anoma-
lies in the network traffic, by measuring the deviation between
the profiles of normal traffic and incoming flow records. [10]
proposes a behavioral botnet detection method using Markov
Chains to model the different states in the C&C channel. The
proposed method is trained and evaluated using the CTU-13
dataset, and gives a F1-measure of 92% and a false positive
rate of 0.05%. The authors in [24] focus on detecting bot
infected machines at an entreprise level, by considering the
complete DNS activity of a host per hour. They used an
extensive set of features computed over campus DNS network
traffic, and as a result identified suspicious DNS connections
to detect infected machines.

However, flow-based techniques may miss some commu-
nication patterns between hosts that are quite specific to a
botnet. Furthermore, working on a per-flow or per-host basis
may incur a high computational overhead.

B. Graph-based techniques

Graph-based approaches [25] aim to model the relations
between several hosts of a network. They are studied for
various situations, for example to detect P2P bots [26], [27]
or to recognize DNS traffic from malicious domains [28].

In [12], the authors distinguish between several kinds of
traffic and make group of flows from: (i) the most frequent 11
destination port numbers used by TCP and UDP, (ii) all other
TCP/UDP destination port numbers, and (iii) ICMP flows.
They use plain and derived features for each of these cate-
gories, then they train three unsupervised learning algorithms
on normal traffic with these features. As a result, with k-NN
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they achieve over 91% detection rate with around 5% false
positive rate.

BotGM [11] proposes an unsupervised graph mining tech-
nique to identify abnormal communication patterns and label
them as botnets. The authors first construct a graph sequence
of ports for each pair of source and destination IP addresses,
then they compare each graph between them using the Graph-
Edit Distance (GED). As a result, they reach a very good
accuracy between 78% and 95%. However this technique is
very costly as the GED is computed once for each pair of
graph and its computation is known to be NP-complete.

The authors in [13] model network communications as
graphs, where hosts are edges and communications between
hosts vertices. They compute graph-based features such as In-
Degree and Out-Degree and diverse centrality measures. They
use a hybrid learning method and test various ML techniques
to achieve a good detection rate. However this technique incurs
in a high computational overhead as features are computed
over a large communication graph, e.g., used by shortest paths
algorithms computed for centrality measures.

Other graph-based detection methods [29], [30] seem
promising, but their complexity is often high, NP-complete
as for [30] and [11], or cubic for [13] (see Sect. VII).

C. Our contribution
Let us position our contribution with respect to the described

related work. Our solution falls in the group of flow-based bot
detection algorithms; BotFP computes statistics in a per-flow
basis, yet considering a different flow definition such that a
flow is identified only by the source IP address. In addition,
contrary to most flow-based techniques, our solution models
communications of hosts to other internal hosts and to the
outside. Therefore it presents the advantages of a graph-based
technique, analyzing the communications of an host with the
outside. But compared to them it is more lightweight as it
simply consists in multiple two-vector comparisons for BotFP-
Clus, and in ML algorithms for BotFP-ML.

III. DATASET AND EVALUATION INDICATORS

In this section we first describe the dataset we leverage
on for identifying characteristics inherent to botnets. We then
introduce the metrics we used to assess the performance of
our algorithm.

A. Dataset
We used the publicly available CTU-13 dataset [9] contain-

ing 13 scenarios of bot infections. Different botnet malware
samples are executed in a virtual network to mimic the
behaviour of an infection that is spreading. Each scenario
contains between 294 and 508 hosts, including 1 to 10 bots,
and there are 4923 hosts in total. Table I below draws the
main characteristics for each scenario; it describes if hosts
used IRC, P2P or HTTP protocols, if they sent spam, did
Click-Fraud (CF), port scanning (PS) or DDoS attacks. This
dataset is widely used for the already discussed recent bot
detection methods [11], [12], [13].

Id Duration (hrs) #Bots Bot Activity
1* 6.15 1 Neris IRC, SPAM, CF
2* 4.21 1 Neris IRC, SPAM, CF
3 66.85 1 Rbot IRC, PS
4 4.21 1 Rbot IRC, DDoS
5 11.63 1 Virut SPAM, PS
6* 2.18 1 Menti PS
7 0.38 1 Sogou HTTP
8* 19.5 1 Murlo PS
9* 5.18 10 Neris IRC, SPAM, CF, PS
10 4.75 10 Rbot IRC, DDoS
11 0.26 3 Rbot IRC, DDoS
12 1.21 3 NSIS.ay IRC, P2P
13 16.36 1 Virut HTTP, SPAM, PS

TABLE I: Characteristics of the botnet scenarios. The scenar-
ios included in the test set are marked by the symbol *.

To evaluate the performances of our bot detection method,
we used scenarios 1, 2, 6, 8 and 9 for the test set, and
other scenarios for the training set, as recommended by the
authors of the CTU-13 dataset [9]. Note that the bot species
are different in the training and test sets, i.e., we do not test
our algorithm on the same bot malware that we learned from.

The CTU-13 dataset is widely used for bot detection and
contains malware samples from botnets still spreading, but
we also found interesting to explore latest datasets from the
stratosphere project [31]. In particular, the IoT-23 dataset [32]
contains 23 samples of IoT network traffic, each one being
either malicious or benign. In addition, the Malware Capture
Facility Project [33] contains 342 long-term botnet captures,
captured from 2015 until now. However, traces from these
datasets are not labelled on a per-flow level, and in addition
they contain either captures from botnet or from benign hosts,
but no mixed captures needed to run the algorithm. Therefore,
the application of our algorithm to IoT-23 is not pertinent,
in particular its learning phase which normally trains on
flows both from bots and benign hosts and labelled as such.
Nevertheless, we report in the supplementary materials a visual
comparison between three scanning events, one from each
dataset, showing similarities and differences. In the following,
we focus on the CTU-13 dataset because it has labelled flows
and is used as reference dataset by many existing methods at
the state of the art we can so compare to.

B. Evaluation metrics

A confusion matrix is a table often used to evaluate the
performance of a classification model [34]. The basic terms
are the following (expressed as whole numbers and not rates):
True Positive (T P) is the number of bots correctly classified;
True Negative (T N) is the number of benign hosts correctly
classified; False Positive (FP) is the number of benign hosts
incorrectly classified; False Negative (FN) is the number of
bots incorrectly classified.

This is a list of rates that are often computed from the
confusion matrix for a binary classifier:

Accuracy, computed as ACC = TP+TN

TP+TN+FP+FN
, shows

the percentage of true detection over total hosts. A high
accuracy is required. However a bias may be introduced with
an unbalanced dataset like the CTU-13 dataset with few botnet
activity. Therefore we need to consider other metrics too.
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Precision, computed as P = TP

TP+FP
, refers to the ratio of

incorrectly classified benign hosts versus all the benign hosts.
A high P value is desirable.

Recall, computed as R = TP

TP+FN
, also known as false alarm

rate, refers to the ratio of incorrectly classified benign hosts
versus all the benign hosts. A high R value is desirable.

F1-score, computed as F1 = 2 · P ·R

P+R , also known as false
alarm rate, refers to the ratio of incorrectly classified benign
hosts versus all the benign hosts. A high F1 value is desirable.

IV. BOTS FINGERPRINTS

In this section we first describe some typical behaviours of
bots, then we introduce our bot detection technique BotFP,
detailing the different processing steps, including the flow
records collection, the bot fingerprints computation and the
signatures formatting.

A. Preliminary example
Fig. 1 gives an example of dissimilar histograms for a

benign host and a bot, for three attributes namely SportTCP,
DportUDP and DipUDP; in this example, histograms are made
of 32 regular bins (each bin aggregating multiple attribute
values), and are normalized with respect to the number of
packets. SportTCP for the benign host are in the range [49152,
61000] and [1025, 5000] for the bot, which indicates a first
difference in the ephemeral ports thus the OS (all bots from
the dataset display this characteristic). Looking to DportUDP
does not show any anomaly, as both hosts show a high usage
of UDP/53 which runs DNS. We thus expect to find one single
IP address corresponding to the DNS server in DipUDP, but we
found a multitude of them for the bot. Thus, it is not a classic
DNS usage, but in fact an attempt of port scanning. This
example illustrates why it is important to not only compare
attributes one to one, but also to take into account correlations
among attributes.

B. Methodology
The primary goal of our bot anomaly detection algorithm,

BotFP, is to label bots as such, avoiding false positives. Let
Sip, Dip, Sport and Dport represent respectively the source
and the destination IP addresses, the source and the destination
port numbers, of a layer-4 flow. Fig. 2 depicts the BotFP steps,
through a trace example.

1) Flow records collection: flow records are first collected
to form a dataset. We split the dataset into two distinct
sets: one for training and one for testing.

2) Host network Sip filtering and grouping: from flow
records, we select the ones whose Sip is in the host
network and group them by such addresses.

3) Quantification (attribute frequency distributions com-
putation): signatures of each host, denoted �Sip , are
defined as the concatenation of the normalized frequency
distributions of each attribute. TCP, UDP and ICMP
flows are characterized separately to better take into
account each protocol specificity.

4) Offline training: this phase consists in learning from the
training set what constitutes either malicious or benign

Fig. 1: Histograms showing the frequency distributions of
attributes (SportTCP, DportUDP, and DipUDP respectively) for a
benign host in blue/left (147.32.84.17 from scenario #1)
and a bot in red/right (147.32.84.165 from scenario #1).

host signatures. Different methods can be used to do
so, including clustering algorithms, supervised learning
algorithms or neural networks. We further describe two
approaches we propose, namely BotFP-Clus and BotFP-
ML, in Section V. This step is optional and does not
apply in case of an unsupervised learning algorithm.

5) Online classification (distances computation): finally
we classify hosts from the test set either as benign or bot,
through a learning algorithm consistent with the previous
step. We compute the distance between one labelled host
from the training set and one host to classify from the
test set.

Table II defines the key parameters we use, as well as the
notations for the variables of the algorithm.

Notation Definition

m Minimum number of packets per host for one protocol

b Number of intervals (bins) in the frequency distributions

✏ Density in the clustering algorithm

a
j
i Frequency distribution of attribute i for host j

� j Signature of host j

TABLE II: Notations.

C. Flow records collection and formatting
Flow records are first collected to form a dataset (step 1

in Fig. 2). We split the dataset into two distinct sets: one for
training and one for testing. We name the training set as T
and the test set as E. We select only flows whose Sip belongs
to the host network prefix and group them by such addresses
as shown in Fig. 2 (step 2). As we search for internal bots,
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Fig. 2: Description of the processing steps of our solution. We first select flow records (step 1) that are in the host network
and group them by such addresses (step 2). Signatures �Sip of each host are defined as the concatenation of the frequency
distributions of each attribute (step 3). The training phase consists in learning what constitutes either malicious or benign
signatures hosts noted �Sip (step 4). Finally we classify hosts from the test set, with a supervised learning algorithm that
considers their distance to labelled hosts (step 5).

we exclude source IP addresses belonging to external Internet
networks.

D. Quantification (attribute frequency distributions)

To characterize the host behavior, let A be the set of
attributes used to characterize it. In this work, we consider 9 at-
tributes in total, discriminating between TCP, UDP and ICMP
packets, as follows (following CTU-13 notations): SportTCP,
DportTCP, DipTCP, SportUDP, DportUDP, DipUDP, TypeICMP,
CodeICMP and DipICMP

1.
Let a j

i
denote the attribute vector for attribute i and host

j, representing the attribute frequency distribution, i.e., the
ratio of packets received for attribute i over its attribute range.
More precisely, each attribute vector contains b bins, where
a j

i
[k] is the value of the k th bin of attribute i for host j.

For each attribute, a bin aggregates the attribute occurrences
over the possible attribute range (e.g., many successive port
numbers grouped together in a bin) available for the specific
attribute (e.g., TCP source port), in a way that depends on a
bin aggregation policy as detailed hereafter.

In practice, to avoid statistically negligible attributes to
influence the detection logic, it makes sense to set attribute
vectors with a too low number of TCP packets exiting a host j
to null values, i.e., a j

i
[k] = 0 8k and for all TCP-type attributes

1Note that in the CTU-13 dataset, the used notation for the ICMP type is
SportICMP and for the ICMP code is DportICMP.

i. Let m denote such a minimum number of packets threshold,
that we later numerically assess.

Let � j denote the signature of node j – keeping in mind that
a host is uniquely identified by its Sip (we use �Sip instead
of � j in the figures). It is built as the concatenation of all its
attribute vectors; it can then be expressed as:

� j =

|A |n

i=1

a j

i
= a j

1 k a j

2 k · · · k a j

|A |
(1)

where k represents the concatenation operator between
vectors. The result of the concatenation is therefore one single
array � j of |A| ⇥ b entries.

1) Quantification technique: Let us further clarify how the
attribute frequency distributions can be aggregated in a set
of bins. To compute the attribute vector, b bins are used to
cover the attribute range, say [0, max]; e.g., for source and
destination port numbers, max is equal to 65536, and for
destination IP addresses it is equal to 232. It makes sense to
set b as a power of 2, as port numbers and IP addresses are
typically organized into ranges of powers of 2 (e.g., reserved
ports are in [0, 1023] and ephemeral ports in [49152, 65536],
while IPv4 addresses are denoted by 4 Bytes).

We consider two different ways to aggregate bins.
Regular bins: attribute range intervals are uniformly dis-

tributed, of a fixed bin width set to max/b. Fig. 2 (step 3)
shows an example of attribute frequency histogram for at-
tribute SportTCP: the attribute range corresponds to the possible
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TCP source port numbers used by the Sip host. The example
shows a regular partition of the attribute range; e.g., with a
bin width set to 4096, the number of bins is 16.

Adaptive bins: intervals are chosen depending on the
amount of traffic. Intuitively, the more density of information
there is, the more sensitive (small) the step should be. Thus
we aim to define individual bin width so that we equalize
the occurrences over the different bins, i.e., it is always the
same for all the bins, each bin having potentially a different
bin width. To do so, we first start with the highest attribute
granularity (e.g., 65,536 for the port number), and compute
the frequency distribution for all hosts. Then, we sum up the
obtained vectors across all hosts. At this point, we are able to
define individual bin steps so that the occurrences are evenly
distributed across bins; this operation can be done for instance
taking the cumulative distribution function and evenly dividing
the probability range from 0 to 1 in the number of desired bins.
We repeat this process for all the attributes.

Fig. 3 illustrates the computation of adaptive bins for the
SportTCP attribute. We first compute the number of unique
values for very small bins as shown in Fig. 3a, then we divide
the cumulative sum by a fixed number of regular sampling
intervals and compute adaptive bins so that each of them
contains the same number of packets, as shown in Fig. 3b.

The number b of bins and the bin aggregation strategy
(regular vs. adaptive bins) are to be assessed experimentally.

(a) Number of unique values using 1000 bins.

(b) Cumulative sum and definition of 20 adaptive bins.

Fig. 3: Example partitioning in 20 adaptive bins based on the
traffic load, for attribute SportTCP.

2) Observable bot behavior and attributes: Let us report on
the observable behaviours for TCP, UDP and ICMP attributes
from traces we could have access to. To get a visual represen-
tation of such behaviors, we propose in the supplementary ma-

terials fingerprints of infected hosts highlighting their specific
malicious activities. First, we observe uncommon behaviours
specific to a botnet for TCP flows:
• destination ports (DportTCP) usually range between 0

and 1023. These service ports are associated to given
services by the Internet Assigned Numbers Authority
(IANA) [35], e.g., TCP/80 typically runs HTTP and
TCP/443 HTTPS. However, bots show different usage of
destination ports: they are usually diverse and represent
services often targeted by attackers such as TCP/25
(SMTP) or TCP/23 (Telnet), vulnerable to spam and
attacks. We also observe some exotic destination port
numbers used to access proxies that host the C&C server.

• source ports (SportTCP) are often ephemeral ports, allo-
cated automatically from a predefined range by the IP
stack software. The range recommended by IANA is
49152 to 65535, while many Linux kernels use the port
range 32768 to 61000. FreeBSD has used the IANA port
range since release 4.6. Previous versions, including the
Berkeley Software Distribution, use ports 1025 to 5000 as
ephemeral ports. Microsoft Windows Operating Systems
(OS) until Windows XP used the range [1025, 5000] for
ephemeral ports, while use the IANA range now.
We observe that bots rarely use the IANA recommended
range, but rather the [1025, 5000] range. This obviously
depends on the OS of the infected host. A report from
Kaspersky Labs [36] shows that Linux and Windows
botnets represent respectively 95.75% and 4.25% of all
botnets, which is very different from the OS distribution
for regular devices (not bots), probably because bots
infect vulnerable devices including connected objects.

• destination IP addresses (DipTCP): not all subnets are
covered, but only some specific ones are contacted by
normal hosts. Among them, it is common to observe
addresses in the same range of the source IP address, pri-
vate networks including 192.168.0.0/16, and cloud
service subnetworks, mostly Google ones, often contacted
for Google Analytics and similar collateral services. Des-
tination IP addresses cover a larger space for bots than
for normal nodes, in case of a spam for example. Looking
to the AS details in the whois database [37] also gives
additional information, such as the age of the domain or
its originated country.

There are specific botnet behaviours also for UDP flows:
• UDP destination ports (DportUDP) are associated to par-

ticular services by IANA, as for TCP. In the case of UDP,
we often observe a fixed destination port set to 53. It
represents connections to the local DNS server as UDP/53
typically runs DNS.

• UDP source ports (SportUDP) are used for ephemeral
ports as for TCP, their range depends on the OS imple-
mentation. We notice that the range for ephemeral ports
used by bots is often different than for common hosts.

• there is usually a fixed destination IP address (DipUDP)
that represents the DNS server IP address.

Finally, ICMP flows also show specific botnet behaviours:
• the ICMP type (TypeICMP) indicates the type of ICMP
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message and gives a global information about the kind of
message (e.g., 0 for Echo Reply and 3 for Destination
Unreachable) as specified in RFC2780 [38]. We often
observe only a small amount of ICMP packets. In case
of a botnet, we sometimes observe many ICMP messages
with uncommon types and codes, consisting in a Ping
Flood or an ICMP DoS attack.

• the ICMP code (CodeICMP) represents the ICMP subtype
and gives additional context information for the message
(e.g., if the type is 3, the code can be 0 if the destination
network is unreachable or 1 if the destination host is
unreachable, etc).

• the hosts frequently reply to destination IP addresses
(DipICMP) that targeted them, with messages like "port
unreachable" if it was a port scanning. The number of
such packets is low for benign hosts, and larger for bots.

Looking to attributes individually enables to retrieve some
botnets behaviours, but it is even better to analyze these
attributes together. Actually, sometimes it is the combination
of two attributes that makes a host behaviour abnormal.

E. Signatures formatting

As shown in Fig. 2 (step 4), the training phase deals with
flows from the training set through several modules. Data
preparation is accomplished through pre-processing and di-
mensionality reduction. In the pre-processing phase, signatures
of hosts belonging to the internal network are computed as
described in the previous step. Finally, we reduce the dimen-
sionality of the space by finding the directions of maximal
variance, in order to reduce the spatial complexity. Thus we
project the dataset into the new dimensional space.

1) Removing the less significant hosts: The threshold m
is the minimum number of packets per host and protocol
to consider it. We analyze the distribution of the number
of packets per host to better understand its impact. The
distribution is a long-tailed one, with hosts with a very high
number of packets (up to 200,000 packets per host). Therefore,
Fig. 4 shows the Probability Distribution Function (PDF) of
the number of TCP packets per host, only from 0 to 1500
packets per host, avoiding very large outliers. The plot is about
TCP, while UDP and ICMP exhibit the same distribution.
Eliminating hosts with less than m packets has a minor impact
on the results, as we notice that after removing hosts with
less than 150 packets, the number of hosts goes from 4923
to 1933, which represents only 0.7% of removed traffic in
terms of number of packets (from 13,342,675 to 13,295,640
packets). We could miss very stealthy bots using the filter,
but we assume that bots have to be a minimum active to be
efficient (including attacks, scans and communications with
the C&C server).

To choose its exact value, we evaluate the impact of
parameter m on the bot detection results in Section VI-A.

2) Dimensionality Reduction: After the pre-processing
step, the signatures contain |A|⇥b columns, with b the number
of bins and |A| = 9. Our purpose is to reduce the number
of columns, by restricting the scope to the most meaningful
ones. We reduce the dimensionality of the space working with

Fig. 4: PDF of the number of TCP packets per host, and (in
red, right axis) possible m threshold values and corresponding
traffic volume ratio.

the Principal Component Analysis (PCA) technique. PCA is
applied on hosts from the training set T , thus on a matrix of
size ( |T |, |A|⇥b). PCA reduces the number of components of
the already smallest dimension, then |A| ⇥ b must be smaller
than T to reduce the number of features. Therefore, it is not
applicable if |A| · b is larger than |T |.

PCA finds the directions of maximum variance. The fraction
of variance explained by a principal component is the ratio
between the variance of that principal component and the
total variance. Our goal is to reduce the dimensionality while
keeping a good amount of information, so that the cumulative
explained variance ratio is close to 100%. Fig. 5 hereafter
shows the cumulative explained variance ratio vs. the number
of factors, with b = 128. To get 99% of the variance ratio,
we can reduce the factor number by ten, approximately,
keeping around 150 and 200 factors respectively for regular
and adaptive bins, over the 1152 original factors. These values
vary with the number of bins: for each of them we need to
choose the right number of factors. For all values of b, we
notice that we can reach 99% of the variance ratio by using 9
times less factors.

Fig. 5: Explained variance vs. number of factors.

V. BOT DETECTION

In this section we introduce two different bot detection
techniques for BotFP that we designed for the training and
the classification. BotFP-Clus relies on clustering as described
in our previous work [1], and BotFP-ML relies on other
supervised machine learning (ML) techniques.

A. BotFP-Clus
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1) Training: Clustering algorithms are designed to group
similar vectors into clusters and identify isolated ones as
outliers. The similarity between two vectors is evaluated using
a distance function like the Euclidean distance. Two vectors
are defined as similar if they are close to each other, else
dissimilar. We use as clustering algorithm DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) [39],
because it presents the advantage of discovering clusters
without knowing the number of clusters in advance, which
fits our needs. In addition, it works well on our data because
clusters have close densities. DBSCAN uses two parameters:
• ✏ specifying the radius of a neighborhood with respect to

some point. Every point situated within a distance ✏ from
a point p is a neighbor of p; 2

• minPts which defines the minimum number of points in
a radius ✏ to form a cluster.

DBSCAN defines a cluster as the maximal set of points
where every pair of points p and q are within a distance ✏
from each other, and considers points that do not belong to
any cluster as outliers. In our solution, DBSCAN is used in
a slightly different manner as illustrated in Step 4 of Fig. 2.
We set minPts to 1 in order to consider singleton clusters as
well. Then DBSCAN is applied on the vectors of � j from the
training set to build clusters of similar host signatures. Using
clusters instead of singular hosts enables to filter abnormal
hosts and get more consistent data. This also reduces the
number of coordinates to store.

Let C be the set of clusters obtained applying DBSCAN on
the training set. Each cluster c 2 C contains several attributes:
• a set Hc of hosts belonging to the cluster;
• its position Pc defined as the centroid of the set of

signatures {�1,�2, ...,�N } of hosts in Hc , computed as
Pc = (�1 + �2 + ... + �N ) / N ;

• a label identifying the nature of the cluster c, i.e., mali-
cious or benign, denoted Lc .
The nodes that are bots are known from the ground truth
of the training set. The cluster is identified as a bot cluster
if it contains at least one bot, else it is benign.

Lc =
8><>:

‘bot’ if Hc contains a bot node
‘benign’ otherwise

(2)

One may find the above condition to label bot clusters too
strong. However, our tests showed that appropriately tuning
✏ , one can get a good clustering solution. A good setting we
found is an ✏ set to 300 and 512 adaptive bins, giving that bot
clusters always contain one bot at maximum, except one case
with two bots, and hence they did not contain any normal host.
Thus it appears sufficient to label a cluster as bot if it contains
at least one bot. About the cluster density, we notice that other
clusters contain up to 2400 hosts (all of them benign), but most
of the time only one or several ones.

2The metric that we use for the computation of the distance between two
hosts in DBSCAN is the `1-norm defined as | |�h | |1 = |�h [1] | + ... +
|�h [n] |: this distance is robust and does not vary with the number of bins, as
the cumulative sum of all elements stays equal. We consider it better than the
`2-norm – defined as | |�h | |2 =

p
|�h [1] |2 + ... + |�h [n] |2 which increases

with the number of bins.

2) Classification: We classify hosts from the test set based
on their distance to the set of labelled clusters C. For a host h 2
E, if the closest cluster is labelled as bot, h will be classified
as a bot. If the closest cluster is benign, h will be classified
as benign too. Let dist() be a function measuring the distance
between a signature and a cluster, c⇤ is the closest cluster
such that dist(�h ,Pc⇤ ) = minc [dist(�h ,Pc )]. Then hosts are
classified based on the label of c⇤.

Lh =
8><>:

‘bot’ if Lc⇤ = ‘bot’
‘benign’ otherwise

(3)

B. BotFP-ML
Several techniques can be used to learn from the training

set what constitutes signatures either from benign hosts or
from bots, then classifying hosts from the test set based on
that knowledge. We evaluate four such techniques for BotFP:
(i) Logistic Regression, used to predict the probability of
a binary dependent variable, (ii) Support Vector Machines
(SVM), which, given labeled training data, output an optimal
hyperplane which categorizes new examples, (iii) Random
Forest, which creates a forest with a number of decision trees,
and (iv) Multilayer Perceptron (MLP) classifier, which can be
thought as a deep artificial neural network, composed of an
input and output layers, and an arbitrary number of hidden
layers.

Supervised learning algorithms and neural networks take
into account hyperparameters that must be tuned to obtain the
best results of classification. Grid search [40] is used for model
tuning, it builds and evaluates a model for every combination
of hyperparameters specified, then selects the best one to
improve a given evaluation metric. We used it by favouring the
recall criterion. The hyperparameters are different according
to the type of classifier. For instance, with SVM and logistic
regression, the parameter C controls the sparsity: the smaller
C, the fewer features selected. Another parameter common
for both these algorithms is the penalty, which is used to
specify the norm used in the penalization (regularization or
noise variance).

VI. EVALUATION

In this section, we evaluate the performance of BotFP. We
first propose an evaluation of the method BotFP-Clus, tuning
its parameters including DBSCAN ✏ , the number of bins b
and the type of bins. We then analyze and compare BotFP-
Clus and BotFP-ML performances and we select a set of best
solutions. Finally, we compare them to other state-of-the-art
detection techniques. Note that the source code for BotFP is
available in [15]. The subnetwork address needs to be set up,
then the reader can run the learning phase (learning the normal
and malicious behaviors of the network and tuning the key
parameters), and then launch the detection process.

A. BotFP-Clus
BotFP-Clus is our proposal relying on labeled clusters of

similar hosts behaviours. We apply it on the CTU-13 dataset,
following the methodology presented in Sections IV and V.
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We analyze the results as a function of the three key
parameters to be chosen for BotFP-Clus: the minimum number
of packets threshold (m), the number of bins (b), and the ✏
DBSCAN parameter. We proceed as follows: first we show
precision and recall results as a function of m to find a
reasonable choice; second, we elaborate on the impact of ✏ ,
and identify one good setting. We also show the benefit in
using adaptive bins rather than regular ones.

Fig. 6a and 6b respectively show the precision and the recall
of BotFP-Clus, for 512 adaptive bins, ✏ in [0.1 ·b,0.2 ·b, ...,b],
and m varying in [50, 100, 150, 200]. We observe that for all m
values, the recall is very high, reaching 100% in many settings.
It is important to note that the precision is directly correlated
with the minimum number of packets threshold: the higher m
and the higher the precision.

For the following experiments, to favour the recall we
choose m = 150, because the precision is almost as high as
for m = 200, but the recall is more often equal to 100%.
Fig. 7 shows for regular bins the precision (Fig. 7a), the recall
(Fig. 7b), the F1-score (Fig. 7c) and the number of clusters
(Fig. 7d). Fig. 8 shows for adaptive bins the precision (Fig. 8a),
the recall (Fig. 8b), the F1-score (Fig. 8c) and the number of
clusters (Fig. 8d). Multiple ✏ values (DBSCAN parameter) are
tested in [0.1 · b,0.2 · b, ...,b].

(a) Precision. (b) Recall.

Fig. 6: Impact of parameter m on the precision and recall, for
512 adaptive bins.

1) DBSCAN ✏ choice: We use the `1-norm as distance
function; it increases linearly with the number of elements
in the vector. Therefore, taking the parameter m as a constant,
we can establish a general relationship between ✏ and b, that
is why we chose ✏ as a fraction of b in Fig. 7 and 8.

A large value of ✏ may produce too large clusters resulting
in false positives, while a too small value may overfit the data
and miss bots. One way to choose a good value for ✏ can be
to take the one for which the recall and the precision are the
highest; overall, we favour the recall as we want to detect the
most bots as possible. For regular bins, ✏reg = 0.4 ⇥ b seems
the best choice as the recall is high and we get an acceptable
precision and F1-score. For adaptive bins, the best value is
✏ad = 0.5 ⇥ b, with the highest recall and a quite good F1-
score, for all values of b.

2) Comparison between regular and adaptive bins: We ob-
serve that formatting the data by handling adaptive bins gives
more consistent results and eases the process of clustering.
Fig. 7b shows the recall for regular bins: we observe that the
recall values are quite unstable even with high ✏ values. For
adaptive bins (Fig. 8b) on the contrary, the recall oscillates

between 85% and 100% (i.e., between 0 and 2 undetected
bots) for ✏ starting from 150 and all values of b, which is
quite stable.

Only looking to the recall is not sufficient, we also need to
know the precision (number of false positives). We observe
that using adaptive bins (Fig. 8a) presents a far higher preci-
sion compared to regular ones (Fig. 7a).

For these two reasons, we could confirm the intuition that
using adaptive bins grants a more accurate view and therefore
leads to better results.

3) General observations: Let us draw further observations
from these preliminary results.
• Benefits of clustering

In Fig. 7 and 8, ✏ = 0 is equivalent to not clustering the data,
i.e., comparing each host from the test set to labelled hosts
from the training set. Fig. 7b and 8b show that the recall never
reaches 100% in this case, no matter b and the quantification
technique, as the classification is too specific and we overfit
the data. However, increasing ✏ (then forming larger and larger
clusters) enables to detect all bots in some setups.

Clustering the data also reduces the complexity of the
classification, by limiting the number of comparisons to do:
we compare hosts from the test set to a limited set of clusters,
rather than to all hosts from the training set.
• Number of bins b
The number of bins b is the third parameter to choose,

which determines our suggested ✏ values as above discussed.
The objective is to find a setup with a recall equal to 100%
(i.e., all bots detected) and a precision as low as possible.

Using adaptive bins, the recall reaches 100% for nearly all
values of b. However there is a strong correlation between b
and the precision: the higher b, the higher the precision (thus
the lower the number of false positives). Therefore the best
solution is reached for a high number of bins (b = 512), for
which the recall is equal to 100% and the precision is high.
• Number of clusters

Finally, Fig. 7d and 8d show the number of clusters respec-
tively for regular and adaptive bins. This shows the benefits
in clustering the data: 550 clusters for b = 512 (Fig. 8d) is
approximately 60% less than the 910 initial hosts.

B. Comparison between BotFP-Clus and BotFP-ML

We compare BotFP-Clus and BotFP-ML in terms of pre-
cision, recall and F1-score. For the former, we use the
✏reg = 0.4b and ✏ad = 0.5b settings identified in the previous
section. For the latter, we tune the hyperparameters with
Gridsearch by favouring the recall. In addition, we show in
the supplementary materials the most relevant features in the
classification process.

Fig. 9 and 10 compare the precision, the recall and the F1-
score for BotFP-Clus and BotFP-ML, respectively for regular
and adaptive bins, and for b between 8 and 1024.

Let us look first into BotFP-ML algorithms. For Random
Forest, both for regular and adaptive bins, the precision and
recall values are too unpredictable and varying with b. For
SVM, it is also too varying for adaptive bins, but for regular
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(a) Precision. (b) Recall. (c) F1-score. (d) Number of clusters.

Fig. 7: Regular bins: precision, recall, F1-score and number of clusters (BotFP-Clus).

(a) Precision. (b) Recall. (c) F1-score. (d) Number of clusters.

Fig. 8: Adaptive bins: precision, recall, F1-score and number of clusters (BotFP-Clus).

ones the precision and the recall are very high (both 93%)
starting from b = 256. For the MLP classifier and Logistic
Regression, the precision and recall values for both types of
bins are quite high for all values of b. The recall for the MLP
classifier is higher for adaptive bins, reaching 90% for 64 bins.
For Logistic Regression, there is no notable difference between
the use of regular and adaptive bins. In all cases, the recall
never reaches 100% no matter b (or with a very low precision),
which means that there are still some undetected bots.

For BotFP-Clus, the precision is very low for regular bins.
We observe a correlation between b and the precision and
recall: the higher b, the lower the precision and the higher
the recall. Thus we may opt for the BotFP-Clus with a high
value of b. In particular for 512 and 1024 bins, the recall
reaches 100% (i.e., all bots detected) and 55 to 75% precision.
Actually, a precision equal to 75% represents very few false
positives: 4 benign hosts classified as bots, out of the 712
benign ones.

To sum up, we selected four best-performing solutions
summed up in Table III according to the parameter we want
to favour. Grey cases show the values for which a given
parameter is the best one across all solutions. Let us further
comment on the following goals:

• Maximize true bot detection: We recommend BotFP-Clus
with 512 adaptive bins, for which the recall is equal to
100% and the precision to 75%. Contrary to others, this
method enables to detect all bots while keeping a good
precision;

• Balance the precision and the recall, thus maximize
the F1-score: BotFP-SVM with a linear kernel and 256
regular bins is ideal in this case. The recall and the
precision are both equal to 93%. Moreover, this method

does not require to compute adaptive bins, therefore is
more lightweight than others in this respect;

• Minimize the memory usage: BotFP-MLP with 32 adap-
tive bins best suits this goal. As b is lower than 256 (see
Section IV-E2), we can apply PCA beforehand to keep
only 50 out of the 288 initial factors. The recall and the
precision are still good, both equal to 84%. Note that we
obtain exactly the same precision and recall values than
without applying PCA. Therefore this solution is efficient
and above all very lightweight;

• Maximize precision: One may choose to favour a high
precision, i.e. a low false detection rate (FDR) defined
as FDR = 1 � precision, especially in production en-
vironments where administrators want to receive as few
alerts as possible. In this case, we recommend BotFP-
Clus with 512 adaptive bins and ✏ = 0.1b instead of the
✏ value previously tuned to favour the recall. Using this
setting, the precision is equal to 100%, the recall to 85%
and the F1-score to 93%.

Table IV shows the confusion matrix for scenarios 1, 2, 6,
8, 9 from the test set, for the best cases that we identified,
i.e. the BotFP-Clus algorithm with b = 512 adaptive bins and
✏ad = 0.5⇥b, the BotFP-MLP algorithm with b = 32 adaptive
bins, the BotFP-SVM algorithm with b = 256 regular bins,
and the BotFP-Clus algorithm with b = 512 adaptive bins
and ✏ad = 0.1 ⇥ b For BotFP-Clus and ✏ad , we detected bots
from all scenarios (1 bot for scenarios 1, 2, 6, 8, and 10 bots
for scenario 9), which makes the recall equal to 100%. In
total, we labelled 9 benign hosts as bots, which results in a
very high precision equal to 74%. For BotFP-MLP, 2 bots
have not been detected, while it remains 2 false positives. For
BotFP-SVM, there are only 3 false positives, but it remains
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(a) Precision. (b) Recall. (c) F1-score.

Fig. 9: Regular bins: precision, recall and F1-score for both approaches.

(a) Precision. (b) Recall. (c) F1-score.

Fig. 10: Adaptive bins: precision, recall and F1-score for both approaches.

Solution Bins type ✏ b Precision Recall F1-score PCA Complexity
BotFP-Clus adaptive 0.5b 512 74% 100% 80% X low
BotFP-MLP adaptive 0.5b 32 85% 85% 85% high
BotFP-SVM regular 0.4b 256 93% 93% 93% X medium
BotFP-Clus adaptive 0.1b 512 100% 85% 80% X low

TABLE III: Summary of the best solutions according to the detection performance to favour.

one undetected bot. For BotFP-Clus and ✏ad = 0.1 ⇥ b, there
are no false positives as we favour the precision, but there are
5 undetected bots.

C. Comparison to state-of-the-art detection techniques

We now compare the four selected BotFP settings to other
state-of-the-art detection methods, namely BClus [9], CAM-
NEP [9], BotHunter [7], BotGM [11] and [13] described in
Section II.

To compare BotFP to other methods, we compute the
accuracy for scenarios from the test set, as proposed in [9].
Table V reports the results for each solution and all scenarios
from the test set, as proposed in [9]. Our results are very
competitive as we reach an accuracy between 97% and 100%
with the MLP classifier, SVM and BotFP-Clus, while other
algorithms provide an accuracy between 30% and 95%. Only
[13] achieves up to 100% accuracy for scenario #9 but it tested
only that one and trained on the 12 other scenarios. Note also
that our algorithm has a far lower complexity (cf. Section VII).

VII. COMPLEXITY

We qualify the space and time complexity of BotFP,
considering its three steps: attribute frequency distributions
computation, training and classification. We consider that the
classification takes all the elements in the test set E, even if
hosts may also be processed individually in practice. We also
compare it to other recent bot detection methods.

A. Attribute frequency distributions computation
First, we need to compute the fingerprint � j for all hosts.
1) Space complexity: given a host and |A| attributes, we

need to store arrays of b bins for all the attributes, then the
per-host space complexity is equal to O(|A| · b). The overall
process is a one-shot operation over all hosts, resulting in a
complexity O(|T

S
E| · |A| ·b). In our setting we have |A| = 9,

which can be reduced to |A0 | = 1 when using PCA.
2) Time complexity: For a given host i, the computation of

each attribute vector comes with |ai | entry readings, before
bin aggregation, thus the worst-case time complexity is equal
to O(|A| · maxi |ai | · |T

S
E|).
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Id TP TN FP FN
1 1 164 3 0
2 1 131 0 0
6 1 112 0 0
8 1 163 4 0
9 10 133 1 0

(a) BotFP-Clus, b = 512
adaptive bins and ✏ad .

Id TP TN FP FN
1 1 166 0 0
2 0 131 0 1
6 1 111 1 0
8 1 164 1 0
9 9 134 0 1

(b) BotFP-MLP, b = 32
adaptive bins.

Id TP TN FP FN
1 1 166 0 0
2 1 131 0 0
6 1 111 1 0
8 1 165 2 0
9 9 134 0 1

(c) BotFP-SVM, b = 256
regular bins.

Id TP TN FP FN
1 1 166 0 0
2 0 131 0 1
6 1 111 0 0
8 1 165 0 0
9 7 134 0 3

(d) BotFP-Clus, b = 512
adaptive bins and ✏ = 0.1b.

TABLE IV: Confusion matrix for scenarios from the test set, for four BotFP settings.

Metrics Recall Precision Accuracy
Algorithm 1 2 6 8 9 1 2 6 8 9 1 2 6 8 9

BClus [9] (2014) 0.4 0.3 <0.0 0.1 0.1 0.5 0.6 0.4 0.2 0.4 0.5 0.5 0.4 0.3 0.4
CAMNEP [9] (2014) 0 <0.0 <0.0 <0.0 <0.0 <0.0 0.8 0.9 0.9 0.9 0.5 0.4 0.4 0.5 0.5
BotHunter [7] (2007) 0.01 0.02 0.06 0 0.02 0.8 0.9 0.98 0 0.9 0.4 0.3 0.38 0.42 0.4
BotGM3 [11] (2017) X X X X X X X X X X 0.91 0.78 0.95 0.89 0.83

Graph-based ML4 [13] (2019) X X X X 1 X X X X 0.91 X X X X 1
BotFP-Clus (b = 512) 1 1 1 1 1 0.25 1 1 0.2 0.91 0.98 1 1 0.97 0.99
BotFP-MLP (b = 32) 1 0 1 1 0.9 1 0 0.5 0.5 1 1 0.98 0.99 0.98 0.99

BotFP-SVM (b = 256) 1 1 1 1 0.9 1 1 0.5 0.33 1 1 1 1 1 0.99
BotFP-Clus (b = 512 - ✏ = 0.1b) 1 0 1 1 0.7 1 1 1 1 1 1 1 1 1 0.99

TABLE V: Recall, precision and accuracy of different algorithms compared to BotFP. 3: note that BotGM [11] did not provide
per-scenario recall and precision values; however, they provided ROC curves showing a TPR (recall) equal to 80% for FPR=0,
but we have no information about which scenario they used for this plot. 4: the training was done on 12 scenarios (including
1, 2, 6 and 8) and the evaluation only on scenario 9.

B. Training

The training phase depends on the implemented supervised
learning algorithm. For BotFP-Clus, the training consists in
building host clusters from the training set, each host being
characterized by its fingerprint � j .

1) Space complexity: For BotFP-MLP, a one-dimensional
neuron input array grows linearly with the number of neurons,
which send their outputs as inputs to a given neuron [41], thus
O(h) with h the number of neurons. The space complexity
of BotFP-SVM is around O(|T |2) [42]. For BotFP-Clus,
DBSCAN presents a space complexity of O(k |T |), where k
is a fixed memory cost to store the positions and labels of
each among the |T | points, their labels and the neighbors of
the current point.

2) Time complexity: For BotFP-MLP, the time complex-
ity of the training (backpropagation) for a single iteration
is O(|T | · |A| · b · hk ), for k hidden layers containing h
neurons. For BotFP-SVM, the time complexity of the training
is O( |T |2 · |A| · b) [43]. For BotFP-Clus, DBSCAN presents a
worst-case time complexity of O(|T |2) (without the use of an
accelerating index structure). For each point of the database,
we have to visit each other point to query their neighborhood.

C. Classification

For BotFP-ML, the classification technique depends on the
implemented supervised learning algorithm. For BotFP-Clus,
the classification determines the closest cluster to each host to
classify, and assign its label to the host.

1) Space complexity: For testing as well, BotFP-MLP
presents a worst-case space complexity of O(h) with h the
number of neurons. The test space complexity for a linear
SVM is O( |E |) [44]. For BotFP-Clus, we have to store the
positions of all clusters. Also for each host, we need to store

the distance between its signature and each cluster. Therefore
the total space complexity is O( |C| · |A| · b + |E | · |C|).

2) Time complexity: For a trained MLP, the overall com-
plexity of the classification (forward propagation) is O(|E | ·
|A| · b) [45]. For a trained SVM, the overall complexity of
the classification is O(|E |3) [43]. For BotFP-Clus, we need
to parse all hosts from the test set, then to compare each of
them to all clusters with a `1-norm, thus the time complexity
is equal to O(|A| · b · |E | · |C|).

D. Comparison to other techniques

The time complexity of BotFP feature computation is
therefore linear with the number of nodes, then the training
is linear for BotFP-Clus, quadratic for BotFP-SVM and up
to exponential for BotFP-MLP. For classification, if one con-
siders that it would in practice run in runtime on a per host
basis (i.e., |E | = 1), BotFP-Clus and BotFP-MLP are linear
with the number of hosts, knowing that |C| < |T |, hence very
competitive; and BotFP-SVM time complexity is cubic.

Let us compare the time complexity of our method to recent
bot detection techniques [11], [13], for each main step:

Features computation: BotGM [11] creates graphs of com-
munications between two hosts as features to feed their
algorithms. The time complexity is thus O( |P |·|EP |·ln( |VP |))
with P the set of IP addresses pairs, EP the set of edges per
pair (i.e., the set of source-destination port pairs per IP pair)
and VP the set of vertices per pair (i.e., each communication
from one pair to another). For [13], graphs of communications
for all possible source-destination IP addresses are computed,
which generates a complexity of O(|P | · ln( |V |)) with |V |
the set of vertices between each edge in |P |. Then the
complexity needed to compute features over the graphs is
different depending on the feature, and is up to quadratic
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for features like Betweenness Centrality. Both [11] and [13]
compute features for each pair of hosts, while we work on
individual hosts which thus implies linear instead of quadratic
processing.

Training: [11] uses an unsupervised method thus does
not require training. For [13], techniques used for training
are quite heavy as they use unsupervised (mainly cluster-
ing algorithms including k-Means which is NP-hard) then
unsupervised (various classifiers) learning algorithms which
are heavy too. Looking to the classification results of their
algorithm, we assess that they better use k-Means followed
by DecisionTree. k-Means is known to have a quadratic time
complexity O(|T |2), and the standard decision-tree has a time
complexity of O(|A| ·b ·k · |T |), with N the number of training
examples and d the depth of the decision tree.

Classification: The classification step in [11] is very costly,
they compute for each possible pair of graph (O(|P |2) the
GED which is NP-hard [46]. Thus the total time complexity is
O(|P |2 ·max(n1,n2)3) with n1 and n2 the number of elements
in the two graphs to compare. They compute these distances
for each possible pair of graphs, then |P |2 times with n
the number of graphs. Classification in [13] consists in the
same process than training, i.e., unsupervised then supervised
learning algorithms. The training and classification phases are
simultaneous in k-Means and Decision Tree, thus their time
complexity is simply O( |E |).

Hereafter, Table VI compares the time complexity for recent
bot detection techniques, namely [11], [13] and ours.

Above all, BotFP is lightweight with respect to recent
bot detection techniques: it deals with features consisting in
vectors, easy to compute, and not graphs. For BotFP-Clus,
the training is very lightweight, and the classification consists
in computing inexpensive `1-norm distances. For BotFP-MLP
and BotFP-SVM, the training is a bit more complex, especially
depending on the number of layers and nodes. However, as
for other algorithms, the training is made only once and the
classification phase is quite lightweight. It is hard to establish
the exact time complexity of other algorithms [11], [13]
because we do not know the details of their implementations,
but [11] works on every possible pair of nodes then draws
expensive graphs and once again make every possible graph
comparison. [13] uses expensive centrality measurements.

VIII. CONCLUSION AND PERSPECTIVES

Botnet attacks are constantly more sophisticated, and this
is expected to get even worse with the massive increase of
connected objects and virtualised infrastructures. Therefore the
quick identification of such bots is crucial to Internet security.
Our technique BotFP focuses on the detection of botnets that
infect thousands of machines and perform malicious actions
such as launching port scanning and DDoS attacks. We pro-
pose an attribute frequency distribution design to characterize
hosts communication, where bots exhibit specific behaviours.
We design two BotFP variants for the training and classifi-
cation. BotFP-Clus clusters similar host signatures of each
host to group similar instances of traffic, hence avoiding data
overfitting and reducing the complexity. BotFP-ML applies

a supervised ML algorithm to learn from the signatures and
detect new bots. The detection results are very promising, since
BotFP detected all bots from the CTU-13 dataset with very
few false positives, outperforming alternative techniques at the
state of the art. With both techniques, BotFP achieves an accu-
racy close to 100% while being very lightweight compared to
graph-based techniques. The said variant is chosen according
to the parameter we want to favour, such as a high recall or
precision, a low complexity, a small number of features.

We showed that using only the information about 4-tuple
flows is a very insightful way to characterize the communi-
cations of an host and enables to efficiently detect bots. We
plan as future work to consider additional features including:
the payload size, as crafted packets from bots usually have a
lower size than usual packets; the TCP flags, e.g. to detect
SYN flood; the inter-packet time; the flows duration, e.g. the
connection to the C&C server might be persistent; and DNS
features inspired from [24]. We also plan to develop a real-
time implementation of our algorithm, working with sliding
time windows and incrementally updating the model, based
on [47].
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Botnet Fingerprinting: a Frequency Distributions Scheme
for Lightweight Bot Detection

Supplementary Materials

Agathe Blaise⇤ Mathieu Bouet† Vania Conan† Stefano Secci‡

1 Observation of bots fingerprints

Fig. 1a shows a typical example of a bot (147.32.84.165) from scenario #1 of CTU-13,
where each point is representing one flow (bots from scenarios #2 and #6 show a similar
behaviour); through the graphs we can infer its actions: scanning or spamming (looking
to the whole range of IP addresses targeted), infection of other hosts by searching for
their vulnerabilities (looking to the used destination ports corresponding to many vulner-
able services), communication with the C&C server via a proxy. We also observe regular
connections to the C&C server, using the exotic TCP/65000 port and the IRC protocol.
Finally, the range for ephemeral ports is different from quite unusual, neither the range
recommended by IANA or the typical Linux range.

Fig. 1b is an example of an infected host (192.168.100.111) from scenario #17 of
IoT-23, performing several malicious activities; its behavior is close to hosts from scenarios
#5, 7 from CTU-13 which performed port scanning. For this host, we observe usual TCP
and UDP connections, but also port scanning: targeting port 8081 (alternative HTTP
port) with the hardcoded source port number 17576, 80 and 8080 with source port 18088,
52869 (service Universal Plug an Play) with source port 18344, and 37215 (Huawei HG532
router port) with source port 17832, targeting the whole range of IP addresses. We observe
that both hosts are performing network scanning: targeting specific ports known for their
vulnerabilities and targeting the whole range of IPv4 addresses. We notice also some
differences between both hosts: they did not run the same Operating System, as the range
for ephemeral ports is different. Also, we do not observe C&C communications for the
second host.
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Fig. 1c shows the fingerprinting of an infected host (10.0.2.111) from capture 112_2
from Malware Capture Facility Project. The host has normal TCP and UDP connections,
but we also observe a ICMP DoS using a large variety of ICMP codes (noted destination
ports in the graph) and targeting the DNS servers hosted at 8.8.4.4 and 8.8.8.8. Its
behavior is similar to hosts from scenarios #4, 10, 11 from CTU-13 performing ICMP DoS.

2 Importance of features selection

To better understand the specificities of bots communications that enable to detect them,
we observe the most meaningful features in the classification process.

Once the linear SVM is fit to the data, with 256 regular bins (and the C parameter set
to 100 according to Gridsearch), it creates a line or a hyperplane which separates the data
into classes. It uses support vectors to maximize the distance between two classes, and the
weights obtained represent the vector coordinates which are orthogonal to the hyperplane
and their direction indicates the predicted class.

Table 1 shows the ranking of the most meaningful attributes with, for each of them, the
number of bins which have a weight not null, the sum of all per-bin weights, and the mean
weight per bin. TypeICMP has the most significant impact of all attributes. It represents the
type of ICMP message which, for a botnet, is often set to 3 for "Destination Unreachable"
or to 8 for "Echo Request". The second and the third most important ones are DipTCP and
DipUDP, as during a botnet spam or scan, nearly all destination IP addresses are targeted
instead of some selected ASes. SportUDP and DportUDP follow, actually UDP is often
used only for DNS, and in case of a botnet is very differently used. Finally, the values of
SportTCP, DportTCP, DportICMP and DipICMP have nearly no impact on the results.

Attribute Number of bins
with a weight > 0

Sum of weights
for all bins

Mean weight
per bin

TypeICMP 148 0.8517 0.0058
DipTCP 60 0.5328 0.0089
DipUDP 52 0.3371 0.0058

SportUDP 41 0.1663 0.0041
DportUDP 100 0.1264 0.0013
SportTCP 43 0.0046 0.0001
DportTCP 10 0.0327 0.0032
CodeICMP 50 0.0014 2.8843 ·10�5
DipICMP 5 0.0013 0.0003

Table 1: Ranking of the attributes according to their importance in the classification, for
BotFP-SVM with 256 regular bins.
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(a) Host 147.32.84.165 from scenario #1 of CTU-13

performing network scanning.

(b) Host 192.168.100.111 from scenario #17 of IoT-23

performing port scanning.

(c) Host 10.0.2.111 from capture 112_2 of Malware

Capture Facility Project.

Figure 1: Fingerprinting of infected hosts.
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